
FUSION SYSTEMS FOR PROFINITE GROUPS

RADU STANCU AND PETER SYMONDS

Abstract. We introduce the notion of a pro-fusion system on a pro-p group, which generalizes
the notion of a fusion system on a finite p-group. We also prove a version of Alperin’s Fusion
Theorem for pro-fusion systems.

1. Introduction

Profinite groups have a good theory of Sylow pro-p subgroups, so they form an obvious
candidate for a generalization of fusion theory in finite groups. See for example the work of
Gilotti, Ribes and Serena [9] on fusion and transfer in the context of profinite groups.

In the present work we develop a theory of fusion systems for profinite groups. We define a
pro-fusion system F on a pro-p group S as an inverse limit of fusion systems on finite p-groups
(see Definition 2.7) and we study morphisms between them and also their quotients. When the
fusion systems in the inverse limit are all saturated we call F a pro-saturated fusion system.

If F is a pro-saturated fusion system on a pro-p group S, then analogously to the case of
profinite groups, F is an inverse limit of its quotients by open, strongly closed subgroups of
S (Proposition 4.5). We also define saturation of F in terms of properties familiar from the
finite case and show that these are automatically satisfied when F is pro-saturated and S is
countably based (Theorem 5.2).

The main results of this work are concerned with a version of Alperin’s Fusion Theorem for
pro-saturated fusion systems. We generalize the notion of an invariant subsystem on a strongly
closed subgroup T of S, by extending the set of objects to all subgroups of S; we call it a T -
subsystem (Definition 6.1). A saturated T -subsystem of a pro-fusion system attempts to mimic
a normal subgroup of a profinite group. We show that a morphism in a saturated T -subsystem
E between two open subgroups of S can be expressed as a composition of a chain of restrictions
of automorphisms in E (Theorem 6.9). This relative form of Alperin’s Theorem appears to be
new even in the case of finite groups. The result for a morphism between closed subgroups is
more complicated and we only prove it with additional hypotheses (Theorem 6.17). Moreover,
the resulting chain of morphisms need not be finite, although it converges in the profinite
topology. In the last section we give an example of a profinite group and a morphism in its
associated pro-fusion system for which the length of such an Alperin chain must be infinite.
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2. Terminology and basic properties

2.1. When we deal with profinite groups we always work in the category of profinite groups,
so all subgroups are closed and all homomorphisms are continuous. For more information on
profinite groups see, for example, [13, 15, 17]

There is a good theory of Sylow pro-p subgroups. However, there are some differences from
the case of finite p-groups. One is that a proper subgroup of a pro-p group can be equal to its
normalizer; the normalizer only has to be larger when the subgroup is open. Another difference
is that a group can be isomorphic to one of its proper subgroups.

One result that does carry over, and which we shall use frequently, is the following: if P is
a pro-p group, Q an open subgroup and N a normal subgroup such that NN(Q) ≤ Q, then
N ≤ Q.

2.2. Let p be a prime and S a finite p-group. A fusion system on S is a category F with
objects the set of subgroups of S and morphisms which are injective group homomorphisms
subject to two conditions:

(a) F contains every group homomorphism induced by conjugation by an element of S, and
(b) any morphism in F factors as an isomorphism in F followed by an inclusion.

A fusion system F is called saturated if it satisfies a certain extra condition based on Sylow
theory (see Definition 2.16 below). For more information on fusion systems see, for example,
[5, 8, 10].

Definition 2.3. Let F be a fusion system on S and G be a fusion system on T . A morphism
of fusion systems between F and G is a group homomorphism α : S → T such that there exists
a functor A : F → G with the property that:

(a) A(P ) = α(P ), ∀P ≤ S;
(b) for all ϕ ∈ HomF(P,Q), αϕ = A(ϕ)α.

Notice that A is uniquely determined by α, provided that it exists. Thus a morphism of fusion
systems is just a group homomorphism between the underlying p-groups that satisfies certain
conditions, to wit that for each ϕ ∈ HomF(P, S) with N := ker(α) we have ϕ(P ∩N) ≤ Q∩N
and the induced group homomorphism ϕ : P/P ∩N → Q/Q ∩N is, in fact, a morphism of G.
We will refer to a morphism as (α,A), α or A, as convenient.

2.4. Morphisms of fusion systems can be composed in the obvious way. It is easy to see that
Ker(α) is a strongly F -closed subgroup of S. Recall that Q is a strongly F-closed subgroup of
S if, for all ϕ ∈ HomF(R, S), R ≤ Q implies ϕ(R) ≤ Q. Let A(F) be the collection of objects
and morphisms of G that are in the image under α of objects and morphisms in F . In general,
A(F) need not be a fusion system, because it may not be possible to compose morphisms. We
can remedy this by defining 〈A(F)〉 to be the fusion system on α(S) generated by A(F). There
is then a morphism of fusion systems F → 〈A(F)〉.

When Q is a strongly F -closed subgroup of S, F/Q is defined to be the fusion system on
S/Q with morphisms all group homomorphisms ϕ satisfying ϕ ∈ HomF/Q(PQ/Q, S/Q) if and
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only if there exists ϕ̃ ∈ HomF(PQ, S) such that ϕ(uQ) = ϕ̃(u)Q for all u ∈ P . However,
there might not be a morphism from F to F/Q. Define FQ to be the set of homomorphisms
of subgroups of S/Q induced by morphisms in F , and let 〈 FQ〉 be the fusion system that it
generates. There are then clearly morphisms F → 〈FQ〉 and F/Q → 〈FQ〉. If the latter is
an isomorphism, there is a morphism F → F/Q and we call F/Q a quotient of F . In the
saturated case all of this is well behaved; the following results are due to Puig.

Theorem 2.5 ([10]). Let F be a saturated fusion system on a finite p-group S and let N ≤ S
be strongly closed. For any ϕ ∈ HomF(P,Q) there exists ϕ̃ ∈ HomF(PN,QN) such that ϕ̃ and
ϕ induce the same homomorphism PN/N → QN/N .

Corollary 2.6 ([10]). Let F be a saturated fusion system on S.

(a) Let (α,A) : F → G be a morphism of fusion systems. Then A(F) is a saturated fusion
system isomorphic to F/Ker(α) and (α,A) factors as a quotient followed by an inclusion.

(b) If Q is a strongly F-closed subgroup of S then F/Q is a quotient of F (i.e. the natural map
from S to S/Q induces a morphism of fusion systems). Moreover, F/Q is saturated.

There is a careful discussion of these topics in [7].
We will construct a pro-fusion system by an inverse limit process on a directed system of

fusion systems on finite p-groups. Recall that a partially ordered set I is directed if for all
i, j ∈ I there exists k ∈ I, with k ≥ i and k ≥ j.

Definition 2.7. Suppose that we have an inverse system of fusion systems Fi on finite p-groups
Si, indexed by a directed set I. That is, for every i, j ∈ I, j ≥ i we have morphisms (fi,j, Fi,j) :
Fj → Fi such that fi,jfj,k = fi,k whenever k ≥ j ≥ i. Set S := lim←−

i∈I
Si and let fi : S → Si be

the induced projections and Ni := Ker(fi). Then S is a pro-p group, and the {Ni | i ∈ I} form
an open sub-basis for S at 1. Define F := lim←−

i∈I
Fi to be the category on S with objects all the

closed subgroups of S and with morphisms given by HomF(P,Q) := lim←−
i∈I

HomFi(fi(P ), fi(Q)),

for all P,Q ≤ S. We say that F is a pro-fusion system on the pro-p group S.

Notice that AutF(P ) is naturally a profinite group. There is a canonical functor Fi : F → Fi
sending P ≤ S to fi(P ) ≤ Si and ϕ ∈ HomF(P,Q) to its image in HomF(fi(P ), fi(Q)).

Example 2.8. If G is a profinite group with Sylow pro-p subgroup S, then FS(G), the category
with the closed subgroups of S as objects and as morphisms all homomorphisms induced by
conjugation by the elements of G, is a pro-fusion system. For if G = lim←−

i∈I
G/Ni then FS(G) =

lim←−
i∈I
FS/S∩Ni(G/Ni).

Lemma 2.9. Every morphism in a pro-fusion system F factorizes uniquely as an isomorphism
followed by an inclusion, and every endomorphism is an isomorphism.
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Proof. Given ϕ ∈ HomF(P,Q), each Fi(ϕ) factorizes as inciθi, where θi is an isomorphism and
inci is an inclusion. Thus ϕ factorizes as lim←−

i∈I
inci lim←−

i∈I
θi. The inverse to lim←−

i∈I
θi is lim←−

i∈I
θ−1i , and

lim←−
i∈I

inci is the inclusion of ϕ(P ) in Q.

If ϕ is an endomorphism then so is Fi(ϕ); thus inci is the identity map, and so is lim←−
i∈I

inci. �

Sometimes we will write ϕ−1 for the inverse of the isomorphism part of this factorization of
ϕ.

Lemma 2.10. Let F be a pro-fusion system on S and P , Q subgroups of S. Suppose that there
are morphisms ϕ ∈ HomF(P,Q) and ψ ∈ HomF(Q,P ). Then ϕ and ψ are isomorphisms.

Proof. By Lemma 2.9, ϕψ and ψϕ are both isomorphisms. Thus both ϕ and ψ are surjective,
hence isomorphisms, by Lemma 2.9 again. �

Lemma 2.11. If P is open in S and Q is isomorphic to P in F , then Q is also open and has
the same index in S as P .

Proof. Since P is open in S, it must contain some Ni, and Q must also contain Ni, because Ni

is strongly closed. Thus P/Ni is isomorphic to Q/Ni in Fi. �

Lemma 2.12. If F is a pro-fusion system on S then it contains every group homomorphism
induced by an element of S.

Proof. Suppose that F = lim←−Fi and that we have P,Q ≤ S and s ∈ S such that sP ≤ Q. The
conjugation homomorphism cs : P → Q has image cfi(s) : fi(P )→ fi(Q) between subgroups of
Si. Since Fi is a fusion system, we know that cfi(s) ∈ HomFi(fi(P ), fi(Q)). But Fi,j(cfj(s)) =
cfi(s), so we obtain an element of HomF(P,Q) that is clearly equal to cs. �

Thus a pro-fusion satisfies the conditions for a fusion system in 2.2. However, these are
certainly not enough to ensure a good theory.

Example 2.13. Any attempt to define a pro-fusion system on an infinite pro-p group S by
setting Hom(P,Q) to be all the (continuous) injective group homomorphisms from P to Q will
not succeed; in other words, the resulting category cannot be expressed as an inverse limit. For
if S is not all torsion then it contains a copy of the p-adic integers, which is isomorphic to a
proper subgroup of itself, contradicting Lemma 2.10; if it is torsion then it contains an infinite
product of cyclic groups of order p, by [18], which has the same property.

We now define the saturation of a pro-fusion system in the same way as was done for a fusion
system on a finite p-group by Roberts and Shpectorov [14]. We start with some preliminary
notions. For the rest of this section F is a pro-fusion system on a pro-p group S.

Definition 2.14. We say that Q is receptive in F if for all Q ≤ S and for all ϕ ∈ IsoF(R,Q),
there exists ϕ̃ : Nϕ → NS(Q) in F such that ϕ̃|R = ϕ, where Nϕ = {x ∈ NS(R) | ∃y ∈
NS(Q), ϕ(xux−1) = yϕ(u)y−1,∀u ∈ R}.
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Write AutS(Q) for the image of the natural homomorphism NS(Q) → AutF(Q). If K ≤
AutF(Q), write AutKS (Q) for AutS(Q) ∩K and NK

S (Q) for the inverse image of K in NS(Q).

Definition 2.15. Let K ≤ AutF(Q). We say that Q is fully K-automized in F if AutKS (Q) is
a Sylow pro-p subgroup of K. We say that Q is fully K-normalized in F if Q is receptive and
fully K-automized in F .

When K = AutF(Q) we say that Q is fully normalized in F rather than fully AutF(Q)-
normalized in F . When K = 1 we say that Q is fully centralized in F .

Definition 2.16. A pro-fusion system F is saturated if every F -isomorphism class contains a
subgroup that is fully normalized in F .

Remark 2.17. We follow the treatment of Roberts and Shpectorov, because it does not require
us to consider the order of NS(Q)/Q or of CS(Q)Q/Q, which might be infinite. We should
acknowledge here that, if F is a fusion system not necessarily saturated, then, our notion of
subgroup fully normalized in F differ from the standard definitions in the literature, [10, 5]
which are themselves not equivalent. All these different characterizations are equivalent if F is
a saturated fusion system.

Example 2.18. If G is a profinite group with Sylow pro-p group S then FS(G) is saturated.
This is a consequence of Sylow theory, and the proof is the same as in the finite case.

The development of the theory from the axioms follows the same lines as in the finite case.
We just have to be careful to avoid mentioning the order of a group and not to use any hidden
lemma particular to finite groups.

Lemma 2.19. Let F be a pro-fusion system on S, Q ≤ S and K ≤ AutF(Q). If Q is fully
K-automized in F and L ≤ K ≤ AutF(Q), then there exists a κ ∈ K such that Q is fully
κL-automized in F . In particular, if L is a normal subgroup of K then Q is fully L-automized
in F .

Proof. By hypothesis, AutKS (Q) is a Sylow pro-p subgroup of K, so there is a κ ∈ K such that
AutKS (Q) contains a Sylow pro-p subgroup of κL. Hence Aut

κL
S (Q) is a Sylow pro-p subgroup

of κL. �

Lemma 2.20.

(1) If Q is fully K-normalized in F and ϕ ∈ IsoF(R,Q), then there exist morphisms ψ ∈
HomF(N

ϕ−1
K

S (R)R→ NK
S (Q)Q) and χ ∈ K such that ψ|R = χϕ.

(2) Let K := AutS(Q) and suppose that for all ϕ ∈ IsoF(R,Q) there exist morphisms

ψ ∈ HomF(N
ϕ−1

K
S (R), NK

S (Q)) and χ ∈ K such that ψ|R = χϕ. Then Q is receptive
in F .

Proof.
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(1) Consider ϕAut
ϕ−1

K
S (R) ≤ AutKF (Q). Since Q is fully K-automized, there is a χ ∈

AutKF (Q) such that χϕAut
ϕ−1

K
S (R) ≤ AutKS (Q). But ϕ−1

K = (χϕ)−1
K, so N

ϕ−1
K

S (R) ≤
Nχϕ. Because Q is receptive, χϕ extends to ψ′ : Nχϕ → NS(Q)Q. The restriction of ψ′

to N
ϕ−1

K
S (R) is the morphism ψ required.

(2) Let ϕ ∈ IsoF(R,Q) and let ψ, χ be as in the hypothesis. Notice that N
ϕ−1

K
S (R) = Nϕ

and χ = cu the conjugation by an element u of NS(Q). Then cs−1ψ is a morphism in

HomF(N
ϕ−1

K
S (R), NK

S (Q)) extending ϕ.

�

Lemma 2.21 (cf. [5]). Let F be a pro-fusion system on S, Q ≤ S and K ≤ AutF(Q).
Suppose that there is a subgroup in the F-isomorphism class of Q that is fully normalized
in F . Then Q is fully K-normalized in F if and only if all ϕ ∈ HomF(NK

S (Q)Q,S) satisfy
ϕ(NK

S (Q)) = N
ϕK
S (ϕ(Q)).

If Q is an open subgroup of S, the previous properties are equivalent to |NK
S (Q)Q/Q| being

maximal in the F-isomorphism class of Q, i.e. in the set {|NχK
S (χ(Q))χ(Q)/χ(Q)| | χ ∈

HomF(Q,S)} (this set is bounded, by Lemma 2.11).

Proof. Suppose that Q is fully K-normalized in F and ϕ ∈ HomF(NK
S (Q)Q,S). Clearly ϕ

restricts to a map NK
S (Q) → N

ϕK
S (ϕ(Q)). By Lemma 2.20 applied to ϕ−1|ϕ(Q) : ϕ(Q) → Q,

there is a map ψ : N
ϕK
S (ϕ(Q))ϕ(Q) → NK

S (Q)Q. This takes ϕ(Q) to Q, hence restricts to a
map N

ϕK
S (ϕ(Q))→ NK

S (Q). Thus there are morphisms in both directions between NK
S (Q) and

N
ϕ̃(K)
S (ϕ(Q)), and so, by Lemma 2.10, ϕ(NK

S (Q)) = N
ϕK
S (ϕ(Q)).

Conversely, suppose that for all ϕ : NK
S (Q)Q → S we have ϕ(NK

S (Q)) = N
ϕK
S (ϕ(Q)). Let

θ ∈ HomF(Q,S) be such that P := θ(Q) is fully normalized in F . By Lemma 2.19, there is a
χ ∈ AutF(P ) such that P is fully χ(θK)-normalized. Apply Lemma 2.20 to η := χθ|Q to obtain
a morphism ψ : NK

S (Q)Q → N
ηK
S (P )P such that ψ(Q) = P and ηK = ψK. The restriction

ψ|NK
S (Q) : NK

S (Q) → N
ηK
S (P ) must be onto, by hypothesis, hence the induced homomorphism

AutKS (Q)→ Aut
ηK
S (P ) must be onto. But we have arranged for Aut

ηK
S (P ) to be a Sylow pro-p

subgroup of Aut
ηK
F (P ), so AutKS (Q) must be a Sylow pro-p subgroup of AutKF (Q), showing that

Q is fully K-automized.
It is easy to check that Q is receptive in F . Indeed, since P is fully normalized in F ,

Lemma 2.20 shows that there is a ψ ∈ HomF(NS(Q), NS(P )) such that ψ(Q) = P . If χ ∈
IsoF(R,Q), then Nχ ≤ Nψχ and there is a ρ ∈ HomF(Nψχ, NS(P )) with ρ(R) = P . Moreover,
ρ(Nχ) ≤ ψ(NS(Q)), thus ψ−1ρ|Nχ extends χ.

If Q is an open subgroup of S, then Lemma 2.11 shows that for every isomorphism ψ ∈
IsoF(Q,R) the image R is also an open subgroup of S and that |NψK

S (R)R/R| is finite and
bounded by |S : Q|. For any ϕ ∈ HomF(NK

S (Q)Q,S) with P = ϕ(Q) fully F -normalized, we
have ϕ(NK

S (Q)Q) ≤ N
ϕK
S (P )P and ϕ(NK

S (Q)Q)/Q ≤ N
ϕK
S (P )P/P . If |NK

S (Q)/Q| is maximal
then we must have equality.
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Conversely, suppose that Q is fully K-normalized in F and χ ∈ IsoF(Q,P ). Applying
Lemma 2.20 to χ−1 yields a ψ : N

χK
S (P )P → NK

S (Q)Q, which restricts to an isomorphism P →
Q. This induces a morphism N

χK
S (P )P/P → NK

S (Q)Q/Q, so |NK
S (Q)Q/Q| is maximal. �

Lemma 2.22. Let F be a pro-fusion system on S, Q ≤ S and K ≤ AutF(Q). If Q is fully K-
normalized in F , then for any ϕ ∈ HomF(NK

S (Q), S) the subgroup ϕ(Q) is fully ϕK-normalized
in F .

Proof. Given θ ∈ HomF(N
ϕK
S (ϕ(Q))ϕ(Q), S), compose it with ϕ. By Lemma 2.21, the map

θϕ : NK
S (Q) → N

θϕK
S (θϕ(Q)) is onto, so θ : N

ϕK
S (ϕ(Q)) → N

θϕK
S (θ(ϕ(Q))) is also onto. By

Lemma 2.21 again, ϕ(Q) is fully ϕK-normalized. �

When F is a pro-fusion system on S and N is an open strongly closed subgroup of S we can
form the quotient system F/N in the manner of 2.4; it is a fusion system on S/N . Just as in
the case of a fusion system on a finite p-group, the image of a fully F -normalized subgroup is
a fully F/N -normalized subgroup.

Lemma 2.23. Let F be a pro-fusion system on a pro-p group S. Let N be an open and strongly
F-closed subgroup of S and let Q be a subgroup of S containing N that is fully normalized in F .
Then Q/N is fully normalized in F/N .

Proof. For simplicity, write F := F/N and X := XN/N for all subgroups X of S. First,

notice that, since N ≤ Q, we have NS(Q) = NS(Q). Moreover, the canonical morphism from
π : AutF(Q)→ AutF(Q) is surjectif so Q is fully atomized in F . Denote by K = AutS(Q) and
by K its inverse image in AutF(Q) through the canonical projection.

Let ϕ : R → Q be a morphism in F induced by ϕ : R → Q in F . By Lemma 2.20(ii), to

show that Q is receptive it is enough to find morphisms ψ ∈ HomF(N
ϕ−1

K
S

(R), NK
S

(Q)) and

χ ∈ K such that ψ|R = χϕ. We have that K contains AutS(Q) so Q is fully K-normalized in

F . By Lemma 2.20(i) there exist morphisms ψ ∈ HomF(N
ϕ−1

K
S (R)R→ NK

S (Q)Q) and χ ∈ K
such that ψ|R = χϕ.

It remains to prove that ψ in a morphism in HomF(N
ϕ−1

K
S

(R), NK
S

(Q)). This comes from the

fact that the canonical projection N
ϕ−1

K
S (R)→ N

ϕ−1
K

S
(R) is surjective. Indeed, let s ∈ NS(R)

such that s ∈ N ϕ−1
K

S
(R). Then, there exists k ∈ K such that ϕ( sr) = k(ϕ(r))nr for all r ∈ R,

where nr is an element of N depending on r.
Denote by l the automorphism of Q given by q 7→ ϕ( sϕ−1(q)). Then l and k have the same

image k in K and, thus, l is a morphism in K. If follows that, for all r ∈ R, ϕ( sr) = l(ϕ(r)),

hence that s ∈ N ϕ−1
K

S (R). �

As a consequence we obtain:

Corollary 2.24. Let F be a saturated pro-fusion system on a pro-p group S, and let N be an
open and strongly F-closed subgroup of S. Then F/N is saturated fusion system on S/N .



8 RADU STANCU AND PETER SYMONDS

Proof. Let Q be a subgroup of S/N and let Q be its inverse image in S. Since F is saturated,
there exists a subgroup R in the F -isomorphism class of Q that is fully normalized in F . By
Lemma 2.23, the subgroup R := R/N is fully normalized in F/N . Since R is in the F/N -
isomorphism class of Q, this implies that F/N is saturated. �

Remark 2.25. In the previous result one only needs the saturation for the subgroups of S
containing N . In particular, it is sufficient to have fully normalized representatives for every
F -isomorphism class of open subgroups of S.

3. Morphisms of pro-fusion systems

Because we have defined a pro-fusion system as an inverse limit of fusion systems, it is
incumbent upon us to deal carefully with morphisms and quotients. A morphism between two
pro-fusion systems is defined exactly as for fusion systems, that is to say as a homomorphism,
α, between the underlying pro-p groups that satisfies certain conditions which can be expressed
by the existence of a certain functor, A, just as in Definition 2.3. We now have a category of
pro-fusion systems. It is easy to verify that if F = lim←−

i∈I
Fi is a pro-fusion system then F really

is the inverse limit in this category.
Everything in Paragraph 2.4 is still valid for pro-fusion systems, provided that Q is taken to

be open.
It might appear that this definition of morphism does not capture all the information in

the inverse limit system, but we will show that, in fact, it does so in the strongest possible
reasonable way. We phrase this as a continuity condition, analogous to the characterization of
continuity for maps of profinite sets or groups. It is, in fact, equivalent to a morphism of the
underlying pro-systems, as the reader who is familiar with such things will notice.

Definition 3.1. Let F = lim←−
i∈I
Fi and G = lim←−

j∈J
Gj be pro-fusion systems, with canonical sets

of morphisms {(fi, Fi) : F → Fi | i ∈ I} and {(gj, Gj) : G → Gj | j ∈ J}. A morphism
(α,A) : F → G is said to be continuous if for each j ∈ J there is an i ∈ I such that the

composition F (α,A)→ G (gj ,Gj)→ Gj factors through F (fi,Fi)→ Fi.

This definition appears to depend on the ways in which F and G are expressed as inverse
limits (but see Corollary 3.5).

If F = lim←−
i∈I
Fi, we can consider the fusion systems 〈Fi(F)〉 ⊆ Fi. These can be assembled

into an inverse limit system and we can consider lim←−
i∈I
〈Fi(F)〉.

Lemma 3.2. Suppose that F = lim←−
i∈I
Fi is a pro-fusion system. Then for each i ∈ I there is a

j ≥ i such that Fi(F) = Fi,j(Fj).
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Proof. For each j ≥ i consider Xj = 〈Fi,j(Fj)〉 ⊆ Fi. Suppose that ϕ ∈ ∩j≥iXj and let
Yj = {θ ∈ Fj | Fi,j(θ) = ϕ}. These Yj form an inverse system of finite sets, so their inverse
limit is non-empty. An element of the inverse limit defines an element ϕ̃ ∈ F such that
Fi(ϕ̃) = ϕ, and we conclude that Fi(F) = ∩j≥iXj. Since the sets Xi are finite, we must have
Fi(F) = Fi,j(Fj) for some j ≥ i. �

Lemma 3.3. The identity map on S induces an isomorphism between F and lim←−
i∈I
〈Fi(F)〉. It is

continuous in both directions.

Proof. It is easy to see that we have an isomorphism and that the morphism lim←−
i∈I
〈Fi(F)〉 → F

is continuous.
For the other direction, consider some fixed morphism F Fi→ Fi. Choose j ≥ i as in Lemma 3.2

so that Fi(F) = Fi,j(Fj). Thus Fi,j has image in 〈Fi(F)〉, and so Fi factors through Fj. �

Proposition 3.4. Every morphism between pro-fusion systems is continuous.

Proof. Suppose that F = lim←−
i∈I
Fi and G = lim←−

j

Gj are a pro-fusion systems on S and T . By

Lemma 3.3, we may assume that Fi = 〈Fi(F)〉. Let α : S → T be a group homomorphism
that, together with a functor A, induces a morphism F → G. Fix some Gj; since α is continuous,

there is an i such that S
α→ T

gj→ Tj factors through S
fi→ Si. We need to construct the functor

Ai,j associated to the factoring map Si → Tj; it is sufficient to define this on elements of Fi(F).
Given ϕ ∈ Fi(F), we have ϕ = Fi(ϕ̃) for some ϕ̃ ∈ F . We define Ai,j(ϕ) = GjA(ϕ̃); it is

straightforward to check that this has the right properties. �

The continuity of morphisms has various basic consequences, such as the following ones.

Corollary 3.5. If a pro-fusion system F can be defined up to isomorphism as an inverse limit
in two different ways, say as lim←−

i∈I
Fi or as lim←−

i∈I′
F ′i , then the isomorphism is continuous. Therefore,

the continuity of a morphism of pro-fusion systems does not depend on the representations of
the pro-fusion systems as inverse limits.

Corollary 3.6. Let F be a pro-fusion system on a a pro-p group S and let P and Q be subgroups
of S. Then the topology on HomF(P,Q) depends only on the isomorphism class of F .

If (α,A) : F → G is a morphism of pro-fusion systems, then the group homomorphism
AutF(P ) → AutG(α(P )) induced by A is a continuous homomorphism of profinite groups and
the induced map HomF(P,Q)→ HomG(α(P ), α(Q)) is a continuous map of profinite sets.

Proposition 3.7. For any pro-fusion system F on S we have F ∼= lim←−
Nosc

〈FN〉, where the limit

is taken over the set of open strongly closed subgroups of S ordered by inclusion.
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Proof. There is a natural morphism F → 〈FN〉. The image of F in 〈FN〉 is FN , so the image
of F in lim←−

Nosc

〈FN〉 is lim←−
Nosc

FN , by a standard result about profinite sets, and F is isomorphic to

its image.
Suppose that F = lim←−

i∈I
Fi and let Ni = Ker(fi), for all i ∈ I. By Lemma 3.3, we may assume

that Fi = 〈Fi(F)〉. Let X be the set {Ni | i ∈ I}; then X is cofinal in the set of all open
strongly closed subgroups of S, so we may replace lim←−

Nosc

by lim←−
N∈X

.

Given M ∈ X, we know that M = Ni for some i, so S/M ∼= fi(S). By Lemma 3.2, there is
a j ≥ i such that Fi,j(Fj) = Fi(F).

We have a commutative diagram of groups

S −−−→ S/Nj −−−→ S/M∥∥∥ ≡
y ≡

y
S

fj−−−→ fj(S)
fi,j−−−→ fi(S),

in which the arrows on the top row are the quotient maps and the vertical isomorphisms are
uniquely determined. This extends to a diagram of functors

F −−−→ 〈FNj〉 −−−→ 〈FM〉∥∥∥ ≡
y ≡

y
F Fj−−−→ Fj

Fi,j−−−→ Fi,
in which the vertical maps are isomorphisms, because the domain and codomain are both defined
in the same way, as the fusion system generated by the morphisms between the subgroups of
S/Nj or of S/M that are induced by morphisms in F . Thus the image of the morphism
〈FNj〉 → 〈FM〉 is FM .

This forces lim←−
N∈X
〈FN〉 = lim←−

N∈X
FN . �

3.8. There are many equivalent characterizations of countably based profinite groups. The
two that will be useful to us are that there are only countably many open subgroups and that
the group can be expressed as an inverse limit of finite groups indexed by the set N of natural
numbers ordered in the usual way. Any finitely generated profinite group is countably based.

We define a pro-fusion system to be countably based if it is isomorphic to an inverse limit of
fusion systems indexed by the natural numbers with the usual ordering.

Lemma 3.9. A pro-fusion system F on the pro-p group S is countably based if and only if S
is countably based.

Proof. If F is countably based then so is S, directly from the definitions.
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Conversely, by Proposition 3.7 we know that F ∼= lim←−
Nosc

〈FN〉. If S is countably based then

it has only countably many open subgroups, so it certainly has only countably many open
strongly closed subgroups; enumerate them as N1, N2, . . ..

Recursively, choose M1 = N1 and Mr = Mr−1∩Nr. Then {Mr}r∈N is ordered in the same way
as N and is cofinal in the set of open strongly closed subgroups of S. Hence F ∼= lim←−

r∈N
〈FMr〉. �

4. Pro-saturated fusion systems

We introduce pro-saturated fusion systems and show that they are well behaved.

Definition 4.1. We say that a pro-fusion system is a pro-saturated fusion system if it is iso-
morphic to an inverse limit of saturated fusion systems on finite p-groups.

Lemma 4.2. Suppose that F = lim←−
i∈I
Fi, where the Fi are saturated fusion systems. Then Fi(F)

is a saturated fusion system for all i ∈ I, and F ∼= lim←−
i∈I

Fi(F).

Proof. From Lemma 3.2 we know that Fi(F) = Fi,j(Fj) for some j ≥ i. By Theorem 2.6,
Fi,j(Fj) is a saturated fusion system and thus, by Lemma 3.3, F ∼= lim←−

i∈I
Fi(F). �

Lemma 4.3. Let F = lim←−
i∈I
Fi be a pro-saturated fusion system. Then for each ϕ ∈ HomF(P,Q)

and each i ∈ I there exists a ϕ̃ ∈ HomF(f−1i fi(P ), f−1i fi(Q)) such that Fi(ϕ̃) = Fi(ϕ).

Proof. Let F = lim←−
i∈I
Fi with the Fi saturated. For each j ≥ i let Xj be the set of the morphisms

in HomFj(f
−1
i,j fi(P ), f−1i,j fi(Q)) with image Fi(ϕ) in Fi. Then each Xj is a finite set, and it is

non-empty, by Theorem 2.5. An inverse limit of non-empty finite sets is non-empty, and an
element of lim←−

j≥i
Xj determines a morphism ϕ̃ ∈ HomF(f−1i fi(P ), f−1i fi(Q)). �

Given a pro-fusion system F on S and an open strongly closed subgroup N of S we can form
the fusion system F/N just as in the finite case.

Proposition 4.4. Let F be a pro-saturated fusion system on S and let N be an open strongly
F-closed subgroup of S. For any ϕ ∈ HomF(P,Q) there exists a ϕ̃ ∈ HomF(PN,QN) such that
ϕ and ϕ̃ induce the same homomorphism PN/N → QN/N . As a consequence, 〈FN〉 = F/N ,
and so there is a natural morphism F → F/N .

Proof. If N is one of the Ni, then this is just a reformulation of Lemma 4.3. Otherwise, there
is some Ni ≤ N , and we can use the ϕ̃ produced by using Lemma 4.3 relative to Fi.

The last part follows from the first part and the definition of F/N . �
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Proposition 4.5. If F is a pro-saturated fusion system on S, then F ∼= lim←−
Nosc

F/N as N runs

through all open strongly F-closed subgroups of S ordered by inclusion.

Proof. This follows from Proposition 3.7 and Lemma 4.4. �

4.6. We denote the restriction of a pro-fusion system F on S to the open subgroups of S by Fo.
If F is pro-saturated then we can tell whether an open subgroup N of S is strongly F -closed
or not just by considering Fo. For there is some Ni ≤ N and, if P ≤ N and ϕ(P ) 6≤ N , then
Proposition 4.4 shows that PNi ≤ N but ϕ̃(PNi) 6≤ N . It is clear from the definition that
F/N only depends on Fo.

From these considerations and using Proposition 4.5, we see that if F and G are both pro-
saturated fusion systems on S and Fo = Go then F = G. In a sense, pro-saturated fusion
systems are completely determined by what happens on open subgroups.

4.7. If F is a pro-fusion system on S such that Fo is saturated and N is an open strongly
closed subgroup of S, then F/N is saturated, as follows directly from the definitions. If M ≤ N
is also open and strongly closed, then F/N = (F/M)/(N/M), so there is a natural morphism
F/M → F/N , by Theorem 2.6. We set Fpro−sat = lim←−

Nosc

F/N . Then Fpro−sat is pro-saturated

and there is a natural morphism Fpro−sat → F with the property that Fopro−sat = Fo.
Example 4.8. Let p be an odd prime and let S be a free pro-p group on two generators x
and y. Let C be a cyclic group of order 2 and let it act on S by x↔ y. Set G = S oC. There
are two saturated fusion systems on S, FS(S) and FS(G): we want to mix them. Define F to
be the subcategory of FS(G) in which the morphisms with cyclic domain are those from FS(G)
and the morphisms with non-cyclic domain are those from FS(S). We need to check that F is
indeed a pro-fusion system.

There is a chain of open subgroups {Ni|i ∈ I} in S, each normal in G, such that S = lim←−
i∈I

Ni.

Set Gi = (S/Ni) o C. On S/Ni we define a fusion system Fi in an analogous way to F . Then
F = lim←−

i∈I
Fi.

It is easily verified that F is saturated using the fact that in a free pro-p group the normalizer
of a cyclic group is cyclic (just as in the case of an abstract free group).

Also Fpro−sat = FS(S), so F is not pro-saturated.

5. Saturation of pro-saturated fusion systems

We show that a pro-saturated fusion system is saturated, at least if it is countably based.

Theorem 5.1. If F is a pro-saturated fusion system, then Fo is saturated.

Proof. Suppose that we are given an open subgroup Q ≤ S. Notice that {Ni | Ni < Q} is
cofinal in {Ni|i ∈ I}, so F ' lim←−

Ni<Q

Fi. Thus we can assume that all the Ni are subgroups of Q.
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For each Ni < Q let Xi := {ϕ ∈ HomFi(fi(Q), Si) | ϕ(fi(Q)) is fully normalized in Fi}. Since
Fi is a saturated fusion system and Si is finite, Xi is a finite non-empty set. By Lemma 2.23,
for every Nj < Ni there is a natural map Xj → Xi; thus lim←−

Ni<Q

Xi 6= ∅. An element of the limit

determines a map ψ : Q→ S such that fi(ψ(Q)) is fully normalized in Fi for each Ni < Q.
We show that P = ψ(Q) is fully normalized in F . Given ϕ : R→ P , it induces ϕi : R/Ni →

P/Ni, which, given that P/Ni is fully normalized in Fi, extends to ρi : Nϕi → NS/Ni(Q/Ni).
For Nj < Ni there is a natural map Nϕj → Nϕi ; hence any extension ρj induces an extension
ρi. Let Xi be the set of all possible extensions of ϕi to Nϕi . These are finite non-empty sets
and there are natural maps Xj → Xi for Nj < Ni. Thus lim←−

Ni<Q

Xi is non-empty and an element

in this set induces a map lim←−
Ni<Q

Nϕi → lim←−
Ni<Q

NS/Ni(P/Ni), i.e. a map Nϕ → NS(P ).

The image of NS(P ) in S/Ni is NS/Ni(P/Ni), and this maps to a Sylow p-subgroup of
AutFi(P/Ni). Since this is true for all i ∈ I, AutS(P ) is dense in a Sylow p-subgroup of
AutF(P ). But AutS(P ) is closed, so it is a Sylow p-subgroup of AutF(P ). Thus, Fo satisfies
the saturation axioms. �

Theorem 5.2. If F is a countably based pro-saturated fusion system then F is saturated.

Before the proof we need a lemma.

Lemma 5.3. Let F be a pro-saturated fusion system on S and P ≤ S, and let Pn ≤ Pn−1 ≤
· · · ≤ P1 be a non-empty sequence of open, strongly closed subgroups of S. Then there exists a
subgroup Q in the F-isomorphism class of P such that QPi is fully normalized in F for each
i ∈ {1, . . . , n}.

Proof. We use induction on n. The result is true if n = 1 by Theorem 5.1. Suppose that
n ≥ 2 and that there exists a subgroup R that is F -isomorphic to P and such that RPi is fully
normalized in F for each 2 ≤ i ≤ n. By Theorem 5.1, there exists ϕ ∈ HomF(RP1, S) such that
ϕ(RP1) is fully normalized in F . By Lemma 2.20, there is a ψ ∈ HomF(NS(RP1), NS(ϕ(RP1))
such that ϕ(RP1) = ψ(RP1) = ψ(R)P1. Let Q := ψ(R). Since QP1 = (QPi)P1, we find that
NS(QPi) ≤ NS(QP1), so each NS(QPi) lies in the domain of ψ. Lemma 2.22 shows that each
RPi is fully normalized in F . �

Proof of Theorem 5.2. Since F is countably based, we can write F = lim←−
i∈N
Fi, and the Pi :=

Ker(fi) form a sequence of open, strongly closed subgroups of S. Given a subgroup P ≤ S,
let Xi be the set of ϕ : PPi/Pi → S/Pi such that ϕ(P )Pi/Pi is fully normalized in F/Pi. By
Lemma 5.3, Xi is finite and non-empty for all i. Moreover, there is a natural map Xi+1 → Xi

induced by the canonical projection PPi/Pi ' P/(P ∩ Pi) → P/P ∩ Pi+1 ' PPi+1/Pi+1.
Thus lim←−

i

Xi is non-empty, and an element ψ ∈ lim←−
i

Xi induces a map ψ : P → S such that
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ψ(P )Pi/Pi is fully normalized in F/Pi for each i. Set R := ψ(Q); we need to show that R is
fully normalized in F .

First we show that every ϕ : Q→ R extends to Nϕ. Since RPi/Pi is fully normalized in Fi,
we know that ϕi : QPi/Pi → RPi/Pi extends to a morphism Nϕi → NS/Pi(R/Pi). Let Xn be
the set of all maps Nϕ → NS/Pn(R/Pn) of the form Nϕ → Nϕi → NS/Pi(R/Pi)→ NS/Pn(R/Pn)
for some i ≥ n. Xn is clearly non-empty; it is also finite, since all the maps have to have
Pn in the kernel. Moreover, there is a natural map Xn+1 → Xn induced by the projection
NS/Pn+1(R/Pn+1) → NS/Pn(R/Pn). Thus lim←−

n

Xn is non-empty and an element of this limit

yields ϕ̃ : Nϕ → NS(R), extending ϕ.
Next we show that AutS(R) is a Sylow p-subgroup of AutF(R). This is done by applying

the following lemma to the family NS/Pi → AutFi/Pi(RPi/Pi). �

Lemma 5.4. Let {Gi}i∈I be a directed system of finite groups and {Si}i∈I a directed system of
finite p-groups. Let {χi : Si → Gi}i∈I be a map of directed systems such that χi(Si) is a Sylow
p-subgroup of Gi for all i. Then χ(lim←−

i∈I
Si) is a Sylow p-subgroup of lim←−

i∈I
Gi.

Proof. Set G = lim←−
i∈I

Gi and S = lim←−
i∈I

Si. It is easy to see that χ : S → G is injective.

Let T be a Sylow pro-p subgroup of G such that χ(S) ≤ T . For each i let pi : G → Gi be
the canonical projection. Then there exists a gi ∈ Gi such that gipi(T ) ≤ χi(Si). Let Xi be
the set of all such gi. There is a natural map Xi → Xj sending gj to pi,j(gi). Hence lim←−

i∈I
Xi is

non-empty, and an element of it yields an element g ∈ G such that gT ≤ χ(S). Given that
χ(S) ≤ T we obtain χ(S) = T . �

We do not know whether the hypothesis that the system should be countably based is nec-
essary.

6. Invariant subsystems and a relative form of Alperin’s Fusion Theorem

Let F be a pro-fusion system on a p-group S. We introduce here the notion of a T -subsystem,
where T is a strongly F -closed subgroup of S. This generalizes the notion of an F -invariant
system in the literature ([1, 7, 12]), by retaining as objects in the T -subsystem all subgroups of
S, not just the ones contained in T . If G is a finite group with Sylow p-subgroup S and H is
a normal subgroup of G then the morphisms between the subgroups of S that are induced by
conjugation by an element of H will form an (H∩S)-subsystem of FS(G). So we are attempting
to model a normal subgroup.

Definition 6.1. Let F be a fusion system on a p-group S and let T be a strongly F -closed
subgroup of S. A T -subsystem E of F is a subcategory of F on the same objects, with
morphisms satisfying:

(a) E contains every group homomorphism induced by conjugation by an element of T ,
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(b) any morphism in E factors as an isomorphism of E followed by an inclusion,
(c) for all P, P ′ ≤ Q ≤ S and ϕ ∈ HomF(Q,S) we have ϕ|P ′HomE(P, P

′) = HomE(ϕ(P ), ϕ(P ′))ϕ|P ,
(d) for all Q ≤ S and ψ ∈ HomE(Q,S) we have ψ(u)u−1 ∈ T, ∀u ∈ Q.

Note that the full subcategory of E on the subgroups of T is what is known as an F -invariant
fusion system in the literature.

A morphism between a T1-subsystem E1 of F1 and a T2-subsystem E2 of F2 is a morphism
(α,A) : F1 → F2 such that α(T1) ≤ T2 and A(E1) ⊆ E2.

In an analogous way to the saturation of F we define the saturation of E .

Definition 6.2. We say that Q is receptive in E if for all ϕ ∈ IsoE(R,Q) there exists ϕ̃ : NT
ϕ →

NT (Q)Q in E such that ϕ̃|R = ϕ, where

NT
ϕ = {x ∈ NT (R)R | ∃y ∈ NT (Q)Q,ϕ(xux−1) = yϕ(u)y−1,∀u ∈ R} .

Definition 6.3. Let K ≤ AutE(Q). We say that Q is fully K-automized in E if AutT (Q)∩K is
a Sylow p-subgroup of AutE(Q)∩K. We say that Q is fully K-normalized in E if Q is receptive
and fully K-automized in E .

When K = AutE(Q) we say that Q is fully normalized in E rather that fully Aut(Q)-
normalized in E .

Definition 6.4. A T -subsystem E of F is saturated if every E-isomorphism class contains a
subgroup that is fully normalized in E .

If E is a saturated T -subsystem, then T can be recovered from E as the inverse image of
AutE(S) under the conjugation map S → AutF(S), so sometimes we will not mention T .

6.5. We use the same definitions for a T -subsystem of a pro-fusion system, with the proviso that
each HomE(P,Q) should be closed in HomF(P,Q). If each HomE(P,Q) is open in HomF(P,Q)
we say that E is open.

The closure condition implies that if F = lim←−
i∈I
Fi, then E = lim←−

i∈I
Fi(E) as sets and hence that

E = lim←−
i∈I
〈Fi(E)〉, where 〈Fi(E)〉 denotes the fi(T )-subsystem of Fi generated by Fi(E).

Example 6.6. Let G be a profinite group with Sylow pro-p subgroup S. Let H C G and set
T = H ∩ S. Let ES(H) be the subcategory of FS(G) with objects the subgroups of S and
morphisms all the group homomorphisms induced by conjugation by an element of H. Then
ES(H) is a saturated T -subsystem of FS(G).

Lemma 6.7. If Q is fully K-normalized in E and ϕ ∈ IsoE(R,Q), then there is morphism

ψ : N
ϕ−1

K
T (R)R→ NK

T (Q)Q in E and an χ ∈ K such that ψ|R = χϕ.

Proof. This is strictly analogous to that of Lemma 2.20 and is left to the reader. �
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Definition 6.8. Let F be a pro-fusion system on S, T a strongly F -closed subgroup of S,
E a saturated T -subsystem of F and Q a subgroup of S. We say that Q is E-radical if
AutT∩Q(Q) = Op(AutE(Q)) and that it is E-centric if CT (Q′) ≤ Z(Q′) for all Q′ in the E-
isomorphism class of Q. A subgroup Q ≤ S is E-essential if T ≤ Q or if Q is E-centric and
Sp ( AutE(Q)/AutT∩Q(Q) ) is disconnected (or empty), where, for a group G, Sp(G) denotes the
partially ordered set of non-trivial p-subgroups of G.

Notice that an E-essential subgroup of S is also E-radical.

Theorem 6.9. Let F be a pro-fusion system on S, T a strongly F-closed subgroup of S and
let E be a saturated T -subsystem of F . Suppose that P and P ′ are open subgroups of S and
that ϕ ∈ IsoE(P, P

′). Then there exist open subgroups of S, P = P0, P1, . . . , Pn = P ′ and
Q1, Q2, . . . , Qn and morphisms ϕi ∈ AutE(Qi) for 1 ≤ i ≤ n such that:

(a) the Qi are E-essential subgroups of S and are fully normalized in E;
(b) for each i, Pi−1, Pi ≤ Qi and ϕi(Pi−1) = Pi;
(c) ϕ(u) = ϕn . . . ϕ2ϕ1(u) for all u ∈ P .

Notice that if E = F and S is finite then this is just the usual statement of Alperin’s Fusion
Theorem in the context of saturated fusion systems (see [10, 5]). Even in the case of a finite
group G with normal subgroup H and F = FS(G) and E = ES(H), it appears to be new.

Proof. The proof is modeled on the one for saturated fusion systems. We can use induction
on the index |S : P |, because P is open, so this index is finite. If |S : P | = 1, then n = 1,
S = Q1 = P0 = P1 and ϕ = ϕ1 ∈ AutE(S). If |S : P | > 1, let ψ ∈ HomE(P, S) be such that
ψ(P ) is fully normalized in E . Then ϕ = (ψϕ−1)−1 ◦ ψ, where both ψ ∈ HomE(P, ψ(P )) and
ψϕ−1 ∈ HomE(ϕ(P ), ψ(P )) have as image the subgroup ψ(P ), which is fully normalized in E
and has the same index in S as P , by Lemma 2.11. Thus we only need to decompose morphisms
in E with image a subgroup of S that is fully normalized in E , because we can splice together
a chain for ψ with the inverse of a chain for ψϕ−1.

So now we may suppose that P ′ is fully normalized in E . By Lemma 6.7, there is a morphism
ψ ∈ HomE(PNT (P ), S) and a χ ∈ AutE(P

′) such that ψ|P = χϕ. If NT (P ) is not contained in
P then NT (P )P has strictly smaller index than P , so we can find a chain for ψ by induction.
If NT (P ) ≤ P , then T ≤ P , as P is open, and so P is E-essential. From the last condition in
the definition of a subsystem, we know that ϕ(u)u−1 ≤ T for all u ∈ P , which yields P = P ′

and ϕ ∈ AutE(P ). Therefore we are reduced to the case of decomposing an automorphism of a
subgroup that is fully normalized in E .

So let P be an open subgroup of S that is fully normalized in E and χ ∈ AutE(P ). There
exists a χ̃ ∈ HomE(N

T
χ , T ) extending χ. If P is not E-centric then there is a subgroup P ′ and

a θ ∈ IsoE(P
′, P ) such that CT (P ′) 6≤ P ′. But θ extends to θ̃ : CT (P ′)P ′ → CT (P )P , and so

CT (P ) 6≤ P . Since CT (P )P ≤ NT
χ , this implies that NT

χ is strictly bigger than P , and so χ̃
can be decomposed by induction. Thus we may assume that P is E-centric. If P happens to
be E-essential, then χ already has the desired form. Otherwise, Sp ( AutE(P )/AutT∩P (P ) ) is
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connected, and so Sp(AutE(P ))>AutT∩P (P ) is also connected. Thus there exist pro-p subgroups
U1, . . . , Um−1 and R1, . . . , Rm of AutE(P ), all strictly containing AutP∩T (P ), such that U ≥
R1 ≤ U1 ≥ R2 ≤ U2 ≥ . . . ≤ Um−1 ≥ Rm ≤ χU . We may suppose that the Ui are Sylow pro-p
subgroups of AutE(P ). Because U := AutT (P ) is a Sylow p-subgroup of AutE(P ), there exist
χi ∈ AutE(P ) such that Ui = χiU for each 1 ≤ i ≤ m − 1. Thus U and χU are connected by
the path

U ≥ R1 ≤ χ1U ≥ R2 ≤ . . . χm−1U ≥ Rm ≤ χU .

Setting χ0 := id and χm := χ, we have χi−1Ri ≤ U ≥ χiRi for all 1 ≤ i ≤ m. Let θi := χiχ
−1
i−1 ∈

AutE(P ); then θi( χi−1Ri) = χiRi ≤ U , and hence the image of NT
θi

in AutE(P ) contains χi−1Ri.

The latter strictly contains AutP∩T (P ), so NT
θi

strictly contains P , hence has smaller index.

Because P is fully normalized in E , θi extends to θ̃i ∈ HomE(N
T
θi
, S), which can be expressed as

a chain by induction. This is true for each 1 ≤ i ≤ m, so we obtain a chain for χ = θm . . . θ1,
as required. �

The next lemma is a generalization to T -subsystems of Theorem 2.5. We follow here the
proof presented in [7, proof of Proposition 5.11].

Lemma 6.10. Let F be a fusion system on a finite p-group S, let E be a saturated T -subsystem
of F and let N be a strongly F-closed subgroup of T . Then for any ϕ ∈ HomE(P,Q) there exists
ϕ̃ ∈ HomE(PN,QN) such that ϕ and ϕ̃ induce the same map from PN/N to QN/N .

Proof. We use induction on |S : N |. By the relative version of Alperin’s Fusion Theorem,
it is enough to prove the result for ϕ ∈ AutE(P ) when P is E-essential and fully normalized
in E . Let K := Ker(AutE(P )→ Aut(PN/N)); AutKT (P ) is thus a Sylow p-subgroup of K. Let
A := AutE(P ); the Frattini Argument applied to A and K yields AutE(P ) = KNA(AutKT (P )),
and so ϕ = χψ with χ ∈ K and ψ ∈ NA(AutKT (P )). Hence ϕ and ψ induce the same morphism
in Aut(PN/N). Since P is fully normalized in E , ψ extends to NT

ψ . We are done by induction

if NT
ψ is strictly bigger than P . Suppose that P = NT

ψ . Because ψ ∈ NA(AutKT (P )), it is clear

that NT
ψ contains NK

T (P ), and hence it contains NN(P ), since N ≤ T . It follows that NN(P )
is a subgroup of P ; as we are dealing with finite p-groups, this implies that N ≤ P . But in this
case the result is clear. �

Definition 6.11. A T -subsystem E of a pro-fusion system F is pro-saturated if it is the inverse
limit of saturated subsystems on finite groups, Ei ≤ Fi, for some expression F = lim←−Fi (not
necessarily all).

The next result is a generalization of Lemma 6.10 to pro-fusion systems.

Lemma 6.12. Let F be a pro-fusion system on a pro-p group S, let E be a pro-saturated
T -subsystem of F and let N be an open strongly F-closed subgroup of T . Given any ϕ ∈
HomE(P,Q) we can find ϕ̃ ∈ HomE(PN,QN) such that ϕ and ϕ̃ induce the same morphism
from PN/N to QN/N .
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Proof. Let F = lim←−Fi and E = lim←−Ei, with Ei ≤ Fi. The result for some Ei can be obtained
by considering the image ϕi : PNi/Ni → QNi/Ni of ϕ in Ei. By Lemma 6.10, there exists a
ϕ̃i : PNNi/Ni → QNNi/Ni that has the same image as ϕ modulo NNi/Ni. Let Xi be the set
of all possible such ϕ̃i. The Xi are non-empty, and they form an inverse set with respect to the
functors Fij, so lim←−

i∈I
Xi is non-empty. Take ϕ̃ ∈ lim←−

i∈I
Xi ⊆ HomE(PN,QN). �

Lemma 6.13. Let F be a pro-fusion system on S and E an open T -subsystem of F . Then for
any ϕ ∈ HomE(P, S) there exists an open strongly F-closed subgroup N of S with the property
that if θ ∈ HomF(P, S) is such that θ ∼= ϕ modulo N then θ ∈ HomE(P, S).

Proof. Given that HomE(P, S) is an open subset of HomF(P, S), there is an i ∈ I such that
(Fi|HomF (P,S))

−1Fi(ϕ) ⊆ HomE(P, S). Let N = Ni. �

6.14. We say that F has a countable convergent sequence of open pro-saturated subsystems if
there exist open subsystems F = E1 ≥ E2 ≥ · · · such that E i is a pro-saturated T i-subsystem
and S = lim←−

i∈N
S/T i. By the last condition in Definition 6.1 it follows that ∩iE i is the set of

inclusions between the subgroups of S.

Example 6.15. If F = FS(G) is the fusion system associated to a countably based profinite
group G and {Hi}i∈N is a sequence of open subgroups such that G = lim←−

i∈N
G/Hi, then the

Ei := ES(Hi) have the above property.

Lemma 6.16. Let F be a saturated fusion system on S with a countable convergent sequence
of open pro-saturated T i-subsystems E i. Then, for any open strongly F-closed subgroup N of S
and any P ≤ S, there exists an i such that if θ ∈ HomEi(P, S) then θ ' idP modulo N .

Proof. Consider the image of HomEi(P, S) in HomF/N(PN/N, S/N). Since
⋂
i≥1 HomEi(P, S) =

{incP} and HomF/N(PN/N, S/N) is finite, we must have, by compactness, that the image of
HomEi(P, S) is {incPN/N} for large enough i. �

Theorem 6.17. Let F be a pro-fusion system on a pro-p group S that has a countable conver-
gent sequence of open pro-saturated T i-subsystems E i and let P , P ′ be two closed subgroups of
S. Then for each ϕ ∈ IsoF(P, P ′) there exist subgroups P = P0, P1, P2, . . . and open subgroups
Q1, Q2, Q3, . . . of S and morphisms ϕi ∈ AutF(Qi), i ≥ 1 such that:

(a) for each j there exists an nj such that for any i ≥ nj, ϕi ∈ AutEj(Qi) and Qi is E j-essential
and fully normalized in E j;

(b) Pi−1, Pi ≤ Qi, ϕi(Pi−1) = Pi;
(c) ϕ(u) = . . . ϕiϕi−1 . . . ϕ2ϕ1(u)for all u ∈ P and the infinite composition converges.

Proof. We construct the Alperin chain by successive approximation. Recall that E1 = F , and
start with R0 = P and θ0 = ϕ. Given θi ∈ IsoEi(Ri, P

′), we show that there is a morphism
ψi+1 ∈ IsoEi(Ri, Ri+1), given by an Alperin chain in E i as in the theorem, and a morphism
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θi+1 ∈ IsoEi+1(Ri+1, P
′) such that θi = θi+1ψi+1. Thus ϕ = θiψi · · ·ψ1. We consider the infinite

chain · · ·ψ3ψ2ψ1 and replace each ψi by its Alperin chain to obtain the Alperin chain required.
The first two conditions are satisfied, with nj set equal to the sum of the lengths of the chains

for ψi, . . . , ψ1. Given an open strongly F -closed subgroup N of S, choose j as in Lemma 6.16.
If i ≥ j then ϕi · · ·ϕ1 = ϕi · · ·ϕNj+1ψj · · ·ψ1 = ϕi · · ·ϕNj+1θ

−1
j ϕ. But ϕi · · ·ϕNj+1θ

−1
j ∈ Ej,

and so ϕi · · ·ϕNj+1θ
−1
j ' idP ′ modulo N . Thus ϕ ' ϕi · · ·ϕ1 modulo N , which shows that the

infinite composition converges.
Now for the construction. Let incP ′ denote the inclusion of P ′ in S; Lemma 6.13 allows us

to choose an open strongly F -closed subgroup N of S such that if χ ' incP ′ modulo N then
χ ∈ HomEi+1(P, S). Replacing N by N ∩ T i+1 if necessary, we may assume that N ≤ T i+1.

Given θi ∈ HomEi(Ri, P
′), apply Lemma 6.12 to θi to obtain a θ̃i ∈ HomEi(RiN,P

′N) such

that θi and θ̃i are equal modulo N . Set ψi+1 := θ̃i|Ri , Ri+1 := ψi+1(Ri) and θi+1 := θiψ
−1
i+1.

Since RiN is an open subgroup of S, we can apply Theorem 6.9 relative to E i to obtain an
Alperin chain in Ei for θ̃i and thus also for ψi+1. Moreover, θ−1i+1 = incP ′ modulo N ; hence

θ−1i+1 ∈ IsoEi+1(P ′, Ri+1), and so θi+1 ∈ IsoEi+1(Ri+1, P
′) �

Lemma 6.18. Suppose that for some ϕ ∈ IsoF(P, P ′) there is a finite Alperin chain in F as
in the conclusion of the preceding theorem, although it is not required to satisfy condition (a).
Then there is such a chain with all of the Qi F-essential and fully normalized in F .

Proof. Since the Qi are open subgroups, we can apply Theorem 6.9 to each ϕi ∈ AutF(Qi) in
order to decompose it as a finite composition of restrictions of automorphisms of F -essential
F -normalized subgroups. Now splice these chains together. �

Remark 6.19. The proof of the preceding lemma will not work if the original chain is infinite,
because of problems with convergence.

7. The length of an Alperin chain

It really is necessary to allow the possibility of an infinite chain in the statement of Theo-
rem 6.17, as we will now show with an example.

Let G be a finite group with Sylow p-subgroup S. Let P, P ′ ≤ S be two subgroups that are
conjugate by an element g ∈ G but are not conjugate by any element of NG(S). For example,

if G = Gl3(Fp) and S consists of matrices of the form
(

1 ∗ ∗
0 1 ∗
0 0 1

)
, P those of the form

(
1 ∗ 0
0 1 0
0 0 1

)
, P ′

those of the form
(

1 0 0
0 1 ∗
0 0 1

)
and g =

(
0 0 1
1 0 0
0 1 0

)
.

Now consider the cartesian product of infinitely many copies of G, indexed by some set I.
We will denote this by

∏
Gi. The subgroups

∏
Pi and

∏
P ′i are conjugate by

∏
gi.

An open subgroup of
∏
Si is of the form X = Y ×

∏
i 6∈J Si, for some finite set J ⊂ I. Thus

an automorphism of X will have as i-coordinate an element of NG(Si) for all but finitely many
i. The same will be true of a composition of finitely many such automorphisms. In particular,
such a composition cannot be equal to

∏
gi.
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The rest of this section contains various facts about the length of an Alperin chain.
Let F be a pro-fusion system on a pro-p group S. Let P, P ′ ≤ S and ϕ ∈ IsoF(P, P ′). By

an Alperin chain in F for ϕ we mean a sequence of subgroups of S, P = P0, P1, . . . , Pn = P ′, a
sequence of open subgroups Q1, . . . , Qn and morphisms ϕi ∈ AutF(Qi) such that Pi−1, Pi ≤ Qi,
ϕi(Pi−1) = Pi and ϕ = ϕn · · ·ϕ1. By a chain of essential subgroups we mean such a chain with
the extra condition that all the Qi are F -essential.

The length of the chain is defined to be the number of subgroups Qi that are not equal to
S. It is known that a chain can be rearranged so that all the Qi that are equal to S appear at
the end and all their automorphisms can thus be merged into one (see, for example, [16, 2.8]).
Thus not counting the Qi equal to S will only change the length of a shortest chain by at most
one.

Definition 7.1. The Alperin length of ϕ is the minimum length of a chain for ϕ as defined
above; we denote it by AlpF(ϕ). If no such (finite) chain exists, we write AlpF(ϕ) =∞. If we
require a chain of essential subgroups we write Alpess

F (ϕ). If we relax the condition that the Qi

be open then we write Alpclo
F (ϕ).

Lemma 7.2. We have Alpess
F (ϕ) ≥ AlpF(ϕ) ≥ Alpclo

F (ϕ) and Alpess
F (ϕ) ≥ Alpclo,ess

F (ϕ) ≥
Alpclo

F (ϕ). If AlpF(ϕ) <∞ then Alpess
F (ϕ) <∞.

Proof. The first statement is clear from the definitions and the second is the content of Lemma 6.18.
�

For simplicity we will mostly, in what follows, deal only with pro-fusion systems associated
to profinite groups. In this case a fixed choice of Sylow pro-p subgroup S is implicit and we
write AlpG(ϕ) for AlpFS(G)(ϕ).

Lemma 7.3. If we have a collection of profinite groups {Gi|i ∈ I}, possibly infinite, with Sylow
pro-p subgroups Si, pro-p subgroups Pi, P

′
i ≤ Si and morphisms ϕi ∈ IsoGi(Pi, P

′
i ) and form the

cartesian product, then
∑

i AlpGi(ϕi) ≥ Alp∏
Gi

(
∏
ϕi) ≥ sup{AlpGi(ϕi)} and Alpclo∏

Gi
(
∏
ϕi) =

supi{AlpGi(ϕi)}.

Proof. An Alperin chain in
∏
Gi for

∏
ϕi can be projected to a chain in any Gi for ϕi; this

gives the inequality with sup in either case. For the other inequality, we may assume that
supi{AlpGi(ϕi)} (or its closed version) is finite, equal to N , say. For each i, let ϕi = ϕnii · · ·ϕ1

i

be an Alperin chain of minimal length, with ϕji ∈ Aut(Qj
i ), and with the Qj

i open subgroups if
that is the case we are treating.

In the closed case, extend each chain to have length N by adding copies of the identity
morphism on Sj. Then the

∏
i ϕ

j
i ∈ Aut∏

iGi
(
∏

iQ
j
i ) form an Alperin chain of length N .

In the open case we may assume that
∑

i AlpGi(ϕi) < ∞. Thus AlpGi(ϕi) is only non-zero
for finitely many i, say for i ∈ K, and ϕi ∈ AutGi(Si) for i 6∈ K. For i ∈ K, extend each
ϕji to ϕji × 1 ∈ Aut∏

iGi
(Qj

i ×
∏

j 6=i Sj). These form an Alperin chain of length
∑

i AlpGi(ϕi),
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for which the composition is equal to
∏

i∈K ϕi ×
∏

i 6∈K 1. We can obtain
∏

i ϕi as composition

by adding the term
∏

i∈K 1 ×
∏

i 6∈K ϕi ∈ Aut∏
iGi

(
∏

i Si), which does not count towards the
length. �

Proposition 7.4. If we have a collection of profinite groups Gi with Sylow pro-p subgroups Si,
pro-p subgroups Pi, P

′
i ≤ Gi and morphisms ϕi ∈ IsoGi(Pi, P

′
i ) and form the cartesian product,

then Alpess∏
Gi

(
∏
ϕi) =

∑
Alpess

Gi
(ϕi).

Proof. The inequality
∑

i Alpess
Gi

(ϕi) ≥ Alpess∏
Gi

(
∏
ϕi) is proved just as in the open case of the

preceding lemma.
For the reverse inequality, suppose that we have a chain for

∏
i ϕi in terms of θj ∈ Aut∏

iGi
(Qj),

1 ≤ j ≤ N . By Corollary 7.7 below, Qj is of the form Ei(j) ×
∏

i 6=i(j) Si for some i(j) and some

open essential subgroup Ei(j) of Si(j). Thus θj =
∏

i θ
j
i with θji ∈ AutGi(Si) if i 6= i(j) and

θji ∈ AutGi(Ei) if i = i(j).

For fixed i, the θji form an Alperin chain for ϕi. By our convention that automorphisms of
the Sylow pro-p subgroup do not count towards the length, each j only counts towards the
length of the chain for one i. The inequality follows. �

We say that p divides the order of a profinite group if a Sylow pro-p subgroup is non-trivial.

Lemma 7.5. Let A and B be profinite groups and let P be a pro-p subgroup of A× B that is
either finite or is open in a Sylow pro-p subgroup of A×B.

(1) If P is radical then P = Q×R, where Q is radical in A and R is radical in B.
(2) If P is essential then P = Q × R, where Q is essential in A and R is essential in B.

Furthermore, p does not divide both |NA(Q)/Q| and |NB(R)/R|.
(3) If P is open in a Sylow pro-p subgroup of A×B and is also essential, then P = Q×R,

where either Q is essential in A and R is a Sylow pro-p subgroup of B, or R is essential
in B and Q is a Sylow pro-p subgroup of A.

Proof. Denote the projections by πA and πB. We have P ≤ πAP × πBP ; the inclusion is open,
by the hypotheses on P .

If P = πAP ×πBP then it is easy to verify that πAP is radical in A and πBP is radical in B.
If P 6= πAP × πBP then P 6= NπAP×πBP (P ) ≤ Op(NA×B(P )), contradicting the assumption

that P is radical.
For the second part, we know from the first part that P = Q × R. Since Q is radical, it

is also centric in A; thus p divides |NA(Q)/Q| if and only if it divides |NA(Q)/CA(Q)Q|. The
same applies to R. The result follows from the next lemma applied to NA×B(Q×R)/CA×B(Q×
R)(Q×R) ∼= NA(Q)/CA(Q)Q×NB(R)/CB(R)R.

For the third part, suppose that p does not divide |NA(Q)/Q| and let S be a Sylow pro-p
subgroup of A that contains Q. Then p does not divide |NS(Q)/Q|, so NS(Q) ≤ Q and thus
S ≤ Q, since Q is open in S. �



22 RADU STANCU AND PETER SYMONDS

Lemma 7.6. The poset Sp(A × B) is connected whenever both |A| and |B| are divisible by p.
If |A|, say, is not divisible by p, then Sp(A×B) is connected if and only if Sp(B) is connected.

Proof. If both |A| and |B| are divisible by p, choose non-trivial pro-p subgroups X ≤ A and
Y ≤ B. We will show that any non-trivial pro-p subgroup P ≤ A×B is connected to X × 1.

If πBP 6= 1 then we can use the chain P ≤ πAP × πBP ≥ 1× πBP ≤ X × πBP ≥ X × 1.
If πAP = 1 then P = πAP × 1 ≤ πAP × Y ≥ 1× Y ≤ X × Y ≥ X × 1.
If |A| is not divisible by p then Sp(A×B) ≡ Sp(B), and the second part follows. �

Corollary 7.7. An open essential subgroup of
∏

i Si ≤
∏

iGi is of the form Ej ×
∏

i 6=j Si for
some j and an open essential subgroup Ej of Sj.

Proof. Let P be the open essential subgroup. For each j, apply Lemma 7.5 to Gj ×
∏

i 6=j Gi

to see that the projection of P to its j-coordinate is both a factor of P and essential. Thus
P =

∏
i Pi, with the Pi essential. If Pk, say, is not a Sylow pro-p subgroup of Sk and j 6= k,

then apply Lemma 7.5 to (Gj ×Gk)×
∏

i 6=j,kGi to see that Pj × Pk is essential and hence, by
the lemma again, Pj = Sj. �

Theorem 7.8. Let Gi be an infinite collection of finite groups, each with p-subgroups Pi, P
′
i ≤

Gi and ϕi ∈ IsoGi(Pi, P
′
i ), and suppose that AlpGi(ϕi) ≥ 1. Then Alp∏

Gi
(
∏
ϕi) = Alpess∏

Gi
(
∏
ϕi) =

∞.

Proof. We must have Alpess
Gi

(ϕi) ≥ 1, so Alpess∏
Gi

(
∏
ϕi) ≥

∑
1 = ∞, by Proposition 7.4. The

same must be true for Alp∏
Gi

(
∏
ϕi), by Proposition 7.2. �

This provides another proof of the fact that it is necessary to allow infinite chains in The-
orem 6.17. A direct approach to showing that infinite chains are necessary, even for Alpclo,
would be to find a sequence of finite groups Gi and P, P ′ ≤ Si, ϕi ∈ Iso(P, P ′) such that
AlpGi(ϕi)→∞ as i→∞, and then apply Lemma 7.3 to their product. It seems to be gener-
ally believed that such a sequence exists; however, it seems difficult to find a lower bound for
AlpG(ϕ) in examples.

Notice that if such a sequence does not exist at the prime p then there exists an integer n
such that, at the prime p, AlpG(ϕ) ≤ n for all finite groups G and all morphisms ϕ. In this
case we will say that Alp is uniformly bounded at p.

Sometimes it is convenient to consider all the morphisms in a profusion system F as a set,
Mor(F) (morphisms with different domains or codomains are considered to be different).

Lemma 7.9. If F ∼= lim←−
i

Fi then Mor(F) ∼= lim←−
i

Mor(Fi).

Proof. There is clearly a natural injective map Mor(F) → lim←−
i

Mor(Fi). An element of the

codomain is a compatible collection of morphisms ϕ : Pi → Qi; these combine to define a
morphism ϕ : lim←−

i

Pi → lim←−
i

Qi. �
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We will now regard Mor(F) as a profinite set in this way.
The ordered set of the morphisms in an Alperin chain for ϕ of length at most n can be

considered as an element of Mor(F)n (shorter chains can be extended by the identity map).
This element completely determines the Alperin chain.

Proposition 7.10. If F = lim←−Fi, then Alpclo
F (ϕ) ≤ sup{AlpFi(Fi(ϕ))}.

Proof. If sup{AlpFi(Fi(ϕi))} =∞ there is nothing to prove, so assume that sup{AlpFi(Fi(ϕi))} =
n.

Let Ci be the set of all Alperin chains in Fi for Fi(ϕ) of length n, considered as a subset
of Mor(Fi)n. The sets Ci are non-empty, by hypothesis, and if j ≥ i there is a natural map
Cj → Ci. Thus we can form lim←−

i

Ci and it is non-empty; an element of it yields an Alperin

chain in closed subgroups in F of length n for ϕ. �

Corollary 7.11. It is always possible to find a finite Alperin chain in closed subgroups for any
profinite group and any morphism at the prime p, if and only if Alp is uniformly bounded at p.
If there is a uniform bound then it also applies to profinite groups.

Proof. This is a consequence of Proposition 7.10 and Lemma 7.3. �
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