
A CHARACTERISTIC SUBGROUP FOR FUSION SYSTEMS

SILVIA ONOFREI AND RADU STANCU

Abstract. As a counterpart for the prime 2 to Glauberman’s ZJ-theorem, Stellmacher
proves that any nontrivial 2-group S has a nontrivial characteristic subgroup W (S) with
the following property. For any finite Σ4-free group G, with S a Sylow 2-subgroup of
G and with O2(G) self-centralizing, the subgroup W (S) is normal in G. We generalize
Stellmacher’s result to fusion systems. A similar construction of W (S) can be done for
odd primes and gives rise to a Glauberman functor.

1. Introduction

A fundamental result in the theory of finite groups is Glauberman’s ZJ-theorem [6]. Let

p be an odd prime, G a finite group and let S be a Sylow p-subgroup of G. Then the ZJ-

theorem asserts that the center of the Thompson group Z(J(S)) is normal in G whenever

G is Qd(p)-free and CG(Op(G)) ≤ Op(G). For a finite p-group Q, the Thompson subgroup

J(Q) is the subgroup generated by the abelian subgroups of Q of largest order. The group

Qd(p) = (Zp × Zp) : SL(2, p) is the extension of the 2-dimensional vector space over Fp
(the field with p elements) by SL(2, p) with its natural action on this vector space. A

group G is H-free if no section of G is isomorphic to H; see also Section 3.

More recently, a proof of the ZJ-theorem, in the context of fusion systems, was given

by Kessar and Linckelman [10]. The authors introduce the notion of Qd(p)-free fusion

system and prove that if F is a Qd(p)-free fusion system on a finite p-group S, with p an

odd prime, then F is controlled by W (S), for any Glauberman functor W . The related

notions of characteristic p-functor and Glauberman functor were initially defined in [11,

Definition 1.3]; they are given below in Definition 3.4.

For p = 2 the ZJ-theorem does not hold anymore. In [7, Question 16.1], Glauberman

asks whether there exists a subgroup which is characteristic in a Sylow 2-subgroup S of a

Σ4-free group G, with the property CG(Op(G)) ≤ Op(G). Here Σ4 denotes the symmetric

group on four letters.
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The answer to Glauberman’s question was given by Stellmacher [24], who also obtained a

different proof of the ZJ-theorem [22, 23]. Stellmacher’s idea was to approximate such a

subgroup via subgroups of Z(J(S)); see [13, Section 9.4] for an overview of this approach.

The main theorem in [24] (see also 6.4 in the Appendix) can be phrased as follows:

Theorem (Stellmacher): Let S be a finite nontrivial 2-group. Then there exists a nontrivial

characteristic subgroup W (S) of S which is normal in G, for every finite Σ4-free group G

with S a Sylow 2-subgroup and CG(O2(G)) ≤ O2(G).

Remark that the condition (III) in [24] is not necessary. A proof of this fact uses Lemmas

6.5 and 6.6 and Remark 6.7 in the Appendix.

In this paper we generalize Stellmacher’s approach to fusion systems. Our main result is

a proof of Stellmacher’s version of the ZJ-theorem in the context of fusion systems:

Theorem 1.1. Let S be a finite 2-group and let F be a Σ4-free fusion system over S. Then

there exists a characteristic subgroup W (S) of S with the property that F = NF(W (S)).

Since Stellmacher’s construction of W (S) gives rise to a Glauberman functor, see Section

4 for details, we can combine Theorem B in [10] with our Theorem 1.1 to obtain the more

general result which is independent of the nature of the prime p:

Theorem 1.2. Let S be a finite p-group and let F be a Qd(p)-free fusion system over

S. Then there exists a characteristic subgroup W (S) of S with the property that F =

NF(W (S)).

Using the same construction for W (S) as in the above theorem, the normal complement

theorem due to Thompson [13, 9.4.7] can be phrased as:

Theorem (Thompson): Let G be a finite group, p an odd prime and S a Sylow p-subgroup

of G. Then G has a normal p-complement provided NG(W (S)) has such a complement.

Our third result generalizes Thompson’s theorem to the class of fusion systems. This

result is similar to Theorem A in [10], except that we replace the group Z(J) with the

group W (S) defined in Section 4:

Theorem 1.3. Let F be a fusion system over a finite p-group S, with p an odd prime.

Then F = FS(S) if and only if NF(W (S)) = FS(S).

The paper is organized as follows. Section 2 contains background material on fusion

systems. In Section 3, the notions of H-free fusion system, characteristic p-functor and

Glauberman functor are defined; further properties of fusion systems are discussed. The

characteristic subgroup W (S) is constructed, via two different methods, in Section 4. The
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proofs of the theorems are given in Section 5. In the Appendix a few related results from

group theory are included.

2. Background on Fusion Systems

Fusion systems were introduced by Puig in 1990 [17, 18] in an effort to axiomatize the p-

local structure of a finite group and of a block of a group algebra - the work was published

only recently [19] but was known to the community long before. In 2000 Broto, Levi

and Oliver [5] used this axiomatic approach to solve the Martino-Priddy conjecture. The

three authors gave a different definition of the fusion systems which they proved to be

equivalent to Puig’s definition. In this paper we use a simplified definition which we find

more elegant, equivalent to the above ones [12].

We start with a more general definition, following [15].

A category F on a p-group S is a category whose objects are the subgroups of S and

whose set of morphisms between the subgroups Q and R of S, is a set HomF(Q,R) of

injective group homomorphisms from Q to R, with the following properties:

(1) if Q ≤ R then the inclusion of Q in R is a morphism in HomF(Q,R);

(2) for any ϕ ∈ HomF(Q,R) the induced isomorphism Q ' ϕ(Q) and its inverse are

morphisms in F ;

(3) the composition of morphisms in F is the usual composition of group homomor-

phisms.

Let F1 be a category on S1 and F2 a category on S2. A morphism between F1 and F2 is

a pair (α,Θ) with α ∈ Aut(S) and Θ : F1 → F2 a covariant functor, such that:

(i) for any subgroup Q of S, α(Q) = Θ(Q);

(ii) for any morphism ϕ in F1, Θ(ϕ) ◦ α = α ◦ ϕ.

In the following we give a series of useful definitions in a category F on S. If there exists

an isomorphism ϕ ∈ HomF(Q,R) we say that Q and R are F-conjugate.

We say that a subgroup Q of S is

(i) fully F-centralized if |CS(Q)| ≥ |CS(Q′)| for all Q′ ≤ S which are F -conjugate to Q.

(ii) fully F-normalized if |NS(Q)| ≥ |NS(Q′)| for all Q′ ≤ S which are F -conjugate to Q.

(iii) F-centric if CS(ϕ(Q)) ⊆ ϕ(Q), for all ϕ ∈ HomF(Q,S).

(iv) F-radical if Op(OutF(Q)) = 1.
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(v) F-essential if Q is F -centric and OutF(Q) has a strongly p-embedded proper subgroup

M (that is M contains a Sylow p-subgroup P of OutF(Q) such that P 6= ϕP and
ϕP ∩ P = {1} for every ϕ ∈ OutF(Q) \M ).

For Q, R ≤ S we denote HomS(Q,R) := {u ∈ S | uQ ≤ R}/CS(Q) and AutS(Q) :=

HomS(Q,Q). Other useful notations are AutF(Q) := HomF(Q,Q) and OutF(Q) :=

AutF(Q)/AutQ(Q).

We are now able to give the definition of a fusion system.

A fusion system on a finite p-group S is a category F on S satisfying the following

properties:

FS1. HomS(Q,R) ⊆ HomF(Q,R) for all Q,R ≤ S .

FS2. AutS(S) is a Sylow p-subgroup of AutF(S).

FS3. Every ϕ : Q → S such that ϕ(Q) is fully F -normalized extends to a morphism

ϕ̂ : Nϕ → S where

Nϕ = {x ∈ NS(Q) | ∃y ∈ NS(ϕ(Q)), ϕ( xu) = yϕ(u), ∀u ∈ Q} .

Remark that Nϕ is the largest subgroup of NS(Q) such that ϕ(Nϕ/CS(Q)) ≤ AutS(ϕ(Q)).

Thus we always have QCS(Q) ≤ Nϕ ≤ NS(Q).

If F is a fusion system on S and Q ≤ S we have the following equivalent characterization

of being fully F -normalized.

Proposition 2.1 ([14], Prop. 1.6). A subgroup Q of S is fully F-normalized if and only

if Q is fully F-centralized and AutS(Q) is a Sylow p-subgroup of AutF(Q).

In the following Lemma we recollect two useful properties involving fully F -normalized

subgroups; see also [10, Lemmas 2.2, 2.3]. For completeness we include the proofs.

Lemma 2.2. Let F be a fusion system on a finite p-group S and Q a subgroup of S.

a) There is a morphism ϕ ∈ HomF(NS(Q), S) such that ϕ(Q) is fully F-normalized.

b) If Q is fully F-normalized, then ϕ(Q) is fully normalized, for any morphism ϕ ∈
HomF(NS(Q), S).

Proof. a) Let ψ : Q → S be a morphism with ψ(Q) fully F -normalized. By Proposition

2.1, AutS(ψ(Q)) is a Sylow p-subgroup of AutF(ψ(Q)). Since ψ ◦ AutS(Q) ◦ ψ−1 is a

p-subgroup of AutF(ψ(Q)) it follows that there exists a morphism τ ∈ AutF(ψ(Q)) with

τψ ◦ AutS(Q) ◦ ψ−1τ−1 ≤ AutS(ψ(Q)). Set α = τψ and observe that α(Q) is fully F -

normalized. By the extension axiom FS3, α extends to a morphism ϕ : Nα → S. But

since α ◦ AutS(Q) ◦ α−1 ≤ AutS(ψ(Q)) it follows that Nα = NS(Q). Henceforth there
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exists a morphism ϕ ∈ HomF(NS(Q), S) such that ϕ(Q) is fully F -normalized.

b) Since Q is fully F -normalized and since ϕ is a morphism in F , hence injective, we have:

ϕ(NS(Q)) = NS(ϕ(Q)). �

Puig [17] gave analogous notions for the normalizer and the centralizer in a finite group:

The normalizer of Q in F is the category NF(Q) on NS(Q) having as morphisms those

morphisms ϕ ∈ HomF(R, T ), for R and T subgroups of NS(Q), satisfying that there exists

a morphism ϕ̂ ∈ HomF(QR,QT ) such that ϕ̂|Q ∈ AutF(Q) and ϕ̂|R = ϕ. If Q ≤ S has

the property that F = NF(Q) then we say that Q is normal in F . The largest subgroup

of S which is normal in F will be denoted Op(F).

The centralizer of Q in F is the category CF(Q) on CS(Q) having as morphisms those

morphisms ϕ ∈ HomF(R, T ), with R and T subgroups of CS(Q), satisfying that there

exists a morphism ϕ̂ ∈ HomF(QR,QT ) such that ϕ̂|Q = idQ and ϕ̂|R = ϕ.

Proposition 2.3 ([18], Prop. 2.8). If Q is fully F-normalized then NF(Q) is a fusion

system on NS(Q). If Q is fully F-centralized then CF(Q) is a fusion system on CS(Q).

Alperin’s theorem on p-local control of fusion also holds for fusion systems. First we set

up this theorem’s notations and terminology. If ϕ ∈ AutF(S) we say that ϕ is a maximal

F -automorphism. If ϕ ∈ AutF(E), with E an F -essential subgroup of S, we say that ϕ

is an essential F -automorphism. Alperin’s fusion theorem asserts that the essential and

maximal F -automorphisms suffice to determine the whole fusion system F .

Theorem 2.4 (Alperin). Any morphism ϕ ∈ HomF(Q,S) can be written as the composi-

tion of restrictions of essential F-automorphisms, followed by the restriction of a maximal

F-automorphism. More precisely, there exists

(a) an integer n ≥ 0,

(b) a set of F-isomorphic subgroups of S, Q = Q0, Q1, . . . , Qn, Qn+1 = ϕ(Q),

(c) a set of F-essential, fully F-normalized subgroups Ei of S containing Qi−1 and Qi,

for all 1 ≤ i ≤ n,

(d) a set of essential automorphisms ψi ∈ AutF(Ei) satisfying ψi(Qi−1) = Qi, for all

1 ≤ i ≤ n and

(e) a maximal automorphism ψn+1 ∈ AutF(S) satisfying ψi(Qn) = Qn+1,

such that we have

ϕ(u) = ψn+1ψn . . . ψ1(u), for all u ∈ Q .

The reader can find a proof of this theorem in [21]; an alternative proof of this theorem

in a different axiomatic setting was given by Puig [18, Corollary 3.9] and another in a less
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general form, using F -centric, F -radical subgroups instead of F -essential subgroups, can

be found in [5, Theorem A.10].

The classical examples of a fusion systems are the ones coming from the p-local structure

of a finite group G. If S is a Sylow p-subgroup of G them we denote by FS(G) the fusion

system on S having as morphisms

HomFS(G)(P,Q) = NG(P,Q)/CG(P ) = HomG(P,Q)

where P, Q are subgroups of S and NG(P,Q) = {g ∈ G | gP ≤ Q} is the G-transporter

from P to Q.

There are examples of fusion systems that do not come from a finite group (see eg. [20]).

But there are particular cases when one can construct the finite group with p-local struc-

ture equivalent to a given fusion system. The fusion system F is said to be constrained

if Op(F) is F -centric. Any constrained fusion system was proven to come from a finite

group by Broto, Castellani, Grodal, Levi and Oliver:

Theorem 2.5. [2, 4.3] Let F be a fusion system on S and suppose that there exists

an F-centric subgroup Q of S such that NF(Q) = F (in particular F is constrained).

Then there exists a, unique up to isomorphism, finite p′-reduced p-constrained group LFQ
(i.e Op′(L

F
Q) = 1 and LFQ/Q ≤ Out(Q)), having S as a Sylow p-subgroup and such that

F = FS(LFQ). Furthermore LFQ ' AutF(Q)/Z(Q).

3. Further results on fusion systems

Let G be a finite group and p a prime divisor of its order. If A E B ≤ G then B/A is a

section of G. We say that H is involved in G if H is isomorphic to a section of G. If H is

not involved in G then G is H-free.

The fusion system F on S is H-free if H is not involved in any of the groups LFQ, for Q

running over the set of F -centric, F -radical and fully F -normalized subgroups of S.

Proposition 3.1. [10, Prop. 6.3] Let F be a fusion system on a finite p-group S and let

Q be a fully F-normalized subgroup of S. If F is H-free, then so is any fusion subsystem

of F which lies between NF(Q) and NS(Q)CF(Q). In particular, if F is H-free, so are

NF(Q) and NS(Q)CF(Q).

Let F be a fusion system on S and let Q be a subgroup of S with the property F = NF(Q).

The category F/Q on S/Q is defined as follows: forQ ≤ P,R ≤ S, a group homomorphism

ψ : P/Q→ R/Q is a morphism in F/Q if there is a morphism ϕ ∈ HomF(P,R) satisfying

ψ(xQ) = ϕ(x)Q for all x ∈ P . The fact that F/Q is a fusion system on S/Q is due to

Puig [17], see also [10, Proposition 2.8].
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Proposition 3.2. [10, Prop. 6.4] Let F be a fusion system on a finite p-group S and let

Q be a normal subgroup of S such that F = NF(Q). If F is H-free then F/Q is also

H-free.

The following result generalizes the main technical step in the proof of [10, Proposition

5.2].

Proposition 3.3. Let F be a fusion system on a finite p-group S and let Wi, 1 ≤ i ≤ n

be subgroups of S such that

(a) the subgroup Wi+1 is a characteristic subgroup of NS(Wi) for 1 ≤ i ≤ n− 1;

(b) the subgroup Wi is fully F-normalized for 1 ≤ i ≤ n− 1.

Then there exists a morphism ϕ ∈ HomF(NS(Wn), S) such that ϕ(Wi) is fully F-normalized

for all 1 ≤ i ≤ n. In particular ϕ(NS(Wi)) = NS(ϕ(Wi)). If moreover Wi is F-centric

and/or F-radical for some 1 ≤ i ≤ n, then so is ϕ(Wi).

Proof. If follows from Lemma 2.2(a) that there exists a morphism ϕ ∈ HomF(NS(Wn), S)

such that ϕ(Wn) is fully F -normalized. According to condition (a), Wi+1 is a characteristic

subgroup of NS(Wi), for 1 ≤ i ≤ n− 1 and therefore NS(Wi) ≤ NS(Wi+1). In particular

NS(Wi) ≤ NS(Wn) and the morphism ϕ is defined on NS(Wi) for all 1 ≤ i ≤ n.

Next we show ϕ(Wi) is fully F -normalized for all 1 ≤ i ≤ n−1. By elementary group the-

ory ϕ(NS(Wi)) ≤ NS(ϕ(Wi)). Since ϕ is injective it follows that |NS(Wi)| ≤ |ϕ(NS(Wi))|.
But, according to (b), Wi is fully F -normalized and |NS(Wi)| ≥ |NS(ϕ(Wi))|. It follows

now that |NS(Wi)| = |NS(ϕ(Wi))| which shows that ϕ(Wi) is fully F -normalized and that

ϕ(NS(Wi)) = NS(ϕ(Wi)), for all 1 ≤ i ≤ n− 1.

Since Wi is fully F -normalized for all 1 ≤ i ≤ n, it is also fully F -centralized. Thus

ϕ(CS(Wi)) = CS(ϕ(Wi)) and if Wi is F -centric, then so is ϕ(Wi). Moreover it is a

general fact that ϕAutF(Wi) = AutF(ϕ(Wi)) and ϕAutS(Wi) = AutS(ϕ(Wi)) so if Wi is

F -radical, then so is ϕ(Wi). �

The following definition is from [10, 5.1].

Definition 3.4. A positive characteristic functor is a map sending any nontrivial finite p-

group S to a nontrivial characteristic subgroup W (S) of S such that W (ϕ(S)) = ϕ(W (S))

for every ϕ ∈ Aut(S). A positive characteristic functor is a Glauberman functor if when-

ever S is a Sylow p-subgroup of a Qd(p)-free finite group L which satisfies CL(Op(L)) =

Z(Op(L)), then W (S) is normal in L.

Using the previous result we can give a different proof for Proposition 5.3 in [10].
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Proposition 3.5. [10, Prop. 5.3] Let F be a fusion system on a finite p-group S and

let W be a positive characteristic functor. Assume that for any non-trivial proper fully

F-normalized subgroup Q of S the following holds NF(Q) = NNF (Q)(W (NS(Q))). Then

F = NF(W (S)).

Proof. Suppose that the conclusion does not hold. By Alperin’s Fusion Theorem there

exists a proper fully F -normalized subgroup Q of S such that AutNF (W (S))(Q) ⊂ AutF(Q).

Set W1 = Q and define recursively Wi+1 := W (NS(Wi)). So Wi+1 is characteristic in

NS(Wi) implying that we get the following inclusions NS(Wi) < NS(NS(Wi)) ≤ NS(Wi+1)

this in its turn implies there exists n ≥ 1 such that the sequence of NS(Wi) for 1 ≤ i ≤ n is

strictly increasing and NS(Wn) = S. Observe that if NS(Wi) = NS(Wi+1) then NS(Wi) =

NS(NS(Wi)) ≤ S and by an elementary property of p-groups it follows that NS(Wi) = S,

thus indeed the sequence eventually reaches S.

Moreover the sequence {Wi, 1 ≤ i ≤ n+1} can be chosen so that all its terms are fully F -

normalized. This can be done recursively by applying Proposition 3.3, for all 2 ≤ k ≤ n+1

to the partial subsequences {Wi, 1 ≤ i ≤ k}. The Wi’s are successively modified by

replacing them with their images through the morphism ϕ given by Proposition 3.3.

Consider the sequence of the normalizers in F of the Wi’s for 1 ≤ i ≤ n + 1. Given that

Wi, 1 ≤ i ≤ n are fully F -normalized, we have that NF(Wi) is a fusion system on NS(Wi).

It follows from our assumption that NF(Wi) ⊆ NF(Wi+1) for all 1 ≤ i ≤ n− 1. But then

NF(Q) = NF(W1) ⊆ NF(Wn+1) = NF(W (S)). At the level of morphisms on Q this gives

AutFQ ⊆ AutNF (W (S))(Q) which is a contradiction with the initial supposition on Q. �

We denote by SCF(Q) the category on S having as morphisms all group homomorphisms

ϕ : P → R, for P and R subgroups of S, for which there exists a morphism ψ : QP → QR

and x ∈ S such that ψ|Q = cx (the morphism induced by conjugation by x) and ψ|P = ϕ.

The previous proposition is used in [10] to prove the next important result.

Proposition 3.6. [10, Prop. 3.4] Let S be a finite p-group and let Q be a normal subgroup

of S. Let F and G be fusion systems on S such that F = SCF(Q) and such that G ⊆ F .

Let P be a normal subgroup of S containing Q. We have G = NF(P ) if and only if

G/Q = NF/Q(P/Q).

At the end of this section we give an application of the Frattini argument to fusion

systems. The group theoretic result states that, if G is a finite group, then the following

factorization holds: G = CG(Q)NG(R) with Q = Op(G) and R = CG(QCS(Q)). This is

easily seen to be true as CG(Q) E G and NG(CS(Q)) ≤ NG(R), then an application of

the Frattini argument gives the result.
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Lemma 3.7. Let F be a fusion system on S, Q = Op(F) and R = QCS(Q). Set F1 =

SCF(Q) and F2 = NF(R). Then F = 〈F1,F2〉.

Proof. First remark that F , F1 and F2 are fusion systems on S with F containing the other

two. By Alperin’s fusion theorem (see Theorem 2.4), it is enough to prove that for every

F -centric, F -radical, fully F -normalized subgroup U of S we have AutF(U) = AutG(U)

with G = 〈F1,F2〉.

We shall prove that every ϕ ∈ AutF(U) can be written as composition of morphisms in F1

and F2 and thus will be contained in AutG(U). This will finish our proof as the opposite

inclusion is clearly satisfied.

Given that U is F -centric and F -radical we have by [16, Proposition 5.6] that Q ≤ U .

Hence ϕ restricts to an automorphism θ ∈ AutF(Q). Now we have that Nθ contains U and

R so it contains UR. Given that Q is fully F -normalized θ extends to χ ∈ HomF(UR, S).

Moreover χ(R) = χ(Q)CS(χ(Q)) = R so in fact χ ∈ HomF2(UR, S).

Denote by ψ the restriction to U of χ; then ψ ∈ HomF2(U, ψ(U)). Both ϕ and ψ restrict

as θ on Q so ϕ ◦ψ−1 belongs to HomF1(ψ(U), U). The conclusion in the lemma follows as

ϕ = ϕ ◦ ψ−1 ◦ ψ ∈ AutG(Q). �

Next, we give a straightforward result on fusion control in fusion systems.

Lemma 3.8. Let W be a fully F-normalized subgroup of S and suppose that there are two

fusion subsystems F1 and F2 of F such that F = 〈F1,F2〉. If moreover F1 = NF1(W )

and F2 = NF2(W ). Then F = NF(W ).

Proof. We have that 〈NF1(W ), NF2(W )〉 ⊆ NF(W ) ⊆ F . The result follows. �

4. A characteristic subgroup of S

Let S be a finite p-group. In this section we construct a subgroup W (S) which is charac-

teristic in S and such that Ω(Z(S)) ≤ W (S) ≤ Ω(Z(J(S))), and with the property that

W (S) E E for all (ϕ, E) ∈ UJ , with UJ a class of embeddings defined below. The notation

Ω(H) stands for the subgroup of H generated by all the elements of order p, while J(S)

denotes the Thompson subgroup of S defined in the Introduction. We shall give below

two different, although equivalent, constructions of this characteristic subgroup of S which

we shall denote W (S) and W . The first construction follows the approach developed by

Stellmacher [22, 24] for finite groups, in which such a subgroup is approximated from

various subgroups of Z(J(S)). The second construction uses basic properties of fusion

systems.
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4.1. The group W(S). An embedding is a pair (ϕ, E) where ϕ ∈ Aut(S) and E is a

category on ϕ(S) = S. Let C denote the family of all embeddings of S. A nonempty

subclass U of C is characteristically closed if (ϕα, E) ∈ U whenever (ϕ, E) ∈ U and α ∈
Aut(S).

An equivalence between two embeddings (ϕ1, E1) and (ϕ2, E2) is a morphism (α,Θ) : E1 →
E2 with αϕ1 = ϕ2 and HomE2(ϕ2(Q), ϕ2(R)) = α ◦ HomE1(ϕ1(Q), ϕ1(R)) ◦ α−1

|ϕ1(Q). The

equivalence of embeddings defines an equivalence relation on U . Since S is a finite group,

the collection of equivalence classes [U ] is a finite set.

Let OS(U) denote the largest subgroup of S which satisfies the property that ϕ(OS(U))

is normal in E for every embedding (ϕ, E) in U .

Lemma 4.1. Let U be a characteristically closed subclass of C and let α ∈ Aut(S). Let

Q be a subgroup of S with the property that ϕ(Q) E E for every (ϕ, E) ∈ U . Then

ϕ(α(Q)) E E for every (ϕ, E). In particular OS(U) is a characteristic subgroup of S.

Proof. Observe that since U is characteristically closed and (ϕ, E) ∈ U then (ϕα, E) ∈ U
and thus ϕ(α(Q)) E E for every (ϕ, E) ∈ U . The fact that OS(U) is Aut(S)-invariant

follows from its definition. �

Let UJ denote the class of embeddings (ϕ, E) which satisfy the following conditions:

(U1) UJ is characteristically closed.

(U2) J(ϕ(S)) = J(S) is normal in E for all (ϕ, E) ∈ UJ .

(U3) E is a Qd(p)-free fusion system.

For a p-group P we set A(P ) = Ω(Z(P )) and B(P ) = Ω(Z(J(P ))). Remark that A(P ) ≤
B(P ) as Z(P ) ≤ J(P ). Note that α(A(P )) = A(α(P )) and α(B(P )) = B(α(P )) for all

α ∈ Aut(P ), as A(P ) and B(P ) are characteristic subgroups of P .

Define recursively a subgroup W (S) ≤ B(S) as follows. Let

W0 := A(S) = Ω(Z(S)) ≤ B(S)

and assume that for i ≥ 1 the subgroups W0,W1, . . .Wi−1 with

W0 < W1 < . . .Wi−1 ≤ B(S)

are defined. If ϕ(Wi−1) E E for all (ϕ, E) ∈ UJ then set W (S) := Wi−1. Otherwise, choose

(ϕi, Ei) ∈ UJ to be such that ϕi(Wi−1) is not normal in Ei and define

Wi := ϕ−1
i 〈ϕi(Wi−1)

Ei〉 = ϕ−1
i 〈ψ(ϕi(Wi−1)) : ψ ∈ HomEi(ϕi(Wi−1), ϕi(S))〉

to be the preimage in S of the group generated by the Ei-orbit of ϕi(Wi−1).
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Since B(ϕi(S)) is a characteristic subgroup of J(ϕi(S)), which in its turn is normal in Ei,
it follows that B(ϕi(S)) is also normal in Ei. Clearly ϕi(Wi) ≤ B(ϕi(S)) since ϕi(Wi−1) ≤
B(ϕi(S)) by construction, and since ϕi(Wi) is generated by various conjugates of ϕi(Wi−1).

Thus we have:

A(ϕi(S)) ≤ ϕi(Wi−1) < ϕi(Wi) ≤ B(ϕi(S)) E Ei

as A(ϕi(S)) = ϕi(A(S)) and B(ϕi(S)) = ϕi(B(S)) for ϕi ∈ Aut(S). Then it follows:

A(S) ≤ Wi−1 < Wi ≤ B(S)

As S is finite, this recursive definition terminates after a finite number n of steps and

W (S) := Wn. Therefore we obtain a chain of subgroups of Z(J(S)):

A(S) = W0 < W1 . . . < Wi < . . . < Wn = W (S) ≤ B(S)

and ϕ(W (S)) E E for all (ϕ, E) ∈ UJ .

The group W (S) depends on S only and it is independent of the pairs (ϕi, Ei). To see this

assume that we defined in an analogous way

W0 = W 0 < W 1 < . . . < W ñ =: W (S)

for suitable pairs (ϕj, E j) in UJ and for j = 1, . . . n. First note that W 0 = W0 ≤ W (S) ∩
W (S). Thus ϕ1(W 0) = ϕ1(W0) ≤ ϕ1(W (S)) = W (S) as W (S) E E1, and therefore

ϕ1(W 1) = 〈ϕ1(W 0)
E1〉 ≤ W (S) which implies W 1 ≤ W (S). Proceed by induction on j; a

similar argument shows that since W j−1 ≤ W (S) then ϕj(W j) ≤ W (S) and W j ≤ W (S).

Therefore W (S) ≤ W (S). Similarly W (S) ≤ W (S) and thus W (S) = W (S).

Lemma 4.2. Let α ∈ Aut(S). Then W (α(S)) = α(W (S)). In particular, W (S) is a

characteristic subgroup of S, nontrivial if S is nontrivial.

Proof. The mapping (ϕ, E) → (ϕα, E) defines a bijection on UJ . Under this map, the

chain of subgroups:

A(S) = W0 < . . . < Wi < . . . < Wn = W (S) ≤ B(S)

is taken to the following chain:

A(S) = α(W0) < α(W1) < . . . < α(Wi) < . . . < α(Wn) = α(W (S)) ≤ B(S).

Therefore W (α(S)) = α(W (S)). The last statement follows from the fact that Ω(Z(S)) ≤
W (S) and Z(S) 6= 1 if S 6= 1. �
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4.2. The group W. Denote by CJ the class of categories F on S which satisfy the

following conditions:

(C1) J(S) is normal in F for all F ∈ CJ .

(C2) F is a Qd(p)-free fusion system.

Proposition 4.3. Let W0 = Ω(Z(S)) and define

W := 〈ψ(W0) | ψ ∈ HomF(J(S), S) for F ∈ CJ〉.

The subgroup W is a nontrivial characteristic subgroup of S.

Proof. For all α ∈ Aut(S), we will show that α(W ) = W . Let F be a category on S.

Denote by Fα the category on S having as sets of morphisms

HomFα(Q,R) = α−1 ◦ HomF(α(Q), α(R)) ◦ α .

Note that if F ∈ CJ then Fα ∈ CJ , and if ψ ∈ HomF(Q,R) then αψα−1 ∈ HomFα−1 (α(Q), α(R)).

Thus we have:

α(W ) := 〈αψ(W0) | ψ ∈ HomF(J(S), S) for F ∈ CJ〉 =

= 〈αψα−1(α(W0)) | αψα−1 ∈ Fα−1
(α(J(S)), α(S)) for F ∈ CJ〉 =

= 〈ψ̃(W0) | ψ̃ ∈ Fα
−1

(J(S), S) for F ∈ CJ〉
≤ W

where in the last equality we use that W0 and J(S) are characteristic subgroups of S. But

since α is injective, it follows that |W | = |α(W )| and therefore α(W ) = W , proving that

W is characteristic in S. �

4.3. Stellmacher functor. Given that (ϕ,F) and (αϕ,Fα−1
) are equivalent as embed-

dings and F ∈ CJ if and only if Fα ∈ CJ for any ϕ, α ∈ Aut(S) and F a category on S,

the two definitions W (S) and W represent the same subgroup of S, that is W = W (S). It

follows from Lemma 4.2 that the functor S → W (S), for S a finite p-group, is a positive

characteristic functor in the sense of Definition 3.4. We shall call the functor S → W (S),

with W (S) constructed via one of the methods from this Section, a Stellmacher functor.

The Thompson subgroup of S, J(S) is a characteristic, centric subgroup. Thus using

(C1), any F ∈ CJ is a constrained fusion system on S and by Theorem 2.5, there exists a

p-constrained finite group L with F = FL(S) and satisfying the following conditions: S

is a Sylow p-subgroup of L; CL(Op(L)) ≤ Op(L) and L is Qd(p)-free. It follows from our

construction that W (S) is a characteristic subgroup of S which is also normal in L. The

construction of W (S) depends on S only, and the subgroup W (S) is constructed in the

same way as Stellmacher does in the context of finite groups so it is the same subgroup

of S. Finally, notice that S → W (S) is also a Glauberman functor, see Definition 3.4.
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5. Proofs of the Theorems

Proof of Theorem 1.1. Let S be a finite 2-group and let F be a Σ4-free fusion system

on S. Also W (S) is the characteristic subgroup of S defined in Section 4.

The statement of Theorem 1.1 is true for the smallest fusion system on S, which is FS(S).

Suppose now by induction that all proper Σ4-free subsystems and all Σ4-free quotient

systems F/Q, with Q a nontrivial normal subgroup of F satisfy Theorem 1.1.

If O2(F) = 1 then for every non-trivial fully F -normalized subgroup P of S we have

that NF(P ) is a proper subsystem of F (otherwise P ≤ O2(F)). But then NF(P ) sat-

isfies Theorem 1.1 by induction as it is Σ4-free by Proposition 3.1. Hence NF(P ) =

NNF (P )(W (NS(P ))) for every non-trivial fully F -normalized subgroup P . An application

of Proposition 3.5 gives now that F = NF(W (S)). So we can suppose (H1): O2(F) 6= 1.

Set Q := O2(F) and R := QCS(Q). If Q = R then Q is F -centric. Consequently F is

a constrained fusion system. According to [3, Proposition 4.3] there exists a 2′-reduced

2-constrained finite group LQ, which is an extension of AutF(Q) by Z(Q) and having S

as a Sylow 2-subgroup. Thus F = FS(LQ). Since F is Σ4-free, the group LQ is Σ4-free,

by definition and given the LQ is 2-constrained we have CLQ(O2(LQ)) ≤ O2(LQ). Then,

according to Stellmacher’s main theorem in [24], see also the Introduction, the group

W (S) is normal in LQ. This in its turn implies that W (S) E FS(LQ) and therefore

F = NF(W (S)). Thus we can also make the assumption (H2): Q 6= R implying moreover

that NF(R) is a proper subsystem of F .

Next we will see that we also have (H3): SCF(Q) 6= F . Indeed suppose that SCF(Q) = F .

Then F/Q is a proper quotient system of F which is Σ4-free by Proposition 3.2. The

induction hypothesis gives now F/Q = NF/Q(W (S/Q)). Next, Proposition 3.6 gives that

F = NF(U) where U is the preimage in S of W (S/Q). As U E F it follows that U ≤ Q,

but this leads to a contradiction given that W (S/Q) 6= 1.

According to Lemma 3.7, we have F = 〈F1,F2〉 with F1 = SCF(Q) and F2 = NF(R).

By (H2) and (H3) both F1 and F2 are proper subsystems of F , the induction hypothesis

gives that W (S) E F1 and that W (S) E F2.

Notice that W (S) is fully F -normalized. By Lemma 2.2, there exists a morphism ϕ ∈
HomF(NS(W (S)), S) with ϕ(W (S)) fully F -normalized. As NS(W (S)) = S and since

W (S) is characteristic in S it follows that W (S) = ϕ(W (S)) is fully F -normalized.

Finally, an application of Lemma 3.8 gives the result: F = NF(W (S)).
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Proof of Theorem 1.2. Let S be a finite p-group. Recall that the construction W (S)

described in Section 4 and which associates to S a nontrivial characteristic subgroup W (S)

gives rise to a Glauberman functor.

Assume now that F is a Qd(p)-free fusion system on S. If p is an odd prime, it follows

from [10, Theorem B] that F = NF(W (S)). If p = 2 then Qd(2) = Σ4 and the result is

given by Theorem 1.1.

Proof of Theorem 1.3. Let p be an odd prime. Let F be a fusion system over a finite

p-group S. Let W (S) be the characteristic subgroup of S given by the Stellmacher functor.

Since FS(S) ⊆ NF(W (S)) ⊆ F it is enough to show that if NF(W (S)) = FS(S) then

F = FS(S). The proof is similar to that of Theorem A in [10]; for the sake of completeness

we will provide the details.

Let F be a minimal counterexample to Theorem 1.3; thus NF(W (S)) = FS(S) but F 6=
FS(S), and all the proper subsystems and quotient systems of F satisfy Theorem 1.3.

Under this assumption we show that F is a constrained fusion system by proving that

Q := Op(F) is a nontrivial F -centric proper subgroup of S. This is attained in the

following six steps.

Step 1 : Any fusion system G on S which is properly contained in F is equal to FS(S).

As G ⊂ F it follows that NG(W (S)) ⊆ NF(W (S)) = FS(S). But W (S) is a characteristic

subgroup of S and therefore FS(S) ⊆ NG(W (S)). Thus NG(W (S)) = FS(S) and the

minimality assumption on F implies that G = FS(S).

Step 2 : Let P be a fully F-normalized subgroup of S and set A = NS(P ). Then there is

ϕ ∈ HomF(A, S) such that both ϕ(P ) and ϕ(W (A)) are fully F-normalized.

By Lemma 2.2(a), there is a morphism ϕ : NS(W (A)) → S such that ϕ(W (A)) is fully

F -normalized. Since W (A) is a characteristic subgroup of A, we have NS(P ) = A ≤
NS(A) ≤ NS(W (A)) and the morphism ϕ can be restricted to ϕ : A → S. According to

Lemma 2.2(b), the group ϕ(P ) is also fully F -normalized.

Step 3 : The subgroup Q = Op(F) is nontrivial.

Recall that it is assumed that FS(S) ⊂ F . Alperin’s fusion theorem implies that there is

a fully F -normalized subgroup P of S with FA(A) ⊂ NF(P ), for A = NS(P ). Choose the

subgroup P such that:

a). W (A) is fully F -normalized;

b). NS(P ) = A has maximal order among subgroups T with FNS(T )(NS(T )) ⊂ NF(T ).

The choice of P and the fact that A is a proper subgroup of NS(W (A)) implies that

NF(W (A)) = FNS(W (A))(NS(W (A)). Therefore NNF (P )(W (A)) = FA(A).
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If NF(P ) ⊂ F then the minimality assumption on F implies that NF(P ) = FR(R), which

contradicts our choice of P . Thus we have NF(P ) = F and 1 6= P E F . Hence 1 6= P ≤ Q

which proves that Q 6= 1.

Step 4 : Q is a proper subgroup of S.

If Q = S then F = NF(S) = NF(W (S)) = FS(S) contradicting our assumption on F .

Step 5 : SCF(Q) = FS(S) when Q = Op(F).

We have SCF(Q) ⊆ F . If SCF(Q) ⊂ F then Step 1 implies that SCF(Q) = FS(S) and

we are done. Assume now that SCF(Q) = F and recall that F 6= FS(S). An application

of Proposition 3.6, with G = FS(S) and F = NF(Q), gives that F/Q 6= FS(S)/Q =

FS/Q(S/Q). By Step 3 the subgroup Q is nontrivial and the minimality assumption on

F implies that NF/Q(W (S/Q)) 6= FS/Q(S/Q). Let P be the inverse image of W (S/Q) in

S. Notice that W (S/Q) 6= 1, by the definition of W (S), and thus P properly contains Q.

Also P E S and NF/Q(W (S/Q)) = NF/Q(P/Q). Another application of Proposition 3.6

gives that NF(P ) 6= FS(S). Since NF(P ) ⊆ F , Step 1 implies that NF(P ) = F which is

a contradiction with the fact that P contains Q properly.

Step 6 : The subgroup Q is F-centric.

If Q = R = SCS(Q) then Q is F -centric and we are done. So let us assume that Q < R.

Notice that R E S. Then NF(R) is a proper subsystem of F and an application of Step

1 gives that NF(R) = FS(S). Recall also that by the previous step, SCF(Q) = FS(S).

Therefore, Lemma 3.7 implies that F = FS(S), which is a contradiction to our choice of

F . Thus we must have Q = R.

Since Q = Op(F) is a nontrivial normal centric subgroup of F , the fusion system F
is constrained. But this means by [2, 4.3], that there is a p′-reduced p-constrained finite

group L with S as a Sylow p-subgroup and such that Q = Op(L). Furthermore F = FS(L)

and therefore NF(W (S)) = FS(NL(W (S)).

Since NF(W (S)) = FS(S) it follows that NL(W (S)) has a p-complement; see Remark

6.10 in Appendix. According to the normal p-complement theorem of Thompson, 6.11

below, it follows that L has a p-complement. Therefore FS(S) = FS(L) and we reached a

contradiction with our assumption on F . This concludes the proof of the Theorem 1.3.

6. Appendix

Let p be an odd prime, G a finite group and S a Sylow p-subgroup of G. We say that G

is p-stable if and only if for every p-subgroup Q of G and every element x of NG(Q) such

that [Q, x, x] = 1, we have that xCG(Q) ∈ Op(NG(Q)/CG(Q)).



16 SILVIA ONOFREI AND RADU STANCU

A classic result of special significance to the theory of finite groups is Glauberman’s ZJ-

theorem [6]:

Theorem 6.1 (Glauberman). Let p be an odd prime. Let G be a finite, p-stable group

such that CG(Op(G)) ≤ Op(G). Then Z(J(S)) is a normal subgroup of G.

Using the following:

Proposition 6.2 (14.7, [7]). Assume that p is odd and that G is a finite group. Then the

following conditions on G are equivalent:

(a) the group Qd(p) is not involved in G;

(b) every section of G is p-stable.

the ZJ-theorem can be reformulated as follows:

Theorem 6.3 (Glauberman). Let p be an odd prime and let G be a Qd(p)-free finite group

with CG(Op(G)) ≤ Op(G). Then Z(J(S)) is a normal subgroup of G.

For p = 2 the ZJ-theorem does not hold anymore; see [7, Section 11]. As noted by

Glauberman [7] a necessary and sufficient condition for every section of G to be 2-stable

is that G have a normal 2-complement, which is too strong to be useful.

In a couple of papers [22, 24], Stellmacher proved an analogous version of Glauberman’s

ZJ-theorem, by constructing a characteristic subgroup W (S) of S and extending the

result for p = 2. An overview of his method, including a sketch of the proof for the odd

prime case can be found in [13, Section 9.4]. The main theorem in [24] reads as follows:

Theorem 6.4 (Stellmacher). Let S be a nontrivial finite 2-group. Suppose that G is a

finite group satisfying the following:

(I) G is Σ4-free,

(II) S ∈ Syl2(G) and CG(O2(G)) ≤ O2(G),

(III) Every non-abelian simple section of G is isomorphic to Sz(22n+1) or PSL2(3
2n+1).

Then there exists a nontrivial characteristic subgroup W (S) of S which is normal in G.

Next, consider a couple of useful lemmas:

Lemma 6.5 (Chp. II, Lemma 2.3, [8]). The following conditions are equivalent:

(a) Σ4 is involved in G;

(b) There exists a 2-subgroup Q of G such that Σ3 is involved in NG(Q)/CG(Q).

Lemma 6.6 (Chp. II, Corollary 7.3, [8]). Let G be a non-abelian simple group. The

following are equivalent:
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(a) G is Σ3-free;

(b) G is isomorphic to Sz(22n+1) or PSL(2, 32n+1).

Remark 6.7. Note that ifG is Σ3-free thenG is Σ4-free. A finite groupG with CG(O2(G)) ≤
O2(G) is Σ4-free if and only if G/O2(G) is Σ3-free [24].

Using the previous two lemmas and remark, we can rephrase Stellmacher’s Theorem 6.4

as follows:

Theorem 6.8 (Stellmacher). Let S be a finite nontrivial 2-group. Then there exists a

nontrivial characteristic subgroup W (S) of S which is normal in G, for every finite Σ4-

free group G with S a Sylow 2-subgroup and CG(O2(G)) ≤ O2(G).

If G = SOp′(G), with S a Sylow p-subgroup of G, we say that G has a normal p-

complement. A standard result due to Frobenius (see [7, 8.6] for example) is given below:

Theorem 6.9 (Frobenius). The following conditions are equivalent for a finite group G

with Sylow p-subgroup S:

(a) G has a normal p-complement;

(b) if Q is a non-identity subgroup of G then NG(Q)/CG(Q) is a p-group;

(c) if Q is a non-identity p-subgroup of G then NG(Q) has a normal p-complement;

(d) if two elements of S are conjugate in G, they are conjugate in S.

Remark 6.10. The equivalence (a)⇔ (d) in the above theorem, states that G has a normal

p-complement if and only if S controls fusion in G. In the language of fusion systems, S

controls G fusion if and only if FS(S) = FS(G).

For odd primes Frobenius’ result was improved by a result of Thompson. We give below

a version of Thompson’s p-complement theorem which uses Stellmacher’s characteristic

subgroup W (S):

Theorem 6.11. [13, 9.4.7] Let G be a group, p an odd prime, and S ∈ Sylp(G). Then G

has a normal p-complement if and only if NG(W (S)) has a normal p-complement.
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