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Abstract. Let k be an algebraically closed field of characteristic p and G a

finite group. An interesting question for fusion systems is whether they can
be obtained from the local structure of a block of the group algebra kG. In

this paper we develop some methods to reduce this question to the case when

G is a central p′-extension of a simple group. As an application of our result,
we obtain that the ’exotic’ examples of fusion systems discovered by Ruiz and

Viruel [RV] do not occur as fusion systems of p-blocks of finite groups.

1. Introduction

Let p be a prime number. Fusion systems (referred to as full Frobenius systems in
[Pu], and as saturated fusion systems in [BLO]) on finite p-groups were introduced
by L. Puig and provide an axiomatic framework for studying p-fusion in finite
groups. This axiomatic point of view has been very useful in determining many
properties of finite groups and of the p-completion of their classifying spaces as well
as in modular representation theory. It also underlies the theory of p-local finite
groups developed by C. Broto, R. Levi and R. Oliver in [BLO].

To each pair (G,P ), where G is a finite group and P is a Sylow p-subgroup of G,
is associated a fusion system FP (G) on P called a p-fusion system of G. However,
there exist fusion systems which do not arise in this way [RV, Lemma 7.14], [BLO,
Example 9.3]; such systems are called exotic. These exotic examples are interesting
from two different, albeit related points of view. First, the exoticity of a given
fusion has ramifications for classification problems in finite groups. For instance,
R. Solomon’s theorems [So, Theorems 3.1 and 3.2] characterizing the sporadic group
Co3 by the isomorphism type of its Sylow 2-subgroup may be restated, somewhat
ahistorically, as asserting that certain fusion systems are exotic. Secondly, each
known exotic fusion system has associated to it a unique p-local finite group. In
general, [BLO, Theorem E] provides an obstruction theory for the existence and
uniqueness of a p-local finite group associated to a given fusion system, and it is
not known if the obstructions classes always vanish.

Fusion systems arise as well in block theory. To each quadruple (H, b,Q, e) where
H is a finite group, b is a p-block of kH, and (Q, e) is a maximal b-Brauer pair (that
is Q is a defect group of H and e is a p-block of CH(Q) in correspondence with
b) is associated a fusion system F(Q,e)(H, b) on Q, called a fusion system of b. If
b is the principal block of H, then Q is a Sylow p-subgroup of H and by Brauer’s
third main theorem, it follows that F(Q,e)(H, b) = FQ(H). However, if b is not the
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principal block, then Q may be a proper subgroup of a Sylow p-subgroup of H of
arbitrarily large index. On the other hand, there are many examples of quadruples
(H, b,Q, e) such that for some group L associated to H, Q is a Sylow p-subgroup
of L and F(Q,e)(H, b) = FQ(L). This is always the case, for instance, if H is a
p-solvable group or a symmetric group.

The aim of this paper is to shed some light on the relationship between fusion
systems of blocks and fusion systems of finite groups. We use as our starting point
simple fusion systems as introduced by Linckelmann [Li, Definition 4.1]. If a simple
fusion system occurs as FP (G) for some finite group G, then it occurs as FP (L)
for some simple finite group L. It would be desirable to obtain an analogous result
for fusion systems of blocks with L being possibly a quasi-simple group (see [Li,
Proposition 4.2]). There is however one complication which arises when one tries
“descent to a normal subgroup” in the context of block theory: Let H be a finite
group and L a normal subgroup of H. If P is a Sylow p-subgroup of H, then P ∩L
is a Sylow p-subgroup of L and FP∩L(L) is a normal subsystem of FP (H) (see
Definition 2.9). Now suppose that (H, b,Q, e) is a quadruple as above and c is a
block of L covered by b. Then, Q ∩ L is a defect group of c, however it is not the
case in general that for some p-block f of CL(Q∩L) in correspondence with c, the
system F(Q∩L,f)(L, c) is a subsystem of F(Q,e)(H, b). In other words, there may be
fusion in the covered block c, which is not seen in b. Our main result, Theorem 4.2
shows that under certain extra hypotheses this difficulty may be circumvented. In
order to prove this theorem, we were led to consider categories that arise through
the conjugation action of a finite group G on the block algebra kNd of a G-stable
block d of a normal subgroup N of G. We show that these categories, which we
call generalized Brauer categories are fusion systems (Theorem 3.4).

As an application of Theorem 4.2, we show in Theorem 6.4 that the examples
of exotic fusion systems discovered by Ruiz and Viruel [RV] do not occur in block
algebras.

The paper has 6 sections and an appendix. In section 2, we recall the relevant
definitions and facts on fusion systems and block theory. In section 3 we study the
generalized Brauer category and show that it is a fusion system. Section 4 contains
the main reduction theorem. In section 5, we recall the properties of exotic fusion
systems on extra-special p-groups of order 73 and exponent 7. Section 6 contains the
proof of the fact that these exotic systems do not occur as fusion systems of blocks.
The defining properties of fusion systems as stated by us are slightly different from
those in [BLO]-in the Appendix we show the equivalence of our approach with that
in [BLO]. We should reiterate that for us, “fusion systems” are what are called
“saturated fusion systems” in [BLO].

2. Fusion systems. Definitions and basic properties

Definition 2.1. A category F on a finite p-group P is a category whose objects
are the subgroups of P and whose set of morphisms between the subgroups Q and R
of P , is the set HomF (Q,R) of injective group homomorphisms from Q to R, with
the following properties:

(a) if Q ≤ R then the inclusion of Q in R is a morphism in HomF (Q,R).
(b) for any φ ∈ HomF (Q,R) the induced isomorphism Q ' φ(Q) and its inverse

are morphisms in F .
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(c) composition of morphisms in F is the usual composition of group homomor-
phisms.

Note that the above definition of a category on P differs from what Puig calls
divisible Frobenius system and what, equivalently, Broto, Levi and Oliver call fusion
system by the fact that we do not ask for the inner automorphisms of P to be in
the category.

If there exists an isomorphism φ ∈ HomF (Q,R) we say that Q and R are F-
conjugate.

Definition 2.2. Let F be a category on P . A subgroup Q of P is fully F-
centralized, respectively fully F-normalized if |CP (Q)| ≥ |CP (Q′)|, respectively
|NP (Q)| ≥ |NP (Q′)|, for all Q′ ≤ P which are F-conjugate to Q.

For Q, R, T ≤ P we denote HomT (Q,R) := {u ∈ T | uQ ≤ R}/CT (Q) and
AutT (Q) := HomT (Q,Q). Other useful notation is AutF (Q) := HomF (Q,Q) and
OutF (Q) := AutF (Q)/AutQ(Q).

Definition 2.3. We say that a subgroup Q of P is F-centric if Z(Q′) = CP (Q′)
for any Q′ in the F-isomorphism class of Q. We say that Q is F-radical if
Op(OutF (Q)) = OutP (Q).

Definition 2.4. A fusion system F on a finite p-group P is a category on P
satisfying the following properties:

(FS-1) HomP (Q,R) ⊂ HomF (Q,R) for all Q,R ≤ P .
(FS-2) AutP (P ) is a Sylow p-subgroup of AutF (P ).
(FS-3) Every φ : Q → P such that φ(Q) is fully F-normalized extends to a

morphism φ̄ : Nφ → P where

Nφ := {x ∈ NP (Q) | ∃ y ∈ NP (φ(Q)), φ(xu) = yφ(u)∀u ∈ Q} .
In the rest of the section we give some properties of fusion systems. Let us start

with a characterization of being fully F-normalized.

Proposition 2.5 ([Pu, Proposition 2.7]). Let F be a fusion system on P and let
Q be a subgroup of P . Then Q is fully F-normalized if and only if Q is fully
F-centralized and AutP (Q) is a Sylow p-subgroup of AutF (Q).

Definition 2.6. Let F be a fusion system on P and let Q be a subgroup of P . The
normalizer NF (Q) is the category on NP (Q) having as morphisms, those morphisms
ψ ∈ HomF (R, T ) such that there exists a morphism φ ∈ HomF (QR,QT ) with
φ|Q ∈ AutF (Q) and φ|R = ψ. The centralizer CF (Q) is the category on CP (Q)
having as morphisms those morphisms ψ ∈ HomF (R, T ) such that there exists a
morphism φ ∈ HomF (QR,QT ) with φ|Q = idQ and φ|R = ψ.

NF (Q) is not, in general, a fusion system on NP (Q) (for instance, the property
(FS-2) in Definition 2.4 may fail to hold) but it is one if Q is fully F-normalized.
It is the same for CF (Q) when Q is fully F-centralized.

Proposition 2.7 ([Pu, Proposition 2.8]). Let F be a fusion system on P . If Q ≤ P
is fully F-normalized then NF (Q) is a fusion system on NP (Q).

A special role in our study is played by strongly F-closed subgroups.

Definition 2.8. Let F be a fusion system on a finite p-group P and Q a subgroup
of P . We say that Q is strongly F-closed if for any subgroup R of Q and any
morphism φ ∈ HomF (R,P ) we have φ(R) ≤ Q.



4 KESSAR AND STANCU

Linckelmann has introduced the notion of normal fusion subsystem, [Li, Defini-
tion 3.1].

Definition 2.9. Let F be a fusion system on a finite p-group P and F ′ a fusion
subsystem of F on a subgroup P ′ of P . We say that F ′ is normal in F if P ′ is
strongly F-closed and if for every isomorphism φ : Q → Q′ in F and any two
subgroups R, R′ of Q ∩ P ′ we have

φ ◦HomF ′(R,R′) ◦ φ−1 ⊆ HomF ′(φ(R), φ(R′)) .

If F is a fusion system on a finite p-group P , a subsystem of F is a category on
a subgroup of P that is contained in F and is itself a fusion system. We say that
a fusion system is simple if it has no non-trivial normal fusion subsystem.

Finally, we record how fusion systems arise in finite groups.

Definition 2.10. Let G be a finite group, and P a Sylow p-subgroup of G. We de-
note by FP (G) the category on P with morphisms HomFP (G)(Q,R) := HomG(Q,R).

It is easy to check that FP (G) is a fusion system. Also, FP (G) and FP ′(G) are
isomorphic for different Sylow p-subgroups P and P ′ of G.

3. The generalized Brauer category

Let k be an algebraically closed field of characteristic p, G a finite group, N
a normal subgroup of G and c a G-stable block of kN , that is c is a primitive
idempotent of Z(kN), fixed by the conjugation action of G. Thus kNc is a primitive
G-algebra. For any p-subgroup Q of G the canonical projection from kN to kCN (Q)
induces an algebra morphism BrNQ from the subalgebra of fixed points of Q, (kN)Q

onto kCN (Q) (see [AB]). This morphism is known in the literature as the Brauer
morphism. We adopt the approach of Broué and Puig [BP] for generalized Brauer
pairs.

Definition 3.1. A (c,G)-Brauer pair is a pair (Q, eQ) where Q is a p-subgroup
of G such that BrNQ (c) 6= 0 and eQ is a block of kCN (Q) such that BrNQ (c)eQ 6= 0.
When G = N , a (c,G)-Brauer pair is also known as a c-Brauer pair.

Let (Q, eQ) and (R, eR) be two (c,G)-Brauer pairs; we say that (Q, eQ) is con-
tained in (R, eR), and we write (Q, eQ) ≤ (R, eR), if Q ≤ R and for any primitive
idempotent i ∈ (kN)R such that BrNR (i)eR 6= 0, we have BrNQ (i)eQ 6= 0. This defines
an order relation on the set of (c,G)-Brauer pairs compatible with the conjugation
action of G. We also have that given a (c,G)-Brauer pair (R, eR) and Q ≤ R there
exists a unique (c,G)-Brauer pair (Q, eQ) contained in (R, eR) [BP, Theorem 1.8
(i)]. By [BP, Theorem 1.14 (2)] all maximal (c,G)-Brauer pairs are G-conjugate.
If (P, eP ) is a maximal (c,G)-Brauer pair then the group P is called a (c,G)-defect
group. In the case that G = N , the group P is a defect group of c in the usual
sense.

Before proceeding, we record a property characterizing the inclusion of general-
ized Brauer pairs in the case of normal p-subgroups, which is just a reformulation
of [BP, Theorem 1.8]. For a (c,G)-Brauer pair (Q, eQ), denote by NG(Q, eQ) the
stabilizer in NG(Q) of eQ.

Proposition 3.2. Let G be a finite group, N a normal subgroup of G, c a G-
stable block of N and (Q, eQ) a (c,G)-Brauer pair. Let H be a group such that
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QCN (Q) ≤ H ≤ NG(Q, eQ). Let S be a p-group such that Q ≤ S ≤ H and let f be
a block of kCN (S). The following are equivalent.

(i) (S, f) is a (c,G)-Brauer pair such that (Q, eQ) ≤ (S, f).
(ii) (S, f) is an (eQ,H)-Brauer pair.

Proof. First of all, note that the statement makes sense, since CN (Q) is a
normal subgroup of H and eQ is an H-stable block of kCN (Q). Also, since Q ≤ S,
CCN (Q)(S) = CN (S). Suppose first that (S, f) is a (c,G)-Brauer pair such that
(Q, eQ) ≤ (S, f). Since S normalizes Q, it follows from [BP, Theorem 1.8 (iii)]
BrCN (Q)

S (eQ)f = f , hence (S, f) is an (eQ,H)-Brauer pair. Conversely, suppose
that (S, f) is a (eQ,H)- Brauer pair. Then, BrCN (Q)

S (eQ)f = f , which means that

BrNS (c)f = BrNS (c)BrCN (Q)
S (eQ)f

= BrCN (Q)
S (BrNQ (c))BrCN (Q)

S (eQ)f

= BrCN (Q)
S (BrNQ (c)eQ)f

= BrCN (Q)
S (eQ)f

= f

This shows that (S, f) is a (c,G)-Brauer pair. Thus, by [BP, Theorem 1.8 (i)],
there is a unique (c,G)-Brauer pair (Q, e′Q) with (Q, e′Q) ≤ (S, f) and by (iii) of

the same theorem, this e′Q is S-stable and BrCN (Q)
S (e′Q)f = f . But by definition

BrCN (Q)
S (eQ)f = f . We claim that e′Q = eQ. Indeed, suppose not. Then, since e

and e′ are blocks of kCN (Q), eQe′Q = 0. Since BrCN (Q)
S is an algebra homomorphism

from (kCN (Q))S onto kCN (S), this would imply that BrCN (Q)
S (eQ)BrCN (Q)

S (e′Q) =
0. Hence, f being a central idempotent of kCN (S),

f = fBrCN (Q)
S (eQ)fBrCN (Q)

S (e′Q) = 0,

a contradiction. Thus, eQ = e′Q, showing that (Q, eQ) ≤ (S, f) as required.
�

Definition 3.3. Let G be a finite group, N a normal subgroup of G, c a G-stable
block of kN and (P, eP ) a maximal (c,G)-Brauer pair. For a subgroup Q of P ,
we let eQ be the unique block of kCN (Q) such that (Q, eQ) ≤ (P, eP ). Denote by
F(P,eP )(G,N, c) the category on P with morphisms:

HomF(P,eP )(G,N,c)(Q,R) := {conjg : Q→ R|g ∈ G, g(Q, eQ) ≤ (R, eR)}

If G = N , then F(P,eP )(G,N, c) is the usual fusion system of the block c, and we
denote it by F(P,eP )(G, c)

We now show that the category F(P,eP )(G,N, c) is a fusion system on P . The
details of the proof for the case G = N are given in [Li, Theorem 2.4].

Theorem 3.4. Let N be a normal subgroup of G, let c be a G-stable block of kN
and let (P, eP ) be a maximal (c,G)-Brauer pair.

(i) The category F(P,eP )(G,N, c) is a fusion system on P .
(ii) If (P ′, eP ′) is another maximal (c,G)-Brauer pair, then F(P ′,eP ′ )

(G,N, c) is
isomorphic to F(P,eP )(G,N, c).
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Proof. Denote F := F(P,eP )(G,N, c). Let u ∈ P and let (Q, eQ) ≤ (P, eP ).
Then, ( uQ, ueQ) ≤ ( uP, ueP ) = (P, eP ) which implies that ueQ = e uQ. This
shows that property (FS-1) of Definition 2.4 holds.

For the second property we check that AutP (P ) ∈ Sylp(AutF (P )). Denoting by
NG(P, eP ) the normalizer of (P, eP ) and by CG(P, eP ) the intersection of CG(P )
with NG(P, eP ), we have AutF (P ) ' NG(P, eP )/CG(P, eP ) hence we must show
that the index [NG(P, eP ) : PCG(P, eP )] is not divisible by p.

By [BP, Theorem 1.14(b)], (P, eP ) being a maximal (c,G)-Brauer pair means
that c ∈ TrGP ((kN)P ) and hence that BrNP (c) = TrNG(P )/P

1 (a′) for some a′ ∈ kCN (P ).
Since the maximal (c,G)-Brauer pairs are all conjugate [BP, Theorem 1.14 (2)],

the map a→ TrNG(P )
NG(P,eP )a is an algebra isomorphism from (kCN (P )eP )NG(P,eP ) to

(kCN (P )BrNP (c))NG(P ) . The reverse map is given by a→ aeP .
Let g ∈ NG(P ), and let j ∈ kCN (P ). Then

TrNG(P )
P (j geP ) = TrNG(P )

NG(P, geP )(TrNG(P, geP )
P (j geP ))

= TrNG(P )
NG(P, geP )(TrNG(P, geP )

P (j) geP ) .

Thus,
TrNG(P )
P (j geP )eP = g−1

(TrNG(P, geP )
P (j geP ))

= TrNG(P,eP )
P (( g

−1
j)eP ) .

The above calculation shows that the image of the ideal TrNG(P )
P (kCN (P )BrP (b))

under the map a → aeP is TrNG(P,eP )
P (kCN (P )eP ). In particular, since BrNP (c) =

TrNG(P )
P (a′) for some a′ ∈ kCN (P ), it follows that eP = TrNG(P,eP )

P (a) for some
a ∈ kCN (P )eP .

As NG(P, eP ) ≥ PCG(P, eP ) ≥ P we have furthermore

eP = TrNG(P,eP )
P (NG(P,eP )∩CG(P ))TrPCG(P,eP )

P (a) .

Now TrPCG(P,eP )
P (a) ∈ Z(kCN (P )eP ) and Z(kCN (P )eP ) is a local ring, hence

TrPCG(P,eP )
P (a) = αeP + x , x ∈ J(kPCN (P )) , α ∈ k .

If [NG(P, eP ) : PCG(P, eP )] is not prime to p then

eP = trNG(P,eP )
P (CG(P,eP ))(x) ∈ J(kPCN (P )) ,

which is impossible since eP is an idempotent.
For the third property, let (Q, eQ) ≤ (P, eP ) be fully F-normalized. This means

that R := NP (Q) is of maximal order among the normalizers in P of subgroups
F-isomorphic to Q. Let H = RCG(Q, eQ). We claim that (R, eR) is a max-
imal (eQ,H)-Brauer pair. Indeed, it follows from Proposition 3.2 that (R, eR)
is an (eQ,H)-Brauer pair. Now, suppose that (S, f) is a (eQ,H)-Brauer pair
with (R, eR) ≤ (S, f). Then by Proposition 3.2, (S, f) is a (c,G)-Brauer pair
with (Q, eQ) ≤ (S, f). Since all maximal (c,G)-Brauer pairs are G-conjugate,
there exists g ∈ G such that g(S, f) ≤ (P, eP ). Now, (Q, eQ) ≤ (S, f) implies
g(Q, eQ) ≤ g(S, f) ≤ (P, eP ), so that in particular, gQ is F-isomorphic to Q. On
the other hand, gS ≤ NP (gQ). The maximality of R forces S = R, proving the
claim.

Now let h ∈ G such that ( hQ, heQ) ≤ (P, eP ) and denote by φ := conjh−1 :
hQ → Q. We have to prove that φ extends to φ̃ : Nφ → NP (Q). Now Nφ
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consists of those elements x of NP (Q) such that conj(h−1xh) : Q → P is equal to
conj(y) : Q→ P for some y ∈ NP (Q), that is

Nφ = {x ∈ NP (hQ)|h−1xh ∈ H} .

So we have h−1
Nφ ≤ H. Thus it suffices to find a z ∈ CG(Q, eQ) such that

zh−1
Nφ ≤ NP (Q). Since h(Q, eQ) ≤ (P, eP ) and Nφ ≤ NP ( hQ), there is a contain-

ment of (c,G)-Brauer pairs, h(Q, eQ) ≤ (Nφ, eNφ
), giving (Q, eQ) ≤ h−1

(Nφ, eNφ
).

By Proposition 3.2 applied with S = h−1
Nφ and f = h−1

eNφ
, it follows that

( h
−1
Nφ,

h−1
eNφ

) is a (eQ,H)-Brauer pair. But we have shown above that (R, eR)
is a maximal (eQ,H)-Brauer pair, hence there exists a y ∈ H such that yh−1

Nφ ≤
NP (Q), proving the existence of z as desired.

This proves (i) of the theorem. Part (ii) is immediate since all maximal (c,G)-
Brauer pairs are G-conjugate.

�

Theorem 3.5. Let G be a finite group and let N be a normal subgroup of G. Let
c be a G-stable block of N and b a block of kG such that bc = b. Let (P, eP ) be a
maximal b-Brauer pair. Then there exists a maximal (c,G)-Brauer pair (S, e′S) such
that P ≤ S and such that F(P,eP )(G, b) ≤ F(S,e′S)(G,N, c). Furthermore, P ∩N =
S ∩N , (S ∩N, e′S∩N ) is a maximal (c,N)-Brauer pair and F(S∩N,e′S∩N )(N,N, c) =
F(S∩N,e′S∩N )(N, c) is a normal subsystem of F(S,e′S)(G,N, c).

Proof. Let (P, eP ) be a maximal (b,G)-Brauer pair. As bc = c and BrGP (b)eP =
eP there exists a central primitive idempotent e′P ∈ kCN (P ) such that BrNP (c)e′P =
e′P and eP covers e′P , i.e. eP e′P 6= 0. Let (S, e′S) be a maximal (c,G)-Brauer pair
containing (P, e′P ). Let (Q, eQ) be a (b,G)-Brauer pair contained in (P, eP ) and
(Q, e′Q) be a (c,G)-Brauer pair contained in (S, e′S). We prove that eQe′Q 6= 0.

Consider a primitive idempotent decomposition of 1 in (kN)P :

1 = j1 + j2 + · · ·+ jn .

We have

1 = BrNP (1) = BrNP (j1) + BrNP (j2) + · · ·+ BrNP (jn) ⊂ kCG(P )

and multiplying by eP e′P we obtain

eP e
′
P = BrNP (j1)eP e′P + BrNP (j2)eP e′P + · · ·+ BrNP (jn)eP e′P .

Thus, given that eP e′P 6= 0, there exists a primitive idempotent j in (kN)P such
that BrNP (j)eP e′P 6= 0. Moreover, as BrNP is surjective we have that BrNP (j) is also
primitive in kCN (P ) so BrNP (j)e′P = BrNP (j). Consider now a primitive idempotent
decomposition of j in (kG)P :

j = i1 + i2 + · · ·+ im .

As before we have

BrNP (j) = BrNP (i1) + BrNP (i2) + · · ·+ BrNP (im)

giving that

0 6= BrNP (j)eP e′P = BrGP (j)eP e′P = BrGP (i1)eP e′P+BrGP (i2)eP e′P+· · ·+BrGP (im)eP e′P .

Thus there exists a primitive idempotent i in (kG)P satisfying ij = i and such that
BrGP (i)eP e′P 6= 0. Again BrGP (i) is primitive in kCG(P ) so BrGP (i)eP = BrGP (i).
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By definition, every primitive idempotent i ∈ (kG)P such that BrGP (i)eP 6=
0 satisfies BrGQ(i)eQ 6= 0 and every primitive idempotent j ∈ (kN)P such that
BrNP (j)e′P 6= 0 satisfies BrNQ (j)e′Q 6= 0. More precisely, we have

BrGQ(i)BrNQ (j)eQe′Q = BrGQ(i)eQBrNQ (j)e′Q = BrGQ(i)BrNQ (j)
= BrGQ(i)BrGQ(j) = BrGQ(i)

This proves the claim.
Consider the orbit O = { ge′Q|g ∈ NG(Q, eQ)} of e′Q by conjugation with el-

ements of NG(Q, eQ). As eQe′Q 6= 0 for any g ∈ NG(Q, eQ) we have eQ ge′Q =
g(eQe′Q) 6= 0. Since CG(Q) acts transitively on the set of blocks f of kCN (Q)
satisfying eQf 6= 0 we have that CG(Q) acts transitively on O. We apply the
Frattini argument to the transitive actions of NG(Q, eQ) and CG(Q) on O and
we have NG(Q, eQ) = CG(Q)(NG(Q, eQ) ∩ NG(Q, e′Q)). So NG(Q, eQ)/CG(Q) '
(NG(Q, eQ) ∩NG(Q, e′Q))/(CG(Q) ∩NG(Q, e′Q)) and thus AutF(P,eP )(G,b)(Q) is in-
cluded into AutF(S,e′

S
)(G,N,c)

(Q). By Alperin’s fusion theorem F(P,eP )(G, b) is iso-
morphic to a subsystem of F(S,e′S)(G,N, c). This proves the first assertion.

Now, since P is a defect group of the block b of kG, P ∩N is a defect group of
the block c of kN [NT, Chapter 5, Theorem 5.16 (iii)]. On the other hand, clearly
BrNS∩N (c) 6= 0, hence N ∩ S is contained in a defect group of the block c of kN .
Thus S∩N = P ∩N . It follows that (S∩N, e′S∩N ) is a maximal (c,N)-Brauer pair
and that F(S∩N,e′S∩N )(N, c) is the subcategory of F(S,e′S)(G,N, c) on S ∩ N with
morphisms induced from conjugation by elements of N (note that for a subgroup
R of S∩N a (c,G)-Brauer pair with first component R is a (c,N)-Brauer pair with
first component R and that for (c,G)-Brauer pairs (R′, f ′) and (R, f) such that
R ≤ S ∩N , (R′, f ′) ≤ (R, f) as (c,G)-Brauer pairs if and only if (R′, f ′) ≤ (R, f)
as (c,N)-Brauer pairs). Since N is a normal subgroup of G, it is easy to check that
F(S∩N,e′S∩N )(N, c) is a normal subsystem of F(S,e′S)(G,N, c).

�

4. Main Result

Definition 4.1. Let G be a finite group, k an algebraically closed field of charac-
teristic p, b a block of kG and F a fusion system on a finite p-group. We say that
b is a F-block if FP,eP

(G, b) is isomorphic to F for some (and hence any) maximal
b-Brauer pair (P, eP ).

We say that a finite group is a p′-group if its order is not divisible by p.

Theorem 4.2. Let F1 and F2 be two fusion systems on P , F1 containing F2.
Suppose that:
a) P has no non-trivial proper strongly F2-closed subgroup (and therefore no non-
trivial strongly F1-closed subgroup),
b) if F is a fusion system on P containing F2, then F = F1 or F = F2.
c) if F is a non-trivial fusion system normal in F1 or F2 then F = F1 or F = F2.

If there exists a finite group G having an F1 or an F2-block then there exists a
quasi-simple group L with Z(L) a p′-group having an F1 or an F2-block.

Proof. Let G be a minimal order group having an F1 or an F2-block b. By
a standard reduction (see for example [Ke, Proposition 2.11]), if N is a normal
subgroup of G and c is a block of N with bc 6= 0, then c is G-stable.



A REDUCTION THEOREM FOR FUSION SYSTEMS OF BLOCKS 9

By abuse of notation, P is a (b,G)-defect group. Let H :=< gP | g ∈ G > be
the normal subgroup of G generated by all G-conjugates of P . Let d be the unique
block of kH covered by b. Given that d is G-stable, G acts by conjugation on kHd.
Let N be the kernel of the homomorphism G→ Out(kHd) = Aut(kHd)/Inn(kHd).
Then by ([Kü2, §6 Theorem]) G/N is a p′-group. We prove, using the minimality
of G and the hypothesis on F1 and F2, that G = N .

Let c be the block of N covered by b, i.e. bc 6= 0; (in this case in fact we
have c = b). Let (P, eP ) be a maximal b-Brauer pair and let (S, e′S) be a maximal
(G, c) Brauer pair as in Theorem 3.5. Since G/N is a p′-group, it follows that
S = P . Hence, we have F(P,eP )(G, b) is a subsystem of F(P,e′P )(G,N, c) and that
F(P,e′P )(N, c) is a normal subsystem of F(P,e′P )(G,N, c).

Given that b is an F1- or F2-block and that F1 and F2 are the only fusion
systems on P that contain F2 we obtain that F(P,eP )(G,N, c) is either F1 or F2.
Again, since the only normal proper fusion subsystem on P contained in F1 is F2

and F2 has no normal fusion subsystem it follows that F(P,e′P )(N, c) is either F1 or
F2. By the minimality of G we deduce that G = N .

As b and d have the same defect group P and G acts on kHd by inner automor-
phisms, using another result of Külshammer ([Kü1, Theorem 7]), we have that kGb
and kHd have isomorphic source algebras, so c is also an F1- or F2-block. Thus,
once again by the minimality of G we have G = H.

Let M be a proper normal subgroup of G. Then P ∩M is a strongly F1 (or
F2)-closed subgroup of P , hence P ∩M = 1 or P ∩M = P . Suppose first that
P ∩M = P . Then P and all its G-conjugates lie in M . Thus G = M , which is a
contradiction. Thus we are in the case P ∩M = 1. A variation of Fong reduction
allows us to deduce that there is a central p′-extension G′ of G/M having an F1 or
F2-block (see for example [Ke, Section 3;3.3 and below]).

�

5. The Ruiz-Viruel Exotic Fusion Systems

In their paper [RV], Ruiz and Viruel classified all possible fusion systems on
extra-special p-groups of order p3. They showed that there are three exotic fusion
systems on the extraspecial 7-group of order 73 and exponent 7. Let P be such a
7-group. A fusion system F on P is completely determined by OutF (P ) and the
set of F-automorphisms of F-centric, F-radical proper subgroups of P . The three
exotic systems of Ruiz and Viruel correspond to the following data. As in Ruiz
and Viruel’s tables we denote by #Fec the number of F-centric, F-radical proper
subgroups of P . An entry of the form a + b in the #Fec column indicates that
there are two F-conjugacy classes of F-centric, F-radical subgroups of cardinality
a and b respectively.

name OutF (P ) #Fec AutF (V )
RV1 62 : 2 6 + 2 SL2(7) : 2, GL2(7)
RV2 D16 × 3 4 + 4 SL2(7) : 2, SL2(7) : 2
RV3 SD32 × 3 8 SL2(7) : 2

The categories on P generated by the above sets of morphisms satisfy the prop-
erties of fusion systems [RV, Lemma 7.14]. For the convenience of the reader, we
give here a proof of this fact. Let F be one of the categories on P described above.
The properties (FS-1) and (FS-2) are trivially satisfied. For the property (FS-3),
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we have to study two types of F-morphisms: those between the elementary abelian
subgroups of rank 2 and those between the cyclic subgroups of order 7.

1) Take φ : Q → R be an isomorphism in F where Q and R are elementary
abelian subgroups of rank 2. Remark that R and Q are both fully F-normalized.
Suppose that Nφ = P . By the construction of homomorphism in F , the morphism
φ decomposes into αψβ where α ∈ NF (R), β ∈ NF (Q) and ψ is the restriction of a
morphism in AutF (P ). In fact we can suppose that α = id as αψβ = ψψ−1αψβ and
ψ−1αψβ ∈ NF (Q). So without loss of generality we suppose that φ = ψβ. Now as
Nφ = P we have that Nβ = P . Indeed for any x ∈ Nφ, by the definition there exists
a y ∈ NP (R) such that φ(xu) =y φ(u). Take z = ψ̃−1(y) where ψ̃ is the extension
of ψ to P . Then ψβ(xu) =y ψβ(u) implies that β(xu) =z β(u). By construction,
all the morphisms in NAutF (Q)(AutP (Q)) can be extended to AutF (P ). So there
exists β̃ ∈ AutF (P ) extending β. Now ψ̃β̃ ∈ AutF (P ) extends ψβ and we are done.

2) Take φ : Q→ R be a isomorphism in F where Q and R are cyclic subgroups
of order 7 with R fully F-normalized. As the cyclic subgroups of order 7 are all F-
conjugated we have that necessary R = Z(P ) as Z(P ) is the only cyclic subgroup
of order 7 having its normalizer equal to P . Now if Q = Z(P ) we are done as
any F-automorphism of Z(P ) lifts to P . If Q 6= Z(P ), by construction φ lifts to
φ̃ : T → U where T and U are elementary abelian subgroups of rank 2 containing
Q, respectively R. But then T = NP (Q) so φ lifts to NP (Q) and we are done.

Proposition 5.1. Let P = 71+2
2 be the extra-special group of order 73 and exponent

7 and let F be an exotic fusion system on P . If F = RV2, let F2 = F and
let F1 = RV3. If F = RV3, let F1 = F and let F2 = RV2. If F = RV1, set
F1 = F2 = F . Then F1 contains F2. Furthermore, F1 and F2 satisfy conditions
(a), (b) and (c) of Theorem 4.2.

Proof. Let F be one of the above three fusion systems on P . The proper
nontrivial subgroups of P are either elementary abelian of rank 2 or cyclic of order
7. There are eight elementary abelian subgroups of rank 2 of P and they are all F-
centric, F-radical. Moreover they are not unique in their F-conjugacy class so they
are not strongly F-closed. Another fact is that each of the automorphism groups
of the elementary abelian subgroups of rank 2 of P contains SL2(7) so the cyclic
subgroups in any F-centric, F-radical subgroup of P are transitively permuted by
these automorphisms. Thus none of the cyclic subgroups of P are strongly F-closed.
This proves that the condition (a) of Theorem 4.2 is satisfied.

If F1 = RV2 and F2 = RV3 then F1 contains F2 by construction as OutF2(P ) is
a subgroup of OutF1(P ) and the F-automorphisms of F-centric, F-radical proper
subgroups of P are the same for F = F1 and F = F2. From the classification of
Ruiz and Viruel there is no fusion system on P containing RV1 or RV3. So the
condition (b) is satisfied.

Again let F be one of the above three exotic fusion systems on P . Suppose
that F has a normal non-trivial subsystem N on a subgroup R of P . We have
that R is strongly F-closed, thus, given that F satisfies property (a), we have that
R = P so N is a fusion system on P . Our aim is to prove that N is one of the
three exotic fusion systems on P . For this it is sufficient to show that N has also
eight N -centric N -radical proper subgroups of P since this characterizes the exotic
fusion systems by the classification of Ruiz and Viruel. Take Q to be an elementary
abelian subgroup of rank 2 of P . As Cp ' AutP (Q) ≤ AutN (Q) � AutF (Q) and



A REDUCTION THEOREM FOR FUSION SYSTEMS OF BLOCKS 11

AutF (Q) contains SL2(7), we have that AutN (Q) also contains SL2(7) so Q is an
N -centric N -radical subgroup. Now if we take F1 and F2 as in the proposition we
see that F2 � F1 and no other exotic fusion system on P is contained in F1 or in
F2. Thus F1 and F2 also satisfy the condition (c) of Theorem 4.2.

�
With the notations as in the above proposition we remark that AutRV3(P ) =

AutRV2(P ).2 and the extra-automorphism of order 2 in AutRV3(P ) preserve the
fusion in RV2 in the sense of [BCGLO, Definition 4.5]. Using an analogue notation
as in [BCGLO, Theorem 5.7 (a)], along the lines of the proof we obtain that RV3 =
RV2.2.

6. An application

As in sections 3 and 4, in this section k will denote an algebraically closed field
of characteristic p. We will be using the following two well known results.

Lemma 6.1. Let G be a finite group and N a normal subgroup of G. Let b be a
block of kG and let D be a defect group of b. Then there exists a block c of kN
such that c is D-stable, cb 6= 0, D ∩ N is a defect group of c and BrHD(c) 6= 0 for
any subgroup H of G containing ND.

Proof. Let d be a block of kN such that bd 6= 0 and let I be the stabilizer in
G of d. Then there is a block b1 of kI such that db1 6= 0 and such that any defect
group of b1 is a defect group of b [NT, Chapter 5, Theorem 5.10]. Let D1 ≤ I be a
defect group of b1 and of b. Then BrID1

b1 6= 0. Since I stabilizes d, d is the unique
block of kN such that db1 6= 0, hence db1 = b1. It follows that BrID1

(d) 6= 0 and
hence that BrHD1

(d) 6= 0 for any subgroup H of G containing ND. Also, D1 ∩N is
a defect group of d [NT, Chapter 5, Theorem 5.16 (ii)]. Now, D = gD1 for some
g ∈ G. Set c = gd. It is easy to check that c has all the desired properties.

�

Lemma 6.2. Let H = LD be a finite group such that L is normal in H and D
is a p-group. Let c be a block of kL, stabilized by D. Suppose that D ∩ L is a
defect group of c as a block of kL and that BrHD(c) 6= 0. Let D′ be a subgroup of D
containing D ∩ L. Then,

(i) The idempotent c is a block of LD′ and D′ is a defect group of c as a block
of LD′.

(ii) If the elements of D′ induce inner automorphisms of L, then D′ = (D′ ∩
L)CD′(L).

Proof. The fact that c is a block of LD′ is immediate since D′ is a p-group. By
hypothesis, BrHD(c) 6= 0, hence BrD′(c) 6= 0. Hence there is a p-subgroup, say D′′,
of LD′ containing D′ such that D′′ is a defect group of c as a block of LD′. Now
D′′ ∩ L is a defect group of c as block of L [NT, Chapter 5, Theorem 5.16 (ii)],
hence |D′′ ∩ L| = |D ∩ L| = |D′ ∩ L|. On the other hand, D′′L/L is a a subgroup
of D′L/L, proving (i).

Now suppose that the elements of D′ induce inner automorphisms of L. Let
x ∈ D′, and let wx ∈ L be a p-element such that wxu = xu for all u ∈ L. Then
w−1
x x is a central p-element of L < x >. In particular, w−1

x x is contained in any
defect group of any block of L < x >. On the other hand, by (i), c is a block of
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L < x > with defect group (D ∩ L) < x >. Since (D ∩ L) < x >≤ D′, it follows
that wx ∈ D′ ∩ L and w−1

x x ∈ CD′(L). The result follows.
�

Proposition 6.3. Let p ≥ 7 be prime and let D be an extra-special p-group. Let G
be a quasisimple finite group, and let Ḡ be the simple group G/Z(G). Suppose that
Ḡ = G(q) is a finite group of Lie type with p - q. If D is a defect group of a block
of G, then there exists an integer n, a power q′ of q and a subgroup H of the finite
general linear group GLn(q′) (or GUn(q′)) with H ≥ SLn(q′) (or SUn(q′)), a block
c of H and a defect group D̃ of c such that D̃/ < ζ > is extra-special of order |D|
for some cyclic subgroup < ζ > of D̃ ∩ Z(H). Consequently, G has no blocks with
defect groups extra-special of order p3.

Proof. Suppose that G has a block with defect group isomorphic to D. Then
Ḡ has non-abelian Sylow p-subgroups which means in particular that the order
of the Weyl group of the algebraic group corresponding to Ḡ is divisible by p
([GLS, Theorem 4.10.2]). Since p ≥ 7, this means that exceptional part of the
Schur multiplier of Ḡ is trivial ([GLS, Table 6.1.3]). Thus there is a simple simply
connected algebraic group K̄ over the algebraic closure of the field of q elements
and a Frobenius morphism F : K̄ → K̄ such that K̄F is a central extension of G. If
K̄ is of type A, then set H := K̄F and let c be the unique block of H whose image
under the algebra homomorphism kH → kG induced by the canonical surjection of
H onto G. Then c clearly has the required properties and the first assertion holds.

Thus we may assume that K̄ is not of type A. Since p ≥ 7, the kernel of the
surjection KF is an p′-group. In particular, K̄F has a block with defect group
isomorphic to D. Thus, we may assume that G = K̄F .

Let Z(D) =< z >. By Brauer’s first main theorem, the group CG(z) has a block,
say b with defect group D. Since p ≥ 7, p is good for K̄ . Thus, since K̄ is simply
connected, CK̄(z) is a Levi subgroup of K̄.

Let Z̄ denote the connected center of CK̄(z). Then

CK̄(z) = [CK̄(z), CK̄(z)]Z̄ .

Furthermore, [CK̄(z), CK̄(z)] being simply connected ([GLS, Theorem 1.13.2]) is a
direct product of its components, each of which is also simply connected and which
are permuted by F . That is, we may write

[CK̄(z), CK̄(z)] =
t∏
i=1

ri∏
j=1

L̄ij ,

where each L̄ij is a simply connected simple group, such that for each i, 1 ≤ j ≤ ri,
the groups L̄ij , 1 ≤ j ≤ ri are in a single orbit under the action of F .

Set Li := (
∏ri

j=1 L̄ij)
F . Then Li is the diagonal subgroup consisting of elements∏ri−1

j=0 F j(u) where u ∈ L̄F ri

1i . In particular, Li ∼= L̄F
ri

i1 . Furthermore,

CG(z) ∼= (L1 × · · · × Lt)T ,

where T is an abelian group of order prime to q, inducing inner-diagonal automor-
phisms ([GLS, Definition 2.5.13]) on each Li (T is the subgroup of F -fixed points
of a F -stable maximal torus of CK̄(z)).

Since T is abelian, D∩(L1×· · ·×Lt) 6= 1. On the other hand, D∩(L1×· · ·×Lt)
is a defect group of a block of L1 × · · · × Lt (see Lemma 6.1). But a defect group
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of a block of a direct product of groups is the direct product of defect groups of
blocks of each factor. Thus, since Z(D) is cyclic of prime order, we may assume
that Z(D) ≤ L1 and that D ∩ (L2 × · · · ×Lt) = 1. Since Z(D) is central in CG(z),
it follows that each L̄1j is of type A and of Lie rank at least p, hence that L1 is
isomorphic to SLn(q′) or SUn(q′) for some power q′ of q.

Let x be a non-central element of D. We claim that x does not centralize L1.
Indeed, first note that if L̄ = SLn(F̄q) and σ : L̄→ L̄ is a Frobenius endomorphism,
then L̄σ ∼= SLn(q′) or L̄σ ∼= SUn(q′) for some power q′ of q and CL̄(L̄σ) ≤ Z(L̄).

Write

x = (
t∏
i=1

ri∏
j=1

xij)t1, xij ∈ L̄ij , t1 ∈ Z̄ .

Let y in D be such that [x, y] = z. Write

y = (
t∏
i=1

ri∏
j=1

yij)t2, yij ∈ L̄ij , t2 ∈ Z̄ .

Since [x, y] = z ∈ L1, [x11, y11] 6= 1. In particular, x11 is not in the center of L̄11

and by the remark above, x11 does not centralize LF
ri

11 . It follows that x does not
centralize L1.

Let c be a block of kL1 such that bc 6= 0, c is D-stable, BrL1D
D (c) 6= 0 and

such that D ∩ L1 is a defect group of c (see Lemma 6.1). Let D0 be the kernel
of the map D → Out(L1). Then, < z >= Z(D) ≤ (D ∩ L1) ≤ D0. Thus,
by Lemma 6.2 applied to the group L1D, the block c of kL1 and the subgroup
D0 of D, we have that D0 = (D0 ∩ L1)CD0(L1). But it was shown above that
CD(L1) = Z(D) ≤ D ∩ L1. Hence D0 ≤ L1.

If D0 = D, then the first assertion of the proposition holds with H = L1, D̃ = D
and < ζ >= 1 for the block c. We assume from now on that D 6= D0. The elements
of T and hence of CG(z) induce inner diagonal automorphisms of L1. Since L1

is isomorphic to a special linear or special unitary group, Inndiag(L1)/Inn(L1) is
cyclic ([GLS, Section 2.7]). In particular, D/D0 is cyclic. But since Z(D) ≤ D0 and
D is extra-special, in fact |D/D0| = p. Let y ∈ D be such that D/D0 =< yD0 >
and let η be a p-element in GLn(q′) (or GUn(q′)) such that ηu = yu for all u ∈ L1.
In particular, c is stabilized by < η >. Let H = L1 < η >. Then H is a subgroup
of GLn(q′) (or GUn(q′)) containing SLn(q′) (or SUn(q′)). Let D̃ be the subgroup
of H generated by D0 and η. Then H = L1D̃ and c is an H-stable block of L1.
Also, since CD(L1) = CD̃(L1), we have that BrH

D̃
(c) 6= 0. Finally, D0 = D̃ ∩ L1 is

a defect group of the block c of kH. Thus, by Lemma 6.2, applied with H = L1D̃,
the block c is of kL1 and the subgroup D̃ of D̃, we have that c is a block of kH
with D̃ as defect group.

Now yp ∈ Z(D) ≤ Z(L1), hence ηp centralizes L1. Thus, ηp is a central element
of GLn(q′) (or GUn(q′)). It follows that < ηp > ∩D0 ≤ Z(D) =< z >. If z ∈< η >,
then η has order at least p2 and we set < ζ > to be the subgroup of < η > of index
p2. If z /∈< η >, then we set < ζ > to be the subgroup of < η > of index p. Then it
is easy to check that D̃/ < ζ > is extra-special of order |D|. Since < ζ >≤< ηp >,
< ζ > is a central subgroup of H. This proves the first part of the proposition.

Now suppose that G has a block with a defect group D which is extra-special
of order p3. Let H, c and D̃ be as in the the first assertion of the proposition.
Suppose first that H ≤ GLn(q′) and let pa be the exact power of p dividing q′ − 1.
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Then since SLn(q′) ≤ H, it follows that |D̃| ≤ p3+a and that there is a block of
kGLn(q′) covering c, with non-abelian defect groups of order at most p2a+3. The
structure of defect groups of finite general linear and unitary groups groups is well
known. In particular, non-abelian defect groups of GLn(q′) have order at least
ppa+1 ([FS, Theorem 3C]). So, ppa+1 ≤ p2a+3, which is impossible since p > 3. A
similar argument, taking pa to be the exact power of p dividing q′ + 1 handles the
case H ≤ GUn(q′).

�
We now state and prove the main theorem of this section.

Theorem 6.4. Let F be an exotic fusion system on the extra-special group P of
order 73. Then F is not a fusion system of a 7 block of any finite group.

Proof. Let G be a finite group with an F-block, say b. If F = RV2, let F2 = F
and let F1 = RV3. If F = RV3, let F1 = F and let F2 = RV2. If F = RV1, set
F1 = F2 = F . Then, by Proposition 5.1 and Theorem 4.2, we may assume that G
is quasisimple, 7 - |Z(G)| and that b is an F1− or F2− block. Also, by Proposition
5.1, we may assume that P is not Sylow in G since neither F1 nor F2 is contained
in a non-exotic fusion system on P .

Let Ḡ be the simple quotient of G. By the previous proposition, Ḡ is not a finite
field of Lie type in characteristic different from 7. Suppose that Ḡ is a finite field
of Lie type in characteristic 7. Then the exceptional part of the Schur multiplier
of Ḡ is trivial, ([GLS, Table 6.1.3]). Thus there is a central 7′ extension G̃ of G
such that G̃ = K̄F where K̄ is a simply connected simple algebraic group and F is
a Frobenius endomorphism of K̄. Then it follows from the theory of finite groups
with strongly split BN-pair [CE, Theorem 6.18], (see also [Ke, Lemma 5.1]) that
the defect groups of a 7 block of G̃ are either trivial or Sylow 7-subgroups of G̃.
Hence, P is a Sylow 7-subgroup of G, a contradiction.

For odd p, a defect group of a p-block of a finite alternating group or a double
cover of a finite alternating group is isomorphic to the Sylow p-subgroups of a finite
symmetric group, hence Ḡ is not an alternating group.

Now, if Ḡ is a sporadic group then Ḡ must be one of He, O′N , Fi′24 and the
monster F1 as these are the only sporadic groups whose order is divisible by 73.
Furthermore, if Ḡ is one of He, O′N , Fi′24, then 73 is the exact power of 7 dividing
|G|. Hence, P is a Sylow 7-subgroup of G, a contradiction.

Finally, suppose that G = Ḡ = F1. Thus G has two conjugacy classes of elements
of order 7 denoted by 7A and 7B(ATLAS notation). As in the ATLAS we denote
by 7A2 and 7B2 the abelian elementary 7-groups of rank 2 generated by elements
in 7A, respectively 7B. Then the maximal 7-local subgroups of Ḡ are of the type
T1 = (7 : 3×He) : 2, normalizer of an element in 7A, S1 = (72 : (3×2S7)×L2(7)).2
normalizer of a group of type 7A2, T2 = 71+4

+ : (3× 2S7), normalizer of an element
in 7B and S2 = 72.7.72 : GL2(7) normalizer of a group of type 7B2.

The cyclic subgroups of order 7 of P are all conjugate in F as they are in the
conjugacy class of the centre of P given by the automorphisms of the elementary
abelian subgroups of rank 2 of P . Thus the elements of order 7 of P are in the
same F-conjugacy class. Also AutF (P ) normalizes the centre of P . So we have
that AutF (P ) is a section of Ti, for i = 1 or 2. Moreover, AutF (V ) is a section of
Si for the same index i as above (where V is an F-centric, F-radical subgroup of
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P ). But this is not possible as S1 has no section containing SL2(7) : 2 and T2 has
no section containing D16 × 3 or 62 : 2.

�

7. Appendix

We prove in the appendix that the definition we give in this paper for fusion sys-
tems is equivalent to the definition of Broto, Levi and Oliver [BLO, Definition 1.2]
for saturated fusion systems. Given that the notion of ’fusion system’ in Broto,
Levi and Oliver’s approach and our notion of ’fusion system’ are not the same, we
call the former ’BLO-fusion system’.

Definition 7.1. [BLO, Definition 1.1] A BLO-fusion system on a finite p-group
P is a category whose objects are the subgroups in P and whose morphism set
HomF (P,Q) satisfy the following

(1) HomP (Q,R) ⊂ HomF (Q,R) ⊂ Inj(Q,R) for all Q,R ≤ P .
(2) Every morphism in F factors as an isomorphism in F followed by an inclu-

sion.

The definition that Broto, Levi and Oliver give for a fully F-centralized subgroup
is the same as ours. But the definition for a fully F-normalized subgroup is different.

Definition 7.2. [BLO, Definition 1.2] A subgroup Q of P is fully F-centralized if
|CP (Q)| ≥ |CP (Q′)| for all Q′ ≤ P which is F-conjugated to Q.

Definition 7.3. [BLO, Definition 1.2] A subgroup Q of P is BLO-fully F-normalized
if Q is fully F-centralized and AutP (Q) ∈ Sylp(AutF (Q)).

Now the definition of saturated BLO-fusion systems.

Definition 7.4. [BLO, Definition 1.2] F is a saturated BLO-fusion system if the
two following conditions hold:

(BLO-i) Each subgroup Q ≤ P is F-conjugated to at least one BLO-fully F-
normalized subgroup.

(BLO-ii) If Q ≤ P and φ ∈ HomF (Q,P ) are such that φ(Q) is fully F-
centralized and one set Nφ := {g ∈ NP (Q)|φcgφ−1 ∈ AutP (φ(Q))}, then there
is φ̄ ∈ HomF (Nφ, P ) such that φ̄|P = φ.

Here by cg we mean the automorphism of Q given by conjugation by g. Remark
that the definition of Nφ given here, although apparently different from the one in
Definition 2.4, it is equivalent to the latter. This is an easy verification.

It is obvious that a saturated BLO-fusion system satisfies the three properties
(FS-1) (FS-2) and (FS-3) in Definition 2.4. So a saturated BLO-fusion system is
a fusion system in our approach. We prove now that Definition 2.4 in this paper
implies the one in Definition 7.4. A fusion system in our approach clearly satisfies
(BLO-i) so we only have to prove that it also satisfies (BLO-ii).

We start by proving that in a fusion system (Definition 2.4) the definition for a
BLO-fully F-normalized subgroup (Definition 7.3) is obtained as a property from
our setting. This is in fact Proposition 2.5 in this paper and the result was originally
proved by Puig but given that the setting is different, we prefer to give a proof for
the convenience of the reader.

Proposition 7.5 ([Pu, Proposition 2.7]). Let F be a fusion system (Definition 2.4)
on a finite p-group P and let Q be a subgroup of P . Then Q is fully F-normalized
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(Definition 2.2) if and only if Q is fully F-centralized and AutP (Q) is a Sylow
p-subgroup of AutF (Q).

Proof. First, a fully F-normalized subgroup Q of P is also fully F-centralized.
Indeed, for any F-isomorphic subgroup Q′ of P the morphism φ ∈ HomF (Q′, Q)
extends to a morphism φ̄ ∈ HomF (Nφ, NP (Q)). But then CP (Q′) ⊂ Nφ and
φ̄(CP (Q′)) ⊂ CP (Q) giving that |CP (Q′)| ≤ |CP (Q)|. So Q is fully F-centralized.

Second, if Q is fully F-normalized then AutP (Q) is a Sylow p-subgroup of
AutF (Q). To prove this, we will follow the proof of Proposition 1.5 in [Li]. Let
Q be a subgroup of maximal order such that AutP (Q) is not a Sylow p-subgroup
of AutF (Q). Then Q is a proper subgroup of P by property (FS-2). Choose
a p-subgroup S of AutF (Q) such that AutP (Q) is a proper normal subgroup of
S. Let φ ∈ S \ AutP (Q). Since φ normalizes AutP (Q), for every y ∈ NP (Q)
there is z ∈ NP (Q) such that φ( yu) = zφ(u) for all u ∈ Q. Thus we have
Nφ = NP (Q). Since Q is fully F-normalized, by property (FS-3) φ extends to
φ̄ ∈ HomF (Nφ, NP (Q)) so φ̄ ∈ AutF (NP (Q)). Since φ has p-power order, by
decomposing φ̄ into its p-part and its p′-part we may assume that φ̄ has also p-
power order. Let ψ ∈ HomF (NP (Q), P ) be such that N ′ := ψ(NP (Q)) is fully
F-normalized. As the order of N ′ is greater then the order of Q, we have that
AutP (N ′) is a Sylow p-subgroup of AutF (N ′). Now ψφ̄ψ−1 is a p-element of
AutF (N ′), thus conjugated to an element in AutP (N ′). Therefore we may choose
ψ in such a way that there is y ∈ NP (N ′) satisfying ψφ̄ψ−1(v) = yv for all
v ∈ N ′. Since φ̄|Q = φ, the automorphism ψφ̄ψ−1 of N ′ stabilizes ψ(Q). Thus
y ∈ NP (ψ(Q)). Since Q is fully F-normalized and ψ(NP (Q)) ⊂ NP (ψ(Q)) we have
that ψ(NP (Q)) = NP (ψ(Q)), hence φ̄(u) = ψ−1(y)u, for all u ∈ NP (Q). And, in
particular, φ ∈ AutP (Q), contradicting our first choice of φ.

The converse is straight forward as |NP (Q)| = |AutP (Q)| · |CP (Q)|.
�

The following proposition gives the last ingredient for the equivalence of the
two approaches. In our approach, property (FS-3) guarantees the extension to Nφ
for the F-isomorphisms φ ending in fully F-normalized subgroups. But this is
sufficient in order to have the extension to Nφ for all the F-isomorphisms ending
in fully F-centralized subgroups.

Proposition 7.6. Let F be a fusion system (Definition 2.4) on a finite p-group P .
Every morphism φ ∈ HomF (Q,P ) such that φ(Q) is fully F-centralized extends to
a morphism φ̄ ∈ HomF (Nφ, P ). Thus F satisfies (BLO-ii).

Proof. We note Q′ := φ(Q). Choose θ ∈ Hom(Q′, P ) such that θ(Q′) is fully
F-normalized and, as AutP (θ(Q′)) is a Sylow p-subgroup of AutF (θ(Q′)) we can
modify θ by a morphism in AutF (θ(Q′)) in order to have that Nθ = NP (Q′).

By the property (FS-3) we have that θ extends to θ̄ ∈ HomF (Nθ, P ). Denote by
ψ := θφ. By the same property (FS-3) ψ extends to ψ̄ ∈ Hom(Nψ, P ).

Our aim in what follows is to prove that Nφ ⊂ Nψ and ψ̄(Nφ) ⊂ θ̄(Nθ) so that
(θ̄)−1ψ̄|Nφ

is the extension of φ to Nφ.
Both are simple verifications. Take y ∈ Nφ then by definition, there exists

z ∈ NP (Q′) such that φ( yu) = zφ(u) for all u ∈ Q. By composing with θ we obtain
θφ( yu) = θ( zφ(u)). But as Nθ = NP (Q′) we have that there exists x ∈ NP (θ(Q′))
such that θ( zφ(u)) = xθ(φ(u)) = xψ(u). Thus, we have ψ( yu) = xψ(u) which
means that y ∈ Nψ. As this is true for all y ∈ Nφ we obtain that Nφ ⊂ Nψ.
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Take now x ∈ ψ̄(Nφ). Suppose that x = ψ̄(y), y ∈ Nφ. By definition, there exists
z ∈ NP (Q′) such that φ( yu) = zφ(u) for all u ∈ Q. Now x = ψ̄(y) implies that
ψ( yu) = xψ(u), so θ( zφ(u)) = ψ( yu) = xψ(u), which is equivalent to θ̄(z)ψ(u) =
xψ(u) for all u ∈ Q. This gives that x = θ̄(z)c for some c ∈ CP (ψ(Q)). But
as CP (Q′) ⊂ Nθ and θ̄(CP (Q′)) ⊂ CP (θ(Q′)) and using the fact that Q′ is fully
F-centralized we have that θ̄(CP (Q′)) = CP (θ(Q′)). This means that c ∈ θ̄(Nθ),
so x ∈ θ̄(Nθ). Given that this is true for all x ∈ ψ̄(Nφ) we obtain ψ̄(Nφ) ⊂ θ̄(Nθ).

Thus (θ̄)−1ψ̄|Nφ
extends φ to Nφ.

�
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[Th] J. Thévenaz, “G-Algebras and Modular Representation Theory,” Oxford Science Publi-

cations, 1995.

Radha Kessar, Department of Mathematical Sciences, University of Aberdeen, Me-

ston Building 318, Aberdeen AB24 3UE, U.K.
E-mail address: kessar@maths.abdn.ac.uk

Radu Stancu, Ohio State University, 100 Mathematics Tower, 231, West 18th Avenue,
Columbus, OH 43210, USA

E-mail address: stancu@math.ohio-state.edu


