ALMOST ALL GENERALIZED EXTRASPECIAL
p-GROUPS ARE RESISTANT

RADU STANCU*

ABSTRACT. A p-group P is called resistant if, for any finite group G having
P as a Sylow p-subgroup, the normalizer Ng(P) controls p-fusion in G. The
aim of this paper is to prove that any generalized extraspecial p-group P is
resistant, excepting the case when P = E X A where A is elementary abelian
and F is dihedral of order 8 (when p = 2) or extraspecial of order p3 and
exponent p (when p is odd). This generalizes a result of Green and Minh.

1. INTRODUCTION

Let G be a finite group and H a subgroup of G. Two elements of H are said
to be fused in G if they are conjugate in G but not in H. We are interested in
p-groups P such that for any finite group G, having P as a Sylow p-subgroup, the
p-fusion is controled only by the normalizer N¢(P) of P (that is any two elements
of P which are fused in G are fused in Ng(P)). In fact that this is equivalent
to the requirement that any such group G does not contain essential p-subgroups
(Definition 2.2). Following the terminology suggested by Jesper Grodal, we will
call such a group resistant.

In fact, by a theorem of Mislin [Mi], the notion of resistant group is equivalent
to what Martino and Priddy [MP] call Swan group. We recall that P is a Swan
group if, for any G as before, the mod — p cohomology ring H*(G) is isomorphic to
the mod — p cohomology ring H*(N¢(P)).

In a recent preprint [GM], Green and Minh proved that almost all extraspecial
p-groups are Swan groups. In our paper we find the same result for generalized
extraspecial p-groups (Definition 3.1) and give a proof avoiding cohomological me-
thods.

2. ESSENTIAL GROUPS

Let F,(G) be the Frobenius category of a finite group G. We recall that the
objects in this category are the non-trivial p-subgroups of G and the morphisms
are the group homomorphisms given by the conjugation by elements of G. For a
subgroup H of G we denote by F,(G)<y the full subcategory of F,(G) containing
the non-trivial p-subgroups of H.

A natural question is: What is the minimal information needed to completely
characterise these morphisms? For a Sylow p-subgroup P of GG, Alperin showed in
[Al] that these morphisms are locally controled, i.e. by normalizers Ng(Q) for @
a subgroup of P. Nine years later Puig [Pul] refined this and required @ to be
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an essential p-subgroup of G. In what follows we will give the definition and some
basic properties of essential p-subgroups of G.

Definition 2.1. We say that Q is p-centric if Q is a Sylow p-subgroup of QCqx(Q)
or, equivalently, Z(Q) is a Sylow p-subgroup of Cq(Q).

In the literature [Th, p. 324], a p-centric subgroup is also called p-self-centra-
lizing. Note that if @ is p-centric then C'p(Q) = Z(Q) for any Sylow p-subgroup P
of G containing Q.

Consider now the Quillen complex S,(H) of a finite group H whose vertices are
the objects in F,(H) and whose simplices are given by chains of groups ordered by
inclusion.

Definition 2.2. We say that Q is an essential subgroup of G if the Quillen complex
Sp(Na(Q)/Q) is disconnected and Ca(Q) does not act transitively on the connected
components.

One can find in [Th, Thm. 48.8] that

Proposition 2.3. Q is an essential p-subgroup of G if and only if Q is p-centric
and Sp(Na(Q)/QCa(Q)) is disconnected.

The proof has been done in a more general case. In the terminology and notation
of [Th, Thm. 48.8] it suffices to replace local pointed groups by p-subgroups, N=¢
by Sp(Na(@Q))s>q and OG by G. In most of the proofs of this paper we will use
this proposition as an alternative definition of essential subgroups. For g € G we
denote by 9@Q the conjugte by g of Q.

Definition 2.4. We say that a subgroup H of a group G controls p-fusion in G
if |G : H|,p) =1 and for any g € G and any Q, such that Q and 9Q are contained
in H, there exists h € H and ¢ € Cg(Q) such that g = he, or, equivalently, if the
inclusion H — G induces an equivalence of categories Fp(H) ~ Fp(G).

The notions of control of fusion and essential p-subgroups are strongly linked.
The next proposition shows one of the aspects of this link.

Proposition 2.5 (Pul, Ch. IV, Prop 2). The normalizer Ng(P) controls p-fusion
in G if and only if there are no essential p-subgroups in G.

The proof is based on the variant of Alperin’s theorem using essential p-subgroups
(see for instance [Th, Thm 48.3]) and on the fact that the essential p-subgroups are
preserved by any equivalence of categories.

3. GENERALIZED EXTRASPECIAL GROUPS
From now on C,, will denote the cyclic group of order n.

Definition 3.1. A p-group P is called generalized extraspecial if its Frattini
subgroup, ®(P), has order p, ®(P) = [P, P] ~ C,, and Z(P) > ®(P). If, moreover,
Z(P) = ®(P), P is called extraspecial.

Lemma 3.2. Let P be a generalized extraspecial p-group. Then either Z(P) is
isomorphic to ®(P) x A and P is isomorphic to E x A, or Z(P) is isomorphic to
Cp2 X A and E is isomorphic to (E x Cp2) X A, where E is an extraspecial p-group,
A is an elementary abelian group and * means central product.
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Proof : As ®(P) is a cyclic subgroup of order p, the centre Z(P) doesn’t admit
more than one factor isomorphic to Cp2 in its decomposition in cyclic subgroups,
and if this factor exists, it contains ®(P). Let A to be an elementary abelian
subgroup of Z(P) such that Z(P) ~ ®(P) x A, when there is no C)2 factor in
Z(P), and Z(P) ~ Cp2 x A, otherwise. We have, in both cases, [P,P]N A =1
and [P,A] = 1 so A is a direct factor of P. It is then straight forward that the

complement of A in P is isomorphic either to E or to E * Cpe.

Recall that for |P| = p® we have that P is isomorphic either to (Cp, x Cp) xC,,
(in this case we say that P is of order p® and exponent p) or Cp2 X (), for p odd,
and either to the dihedral group Dg or the quaternion group Qg, for p = 2.

Let 5 : P/Z(P) x P/Z(P) — ®(P) defined by 5(z,y) = [z,y]. It is a bilinear
non-degenerate symplectic form on U := P/Z(P) viewed as a vector space over F,.
We recall that an isotropic vector subspace of U with respect to (3 is a subspace
on which [ is identically zero. A maximal isotropic subspace of U has dimension
equal to half of the dimension of U.

Lemma 3.3. Let QQ be a p-centric subgroup of P. Then @Q contains Z(P) and
Q/Z(P) contains a mazimal isotropic subspace of P/Z(P).

Proof A p-centric subgroup of P clearly contains the centre Z := Z(P) of P.
Suppose that V' := Q/Z(P), considered as vector space, does not contain a maximal
isotropic subspace of U := P/Z(P) whith respect to 3. This means that there exists
w € U\V with 8(u,x) =0, Vo € V. By taking a representaive e of u in P we have
e € P\ @Q and e commutes with all the elements of Q. So e € Cp(Q) \ Z(Q) which
is a contradiction with the fact that @ is p-centric.

4. RESISTANT GROUPS

Definition 4.1. A p-group P is called resistant if for any finite group G such
that P is a Sylow p-subgroup of G, the normalizer Ng(P) controls p-fusion in G.

Here is now the main result of this paper.

Theorem 4.2. Let P be a generalized extraspecial p-group. Then P is resistant
excepting the case when P = E X A where A is elementary abelian and E is dihedral
of order 8 (when p = 2) or extraspecial of order p* and exponent p (when p is odd).

Corollary 4.3. If P satisfies the conditions of the theorem then P is a Swan group.

Proof of Theorem 4.2: We will prove that the only cases where G contains
essential p-subgroups are the exceptions of our theorem. Let () be a proper p-centric
subgroup of P. This forces @) to contain Z(P) and hence also ® := ®(P). Denote by
R the subgroup of N := (Ng(Q) N Ng(®))/Cx(Q) acting trivially on ® and Q/P.
We have that R centralizes the quotients of the central series 1 <® < (Q so it is a
normal p-subgroup [Gor, Thm. 5.3.2] of N. Now R contains P/Z(Q) as P acts
trivially on ® and Q/®. As P is a Sylow p-subgroup of G, this forces R = P/Z(Q),
and thus R is the unique Sylow p-subgroup of N and thus S, (V) is connected.

Assume that @Q is essential. Then S,(Ng(Q)/QCq(Q)) is disconnected and
therefore Ng(Q) # Ng(Q) N Ng(®). As the ®(Q) is characteristic in @ and is con-
tained in ® we have that ®(Q) is a proper subgroup of ® hence trivial; this gives that
Q is elementary abelian. Take x € Ng(Q)\ Ng(®). Now R = P/Q is not contained
in (Na(Q)NNa(*®))/Ca(Q), otherwise N/Ca(Q) and (Na(Q) NN (*®))/Ca(Q)
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would have the same Sylow p-subgroup R implying that P/Q = *(P/Q) and thus
that = normalizes P. It follows that ® = *® which is in contradiction with the
choice of . As *® is a subgroup of P of order p, the vector subspace *®/(Z(P)N*®)
of P/Z(P) admits an orthogonal complement with respect to 8 which is either all
P/Z(P) or a hyperplane. This gives that |P : Cp(*®)| = 1 or p. If Q is a proper
subgroup of Cp(*®) then Cp(*®P) is non-abelian and therefore & = &(Cp(*P)).
Moreover *  (Cp(*®)/Q) C (Cng(0)(®)/Q) so, by Sylow’s theorem there exists
¢ € (Cng()(®)/Q) such that c‘”fl(Cp(‘”@)/Q) C (Cp(®)/Q). This implies that
@' ® = @ which is equivalent to ® = & and we obtain once again a contra-
diction. Hence Q@ = Cp(®®) and |P : Q] = p. We also have that Q/Z(P) is a
maximal isotropic subspace of P/Z(P); it follows that |P : Z(P)| = p?>. Moreover
Cp(*®) is a proper subgroup of P so *® is not contained in Z(P) impling that
Z(P) # ®Z(P). By the same type of arguments we can also prove that ® is not
contained in *Z(P).

Finally take A := Z(P)N *Z(P). As |Q : Z(P)| = |Q : *Z(P)| = p and
Z(P) # *Z(P) we obtain that |Z(P) : A] = p so Q/A is isomorphic to Cp x C,.
Moreover A doesn’t contain ® so, by Lemma 3.2, Z(P) ~ ® x Aand P~ E x A
where F is an extraspecial group of order p3. First, as /A is isomorphic to Cp, x Cp,
FE cannot be isomorphic to the quaternion group. Secondly we will prove that the
case where F is isomorphic to Cp2 X C), also yields to a contradiction. The result
is due to Glauberman [MP] but the proof we give, which is more elegant, is due to
Jacques Thévenaz.

Let K :=< P/Q, *(P/Q) >, which is isomorpic to a subgroup of Aut(Q/A)
viewed as a subgroup of GL(2,F,). As P/Q # *(P/Q) they generate all SL(2,F),),
so SL(2,F,) is a subgroup of K containing P/Q. Now P/Q is a Sylow p-subgroup
of K and we will prove that the exact sequence 1 — Q/A — E — P/Q — 1 can
be extended to an exact sequence 1 — @Q/A — L — K — 1 and hence to an
exact sequence 1 — Q/A — L' — SL(2,F,) — 1. To have this it suffices to verify
[Br, pp.84-85] that the class h(E) determined by E in H*(P/Q,Q/A) is K-stable,
that is for any k € K we have

k

P P .
res 1S oy M(E) = 1es 09 ooy conip(A(E)) ().

Here res is the restriction in cohomology and conj, is the morphism induced by
the conjugation by k in cohomology. If P/Q # *(P/Q) then P/Q N ¥(P/Q) =1
and the relation (%) is trivially is satisfied. Suppose that P/Q = *(P/Q). Take k
to be a representative of k in Ng(Q) that normalizes P. We have that k induces
the conjugation by k on @ and P/Q. So the conjugation by k induces conj, on
H?(P/Q,Q/A). Thus h(E) = conj,(h(E)) and (*) is again satisfied. Now, for
E ~ Cp2 xCyp, h(E) is not trivial.

The contradiction comes from the fact that H?(SL(2,F,),Q/A) = 0, so the co-
homology class h(E) induced by E in H?(P/Q,Q/A) would be trivial. Indeed let
U:= (1) i be a Sylow p-subgroup of SL(2,F,). Write S := SL(2,F,) and
N(U) := Nsp2,5,)(U). The restriction to U in cohomology induces a monomor-
phism res? : H2(S,Q) — H*(U,Q)N W) where H?(U,Q)N ) are the fixed points
under the natural action of N(U). Now U =< u > is a cyclic group so [Be, p. 60]
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its cohomology is
p—1
H*(U,Q) = QY/{(Q_u')vlv e @},
i=0

By a simple computation we obtain QU =< z >, where z is a generator of ®(P)
and {(ZL o uvlv € Q} =0s0o HX(U,Q) =< z >. As z is not fixed by N(U) we
have H?(U,Q)NW) = 0 and therefore H?(S,Q) = 0.

We prove now that the remaning case, P = E x A with F either dihedral of
order 8 (when p = 2) or extraspecial of order p? and exponent p (when p is odd),
is indeed an exception to Theorem 4.2. Let us start with a property of resistant
groups:

Proposition 4.4. Let P be a p-group and B a finite abelian p-group. If P is not
resistant then the direct product P x B s not resistant.

Proof : Let G be a finite group with P as Sylow p-subgroup and let (2 be an
essential p-subgroup of G embedded in P. Such a G exists because we suppose that
P is not resistant. In this case P := P x B is a Sylow p-subgroup of G:=G x B.
Ab Q is p-centric in P so is Q := Q x B in P. Moreover N =(Q )/QC’ (Q) ~

Ng(Q)/QCqe(Q). This means that, as Sp(Ng(Q)/QCe(Q )) is dlsconnected so is
Sp(Né(@)/QVCG( Q)). Then Q is an essential p-subgroup of G. This proves that P

is not resistant.
Proposition 4.5. Let P = E x A where A is elementary abelian and E is dihedral
of order 8 (when p = 2) or is of order p* and exponent p (when p is odd). Then P

15 not resistant.

Proof : We can realise E as a Sylow p-subgroup of GL(3,F,). One can verify

1 0 = 1 %
that Q1 = 0 1 = and Q3 = 0 1 0 are essential subgroups
0 0 1 0 0 1

of G. So FE is not resistant. As P is isomorphic to £ x A where A is elementary
abelian, by Proposition 4.4, P is not resistant.

In a very recent paper [Pu2], Puig introduced the notion of 'full Frobenius system’
which is a category over a finite p-group P whose objects are the subgroups of P
and whose morphisms are a set of injective morphisms between the subgroups of
P containing the conjugation by the elements of P. The morphisms satisfy some
natural axioms which are inspired by the local properties of P when P is a Sylow
p-subgroup of a finite group or a defect group of a block in a group algebra. Puig
defined in this context the concept of ’essential group’ and proved that, on a full
Frobenius system, the analog of Alperin’s Fusion Theorem holds. Full Frobenius
systems are the generalisation of the Frobenius category of a group, and of the
Brauer and Puig categories of a block.

The theorem in this paper remains true and all the arguments were chosen to
remain valid in a full Frobenius system over P. This permits us to generalize the
results to Brauer pairs and pointed groups.
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