
CONTROL OF FUSION IN FUSION SYSTEMS

RADU STANCU∗

Abstract. Let P be a p-group and F a fusion system on P . The aim of this

paper is to give necessary and sufficient conditions on a subgroup Q of P for

the normalizer NF (Q) to be F itself. This generalizes a result of Gilotti and
Serena on finite groups. As an application we find some classes of resistant

p-groups, which are p-groups P such that the normalizer NF (P ) is equal to

F , for any fusion system F on P .

1. Introduction

Let p be a prime number, G a finite group and Fp(G) the Frobenius category of G
at p. Recall that Frobenius category of G at p is the category whose objects are the
p-subgroups of G and whose morphisms are the morphisms given by conjugation
by the elements of G. This category contains the p-local information of G. One can
prove that Frobenius category is equivalent to its full subcategory FP (G) whose
objects are the subgroups of a Sylow p-subgroup P of G.

In the ’90s, Puig gave an axiomatic description for the p-local structures, gener-
alizing the notions of Frobenius category and Brauer category. The notes in french
in which Puig introduced these new concepts were revisited, and refreshed by the
author in 2001 [Pu2]. The new concepts that Puig introduced are the ’full Frobenius
systems’ on a p-group P .

In a recent article, Broto, Levi and Oliver [BLO] identified and studied a certain
class of spaces which in many ways behave like p-completed classifying spaces of
finite groups. They show that these spaces occur as the “classifying spaces” of fusion
systems. In fact, in the paper, they use yet another terminology which is ’saturated
fusion system’ and the definition they give is slightly different from that of Puig
for full Frobenius systems; in the appendix of the up quoted paper they prove that
the two definition are equivalent. In this paper we introduce a simplification of the
definition in Broto, Levi and Oliver’s paper, equivalent to the latter and, thus, also
to the definition in Puig’s paper. We also change the terminology form ’saturated
fusion systems’ to simply ’fusion systems’.

When P is a Sylow p-subgroup of a finite group G and Q a subgroup of P , Gilotti
and Serena [GS] found necessary and sufficient conditions on Q for the normalizer
NG(Q) to control the p-fusion in G. Recall that a subgroup H of G is said to control
p-fusion in G if H contains a Sylow p-subgroup of G and the canonical inclusion of
H in G induces an equivalence of categories between Fp(H) and Fp(G). Let F be
a fusion system on a p-group P . As a generalization of Gilotti and Serena’s result,
in this paper we give necessary and sufficient conditions on a subgroup Q of P for
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the normalizer NF (Q) to be F itself. This gives a new method to track resistant
p-groups, which are p-groups P such that any fusion system F on P is equal to the
normalizer NF (P ).

The paper is organized as follows. The second section is dedicated to the defi-
nition and some properties of fusion systems. For a fusion system F on a p-group
P the set of F-essential subgroups of P is of great interest as any morphism in F
can be written as a composition of restrictions of F-automorphisms of P and of
its F-essential subgroups. Section 3 contains some examples of classes of p-groups
that are not realizable as F-essential p-subgroups in any fusion system F . Section
4 gives the generalization of Gilotti and Serena’s theorem to fusion systems. The
theorem in Section 4 and the results in Section 3 are used in Section 5 to find
families of resistant of p-groups. The last section concentrates on the notion of
normal subsystem of a fusion system F and gives equivalent conditions for the
existence of a such normal subsystem in a particular case.

2. Fusion Systems

Fusion systems were introduced by Puig in 1990 [Pu2]. In 2000 Broto, Levi and
Oliver [BLO] had a different definition of the fusion systems which they have proved
to be equivalent to Puig’s definition. In this paper we use a simplified definition
which we find more elegant, equivalent to the above ones.

Let us start with a more general definition.

Definition 2.1. A category F on a p-group P is a category whose objects are the
subgroups of P and whose set of morphisms between the subgroups Q and R of
P , is a set HomF (Q,R) of injective group homomorphisms from Q to R, with the
following properties:
(1) if Q ≤ R then the inclusion of Q in R is a morphism in HomF (Q,R);
(2) for any φ ∈ HomF (Q,R) the induced isomorphism Q ' φ(Q) and its inverse
are morphisms in F .
(3) the composition of morphisms in F is the usual composition of group homo-
morphisms.

Note that the above definition of a category on P differs from what Puig calls
’divisible Frobenius system’ and what, equivalently, Broto, Levi and Oliver call
’fusion system’ by the fact that we do not ask for the inner automorphisms of P to
be in the category.

In a finite group G having P as a Sylow p-subgroup, every G-conjugation class
of subgroups in P contains an element Q such that a Sylow p-subgroup of the G-
normalizer of Q is contained in P . We give the candidates to have this property in
a category F on P . If there exists an isomorphism φ ∈ HomF (Q,R) we say that Q
and R are F-conjugate.

Definition 2.2. We say that a subgroup Q of P is fully F-centralized, respectively
fully F-normalized if |CP (Q)| ≥ |CP (Q′)|, respectively |NP (Q)| ≥ |NP (Q′)|, for all
Q′ ≤ P which are F-conjugated to Q.

For Q, R, T ≤ P we denote HomT (Q,R) := {u ∈ T | uQ ≤ R}/CT (Q) and
AutT (Q) := HomT (Q,Q). Other useful notations are AutF (Q) := HomF (Q,Q)
and OutF (Q) := AutF (Q)/AutQ(Q). We are now able to give the definition of a
fusion system.
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Definition 2.3. A fusion system on a finite p-group P is a category F on P
satisfying the following properties:
FS1. HomP (Q,R) ⊂ HomF (Q,R) for all Q,R ≤ P .
FS2. AutP (P ) is a Sylow p-subgroup of AutF (P )
FS3. Every φ : Q→ P such that φ(Q) is fully F-normalized extends to a morphism
φ̄ : Nφ → P where Nφ = {x ∈ NP (Q) | ∃y ∈ NP (φ(Q)), φ( xu) = yφ(u), ∀u ∈ Q}.

We remark that Nφ is the largest subgroup of NP (Q) such that φ(Nφ/CP (Q)) ≤
AutP (φ(Q)). Thus we have QCP (Q) ≤ Nφ.

Through the rest of the section P denotes a finite p-group, Q a subgroup of P
and F a fusion system on P . Here is an equivalent characterization of being fully
F-normalized.

Proposition 2.4 ([Li], Prop. 1.6). A subgroup Q of P is fully F-normalized if and
only if Q is fully F-centralized and AutP (Q) is a Sylow p-subgroup of AutF (Q).

In a fusion system we have analogous notions for the normalizer and the central-
izer in a finite group:

Definition 2.5. The normalizer NF (Q) is the category on NP (Q) having as mor-
phisms, those morphisms ψ ∈ F(R, T ) satisfying that there exists a morphism φ ∈
HomF (QR,QT ) such that φ|Q ∈ AutF (Q) and φ|R = ψ. The centralizer CF (Q) is
the category on CP (Q) having as morphisms those morphisms ψ ∈ F(R, T ) satis-
fying that there exists a morphism φ ∈ HomF (QR,QT ) such that φ|Q = idQ and
φ|R = ψ.

In general NF (Q) is not a fusion system on NP (Q) because Property FS2 fails
to be satisfied, but it becomes one if Q is fully F-normalized. It is the same for
CF (Q) when Q is fully F-centralized.

Proposition 2.6 ([Pu2], Prop. 2.8). If Q is fully F-normalized then NF (Q) is a
fusion system on NP (Q). If Q is fully F-centralized then CF (Q) is a fusion system
on CP (Q).

Here is some more terminology in a fusion system.

Definition 2.7. We say that
(i) Q is F-centric if CP (φ(Q)) ⊂ φ(Q), for all φ ∈ HomF (Q,P ).
(ii) Q is F-radical if Op(OutF (Q)) = 1.
(iii) Q is F-essential if Q is F-centric and OutF (Q) has a strongly p-embedded
subgroup M (that is M contains a Sylow p-subgroup S of OutF (Q) such that φS ∩
S = {1} for every φ ∈ OutF (Q) \M).
(iv) Q is strongly F-closed if for any subgroup R of Q and any morphism φ ∈
HomF (R,P ) we have φ(R) ≤ Q.
(v) Q is weakly F-closed if for any morphism φ ∈ HomF (Q,P ) we have φ(Q) = Q.

An F-centric subgroup Q of P is fully F-centralized. Indeed, for any morphism
φ ∈ HomF (Q,P ), we have

φ(CP (Q)) = φ(Z(Q)) = Z(φ(Q)) = CP (φ(Q))

so |CP (Q)| = |CP (φ(Q))| giving that all the subgroups of P in the same F-
conjugacy class as Q have the same cardinality centralizer in P . Thus they are
all fully F-centralized.
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We can see if a fully F-centralized subgroup Q of P is F-essential by studying
the Quillen complex of the outer automorphism group of Q in F . Recall that for a
finite group G the Quillen complex of G at p, denoted by Sp(G) is the nerve of the
poset of non-trivial p-subgroups of G. Thévenaz showed [Th, Theorem 48.8] that
Q is F-essential if and only if Sp(OutF (Q)) is disconnected. As any non-trivial
normal subgroup of OutF (Q) would connect Sp(OutF (Q)), we have that if Q is
F-essential then Op(OutF (Q)) = 1 giving that Q is F-radical.

Another easy remark is that Q is strongly F-closed if and only if HomF (R,P ) =
HomF (R,Q), for any subgroup R of Q, and is weakly F-closed if and only if
HomF (Q,P ) = AutF (Q). It is clear that if Q is strongly F-closed then Q is
weakly F-closed.

Alperin’s theorem on p-local control of fusion, also holds for fusion systems.
First we set up this theorem’s notations and terminology. If φ ∈ AutF (P ), we say
that φ is a maximal F-automorphism; if φ ∈ AutF (E), where E is an F-essential
subgroup of P , we say that φ is an essential F-automorphism. Alperin’s fusion
theorem asserts in essence that the essential and maximal F-automorphisms suffice
to determine the whole fusion system F . The principal ideas of the proof are from
[Th, Theorem 48.3].

Theorem 2.8 (Alperin). Any morphism φ ∈ HomF (Q,P ) can be written as the
composition of restrictions of essential F-automorphisms, followed by the restriction
of a maximal F-automorphism. More precisely, there exists

(a) an integer n ≥ 0,
(b) a set of F-isomorphic subgroups of P , Q = Q0, Q1, . . . , Qn, Qn+1 = φ(Q),
(c) a set of F-essential, fully F-normalized subgroups Ei containing Qi−1 and

Qi, for all 1 ≤ i ≤ n,
(d) a set of morphisms ψi ∈ AutF (Ei) satisfying ψi(Qi−1) = Qi, for all 1 ≤ i ≤ n

and
(e) a morphism ψn+1 ∈ AutF (P ) satisfying ψi(Qn) = Qn+1

such that we have

φ(u) = ψn+1ψn . . . ψ1(u), for all u ∈ Q .

Proof. The proof is given by induction on the index |P : Q|. If |P : Q| = 1,
then n = 0, P = Q and φ ∈ AutF (P ). Suppose now that |P : Q| > 1. Let
ψ ∈ HomF (Q,P ), such that ψ(Q) is fully F-normalized.

Now, ψ ∈ HomF (Q,ψ(Q)) and ψφ−1 ∈ HomF (φ(Q), ψ(Q)) are isomorphisms
mapping to ψ(Q), which is a fully F-normalized subgroup of P . So, it suffices to
find the decomposition of the theorem for an F-isomorphism which maps to a fully
F-normalized subgroup of P , as if we find this decomposition for ψ and for ψφ−1,
we find one for φ.

So we want to decompose a morphism ψ ∈ HomF (Q,P ), such that ψ(Q) is
fully F-normalized. Now ψAutP (Q) ≤ AutF (ψ(Q)) and AutP (ψ(Q)) is a Sylow
p-subgroup of AutF (ψ(Q)), by Proposition 2.4. So there is χ ∈ AutF (ψ(Q)) such
that χψAutP (Q) ≤ AutP (ψ(Q)). This implies that Nχψ = NP (Q). By Property
FS3 applied to χψ, we have a morphism ρ ∈ HomF (NP (Q), P ) extending χψ. Now
|P : NP (Q)| < |P : Q| so, by induction, ρ has the desired form. So, for decomposing
ψ, it suffices to decompose χ ∈ AutF (ψ(Q)).

In this way, by changing if necessary the notations, we have to decompose χ ∈
AutF (Q) for a fully F-normalized subgroup Q of P . Applying Property FS3 to χ,
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there exists χ′ ∈ HomF (Nχ, P ) extending χ. But Nχ contains QCP (Q). If Q is not
F-centric, then |P : Q| > |P : QCP (Q)| and we obtain the decomposition of χ′ by
induction. Thus we can suppose that Q is F-centric.

If Q is F-essential, then χ ∈ AutF (Q) and χ is of the desired form, as Q is fully
F-normalized. If not, Sp(OutF (Q)) is connected. As the p-subgroups of OutF (Q)
are in bijection with those of AutF (Q) containing AutQ(Q) we have also that
Sp(AutF (Q))>AutQ(Q) is connected. Moreover T := AutP (Q) is a Sylow p-subgroup
of AutF (Q), by Proposition 2.4, as Q is fully F-normalized. By the connectivity
of Sp(AutF (Q))>AutQ(Q), there exists T1, . . . , Tr−1 and S1, . . . , Sr p-subgroups of
AutF (Q) containing strictly AutQ(Q) such that T ≥ S1 ≤ T1 ≥ S2 ≤ T2 ≥ . . . ≤
Tr−1 ≥ Sr ≤ χT . Replacing, if necessary, Ti by a Sylow p-subgroup of AutF (Q)
containing Ti for all 1 ≤ i ≤ r − 1 we suppose that T1, . . . , Tr−1 are Sylow p-
subgroups of AutF (Q). Now all the Sylow p-subgroups of AutF (Q) are conjugated
by elements of AutF (Q) so there exists χi ∈ AutF (Q) such that Ti = χiT for all
1 ≤ i ≤ r − 1. Thus T and χT are connected through:

T ≥ S1 ≤ χ1T ≥ S2 ≤ . . . χr−1T ≥ Sr ≤ χT

Now, by setting χ0 := id and χr := χ, we have χi−1Si ≤ T ≥ χiSi for all 1 ≤ i ≤ r.
So, if we denote θi := χiχ

−1
i−1 ∈ AutF (Q), this implies that Nθi/Z(Q) contains

χi−1Si by definition of Nθi as θi( χi−1Si) = χiSi ≤ T . Let R be the inverse image
of χi−1Si in NP (Q). So R is contained in Nθi and contains strictly Q. As Q is
fully F-normalized, θi extends to θ̃i ∈ HomF (Nθi

, P ). Now the index of R in P is
smaller then the index of Q in P so by induction θ̃i|R decomposes as in the text of
the theorem. This is true for all 1 ≤ i ≤ r so, implicitly, for χ = θr . . . θ1.

The last step is to see that in this decomposition a maximal F-automorphism
commutes with an essential F-automorphism. This gives that we can use only one
maximal F-automorphism at the left in the decomposition. Indeed, if ν ∈ AutF (E),
where E is an F-essential, fully F-normalized subgroup and θ ∈ AutF (P ), we have
νθ(u) = θ(θ−1νθ)(u), for all u ∈ θ−1(E) where (θ−1νθ) ∈ HomF (θ−1(E)) and
θ−1(E) is an F-essential, fully F-normalized subgroup, as the image of E by a
morphism µ ∈ HomF (R,P ), for all R containing NP (E), is a fully F-normalized
subgroup of P . Indeed we have µ(NP (E)) = NP (µ(E)) as E is fully F-normalized,
so |NP (µ(E))| is maximal. 2

A proof of this theorem in a different axiom setting was given by Puig [Pu2,
Corollary 3.9] and another in a less general form, using F-centric, F-radical sub-
groups instead of F-essential subgroups, can be found in [BLO, Theorem A.10].

We close the section with a classical example of fusion system. Given a finite
group G, a finite field k of characteristic p and a block b of kG, Alperin and
Broué [AB] showed that the Brauer full subcategory under a maximal b-Brauer
pair satisfies properties similar to those in Sylow’s theorems. In fact the Brauer
full subcategory under a maximal b-Brauer pair is a fusion system on the first
component of the maximal b-Brauer pair.

Proposition 2.9 ([Li], Theorem 2.4). Let G be a finite group, k a field of char-
acteristic p and b a block of kG. Let (P, e) be a maximal b-Brauer pair. Then the
Brauer full subcategory F(P,e)(G, b) under (P, eP ) is a fusion system on P .
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The full subcategory FS(G) under a Sylow p-subgroup S of G of the Frobenius
category Fp(G) is a particular case of a Brauer category. It is well-known from the
literature that FS(G) is a fusion system on S; see for instance [BLO, Prop 1.3].

3. Are there any F-essential p-subgroups?

An important result on the group of automorphisms of a finite p-group, proved
by Martin [Ma] and then, Henn and Priddy [HP] is that, for almost all p-groups,
their group of automorphisms, is a p-group. On the other hand, Gorenstein and
Lyons [GL] and Aschbacher [As] found the complete list short of finite groups having
a strongly p-embedded subgroup. The proof is based on the classification of the
simple finite groups.

We remark that there are very restrictive conditions imposed by the existence of
a strongly p-embedded subgroup and also that in almost all cases, if Q is a p-group,
Out(Q) is a p-group. Thus it is very difficult to find a candidate for OutF (Q) having
a strongly p-embedded subgroup and, for most p-groups Q, OutF (Q) is forced to
be a p-group for any fusion system F on a p-group P containing Q. This indicates
that almost all p-groups Q are not realizable as F-essential subgroups in a fusion
system F .

In this section we search families of p-groups that are not realizable as F-essential
subgroups in a fusion system F . For p = 2 there are some straight forward examples:
the dihedral groups of order greater than 4, the quaternion groups of order greater
than 8 and the semi-dihedral groups of order greater than 16 as their groups of
automorphisms are 2-groups.

Our aim is to give a sufficient condition for a p-group to not be realizable as F-
essential subgroup in a fusion system F . For this, we need some properties of the
Frattini subgroup of a p-group, which is the subgroup generated by commutators
and p-th powers. We denote the Frattini subgroup of Q by Φ(Q).

The Frattini subgroup of Q is characteristic in Q. The quotient of Q by Φ(Q) is
an elementary (as we quotient by the p-th powers) abelian (as we quotient by the
commutators) p-group of rank n (where n is the minimal cardinal of a system of
generators of Q). So we can look at Q/Φ(Q) as a vector space of dimension n over
the field Fp. Consequently, Aut(Q/Φ(Q)) can be seen as the group GLn(Fp) of the
nonsingular matrices of dimension n, with coefficients in Fp. Here is a useful result
on the relation between Aut(Q) and Aut(Q/Φ(Q)).

Proposition 3.1. Let φ : Aut(Q) −→ Aut(Q/Φ(Q)) be the canonical map induced
by the projection Q −→ Q/Φ(Q). Then Ker(φ) is a p-group.

Proof. A result of Burnside [Gr, Theorem 5.1.4], says that any automorphism of
Q of order prime to p that induces the identity on Q/Φ(Q) is, in fact, the identity
on Q. So Ker(φ) does not contain any nontrivial element of order prime to p, which
implies that Ker(φ) is a p-group. 2

Lemma 3.2. Let p be a prime number, Q a p-group, Φ(Q) its Frattini subgroup,
n the rank of the elementary abelian group Q/Φ(Q) and B ≤ GLn(Fp) the multi-
plicative subgroup of nonsingular lower triangular matrices. Suppose that the image
of the canonical morphism φ : Aut(Q) −→ Aut(Q/Φ(Q)) induced by the canoni-
cal projection is isomorphic to a subgroup of B. Then Q is not realizable as an
F-essential subgroup in any fusion system F .
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Proof. Let F be a fusion system on a finite p-group P , such that Q ≤ P . We
denote by Im(φ) the image and by Ker(φ) the kernel of the morphism φ. We have
that Im(φ) is isomorphic to a subgroup of B, so it has a unique Sylow p-subgroup.
As Im(φ) ' Aut(Q)/Ker(φ) and Ker(φ) is a p-group, Aut(Q) has a unique Sylow
p-subgroup. The same is true for Out(Q), as it is the quotient of Aut(Q) by the
group of the inner automorphisms of Q, which is a p-group. As OutF (Q) is a
subgroup of Out(Q) it has also a unique Sylow p-subgroup. So Sp(OutF (Q)) is
connected and thus Q is not F-essential. 2

This result helps us to find other families of p-groups, that are not realizable as
F-essential subgroups in any fusion system F , for example the direct product of
two cyclic p-groups of different orders or a non-abelian metacyclic p-subgroup, for
p odd.

Proposition 3.3. Let p be a prime number and α1 6= α2 two positive integers.
Then Q := Cpα1 × Cpα2 is not realizable as an F-essential subgroup in any fusion
system F .

Proof. Let x and y be two generators of Q of orders pα1 , respectively pα2 . The
set {x, y} is a minimal generating system for Q, so Aut(Q/Φ(Q)) can be seen as
embedded in GL2(Fp). Let σ be an automorphism of Q. We have σ(x) = xayb and
σ(y) = xcyd, where a, b, c and d are integers. Thus the image of this automorphism

in GL2(Fp) is given by
( ā b̄
c̄ d̄

)
.

By Lemma 3.2, a sufficient condition, for Q to not be realizable as an F-essential
subgroup in a fusion system F , is that the image of Aut(Q) in Aut(Q/Φ(Q)) is
embedded in the group of the lower triangular matrices. The latter is equivalent
to showing that, for all σ ∈ Aut(Q) as before, p divides b, which is b̄ = 0. Another
sufficient condition for Q to not be realizable as an F-essential subgroup, is that
the image of Aut(Q) in Aut(Q/Φ(Q)) to be embedded in the group of the upper
triangular matrices. This is equivalent to the condition that, for all σ ∈ Aut(Q) as
before, p divides c, which is c̄ = 0.

Suppose, without loss of generality, that α1 > α2. Now, the order of σ(y) is the
same as the order of y, so equal to pα2 . Thus σ(y)p

α2 = 1. As yp
α2 = 1, we deduce

that xcp
α2 = 1. This implies that p divides c as the order of x is greater than pα2 .

Similarly, if α1 < α2 we prove that p divides b. 2

Definition 3.4. We say that a p-group is metacyclic if it is the extension of a
cyclic p-group by another cyclic p-group. If the metacyclic p-group can be defined
by a split extension we say that it is split, otherwise we say that it is non-split.

In other words, a p-group Q is metacyclic if it has a cyclic normal subgroup such
that the quotient by this subgroup is also cyclic. It is well known (see [Hu]) that a
presentation by generators and relations of a metacyclic p-group is given by

< x, y |xp
m

= 1, yp
n

= xp
q

, yx = xp
l+1 >

We say then that Q is of the type (m,n, q, l).
Using Burnside’s work [Bu], Dietz [Dz] classified the presentations of non-abelian

metacyclic p-subgroup for p odd, and obtained that Q is non-split if and only if
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q 6= m and l < q < n. In the following we prove that non-abelian metacyclic p-
groups, for p odd, cannot be realized as F-essential subgroups in any fusion system
F .

Proposition 3.5. Let p be an odd prime and Q =< x, y > be a non-abelian
metacyclic p-group. Then Q is not realizable as F-essential subgroup in any fusion
system F .

Proof. Suppose that Q is of type (m,n, q, l) and chose x and y such that q = m
if Q is split. The set {x, y} is a minimal generator system for Q, so Aut(Q/Φ(Q))
can be seen as embedded in GL2(Fp). Let σ be an automorphism of Q. We have
σ(x) = xayb and σ(y) = xcyd, where a, b, c and d are integers. As in the previous
proof, for Q to not be realizable as F-essential subgroup in a fusion system F ,
it suffices to show that p divides b for all σ ∈ Aut(Q) or that p divides c for all
σ ∈ Aut(Q). The relations in Q give that

(1) (σ(x))p
m

= 1 ,

(2) (σ(y))p
n

= (σ(x))p
q

,

(3) σ(y)σ(x) = (σ(x))p
l+1 .

We compute now, using the generators, the powers of σ(x) and of σ(y), and
σ(y)σ(x), by putting σ(x) = xayb and σ(y) = xcyd. These computations will
be useful later in the proof. Let r and s be two positive integers.

(σ(x))s = (xayb)s = xa
∑s−1

i=0 (pl+1)ib

ybs ,

(σ(y))r = (xcyd)r = xc
∑r−1

i=0 (pl+1)id

ydr ,

σ(y)σ(x) = (xcyd)(xayb)(xcyd)−1 = xcydxayby−dx−c

= xc+a(p
l+1)d−c(pl+1)b

yb .

We distinguish two cases.
If l ≥ n, then Q is necessarily split. Combining the relation (2) with the identities

computed above and using the fact that q = m, by the choice we made before, we
obtain

xc
∑pn−1

i=0 (pl+1)id

ydp
n

= (σ(x))p
m

.

But (σ(x))p
m

= 1, so ydp
n

= 1 and xc
∑pn−1

i=0 (pl+1)id

= 1. The second equality is
equivalent to c

∑pn−1
i=0 (pl + 1)id ≡ 0 (mod pm). As (pl + 1)d ≡ 1 (mod p), the sum∑pn−1

i=0 (pl + 1)id is exactly divisible by pn (i.e. divisible by pn and non-divisible
by pn+1). Now, Q is non-abelian, so l < m, which implies, as l ≥ n, that n < m.
This forces c to be a multiple of p.

If l < n, combine the relation (3) with the identities computed above and obtain

xc+a(p
l+1)d−c(pl+1)b

yb = xa
∑pl

i=0(p
l+1)ib

yb(p
l+1) .

This implies that yb(p
l+1)y−b ∈< x >, which is equivalent to bpl ≡ 0 (mod pn).

Thus b is a multiple of p. 2
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4. Main result

As in Section 2, let F be a fusion system on a p-group P . If F = FP (G) for
a finite group G and H is a subgroup of G, containing P , then H controls the
p-fusion in G if and only if FP (H) = FP (G). Let us define, in general, the notion
of subsystem of a fusion system and study when a subsystem can be equal to the
whole fusion system.

Definition 4.1. Let F be a fusion system on P . A subsystem F ′ of F is a subcat-
egory of F , which is itself a fusion system on a subgroup Q of P .

In what follows, we give necessary and sufficient conditions on a fully F-normalized
subgroup Q of P , for the subsystem NF (Q) to be equal to F . Remark that if
F = FP (G), where P is a Sylow p-subgroup of G and Q is a fully F-normalized sub-
group of P , then NF (Q) = FNP (Q)(NG(Q)). Indeed, NP (Q) is a Sylow p-subgroup
of NG(Q). Moreover, any morphism in FNP (Q)(NG(Q)) between two subgroups
R and T of NP (Q) is given by the conjugation by an element h of NG(Q). As
hQ = Q this can be regarded as a morphism by conjugation by h between Q · R
and Q ·T . Thus HomFNP (Q)(NG(Q))(R, T ) ⊂ HomNF (Q)(R, T ). The inclusion in the
other sense is obvious.

Let us recall what is a central series for a finite group.

Definition 4.2. Let Q be a p-group. A central series for Q is a series 1 = Q0 ≤
Q1 ≤ Q2 ≤ . . . ≤ Qn = Q such that Qi is normal in Q and Qi+1/Qi ≤ Z(Q/Qi)
for all 1 ≤ i ≤ n. If we have equality in the last relation for all 1 ≤ i ≤ n then the
series is called the upper central series.

For a fusion system F on P we can define the quotient F of F by a strongly
F-closed subgroup Q of P .

Definition 4.3. Let F be a fusion system on P and Q a strongly F-closed subgroup
of P . We define F := F/Q as the category on P/Q whose objects are the subgroups
of P/Q and whose morphisms are those induced by F .

In fact if G is a finite group having P as Sylow p-subgroup, and Q is a subgroup
of P normal in G, then Q is strongly FP (G)-closed and, moreover FP (G)/Q =
FP/Q(G/Q). The fact that Q is strongly FP (G)-closed is straight forward, as any
morphism in FP (G) given by conjugation by an element g of G mapping from a
subgroup R ofQ extends in a morphism by conjugation by g which maps fromQ and
we have gR ≤ gQ = Q as G normalizes Q. The equality FP (G)/Q = FP/Q(G/Q)
comes simply from the fact that the objects and the morphisms of the two categories
are trivially the same.

We prove now that F/Q is a fusion system. This result is due to Puig, but we
prefer to give here the proof as our formulation is different from Puig’s one. For
any subgroup R of P denote by R its canonical projection in P := P/Q.

Proposition 4.4 ([Pu2], Prop. 2.15). Let F be a fusion system on P and Q a
strongly F-closed subgroup of P . Then F := F/Q is a fusion system on P/Q.

Proof. We verify the three properties for F . Property FS1 is trivially satisfied.
By construction of F , the canonical morphism AutF (P ) −→ AutF (P ) is surjec-

tive and the image of AutP (P ) by this morphism is AutP (P ). As F is a fusion
system, the group AutP (P ) is a Sylow p-subgroup of AutF (P ), so AutP (P ) is a
Sylow p-subgroup of AutF (P ), thus Property FS2 is satisfied in F .
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We verify now Property FS3. Consider φ ∈ HomF (R,P ), R the inverse image
of R in P and φ ∈ HomF (R,P ) a representative of φ in F . Denote T := φ(R).
Suppose that T is fully F-normalized. We have Q ≤ R so Q ≤ NP (R) giving that
NP (R) is the inverse image of NP (R). The same is true for T as Q = φ(Q) ≤ T ,
and also for any subgroup R′ of P , F-conjugated to T . Thus, using that T is fully
F-normalized we have |NP (R)′| = |NP (R

′
)| · |Q| ≤ |NP (T )| · |Q| = |NP (T )| so T is

fully F-normalized.
By Property FS3 applied to φ, there exists ρ ∈ HomF (Nφ, P ) extending φ. As

Q is strongly F-closed, we obtain ρ(Q) = Q, so ρ is a morphism in HomF (Nφ, P ).
Moreover Nφ = Nφ. The inclusion of Nφ in Nφ is obvious. For the other inclusion
denote by N the inverse image of Nφ in P . The canonical projection on P/Q

induces a morphism between AutP (R) and AutP (R). We have that φ(AutN (R)) =
φAutNφ

(R) ≤ AutP (T ) thus φ(AutN (R)) ≤ AutP (T ) implying that N ≤ Nφ. So ρ
extends φ to Nφ and Property FS3 is satisfied for F . 2

Remark 4.5. Let F be a fusion system on P and Q a normal subgroup of P .
Then NP (Q) = P , so Q is fully F-normalized. Even if Q is not necessarily strongly
F-closed, we have that, Q is strongly N -closed where N = NF (Q). Indeed, for
any subgroup R ≤ Q and any morphism φ ∈ HomN (R,NP (Q)) there exists a
morphism ψ ∈ HomF (Q · R,P ) = HomF (Q,P ) such that ψ(u) = φ(u), for all
u ∈ R and ψ(Q) = Q. As a consequence, we have φ(R) = ψ(R) ≤ ψ(Q) = Q and
as this is true for all the subgroups of Q, the latter is strongly N -closed.

We continue with two technical lemmas.

Lemma 4.6. Let Q a p-group, T a normal subgroup of Q and for any subgroup
R of Q denote by R its canonical projection in Q := Q/T . If the series given
by Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1 is a central series of Q and T ≤ Q1 then
Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1 is a central series of Q. If, moreover, Q1 = T
and T is central in Q then the converse is also true.

Proof. For the first part of the lemma we use the property that Z(Q) ≤ Z(Q)
and Z(Q/Qi) ≤ Z(Q/Qi). So the relations Q1 ≤ Z(Q) and Qi+1/Qi ≤ Z(Q/Qi)
are always satisfied, given that Q1 ≤ Z(Q) and Qi+1/Qi = Qi+1/Qi ≤ Z(Q/Qi).
We deduce that Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1 is a central series of Q. For
the converse, T is central in Q, so Q1 = T ≤ Z(Q). The others verifications are
straight forward, using the fact that Q/Qi ' Q/Qi and Qi+1/Qi ' Qi+1/Qi, for
all i = 1, . . . , n− 1. 2

Lemma 4.7. Let P be a p-group, F a fusion system on P and T a strongly F-
closed subgroup of P . Let F := F/T , Q ≤ P and denote by : P → P/T
the canonical projection. If Q is strongly, respectively weakly F-closed, then Q is
strongly, respectively weakly F-closed. If Q contains T and Q is weakly F-closed,
then Q is weakly F-closed.

Proof. By definition, Q is strongly F-closed if and only if for all R ≤ Q, we have
HomF (R,P ) = HomF (R,Q). This implies that HomF (R,P ) = HomF (R,Q), as
the morphisms in F are induced by the morphisms in F . As any subgroup of Q has
a preimage in Q, we have the equivalence with the fact that Q is strongly F-closed.
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The fact that Q is weakly F-closed, implies by the same type of argument that Q
is weakly F-closed.

Suppose now that T ≤ Q and Q is weakly F-closed. Let φ ∈ HomF (Q,P ). It
induces a morphism φ ∈ HomF (Q,P ). As Q is weakly closed in F it follows that
φ ∈ HomF (Q). This makes that φ ∈ HomF (Q), so Q is weakly F-closed. 2

In the middle of the ’80s, Gilotti and Serena [GS] gave necessary and sufficient
conditions for the normalizer of a p-subgroup of a finite group G to control the
p-fusion in G. In the last part of this section we generalize this result to fusion
systems. This is the main result of our paper.

Theorem 4.8. Let P be a finite p-group, Q a subgroup of P and F a fusion
system on P . Then NF (Q) = F if and only if Q is strongly F-closed and admits
a central series Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1 with Qi weakly F-closed, for all
1 ≤ i ≤ n− 1.

Proof. Put N := NF (Q).
=⇒ Suppose that N = F . Let R be a subgroup of Q and φ ∈ HomF (R,P ).

By hypothesis φ ∈ HomN (R,P ), so the morphism φ extends to a morphism ψ ∈
AutF (Q). Thus, φ(R) = ψ(R) ≤ ψ(Q) = Q, which gives that Q is strongly F-
closed. Consider the upper central series Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1. Fix
1 ≤ i ≤ n − 1 and let φi ∈ HomF (Qi, P ). As before, we have φi ∈ HomN (Qi, P ).
But Qi is characteristic in Q, so Qi = φi(Qi), as φ lifts to a morphism in AutF (Q).
Thus Qi is weakly F-closed, for all 1 ≤ i ≤ n− 1.
⇐= Suppose that the group Q is strongly F-closed and admits a central series

Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 > 1 where Qi is weakly F-closed for all 1 ≤ i ≤ n− 1.
Given that Qi is weakly F-closed we have Qi � P , for all 1 ≤ i ≤ n. In particular,
NP (Q) = P soQ is fully F-normalized andN is a fusion system on P by Proposition
2.6. Denote by T := Q1 ∩ Z(P ). As Q1 is normal in P , we have that Q intersects
nontrivialy the centre Z(P ), so T is not trivial.

We first prove that HomF (T, P ) = HomN (T, P ). Let φ ∈ HomF (T, P ). By the
fact that Q is strongly F-closed we have φ(T ) ≤ Q. As Q1 ≤ Z(Q), we obtain that
T and φ(T ) are subgroups of CP (Q1) and, consequently Q1 ≤ CP (φ(T )). But T is
fully F-normalized, as NP (T ) = P . So φ−1 lifts to χ ∈ HomF (CP (φ(T )), P ). Thus
χ|Q1 ∈ HomF (Q1, P ) and, by the weak F-closure of Q1, we have χ|Q1 ∈ AutF (Q1).
As Q1 is unique in its F-conjugacy class in P , we deduce that Q1 is fully F-
normalized. So χ|Q1 extends, by Property FS3, to χ̃ ∈ HomF (CP (Q1), P ). Now,
Q ≤ CP (Q1), as Q1 ≤ Z(Q). We obtain, by restricting χ to Q, that χ̃|Q ∈
HomF (Q,P ), so, by the strong F-closure of Q, we have χ̃|Q ∈ AutF (Q). This
implies that χ̃|T is a morphism in HomN (φ(T ), P ). So φ = χ−1|T = χ̃−1|T is in
HomN (T, P ).

Back to the general case. By Alperin’s fusion theorem F = N if AutF (U) =
AutN (U), for all F-centric, fully F-normalized U . The proof is by induction on the
number of morphisms in F . If F is the trivial fusion system on P , then AutF (P ) =
{id}. As AutF (P ) contains the inner automorphisms of P we have AutP (P ) = {id}.
Thus P is necessarily abelian and the theorem is straight forward.

Denote by C := CF (T ), let U be F-centric, fully F-normalized and let φ ∈
AutF (U). As CP (T ) = P , the group T is fully F-centralized, so C is a fusion system
on P by Proposition 2.6. Denote by N ′ := NC(Q). As Q is fully C-normalized,
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it follows that N ′ is a fusion system on P . We have clearly HomN ′(R,P ) =
HomN (R,P ) ∩HomC(R,P ) for any subgroup R of P . We distinguish two cases.

Case 1: F 6= C. As U is F-centric, it contains Z(P ), so, a fortiori, T . Thus,
we have φ|T ∈ HomF (T, P ). By Property FS3 using the fact that T is fully F-
normalized as NP (T ) = P , the morphism ψ := φ−1|φ(T ) lifts to ψ̃ ∈ HomF (Nψ, P ).
In order to prove that φ ∈ AutN (U) it is sufficient to show that UQ ≤ Nψ. In fact
we prove that UQ ≤ CP (φ(T )).

As φ is an automorphism of U and Z(U) is characteristic in U we have that
φ(Z(U)) ≤ Z(U). But T ≤ Z(P ) ≤ Z(U) so φ(T ) ≤ φ(Z(U)) = Z(U) which gives
that U ≤ CP (φ(T )) (*).

By the fact that Q is strongly F-closed we have φ(T ) ≤ Q. As Q1 ≤ Z(Q),
we obtain that T, φ(T ) ≤ CP (Q1) and so that Q1 ≤ CP (φ(T )). But T is fully
F-normalized, as NP (T ) = P . So ψ lifts to ψ̃ ∈ HomF (CP (φ(T )), P ). Thus
ψ̃|Q1 ∈ HomF (Q1, P ) and, by the weak F-closure of Q1, we have ψ̃|Q1 ∈ AutF (Q1).
Now, Q ≤ CP (Q1), as Q1 ≤ Z(Q). Moreover φ(T ) ≤ Q1 so Q ≤ CP (φ(T )) (**).

By (*) and (**) QU ≤ CP (φ(T )) so ψ̃ is defined also on QU . Thus ψ̃φ ∈
HomF (U,P ) ∩ C(T ). By the induction hypothesis applied to C, we have ψ̃φ ∈
HomN ′(U,P ). As HomN ′(U,P ) ≤ HomN (U,P ) we obtain that ψ̃φ ∈ HomN (U,P ).
But, ψ̃|Q ∈ AutF (Q) so ψ̃ ∈ HomN (U,P ), which implies that φ ∈ HomN (U,P )
and finishes the proof in this case.

Case 2: F = C. In this case T is strongly F-closed. Indeed let R ≤ T and
φ ∈ HomF (R,P ). As F = C the morphism φ extends to ψ ∈ AutF (T ) such that
ψ = idT and so φ(R) = R ≤ T .

Denote by F := F/T . Using Proposition 2.6, F is a fusion system on P . More-
over, by Lemma 4.6, Q = Qn ≥ Qn−1 ≥ . . . ≥ Q1 ≥ 1 is a central series of
Q and, by Lemma 4.7, Q is strongly F-closed and Qi is weakly F-closed, for
all 1 ≤ i ≤ n − 1. Since T is not trivial, we have less morphisms in F then
in F and by induction hypothesis, F = NF (Q) =: N , so φ ∈ AutN (U). We
lift φ in ψ ∈ AutN (U) as the canonical projection of AutN (U) on AutN (U)
is surjective. Moreover, for all x ∈ U we have ψφ−1(x)x−1 ∈ T . Denote by
K := {θ ∈ AutF (U)|θ(x)x−1 ∈ T, for all x ∈ U}. Now, K is a subgroup of Aut(U)
which centralizes U/T by construction and T by the fact that F = C. Thus K
centralizes the quotients of the normal series 1 / T / U . This implies that K is a
p-group. Moreover, K is a normal subgroup of AutF (U), as, for all χ ∈ AutF (U)
and θ ∈ K, we have

( χθ)(x)x−1 = χ
(
θ(y)y−1

)
∈ χ(T ) = T where y = χ−1(x), for all x ∈ U .

As U is fully F-normalized, AutP (U) is a Sylow p-subgroup of AutF (U) by Propo-
sition 2.4. Moreover, K is a normal subgroup of AutF (U), so K ≤ AutP (U). As
ψφ−1 ∈ K, there exists u ∈ P such that ψφ−1(x) = ux, for all x ∈ U . Given that
Q is normal in P , we obtain conj(u)(Q) = Q and thus conj(u) ∈ AutN (U). Finally
φ = conj(u−1)ψ ∈ AutN (U). 2

Remark 4.9. In the particular case when Q = P is a Sylow p-subgroup of a finite
group G, Martino and Priddy [MP, Theorem 4.1] give an equivalent condition for
the normalizer of P to control p-fusion in G. The condition is that the subgroups
Ωk(P ) of P , generated by the elements of order pk or less, form a central series for



CONTROL OF FUSION IN FUSION SYSTEMS 13

P . As the subgroups Ωk(P ) are unique in P , they are a fortiori weakly FP (G)-
closed. Thus Martino and Priddy’s result can be obtained as a corollary of Theorem
4.8.

5. Resistant groups

The theorem in Section 4 gives in particular necessary and sufficient conditions
on a finite p-group P to have F = NF (P ) for a fusion system F on P . When the
last equality is true for all fusion systems on P we say that P is resistant. This
is a generalization of the notion of ’resitant groups’ we introduced in the special
case of fusion systems of finite groups [St, Definition 2.3]. By a theorem of Mislin
[Mi] the latter notion is equivalent to what Martino and Priddy [MP] call ’Swan
groups’. Recall the P is a Swan group if for any finite group G having P as a Sylow
p-subgroup, the restriction gives an isomorphism between the mod-p cohomology
rings H∗(G) and H∗(NG(P )).

Definition 5.1. We say that a p-group P is resistant if for any fusion system F
on P , we have F = NF (P ).

By Alperin’s theorem a p-group P is resistant if all its subgroups are not realiz-
able as F-essential subgroups for any fusion system F on P . One can prove [Pu1,
Ch. IV, Proposition 2] that the latter condition is also necessary. Theorem 4.8
gives a new criteria for P to be resistant; that is if and only if P possesses a central
series composed of weakly F-closed subgroups, for any fusion system F on P . The
condition that P is strongly F-closed is trivially satisfied. Abelian p-groups are
resistant as the upper central series is reduced to P . The following lemma is an
important ingredient in finding families of resistant groups.

Lemma 5.2. Let p be an odd prime, Q an elementary abelian p-group of order
p2 and H a subgroup of the group of automorphisms of Q. Suppose that H has a
nontrivial Sylow p-subgroup R and let P be a p-group such that the short sequence
1 −→ Q −→ P −→ R −→ 1 is exact.

a) Suppose that for any morphism φ ∈ NH(R), there exists an automorphism ψ
of P , such that ψ(u) = φ(u), for all u ∈ Q and ψρψ−1 = φρφ−1, for all ρ ∈ R.
Then the short exact sequence 1 −→ Q −→ P −→ R −→ 1 extends to a short exact
sequence 1 −→ Q −→ L −→ H −→ 1.

b) Suppose that H has at least two distinct Sylow p-subgroups and the short
exact sequence 1 −→ Q −→ P −→ R −→ 1 extends to a short exact sequence
1 −→ Q −→ L −→ H −→ 1. Then P is not isomorphic to Cp2 ×Cp.

Proof. a) To show that the short exact sequence 1 −→ Q −→ P −→ R −→ 1
extends to the short exact sequence 1 −→ Q −→ L −→ H −→ 1, it suffices to
prove [Br, pp. 84-85] that the cohomology class α, determined by P in H2(R,Q),
is H-stable, i.e. for all φ ∈ H we have

ResRR∩φR α = Res
φR
R∩φR c∗φ(α) (•) .

Here Res is the restriction in cohomology and c∗φ is the morphism induced in coho-
mology by the conjugation by φ. If R 6= φR then R ∩ φR = 1, as R is a p-group
of order p, and the relation (•) is clearly is satisfied. Suppose that R = φR. By
the hypothesis, there exists an automorphism ψ of P such that ψ(u) = φ(u), for
all u ∈ Q and ψρψ−1 = φρφ−1 for all ρ ∈ R. This implies that α = c∗φ(α) and
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(•) is once again satisfied. Indeed, let 1 −→ Q −→ P ′ −→ R −→ 1 be an exact
short sequence representing the class c∗φ(α) ∈ H2(R,Q). By the definition of c∗φ (see
[Br, p. 80]), there exists an isomorphism f : P −→ P ′ such that the next diagram
commutes

(α) 1 Q P R 1

(c∗φ(α)) 1 Q P ′ R 1

w w

u
φ

w

u
f

w

u
conj(φ)

w w w w

On the other hand, the condition on the existence of ψ gives the next commutative
diagram.

(α) 1 Q P R 1

(α) 1 Q P R 1

w w

u

φ

w

u

ψ

w

u

conj(φ)

w w w w

Taking g := fψ−1 : P −→ P ′ we obtain

(α) 1 Q P R 1

(c∗φ(α)) 1 Q P ′ R 1

w w

u
id

w

u
fψ−1

w

u
id

w w w w

which gives that α = c∗φ(α).
b) The proof of the second part of the lemma is due to Jacques Thévenaz. It is

based on the fact that H2(SL2(Fp), Q) = 0, as we already showed in [St]. Now, by
the first part of the proof, α extends to a cohomology class in H2(H,Q). Moreover
H contains SL2(Fp), given that H has at least two Sylow p-subgroups, and any two
Sylow p-subgroups of GL2(Fp) generate SL2(Fp). So, α extends to a cohomology
class in H2(SL2(Fp), Q), which implies that α is trivial. We obtain that P is not
isomorphic to Cp2 ×Cp as the cohomology class induced by Cp2 ×Cp in H2(Q,R)
is not trivial (in other words, Cp2 ×Cp is not a semi-direct product of Cp × Cp by
Cp). 2

First we prove a similar result to those obtained in [St], for the generalized
extraspecial p-groups. We recall that a generalized extraspecial p-group S is a
p-group satisfying that Φ(S) = [S, S] ' Cp.

Theorem 5.3. Let P be an extraspecial generalized p-group. Then P is resistant,
except for the case where P = E × A with A elementary abelian and E dihedral of
order 8 (when p = 2) or of order p3 and exponent p (when p is odd).

Proof. If P is such a p-group, the upper central series is simply 1 � Φ(P ) � P .
By Theorem 4.8 P is resistant if and only if Φ(P ) is weakly F-closed, for any
fusion system F on P . By Alperin’s theorem, any morphism in HomF (Φ(P ), P ) is
decomposable in restrictions of maximal and essential F-automorphisms. As the
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maximal F-automorphisms stabilize Φ(P ), we need only to prove the same for the
essential F-automorphisms.

Let φ ∈ AutF (Q), where Q is an F-essential, fully F-normalized subgroup.
As Q is F-centric, it contains Z(P ) and Q/Z(P ) contains a maximal isotropic
subspace of P/Z(P ) for the symplectic form β : P/Z(P )×P/Z(P ) → Φ(P ), defined
by β(x, y) = [x, y] (see [St] for more details). Moreover, if Q is not elementary
abelian, then Φ(Q) = Φ(P ). Any automorphism of Q preserves Φ(Q) and so φ
stabilizes Φ(P ). We have the same property for φ if |P/Z(P )| > p2. Indeed,
|P : CP (φ(Φ(P )))| ≤ p, as the centralizer of a subgroup of order p of P is of
index at most p in P , and we deduce that CP (φ(Φ(P )))/Z(P ) is not contained in a
maximal isotropic subspace of P/Z(P ) with respect to β. Thus C := CP (φ(Φ(P )))
is not elementary abelian. So Φ(C) is not trivial and we have Φ(C) = Φ(P ). Now,
as NP (Φ(P )) = P , it follows that Φ(P ) is fully F-normalized. Thus φ−1 extends
to ψ ∈ HomF (C,P ) by Property FS3. We deduce that φ(Φ(P )) is the Frattini
subgroup of C, so φ(Φ(P )) = Φ(P ).

So we can restrict our research to the case where Q is elementary abelian and
|P : Z(P )| = p2. In this case Q is of index p in P and we have P ' E×A where E is
an extraspecial p-group of order p3 and A a p-group elementary abelian. Moreover
E ' P/A contains a subgroup isomorphic to Q/A ' Cp × Cp, as Q is elementary
abelian, so E is not isomorphic to Q8. The only case that remains to exclude is
the case E ' Cp2 ×Cp, for p odd. Denote by K := (P/Q) regarded as subgroup of
AutF (Q/A).

As Q is a normal subgroup of P , it is fully F-normalized. If K = φK, so φ
extends to ψ ∈ AutF (P ) by Property FS3. Now, ψ fixes Φ(P ), and so does φ.

It remains to verify the case where K 6= φK. We consider K and φK as
p-subgroups of Aut(Q/A) ' GL2(Fp). In this contextK and φK generate SL2(Fp).

We show now that the extension 1 −→ Q/A −→ E −→ K −→ 1 satisfies the
hypothesis of Lemma 5.2. Indeed, for any morphism φ′ ∈ HomF (Q) fixing K, we
have K = φ′K, so Nφ′ contains the preimage of K in P , which is P itself. So
Nφ′ = P and as Q is fully F-normalized, φ′ lifts in AutF (P ) by Property FS3.

Thus, the extension 1 −→ Q/A −→ E −→ K −→ 1 satisfies the hypothesis of
Lemma 5.2 so it lifts to 1 −→ Q/A −→ L −→< K, φK >−→ 1. Moreover, K and
φK are two distinct Sylow p-subgroups of < K, φK > so, by the same Lemma 5.2,
E is not isomorphic to Cp2 ×Cp.

The remaining cases are really exceptions to the theorem, as proved in [St]. 2

The second class of resistant p-groups is those of metacyclic p-groups, for p odd.
In the special case of the Frobenius category of a finite group this is a result by Dietz
[Dz] using some cohomological methods. The next result generalizes the latter and
the proof uses a different approach.

Proposition 5.4. Let P a metacyclic p-group, with p odd. Then P is resistant.

Proof. Consider that P is given by generators and relations

P :=< u, v|up
m

= 1, vp
n

= up
q

, vu = up
l+1 > .

In other words, P is of the type (m,n, q, l) and is defined by an extension:

1 Cpm P Cpn 1w v w w w .
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If P is abelian then it is trivially resistant. If not, P is necessarily non-cyclic. In
the case where P is a non-cyclic metacyclic p-group, for p odd, Nadia Mazza [Mz]
proved that P posses a unique subgroup Q isomorphic to Cp × Cp. This implies
that if P posses a subgroup isomorphic to Cαp × Cαp , for a positive integer number
α, this subgroup is unique.

The aim is now to find a central series for P composed of subgroups weakly
F-closed. We procede by induction on the order of P . The case where |P | ≤ p2 is
trivial as P is abelian.

If we manage to find 1 6= P1 ≤ Z(P ) weakly F-closed, then we can apply
the induction hypothesis to F := NF (P1)/P1, which is a fusion system on P/P1,
by Proposition 4.4, given that P1 is strongly NF (P1)-closed. Indeed, P/P1 is a
metacyclic p-group of order strictly inferior to P . By induction hypothesis P/P1

admits a central series 1 = P 1 �P 2 � . . .�Pn = P/P1 with P i weakly F-closed, for
1 ≤ i ≤ n. Let π : P −→ P/P1 be the canonical projection. Consider the subnormal
series for P , given by 1 = P0 � P1 � P2 � . . . � Pn = P with Pi = π−1(P i) for
1 ≤ i ≤ n. By the second part of Lemma 4.6, this is a central series for P . Moreover,
by Lemma 4.7, Pi is weakly N -closed where N := NF (P1), for all 2 ≤ i ≤ n.
Now, we prove that Pi is also weakly F-closed, for all 2 ≤ i ≤ n. Indeed, let
φ ∈ HomF (Pi, P ). We have φ|P1 ∈ HomF (P1, P ). But P1 is weakly F-closed,
which gives that φ(P1) = P1 and, in consequence that φ ∈ HomN (Pi, P ). Now, Pi
is weakly N -closed, so φ(Pi) = Pi and we obtain that Pi is weakly F-closed.

We search now a nontrivial central subgroup P1 of P which is weakly F-closed.
Recall that Q is the unique subgroup of P isomorphic to Cp × Cp.

If Q ≤ Z(P ) then we take P1 := Q which is weakly F-closed, as it is unique in
its F-conjugacy class. If not we have necessarily < up

m−1
>≤ Z(P ) and Z(P ) '

Cpl . We want to see that < up
m−1

> is normalized by the maximal and essential
F-automorphisms of P . The maximal F-automorphisms normalize Z(P ) and, a
fortiori, < up

m−1
> as it is the unique subgroup of order p of Z(P ).

Let E be an F-centric, fully F-normalized subgroup of P , candidate to be
F-essential. By elimination of metacyclic p-groups that are not realizable as F-
essential subgroups (see Proposition 3.3 and Proposition 3.5), we deduce that E is
isomorphic to Cpα × Cpα , for a positive integer α.

Let Φ(E) be the Frattini subgroup of E. The kernel of the canonical application
φ : AutF (E) −→ Aut(E/Φ(E)) is a p-group. Thus, as E is an F-essential subgroup
and AutE(E) = 1, the complex Sp(AutF (E)) is disconnected. So, Op(AutF (E))
is trivial, which gives that the kernel of φ is also trivial. We deduce that a Sylow
p-subgroup of AutF (E) is of order p, as Aut(E/Φ(E)) ' GL2(Fp).

On the other hand, E is the unique subgroup of P isomorphic to Cpα × Cpα , so
it is characteristic in P . In this way NP (E) = P and E is fully F-normalized. As,
moreover, E is F-centric, P/E is a Sylow p-subgroup of AutF (E). We have seen
that a Sylow p-subgroup of AutF (E) is of order p, which implies that |P : E| = p.

So P is a metacyclic subgroup, of order p2α+1, having a subgroup E isomorphic
to Cpα × Cpα and a centre Z(P ) cyclic. This is equivalent to the fact that u does
not commute with vp

n−1
and that up

m−α

commutes with vp
n−α

.
But vp

n−1
uv−p

n−1
= u(pl+1)pn−1

and if we want that u(pl+1)pn−1

6= u then nec-
essarily n+ l − 1 < m. On the other hand,

up
m−α

= vp
n−α

up
m−α

v−p
n−α

= up
m−α(pl+1)pn−α
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and, using the fact that (pl + 1)p
n−α − 1 is exactly divisible by pl+n−α, it follows

that (m−α)+(l+n−α) ≥ m. As m+n = 2α+1, we obtain that 1+l ≥ m. In fact,
we have m = l + 1, as l < m. We come back now to the inequality n + l − 1 < m
in which we replace m = l + 1 in such way that we obtain n < 2. So n = 1
which gives that α = 1 and m = 2. We reach the conclusion that P have to be a
p-group extraspecial of order p3 and exponent p2, case where we have seen, in the
last theorem that any morphism in AutF (E) fixes the centre of P .

So, if the centre of P is cyclic, < up
m−1

> is weakly F-closed and we can take
P1 =< up

m−1
>. 2

Another example we are interested in is the Sylow 2-subgroup of the Suzuki
group Sz(8). In [Bru1] Broué conjectured that the equivalence class of the derived
category of a block algebra only depends on the equivalence class of the underlying
fusion system. Only short time thereafter, he realized [Bru2] that the conjecture
is false in this generality, by giving as example the 2-local structure of Sz(8) and
of the normalizer of its Sylow 2-subgroup. The normalizer controls the 2-fusion in
Sz(8), giving that their 2-local structures are the same. But the derived categories
associated to the principal blocks are not equivalent.

As an application of our theorem we give a short proof of the known fact that
the normalizer of the Sylow 2-subgroup controls the 2-fusion in Sz(8). Denote by
P the Sylow 2-subgroup of Sz(8). We show that P is resistant which implies the
above assertion. This is easy to prove by looking at the structure of P . Indeed the
upper central series for P is 1�Z(P )�P , where Z(P ) is the centre of P . Moreover
Z(P ) is the unique elementary abelian subgroup of rank 3 of P . This implies that
Z(P ) is weakly F-closed for any fusion system F on P . Applying our main theorem
we obtain that P is resistant.

6. Normal Subsystems

Recently, Linckelman [Li], motivated by the reduction of some problems on fusion
systems introduced the notion of normal fusion system. Here is his approach:

Definition 6.1. Let F be a fusion system on a finite p-group P and F ′ a fusion
subsystem of F on a subgroup P ′ of P . We say that F ′ is normal in F if P ′ is
strongly F-closed and if for every isomorphism φ : Q → Q′ in F and any two
subgroups R, R′ of Q ∩ P ′ we have

φ ◦HomF ′(R,R′) ◦ φ−1 ⊆ HomF ′(φ(R), φ(R′)) .

As a corollary to our main theorem we prove some properties on normal fusion
subsystems.

Proposition 6.2. Let P be a finite p-group, F a fusion system on P and Q a
strongly F-closed subgroup of P . Then G := FQ(Q) is normal in F if and only if
NF (Q) = F .

Proof. If NF (Q) = F then any morphism φ ∈ HomF (R,P ) where R is a sub-
group of Q, lifts to a morphism φ ∈ AutF (Q) as Q is strongly F-closed. To prove
that G is normal in F is is sufficient to prove that for any u ∈ Q and any morphism
φ ∈ HomF (< R,φ(R) >,P ), the morphism ψ := φconjuφ−1 ∈ HomF (φ(R), φ(uR))
is also in HomG(φ(R), φ(uR)). But this is straight forward as φ lifts to φ̃ so
ψ = conjφ̃(u) which is a morphism in HomG(φ(R), φ(uR)).
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If G is a normal subsystem in F we apply the main result to prove that NF (Q) =
F . As Q is strongly F-closed it suffices to prove that the components of the upper
central series of Q are all weakly F-closed. We prove this property in general for
any characteristic subgroup R of Q. Let φ ∈ HomF (R,φ(R)) with φ(R) fully F-
normalized. As G is normal in F we have that for any u ∈ Q, ψ := φconjuφ−1

is a morphism in AutG(φ(R)) so equal to conjv for a v ∈ Q. So u ∈ Nφ for all
u ∈ Q. By Property FS3 the morphism φ extends to φ̃ ∈ HomF (Q,P ). But Q is
strongly F-closed, so φ̃ ∈ AutF (Q). We obtain that φ is the restriction to R of an
automorphism of Q. As R is characteristic in Q we have that φ(R) = R, so R is
weakly F-closed.

2
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