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Abstract. We show that the identity component of the group of homeomor-

phisms that preserve all leaves of a Rd- tilable lamination is simple. Moreover,

in the one dimensional case, we show that this group is uniformly perfect. We
obtain a similar result for a dense subgroup of homeomorphisms.

1. Introduction

In this paper it is shown that the connected component of the identity of the
group HomeoL(Ω) of all leaf-preserving homeomorphisms of a minimal tilable lam-
ination Ω in any dimension is a simple group. We also prove that this group is
equal to the group of homeomorphisms that are isotopic to the identity and that is
open in HomeoL(Ω).

Similar results were obtained in the 60’s by G. Fisher [7] for the group of all
homeomorphisms of a closed topological manifold of dimension smaller or equal
than three. The algebraic simplicity for groups of homeomorphisms and diffeo-
morphisms of manifolds has been widely studied in the literature: In 1961, R.
Anderson [2], generalizing the work of G. Fisher [7], showed the group of stable
homeomorphisms of a manifold is simple. Later, D. Epstein [6] established suffi-
cient conditions on a group of homeomorphisms, for the commutator subgroup to
be simple. This means that a group satisfying Epstein’s conditions is simple if and
only if it is perfect (i.e. its commutators subgroup is the whole group).

It is also worth mentioning the works of M. Herman [9], W. Thurston [18] and
J. Mather [12] who provided a nearly complete classification for the simplicity of
diffeomorphism groups on manifolds.

Given a smooth foliation F over a manifold M , T. Rybicki [15] and T. Tsuboi
[16] studied the simplicity and perfectness of the identity component of the group
GF (M) of all leaf preserving diffeomorphisms of (M,F). Notice here that these
groups do not satisfy Epstein’s conditions.

On the other hand, tilable laminations have been recently introduced as a geo-
metric model for the study of non-periodic tilings [3]. They also appear as sus-
pensions of minimal Cantor Zd-actions, like minimal subshifts. In addition, they
include some classical laminated spaces as the dyadic solenoid. These spaces are
locally homeomorphic to the product of an open set in Rd and a Cantor set. In
other words, these are laminated spaces with a Cantor transversal. They are also
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2 José Aliste-Prieto and Samuel Petite

endowed with a natural Rd-action, which we we call the translation flow. Like in the
case of foliations of manifolds, groups of homeomorphisms on tilable laminations in
general do not satisfy Epstein’s conditions.

We denote by D(Ω) the group of deformations, that is, D(Ω) is the path con-
nected component of the identity in Homeo(Ω) endowed with the C0-topology. We
conjointly consider the following class of homeomorphisms, which arises naturally in
the context of non-periodic tilings, namely the group of homeomorphisms preserving
the vertical structure (see the precise definition in Section 2) denoted Homeovsp(Ω).
Roughly speaking, such homeomorphisms map any small Cantor transversal into a
Cantor transversal. Notice that Homeovsp(Ω) is a dense subgroup of HomeoL(Ω).
Let Dvsp(Ω) denote the path connected component of the identity in Homeovsp(Ω).
Our aim is to show the simplicity of these groups.

Another motivation for studying these groups comes from topological orbit equiv-
alence theory: two tilable laminations Ω1,Ω2 are orbit equivalent if there is a home-
omorphism between the spaces mapping any orbit onto an orbit. Because of the
totally disconnected transversal structure, Ω1 and Ω2 are orbit equivalent if and
only if they are homeomorphic. A difficult result of Rubin [14] asserts that the group
Homeo(Ω) is a complete invariant of the orbit equivalence class of the lamination Ω:
Any algebraic group isomorphism of these groups is induced by an homeomorphism
on the topological laminations. It follows that the group D(Ω) is an invariant of
flow equivalence.

For a topological group G, we denote by G0 the connected component of the
identity in G.

Theorem 1.1. Let Ω be a minimal tilable lamination. Let G be either HomeoL(Ω)
or Homeovsp(Ω). Then,

(1) Homeo0
L(Ω) = D(Ω) and Homeo0

vsp(Ω) = Dvsp(Ω);

(2) G0 is open in G;
(3) G0 is simple.

Moreover, when the translation flow is expansive, e.g. for tiling spaces, the
connected component of the identity in Homeo(Ω) is the group of deformations.

Proposition 1.2. Let Ω be a minimal tilable lamination. If the translation flow is
expansive, then the identity component Homeo0(Ω) is equal to D(Ω) and is open in
Homeo(Ω).

The proof of Theorem 1.1 follows the same strategy as in [7] for the triangulated
manifolds (see [4] for a recent survey). In the next section we recall basic properties
of tilable laminations and their homeomorphisms. By using a generalization of the
Schoenflies Theorem due to R. Edwards and R. Kirby, we show, in Section 3, the
groups under consideration satisfy the partition property (called also fragmenta-
tion property), and we prove Proposition 1.2 and the items (1), (2) of Theorem
1.1. We give in Section 4 a sufficient condition for a commutator subgroup of
HomeoL(Ω) to be simple. Next, we prove in Section 5 that the groups HomeoL(Ω)
and Homeovsp(Ω) are perfect and we conclude the proof of Theorem 1.1 with the
main result of Section 4. In the last section, we show, for the one-dimensional case,
that these groups are uniformly perfect: more precisely, any element can be written
as a product of two commutators in the group. This last result is similar to [8] for
C∞ leaf preserving diffeomorphisms of C∞ foliations.
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2. Preliminaries

2.1. Background on tilable lamination. We recall here some basic properties
of tilable laminations and we refer to [3] for a more detailed exposition. Let Ω be
a compact metric space. Assume that there exist a cover of Ω by open sets Ui and
homeomorphisms called charts hi : Ui → Di × Ci where Ci is a topological space
and Di is an open set of Rd. These open sets and charts define an atlas of a flat
lamination if the transition maps hj ◦ h−1

i read on their domains of definition

(1) hi,j(t, c) = (t+ ai,j , γi,j(c)),

where the ai,j ’s are elements of Rd and the maps γi,j are continuous. Two atlases
are equivalent if their union is also an atlas.

A flat lamination is the data of a compact metric space Ω together with an
equivalence class of atlases L. A box is the domain of a chart in the maximal atlas
of L. For any point x in a box B with coordinates (tx, cx) in the chart h, the set
h−1(D×{cx}) is called the slice and the set h−1({tx}×C) is called the vertical of x
in B. Since a transition map transforms slices into slices and verticals into verticals,
these definitions make sense. As usual, a leaf of Ω is the smallest connected set
that contains all the slices it intersects. From (1), it is clear that each leaf is a
manifold with a flat Riemannian metric.

Definition 2.1. A tilable lamination (Ω,L) (or a Rd-solenoid) is a flat lamination
such that

• every leaf of L is isometric to Rd.
• There exists a transversal Ξ (a compact subset of Ω such that for any leaf
L of L, L∩Ξ is non empty and a discrete subset with respect the manifold
topology of the leaf L) which is a Cantor set.

For short, we will speak about Ω as a tilable lamination when there is no con-
fusion. If every leaf is dense in Ω, we say that the lamination is minimal. By
(1), the action by translations on Rd can be transported to a local action (also by
translations) along the slices. In fact, these local translations induce a continuous
and free Rd-action T over Ω, see [3] for details. We refer to this action as the
translation flow over Ω. To simplify the notations we write ω − t := T (t, ω) for ω
in Ω and t in Rd. It is easy to see that the leaves of the lamination coincide with
the orbits of the translation flow. Again by (1), the canonical orientation on Rd
induce an orientation on each leaf of Ω. Given a box B that reads h−1(D × C)
in a chart h, by identifying a vertical in B with the Cantor set C, we can write
B = T (C,D) = C −D, thus avoiding the explicit reference to the chart h.

Basic examples of minimal tilable laminations are given by the suspensions of
minimal Zd action on a Cantor set with locally constant ceiling functions. The
tilable lamination structure also appears in the dynamical systems associated to
non-periodic repetitive tilings and Delone sets of the Euclidean space, see [3]. In
these examples, the translation flow is expansive in the following sense (see [13]).

Definition 2.2. Let η > 0. The translation flow of a tilable lamination Ω is said to
be η-expansive if when one has points x, y ∈ Ω and a homeomorphism h : Rd → Rd
satisfying h(0) = 0 and d(x− t, y − h(t)) < η for all t ∈ Rd, then there must exist
t0 ∈ Bη(0) such that x− t0 = y.

The translation flow is said expansive, if it is η-expansive for some constant η.
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This last property will allow us to show, in the next section, that any homeo-
morphism that is close enough to the identity must by leaf-preserving.

A box in Ω is said to be internal if its closure is included in another box of Ω.
In all the rest of the paper, any box will be supposed to internal. An internal box
B is said to be of ball type if it can be written as B = C −D, where D is an open
ball in Rd. Instead, if D is a d-cube (a1, b1)× · · · × (ad, bd) in Rd, then B is said to
be a box of cubic type. In this case, and if f is a `-face (0 ≤ ` ≤ d) of the cube D,
then the set C − f is said to be an `-vertical boundary of B. A box cover of Ω is a
cover {Bi}i of Ω, where each Bi is a box. Box covers of ball type and cubic type
are defined in the same way.

Definition 2.3. A collection of boxes B = {Bi}ti=0 in Ω is a box decomposition, if
the following assertions hold:

(1) the Bi’s are pairwise disjoint,
(2) the closures of the Bi’s form a cover of Ω.

Also, if the boxes Bi are of cubic type, then B is a box decomposition of cubic type.

Box decompositions were introduced in [3] as a tool in the study of tilable lam-
inations. The key lemma (see bellow) asserts that any box cover of cubic type
can be turned into a box decomposition of cubic type. It follows that every tilable
lamination admits a box decomposition of cubic type.

Lemma 2.4 ([3]). Let Ω be a tilable lamination and {Bi}ti=0 be a box cover of cubic
type of Ω. Then, there exists a box decomposition of cubic type B′ = {B′i}ni=0, such
that, for all i, whenever B′i intersects Bj for some j, then it is included in Bj.

The union of all the `-vertical boundaries (0 ≤ ` ≤ d) of all the boxes of a box
decomposition of cubic type B is called the `-skeleton of B.

2.2. Homeomorphisms of tilable laminations. Let Ω be a tilable lamination
and denote by Homeo(Ω) the set of homeomorphisms of Ω. We endow it with the
C0-topology, which is induced by the distance

δ(f, g) = sup
x∈Ω

d(f(x), g(x)) + sup
x∈Ω

d(f−1(x), g−1(x)), f, g ∈ Homeo(Ω).

The support of a homeomorphism f in Homeo(Ω) is defined by

supp f = {x ∈ Ω | f(x) 6= x}.

It is easy to see that supp f is f -invariant and suppφfφ−1 = φ(supp f) for every
φ ∈ Homeo(Ω).

Since the verticals of a tilable lamination Ω are totally disconnected, the path-
connected components coincide with the leaves of the lamination. Thus, every
element of Homeo(Ω) maps each leaf onto a (possibly different) leaf. We define
HomeoL(Ω) be the group of all leaf-preserving homeomorphisms of Ω. Recall that
a homeomorphism f of Ω is homotopic to the identity, if there exists a continuous
map F : [0, 1] × Ω → Ω such that F (0, ·) = Id and F (1, ·) = f . If, in addition,
F (t, ·) is a homeomorphism of Ω for each t ∈ Ω, then we say that f is isotopic to the
identity or a deformation. The set D(Ω) denotes the group of all the deformations.
Clearly, homeomorphisms that are homotopic to the identity belong to HomeoL(Ω).
If Ω is minimal, then the converse is also true.
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Theorem 2.5 ([1],[11]). Let Ω be a minimal tilable lamination. Then every f ∈
HomeoL(Ω) is homotopic to the identity. In particular, for every f ∈ HomeoL(Ω),
there is a continuous map Φf : Ω → Rd, called the displacement of f , which is
uniquely defined by the equation

f(ω) = ω − Φf (ω) for all ω ∈ Ω.

We say the displacement of f is smaller than ε when ||Φ||∞ < ε.
When the translation flow is expansive, we get the following refinement.

Proposition 2.6. Let Ω be tilable lamination. Suppose its translation flow is η-
expansive. Then, HomeoL(Ω) is open in Homeo(Ω).

Proof. Define B = {f ∈ Homeo(Ω) | δ(f, Id) < η} and take any f ∈ B. Since
the translation flow is free and homeomorphisms map leaves onto leaves, for every
ω ∈ Ω there is a continuous map h : Rd → Rd such that f(ω)− s = f(ω− h(s)) for
all s ∈ Rd.

Thus,

d(f(ω)− s, ω − h(s)) ≤ δ(f, Id) < η for all s ∈ Rd.

It follows from the expansivity of Ω that there exists a t0 ∈ Rd such that f(ω) =
ω − t0. Since ω was arbitrary, this means that f preserves each leaf and thus
f ∈ HomeoL(Ω), which means that B ⊂ HomeoL(Ω). The fact that HomeoL(Ω) is
open now follows from a standard argument. �

Corollary 2.7. If the translation flow on the tilable lamination Ω is expansive,
then Homeo0(Ω) is open and

Homeo0(Ω) = Homeo0
L(Ω).

Proof. Since the connected component is the greatest connected set containing the
identity, we have Homeo0

L(Ω) ⊂ Homeo0(Ω). By Proposition 2.6 and the connexity
property, we get Homeo0(Ω) ⊂ HomeoL(Ω) and so Homeo0(Ω) ⊂ Homeo0

L(Ω),
which concludes the proof. �

In the context of laminations arising from the study of non-periodic tilings, an
important class of homeomorphisms is given by homeomorphisms with the following
property.

Definition 2.8. A homeomorphism f ∈ Homeo(Ω) preserves the vertical structure
if, given a point x in a vertical C of a box B and a vertical C ′ of a box B′ containing
f(x), then there is a clopen subset C̃ ⊂ C containing x such that for every y ∈ C̃,
f(y) ∈ C ′.

Alternatively, provided that Ω is minimal, a map f ∈ HomeoL(Ω) preserves
the vertical structure if and only if its deplacement Φ is transversally locally con-
stant. In the context of non-periodic repetitive tilings, this notion corresponds to
the notion of strong pattern-equivariance (see [10]) of the map t 7→ Φf (ω − t) for
any fixed ω ∈ Ω. We denote by Homeovsp(Ω) the collection of homeomorphisms
preserving the vertical structure. It is plain to check that Homeovsp(Ω) is dense
in Homeo(Ω). We will denote by Dvsp(Ω) the path-connected component of the
identity in Homeovsp(Ω).
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3. Partition property

Definition 3.1. A group G of homeomorphisms of Ω satisfies the partition property
if for every box cover {Bi}ti=0 of Ω, and for any f ∈ G, there exists a decomposition
f = g1 · · · g` where gi ∈ G and supp gi ⊂ Bj(i) for i = 1, . . . , `.

In this section, following [7] and using the box decomposition structure of tilable
laminations we show:

Proposition 3.2. Let Ω be a minimal tilable lamination. The two groups Homeo0
L(Ω)

and Homeo0
vsp(Ω) satisfy the partition property.

We will also show assertions (1) and (2) of Theorem 1.1. To prove this result, we
will use several lemmas. We start by showing that every map having its support
included in a box of ball type is a deformation.

Lemma 3.3. Let Ω be a minimal tilable lamination and B be a box of ball type.
Any map g ∈ HomeoL(Ω) (resp. in Homeovsp(Ω)), with support in the interior of
B is a deformation of the identity (resp. g ∈ Dvsp(Ω)).

Proof. The proof is classical by using the Alexander’s trick. We can assume that
the closure B of the box reads h−1(D×C) in a chart h, with D a closed ball in Rd
of radius r > 0 centered at the origin. Since the support of the map g is in B, the
map g preserves any slice of the box B. So, for any c ∈ C, let gc : D → D be the
map defined by g(h−1(t, c)) = h−1(gc(t), c) for t ∈ D. Now, for any t ∈ [0, 1], let
Ft : D × C → D × C be the map

Ft(x, c) =

{
((1− t)gc( x

1−t ), c) if |x| < r(1− t)
(x, c) if |x| ≥ r(1− t).

It is plain to check the map h−1Fth gives an isotopy between the identity and
the map g.

In the case where g ∈ Homeovsp(Ω), up to subdivide the clopen set C, we
can assume that the map gc is independent of c. Hence the isotopy is also in
Homeovsp(Ω). �

Given two subsets A ⊂ B of a topological space X, an embedding f : A → B is
a continuous and injective map. This embedding is proper if f−1(∂B) = A ∩ ∂B.
The next theorem says that any proper embedding of a neighborhood of a compact
set K into a ball, sufficiently close to the identity, can be isotoped to an embedding
which is the identity on K. Moreover the isotopy depends continuously of the
embedding. This theorem, true in any dimension, generalizes a version of the
Schoenflies Theorem.

Theorem 3.4. [5] Let D be a (closed or open) ball in Rd, K ⊂ D a compact subset
and U a neighborhood of K in D. Then, for any proper embedding f : U → D
close enough of the identity (for the C0 topology), there exists a continuous map
H : U × [0, 1]→ D such that:

• For any t ∈ [0, 1], H(·, t) : U → D is a proper embedding.
• H(·, 0) = f(·) and H(·, 1)|K = Id|K .
• There is a compact neighborhood K2 of K in U , such that for any t ∈ [0, 1],
H(·, t)|U\K2

= f(·)|U\K2
.

• H depends continuously on f for the C0 topology.



7

Applied in our context, a first consequence is that any map close to the identity
can be interpolated by a map with a support in a box.

Lemma 3.5. Let Ω be a tilable lamination, let B be a box of ball type and B′

be a box with closure included in B. Then there exists an ε > 0 such that for any
homeomorphism f ∈ HomeoL(Ω) (resp. Homeovsp(Ω)) with a displacement smaller
than ε, there exists a map g ∈ HomeoL(Ω) (resp. Homeovsp(Ω)) with supp g ⊂ B
such that g|B′ = f|B′ . Moreover, the displacement of g depends continuously on f

for the C0-topology.

Proof. Without loss of generality, we may assume that B reads h−1(D3 × C) in a
chart h with D3 a ball in Rd. Assume that D1 × C is a compact neighborhood of
h(B′) with D1 ⊂ D3 a compact subset and let D2 ⊂ D3 be a neighborhood of D1.

We consider a map f ∈ HomeoL(Ω) with a displacement smaller than ε (defined
later). By continuity, for a small enough ε, the set f(h−1(D2 × C)) is in B, and
for any c ∈ C, f(h−1(D2 × {c})) ⊂ h−1(D3 × {c}). For any c ∈ C, let fc : D2 →
D3 be the embedding defined by fc(·) = (hfh−1)(·, c) and let K be a compact
neighborhood of ∂D2 proper in U = D2 \ D1. For an ε small enough and for
any c ∈ C, Theorem 3.4 applied to the maps fc : U → D3, gives us embeddings
hc = Hc(·, 1) : U → D3. We define then the maps f̄c : D3 → D3 by f̄c|U := hc
and f̄c|D1

:= fc|D1
and f̄c|D3\D2

:= Id|D3\D2
Let f̄ : B → B be the map defined

by f̄ ◦ h−1(t, c) = h ◦ (f̄c(t), c) for any (t, c) ∈ D3 × C. By construction, f̄ is
a homeomorphism, f̄|h−1(D1×C) = f|h−1(D1×C) and f̄|∂B = Id|∂B . So f̄ can be
extended by the identity to all the tilable lamination Ω to define a homeomorphism.
This gives the map g.

Here again, when f ∈ Homeovsp(Ω), up to subdividing the clopen set C, we can
assume that the map fc is independent of c. So the same is true for f̄ and it belongs
to Homeovsp(Ω). �

Proposition 3.6. Let Ω be a minimal tilable lamination and B = {Bi}ki=1 be a
box cover of Ω. Then, there are ε > 0 and an integer ` > 0 such that for every
f ∈ HomeoL(Ω) (resp. in Homeovsp(Ω)) with displacement smaller than ε, there
exists a decomposition f = g1 · · · g` with gi ∈ HomeoL(Ω) (resp. Homeovsp(Ω)) and
supp gi ⊂ Bj(i).

Proof. Let B′ = {B′0, B′1, . . . , B′m} be the box decomposition of cubic type given
by Lemma 2.4. Up to subdividing each box B′i into smaller boxes, we can assume
that the closure of every box B′i is included in a box Bj(i). We will construct,
by induction on 0 ≤ i ≤ d, a homeomoprhism fi which equals the identity on a
neighborhood of the i-skeleton of B′ and equals f outside. At each step, we use
Lemma 3.5 to approximate fi−1 by maps with support in a small box.

For any 0-vertical boundary V of a box B′i, let B
(0)
V be a box containing V in its

interior and included in a box Bj(i). Let B
(0)
1 , . . . , B

(0)
n be the collection of these

boxes containing all the 0-vertical boundaries. Up to refine the boxes B
(0)
i , we can

assume that they are pairwise disjoint. The union of all theses boxes B
(0)
i covers

the 0-skeleton of B′.
Step 0. Applying Lemma 3.5 to any box B

(0)
i and any neighborhood of the 0-

vertical V ∩B(0)
i (when not empty), we get, for an ε small enough, a gi ∈ HomeoL(Ω)

with supp gi ⊂ B
(0)
i such that gi = f on a neighborhood of V ∩ B(0)

i . It follows
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that the maps g1, . . . , gn commute; and f0 = g−1
1 ◦ · · · ◦ g−1

n ◦ f is the identity
in a neighborhood U0 of the 0-skeleton of B′. Moreover the displacement of f0

continuously depends on the displacement of f .
Step i. 1 ≤ i ≤ d−1. Let us assume that fi ∈ HomeoL(Ω) equals the identity on

a neighborhood Ui−1 of the i− 1-skeleton of B′. We do the same as for the former

step. Let B
(i)
1 , . . . , B

(i)
ni be a collection of boxes such that any i-vertical boundary

V of B′ is in the interior of a box B
(i)
j ⊂ Bt(j). Up to refine the boxes B

(i)
j , we

may assume that the sets B
(i)
j \Ui−1 are pairwise disjoint. Applying Lemma 3.5 to

any box B
(i)
j and to a neighborhood of the i-vertical (V \ Ui−1) ∩ B(i)

j (when not

empty), we have, for an ε small enough, a g
(i)
j ∈ HomeoL(Ω) with supp g

(i)
j ⊂ B

(i)
j

such that g
(i)
j = f on a neighborhood of (V \ Ui−1) ∩ B(i)

j . We get that the maps

g
(i)
1 , . . . , g

(i)
ni commute; and fi = (g

(i)
1 )−1 ◦ · · · ◦ (g

(i)
ni )−1 ◦ fi−1 is the identity in a

neighborhood of the i-skeleton.
Hence the homeomorphism fd−1 preserves each box B′i, and fd−1 can be written

as the composition of homeomorphisms with support in each box of the decomposi-
tion B′. Moreover if f ∈ Homeovsp(Ω), then fd−1 ∈ Homeovsp(Ω) also. This proves
the proposition. �

The following proposition shows the assertions (1) and (2) of Theorem 1.1.

Proposition 3.7. Let Ω be a minimal tilable lamination. Then, D(Ω) is open in
HomeoL(Ω) and D(Ω) = Homeo0

L(Ω). Similarly, Dvsp(Ω) is open in Homeovsp(Ω)

and Dvsp(Ω) = Homeo0
vsp(Ω).

Proof. Let B = {Bi}ki=1 be a box cover of ball type of Ω. Let ρ be the Lebesgue num-
ber of B and consider an atlas B′ = {B′j}`j=1 of Ω such that the diameter of any box
B′j is smaller than ρ. Then by Proposition 3.6, any map f ∈ HomeoL(Ω) with dis-
placement small enough, can be written as a product of maps gi ∈ HomeoL(Ω) with
support in a B′j(i). Thus by Lemma 3.3 we get that any gi is in D(Ω), and finally

f ∈ D(Ω). This means that the identity lies in the interior of D(Ω). Standard argu-
ments on topological groups show then that D(Ω) is open and closed in HomeoL(Ω)
and D(Ω) = Homeo0

L(Ω). The proof is similar for the group Homeovsp(Ω). �

Finally, we can obtain the proof of Proposition 3.2.

of Proposition 3.2. Let H be either Homeo0
L(Ω) or Homeo0

vsp(Ω) and let B be an
atlas of Ω. Proposition 3.7 gives us a constant η > 0 such that any element of
HomeoL(Ω) (resp. in Homeovsp(Ω)) with a displacement smaller than η is in D(Ω)
(resp. Dvsp(Ω)). Up to refining the covering B, we can assume that every element
of B has a diameter smaller than η. Since the group H is connected, it is enough to
show the partition property for any f ∈ H with an arbitrary small displacement ε.
By taking the ε given by Proposition 3.6, we can write f as a product of elements
gi in HomeoL(Ω) with displacement smaller than η. By Proposition 3.7, we get
gi ∈ H and this shows the partition property. �

4. Simplicity of the commutator subgroup

Epstein’s result [6] asserts that if a group of homeomorphism is factorizable and
acts transitively on open sets, then its commutator subgroup is simple. Let Ω be a
minimal tilable lamination and let G be a subgoup of Homeo0

L(Ω). In general, we
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cannot expect G to act transively on open sets. We need to replace the transivity
condition with another one which is more adapted to laminated spaces. Thus, we
give here, a sufficient condition on a subgroup of Homeo0

L(Ω) so that the derived
subgroup is simple.

Theorem 4.1. Let Ω be a minimal Rd tilable lamination. Let G ⊂ Homeo0
L(Ω) be

a group such that:

i) G satisfies the partition property.
ii) For any boxes B1 = C −D1, B2 = C −D2 of ball type whose closures lie in

a box B = C −K, there exists a g ∈ G′ such that B2 ⊂ g(B1).

Then the derived group G′ = [G,G] is simple.

Proof. LetN be a non-trivial normal subgroup ofG′. We have to show thatN = G′.

Lemma 4.2. There exists an atlas B of the solenoid Ω such that for every box B
of B there is a map nB ∈ N such that B and nB(B) are disjoint.

Proof. Let Id 6= n ∈ N . There is a box B0 = C0−D0 of ball type such that B0 and
n(B0) are disjoint. Since the translation flow is free and minimal and translations
have the vertical structure preserving property, it follows that for every x ∈ Ω,
there is a clopen subset Cx ⊂ C0 and an open ball Dx ⊂ Rd with D0 ⊂ Dx such
that Cx −Dx is a box of Ω containing the point x.

Let B̃x be a box included in Cx − Dx containing the point x. By hypothesis
ii), there is a g ∈ G′ such that B̃x ⊂ g(Cx − D0). It is then straightforward to

check that the box B̃x is disjoint from its image by the map g ◦ n ◦ g−1 ∈ N . The
collection of boxes {B̃x}x∈Ω satisfies the condition of the statement. �

Let B be the finite cover given by Lemma 4.2 of the tilable lamination Ω by boxes
and let ρ > 0 be its Lebesgue number. Let us recall that for any ball of radius ρ
in Ω there exists a box of B containing this ball. Let B1 be a box cover of cubic
type of Ω, equivalent to B, and such that any box has a diameter smaller than ρ.
It follows that when two boxes B1, B2 of B1 are intersecting, there exists a box B
of B containing B1 ∪B2.

The following is an algebraic lemma due to T. Tsuboi [17].

Lemma 4.3 ([17, Lemma 3.1]). Let B be a box and n be an homeomorphism such
that n(B) ∩ B = ∅. Then for any homeomorphisms a, b ∈ G with supports in B,
the commutator [a, b] can be written as a product of 4 conjugates of n and n−1.

Proof. Let h = n−1an, since the supports are disjoint, we have hb = bh. So we get

aba−1b−1 = nhn−1bnh−1n−1b−1

= nhn−1h−1hbnh−1b−1bn−1b−1

= n(hn−1h−1)(bhnh−1b−1)(bn−1b−1).

�

Now, for each B ∈ B1, let GB be the subgroup of G of homeomorphisms with
support in B, and let H be the subgroup of G generated by all the GB with
B ∈ B1. By the partition property (item i)), the groups H and G are the same. It
is well-known that the commutator subgroup of H is generated by the conjugates
of commutators of elements in a generating set of H. So to prove the theorem, we
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just have to show for any boxes B1, B2 in B1, and for f1 ∈ GB1
and f2 ∈ GB2

, that
the commutator [f1, f2] belongs to N .

If the boxes B1 and B2 do not intersect, then every point of Ω is fixed by either
f1 or f2, which means that [f1, f2] = id and thus belong to N .

Suppose now that B1 and B2 intersect and let B be a box in B containing B1∪B2.
By Lemma 4.2, there exists a n ∈ N such that B ∩n(B) = ∅. Thus by Lemma 4.3,
we have [f1, f2] ∈ N , and then H ′ = N . �

5. Perfectness

To show that the groups Homeo0
L(Ω) and Homeo0

s(Ω) are simple, we will first
prove in this section they are perfect. For this, we need the next lemma stating
a transitivity of the action of the group Dvsp(Ω) on specific boxes of a same box.
This is a reinforcement of condition ii) in Theorem 4.1. We will deduce then the
perfectness. This will imply, together with the partition property, that these groups
satisfy the conditions of Theorem 4.1, and henceforth they are simple.

Lemma 5.1. Let B1 = C − D1 and B2 = C − D2 be two boxes of ball type, and
let B0 = C − V be a box containing the closures of B1 and B2. Then there exists a
g ∈ Dvsp(Ω) such that B2 = g(B1).

Proof. Let h be the chart associated to the box C − V . The boxes B1 and B2

read respectively h−1(D1 × C) and h−1(D2 × C), with D1, D2 two balls in V .
Up to composing with a translation Tρ, we may assume that D1 ⊂ D2 ⊂ V or
D2 ⊂ D1 ⊂ V . In both cases, it is straightforward to construct a homeomorphism
ψ ∈ Dvsp(Ω) with support in C−V such that ψ(h−1(D1)×C)) = h−1(D2×C). �

The proof of the next theorem follows directly the ideas of Frédéric Le Roux
(see Theorem 1.1.3 in [4] for a proof on a surface). On a manifold, this shows
directly that the group of homeomorphism is simple. Here, because of the lack of
homogeneity, it enables just to show the groups Homeo0

L(Ω) and Homeo0
vsp(Ω) are

perfect.

Theorem 5.2. For Ω a minimal Rd-tilable lamination, the groups Homeo0
L(Ω) and

Homeo0
vsp(Ω) are perfect.

Proof. Let H denotes either Homeo0
L(Ω) or Homeo0

vsp(Ω). We have to show that
any element of H can be written as a commutators product. It is simple to find
two non commuting elements a, b ∈ Dvsp(Ω) with supports in a box B ⊂ Ω of ball
type. So the element g = [a, b] ∈ H is not the identity. We will show that N(g), the
normal subgroup generated by g, contains all the elements f of H with support in
the box B. Recall that a conjugate of a commutator is still a commutator, it will
follow that f can be written as a finite product of commutators. Since the box B
is arbitrary, we get the conclusion by the partition property (Proposition 3.2).

We have g 6= Id, so we consider a box B′ ⊂ B such that g(B′) and B′ are disjoint.
In a chart h, we may assume that B′ reads h−1(Br(0)×C) where Br(0) denotes the
Euclidean ball in Rd of radius r > 0 centered at 0. For any integer n ≥ 0, we define
a nested sequence of boxes Bn := h−1(Br/2n+1(0) × C). It is simple to construct
an element ψ of Dvsp(Ω) with support in B′, such that ψ(Bn) = Bn+1 of n ≥ 0.
We get then that the homeomorphism k = [ψ, g] ∈ N(g) satisfies k(Bn) = Bn+1

for n ≥ 0 and supp k ⊂ B′ ∪ g(B′) (k is the product of ψ and gψ−1g−1that have
disjoint supports).
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Let An = Bn \ Bn+1 and let us show that N(g) contains all the element of H
with support in A1. For any φ ∈ H with a support in A1, we claim that φk and
k are conjugate: notice, we have k = φ−1(φk)φ on A0,

⊔
n≥0An =

⊔
n≥0 g

n(A0) =⊔
n≥0(φk)n(A0) and k|B\B0

= φk|B\B0
; It is then standard to check that the con-

tinuous homeomorphism φ̃ defined by

φ̃|An
:= (φk)nφk−n|An

for any n ≥ 0 and φ̃|Ω\B0
= Id,

can be extended by continuity to
⋃
n≥0An = B0, is in H and satisfies k = φ̃−1(φk)φ̃

on Ω. We get then φk ∈ N(k) ⊂ N(g), so φ ∈ N(g).
Finally, let f ∈ H with a support in B. By Lemma 5.1, there exists a φ ∈ H such

that the support of φfφ−1 is in A1. So by the last result we have f ∈ N(g). �

We have then the groups Homeo0
L(Ω) and Homeo0

vsp(Ω) equal their commutator
groups. So by Lemma 5.1 and Theorem 4.1, we get the main result: Theorem 1.1.

6. Uniform perfectness in dimension one

Theorem 5.2 asserts that any homeomorphism of a tilable lamination Ω is a
product of commutators. For the one dimension, we can be more precise.

Theorem 6.1. For Ω a minimal R-tilable lamination, any element of Homeo0
L(Ω)

(resp. Dvsp(Ω)) can be written as a product of two commutators of Homeo0
L(Ω)

(resp. Dvsp(Ω)).

Before proving this theorem, we need some technical lemmas. The first one
solves the problem of perfectness for homeomorphisms with support in a box. Re-
call that any map f ∈ Homeo0

L(Ω) preserves the orientation, so, if Φ denotes its
displacement, for any ω ∈ Ω, the map R 3 t 7→ t+ Φ(ω − t) ∈ R is increasing.

Lemma 6.2. Let Ω be a minimal R-tilable lamination and let f ∈ Homeo0
L(Ω)

(resp. Homeo0
vsp(Ω)) with support included in a box B. Then there exists a home-

omorphism g ∈ Homeo0
L(Ω) (resp. Homeo0

vsp(Ω)) with support in B such that

gfg−1 = f2. In particular f = [g, f ].

Proof. Since f preserves the orientation, it preserves each slice of the box B = C−I,
with C a clopen set and I an interval. For any x ∈ C, we denote by fx : I → I the
increasing map induced on the slice of x: i.e. defined by fx(t) = t + Φ(x − t) so
that f(x− t) = x− fx(t) for any t ∈ I.

For any z0 ∈ {z ∈ B; f 6= Id}, let the vertical Cz0 be C − t0 where z0 writes
x0 − t0 with x0 ∈ C, t0 ∈ I. We define the local strip

Vz0 := {x− t; x ∈ C, t0 ≤ t < fx(t0)}.

By the definition, the sets {fn(Vz0) = Vfn(z0)}n∈Z are pairwise disjoints, and
∪n∈Zfn(Vz0) is a f -invariant open set. Hence there exist a collection at most
countable of points {zn}n≥0 ⊂ {f 6= Id} and local strips Vn = Vzn such that

supp f = ∪n≥0∪p∈Zfp(Vn) and the sets {∪p∈Zfp(Vn)}n≥0 are pairwise disjoint.

Notice that since f preserves the orientation, a point is fixed by f if and only it is
a fixed point of f2. So we have supp f = supp f2.
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For each n ≥ 0, zn = xn − tn with tn ∈ I, xn ∈ C, let hn : [tn, fzn(tn)) →
[tn, f

2
zn(tn)) be the bijective affine map fixing tn. It is then straightforward to

check that the continuous map gn defined on ∪p∈Zfp(Vn) by

gn|fp(Vn) := f2p ◦ hn ◦ f−p,
can be continuously extended by the identity to ∂∪p∈Zfp(Vn) and satisfies f2◦gn =
gn ◦ f where it is defined. Hence we can define a homeomorphism g on Ω with
support in B such that g|∪p∈Zfp(Vn) = gn for every n ≥ 0. Notice furthermore that

g is in Homeo0
vsp(Ω) when f is. �

The next lemma, is a version of lemma 3.5 without the condition to be close of
the identity.

Lemma 6.3. Let Ω be a minimal R-tilable lamination and let f ∈ Homeo0
L(Ω)

(resp. Homeo0
vsp(Ω)). Suppose that B′ = C − J and B = C − I are boxes of cubic

type such that the closure of f(B′) ∪ B′ is contained in B. Then, there exists a g
in D(Ω) (resp. Dvsp(Ω)) with support contained in B such that f |B′ = g|B′ .
Proof. Without loss of generality, we may assume that I, J are two open intervals
such that 0 ∈ J ⊂ I. Consider η : I → [0, 1] a continuous function that is equal to
zero on the boundary of I, is equal to one on J and affine on each component of
I \ J . Let φ be the displacement function of f , and define ψ : Ω→ R by

ψ(x− t) = η(t)φ(x− t) for any x ∈ C, t ∈ I,
and by zero on the complement of B. It is clear that ψ is a continuous function.
Thus, g(x) := x− ψ(x) is continuous and coincides with f on B′, and since J ⊂ I,
it is also increasing by the choice of η. It is plain to check g ∈ D(Ω). �

Lemma 6.4. Let Ω ba a minimal R-tilable lamination and let f ∈ Homeo0
L(Ω)

(resp. Homeo0
vsp(Ω)). Then there exist two boxes B′ ⊂ B and two homeomorphisms

f1, f2 ∈ Homeo0
L(Ω) (resp. Homeo0

vsp(Ω)) such that

• supp f2 ⊂ B;
• f1|B′ = Id|B′ ;
• f = f1 ◦ f2.

Proof. Let x be a point of Ω. The points x and f(x) are in the same leaf, so they
belong to a same box B = C − I of cubic type. By continuity, there exists a small
box x ∈ B′ = C − J such that the closures of B′, f(B′) are in B. Let f2 be the
map given by Lemma 6.3, and let f1 = f ◦ f−1

2 . It is straightforward to check they
satisfy the conditions of the lemma. �

Next we need a topological lemma on one dimensional tilable laminations. If
B = C − (a, b) is a box of cubic type, for an element x ∈ C − b, its return time to
C − a is

τC−a(x) = inf{t > 0; x− t ∈ C − a}.
By minimality, τC−a(x) is finite for any x ∈ C − b, and the map τC−a : C − b→ R
is locally constant, hence continuous.

Lemma 6.5. Let Ω be a R-tilable lamination, and let B = C − (a, b) be a box of
cubic type. Then the following map is an homeomorphsim.

{(x, t); x ∈ C − b, 0 ≤ t ≤ τC−a(x)} −→ Ω \B
(x, t) 7→ x− t.
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The proof is plain.

of Theorem 6.1. Let us denote by H the group Homeo0
L(Ω) or Homeo0

vsp(Ω) and
let f ∈ H. Let f1 and f2 be the homeomorphims in H and B,B′ be the boxes
given by Lemma 6.4. From Lemma 6.5 applied to the box B′ = C − (a, b), and
since the map τC−a is locally constant, there exists a clopen partition {C1, . . . , C`}
of C such that for any i, τC−a|Ci is constant, equals to τi and {Ci − [0, τi]}`i=1 is a
covering of Ω \B by closed boxes with interior pairwise disjoint.

Hence, the map f1 preserves any box Ci−[0, τi], so it can be written as a product
of maps g1 · · · g`, where any gi ∈ H and supp gi ⊂ Ci − [0, τi]. By Lemma 6.2, f2

is a commutator and any gi is a commutator [ai, bi] where the homeomorphisms
ai, bi ∈ H have their support in the box Ci − [0, τi]. Since two homeomorphisms
with disjoint interior of supports commute, we have

f1 =
∏̀
i=1

gi =
∏̀
i=1

[ai, bi] = [
∏̀
i=1

ai,
∏̀
i=1

bi].

It follows that f may be written as a product of two commutators. �
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14 José Aliste-Prieto and Samuel Petite

[16] T. Tsuboi, On the group of foliation preserving diffeomorphisms. Foliations 2005, ed. by P.

Walczak et al. World Scientific, Singapore, (2006), 411–430.

[17] T. Tsuboi, On the uniform simplicity of diffeomorphisms groups. Advanced Studies in Pure
Math., 52, (2008), Groups of diffeomorphisms, 505–524.

[18] W. Thurston, Foliations and groups of diffeomorphisms. Bull. Amer. Math. Soc. 80, (1974),

304–307.
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