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Abstract. For a quasi-periodic tiling of the hyperbolic plane made with a

finite number of tiles, up to affine transformation, the C∗-algebra of the asso-

ciated hull has no trace. We give here a complete description of the C∗-algebras
and the K-theory for a family of such tilings.

1. Introduction

The non-commutative geometry of a quasi-periodic tiling studies an appropriate
C∗-algebra of a dynamical system (X,G), for a compact metric space X, called the
Hull, endowed with a continuous Lie group G action. This C∗-algebra is of relevance
to study the space of leaves which is pathological in any topological sense. The Hull
owns also a geometrical structure of Lamination or foliated space, the transverse
structure being just metric [8]. The C∗-algebras and the non-commutative tools
provide then topological and geometrical invariants for the tiling or the lamina-
tion. Moreover, some K-theoretical invariants of Euclidean tilings have a physical
interpretation. In particular, when the tiling represents a quasi-crystal, the image
of the K-theory under the canonical trace labels the gaps in the spectrum of the
Schrödinger operator associated with the quasi-crystal [2].

For an Euclidean tiling, the group G is Rd and Rd-invariant ergodic probability
measures on the Hull are in one-to-one correspondence with ergodic transversal
invariant measures and also with extremal traces on the C∗-algebra [3]. These
algebras are well studied and this leads, for instance, to give distinct proofs of the
gap labeling conjecture [3, 4, 9], i.e. for minimal Rd-action, the image of the K-
theory under a trace is the countable subgroup of R generated by the images under
the corresponding transversal invariant measure of the compact-open subsets of the
(Cantor) canonical transversal.

For an hyperbolic quasi-periodic tiling, the situation is quite distinct. The affine
transformations act on the Hull and since this group is not unimodular, there is no
transversally invariant measure [15]. This shows up a new phenomena for the C∗-
algebra of the tiling: it has no trace. Nevertheless, the affine group is amenable,
so the Hull admits at least one invariant probability measure. These measures
are actually in one-to-one correspondence with harmonic currents [13], and they
provide 3-cyclic cocycles on the smooth algebra of the tiling.

The present paper is devoted to give a complete description of the C∗-algebra and
the K-theory of a specific family of hyperbolic tilings derivated from the example
given by Penrose in [14]. The dynamic of the Hulls under investigation, have a
structure of double suspension (this make sens in term of groupoids as we shall see
in section 5.2) which enables to make explicit computations. The K1-group of the
smooth algebra contains as a summand a copy of the K1-group of the C∗-algebra
of the tiling, and the restriction to this summand of the pairing with the 3-cocycle
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gives the one-dimension gap-labelling for the colouring associated with the tiling.
But the right setting to state an analogue of the gap-labelling seems to be Frechet
algebras and a natural question is whether this bring in new computable invariants.

In the second section, we construct basic examples of hyperbolic quasi-periodic
tilings. Background on the tiling spaces is given in the next section and a description
of the considered Hulls is given in Section 4. In Section 5, we recall the background
on the groupoids and their C∗-algebras. Section 6 and 7 are devoted to a description
of the C∗-algebras of the examples. Their K-theory is given in the section 8. In the
section 8, we construct 3-cyclic cocycles associated to these tilings and we discuss
an odd version of the gap-labelling.

2. On tilings

Let H2 be the real hyperbolic 2-space, identified with the upper half complex
plane: {(x, y) ∈ R2 |y > 0} with the metric ds2 = dx2+dy2

y2 . We denote by G the
group of affine maps of this space: i.e. the isometries of H2 of the kind z 7→ az + b
with a, b reals and a > 0.

A tiling T = {t1, . . . , tn, . . .} of H2, is a collection of convex compact polygons
ti with geodesic borders, called tiles, such that their union is the whole space H2,
their interiors are pairwise disjoint and they meet full edge to full edge. For a group
G of isometries of H2, a tiling is said of G-finite type if there exists a finite number
of polygons {p1, . . . , pn} called prototiles such that each ti is the image of one of
these polygons by an element of G. The G finite type tiling will be called also finite
affine type tilings.
For instance, when F is a fundamental domain of a discrete co-compact group Γ of
isometries of H2, then {γ(F ), γ ∈ Γ} is a tiling of H2. However the set of finite type
tilings is much richer than the one given by discrete co-compact groups. Besides
its famous Euclidean tiling, Penrose in [14] constructs a G-finite type tiling made
with a single prototile which is not stable for any Fuchsian group. The construction
goes as follows.

2.1. Hyperbolic Penrose’s tiling. Let P be the convex polygon with vertices
Ap with affix (p− 1)/2 + ı for 1 ≤ p ≤ 3 and A4 : 2ı+ 1 and A5 : 2ı (see figure ??):
P is a polygon with 5 geodesic edges. Consider the two maps:

R : z 7→ 2z and S : z 7→ z + 1.

The hyperbolic Penrose’s tiling is defined by P = {Rk ◦ SnP | n, k ∈ Z} (see figure
??). This is an example of finite affine type tiling of H2.

This tiling is stable under no co-compact group of hyperbolic isometries. The
proof is homological: we associate with the edge A4A5 a positive charge and two
negative charges with edges A1A2, A2A3. If P was stable for a Fuchsian group,
then P would tile a compact surface. Since the edge A4A5 can meet only the edges
A1A2 or A2A3, the surface has a neutral charge. This is in contradiction with the
fact P is negatively charged.
G. Margulis and S. Mozes [11] have generalized this construction to build a family
of prototiles which cannot be used to tile a compact surface. Notice the group of
isometries which preserves P is not trivial and is generated by the transformation
R. In order to break this symmetry, it is possible to decorate prototiles to get a
new finite type tiling which is not stable for any non trivial isometry (we say in this
case that the tiling is aperiodic).
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3. Background on tiling spaces

In this section, we recall some basic definitions and properties on dynamical
systems associated with tilings. We refer to [5], [18] and [10] for the proofs. We give
then a description of the dynamical system associated to the hyperbolic Penrose’s
tiling.

3.1. Action on tilings space. First, note that the group G acts transitively, freely
(without a fixed point) and preserving the orientation of the surface H2, thus G
is a Lie group homeomorphic to H2. The metric on H2 gives a left multiplicative
invariant metric on G. We fix the point O in H2 with affix i that we call origin.
For a tiling T of G finite type and an isometry p in G, the image of T by p−1 is
again a tiling of H2 of G finite type. We denote by T.G the set of tilings which are
image of T by isometries in G. The group G acts on this set by the right action:

G× T.G −→ T.G
(p, T ′) 7−→ T ′.p = p−1(T ′).

We equip T.G with a metrizable topology, finer as one induced by the metric on
H2. A base of neighborhoods is defined as follows: two tilings are close one of the
other if they agree, on a big ball of H2 centered at the origin, up to an isometry
in G close to the identity. This topology can be generated by the metric δ on T.G
defined by (see [5]):
For T and T ′ be two tilings of T.G, let

A = {ε ∈ (0,
1√
2
] | ∃ g ∈ Bε(Id) ⊂ G s.t. T.g ∩B1/ε = T ′}

where B1/ε is the set of points x ∈ H2 such that d(x,O) < 1/ε.
We define:

δ(T, T ′) = inf A if A 6= ∅

δ(T, T ′) =
1√
2

else.

The continuous hull of the tiling T , is the metric completion of T.G for the metric
δ. We denote it by XG

T . Actually this space is a set of tilings of H2 of G-finite type.
A patch of a tiling T is a finite set of tiles of T . It is straightforward to show that
patches of tilings in XG

T are copies of patches of T . The set XG
T is then a compact

metric set and the action of G can be extended to a continuous right action on this
space. The dynamical system (XG

T , G) has a dense orbit: the orbit of T .
Some combinatorial properties can be interpreted in a dynamical way like, for
instance, the following property.

Definition 3.1. A tiling T satisfies the repetitivity condition if for each patch P ,
there exists a real R(P ) such that every ball of H2 with radius R(P ) intersected with
the tiling T contains a translated by an element G of the patch P .

This definition can be interpreted from a dynamical point of view (for a proof see
for instance [18]).

Proposition 3.2 (Gottschalk). The dynamical system (XG
T , G) is minimal (any

orbit is dense) if and only if the tiling T satisfies the repetitivity condition.
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We call a tiling aperiodic if the action of G on XG
T is free: for all p 6= Id of G

and all tilings T ′ of XG
T we have T ′.p 6= T ′.

As we saw in the former section the hyperbolic Penrose’s tiling is not aperiodic,
however, using this example, we shall construct in Section 4 uncountably many
examples of repetitive and non-periodic affine finite type tilings.

When the tiling T is non-periodic and repetitive, the hullXG
T has also a geometric

structure of a specific lamination called a G-solenoid (see [5]). Locally at any point
x, there exists a vertical germ which is a Cantor set included in XG

T , transverse to
the local G-action and which is defined independently of the neighborhood of the
point x. This implies that XG

T is locally homeomorphic to the Cartesian product of
a Cantor set with an open subset (called a slice) of the Lie group G. The connected
component of the slices that intersect is called a leaf and has a manifold structure.
Globally, XG

T is a disjoint union of uncountably many leaves, and it turns out that
each leaf is a G-orbit. Since the action is free, each leaf is homeomorphic to H2.

In the aperiodic case, the G-action is expansive: There exists a positive real ε
such that for every points T1 and T2 in the same vertical in XG

T , if δ(T1.g, T2.g) < ε
for every g ∈ G, then T1 = T2.
Furthermore this action has locally constant return times: if an orbit (or a leaf)
intersects two verticals V and V ′ at points v and v.g where g ∈ G, then for any
point w of V close enough to v, w.g belongs to V ′.

3.2. Structure of the hull of the Penrose Hyperbolic tilings. First recall
the notion of suspension action for X a compact metric space and f : X → X an
homeomorphim. The group Z acts diagonally on the product space X × R by the
following homeomorphism denoted Af

Af : X × R→ X × R
(x, t) 7→ (f(x), t− 1)

The quotient space of (X × R)/Af , where two points are identified if they belong
to the same orbit , is a compact set for the product topology and is called the
suspension of (X, f). The group R acts also diagonally on X × R: trivially on
X and by translation on R. Since this action commutes with Af , this induces a
continuous R action on the suspension space (X ×R)/Af . We call this action: the
suspension action of the system (X, f) and we denote it by

(
(X × R)/Af ,R

)
.

We recall here, the construction of the dyadic completion of the integers. On
the set of integers Z, we consider the dyadic norm defined by

|n|2 = 2− sup{p∈N, 2p divides |n|} n ∈ Z.
Let Ω be the completion of the set Z for the metric given by |.|2. The set Ω has
a commutative group structure where Z is a dense subgroup, and Ω is a Cantor
set. The continuous action given by the map o : x 7→ x+ 1 on Ω is called adding-
machine or odometer and is known to be minimal and equicontinuous. We denote
by ((Ω× R)/Ao,R) the suspension action of this homeomorphism.

Recall that a conjugacy map between two dynamical systems is a homeomophism
which commutes with the actions. Let N be the group of maps {z 7→ z+ t, t ∈ R}
isomorphic to R.

Proposition 3.3. Let XN
P be the completion (for the tiling topology) of the orbit

P.N .
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Then the dynamical system (XN
P ,N ) is conjugate to the suspension action of the

odometer ((Ω× R)/Ao,R).

Proof. Let φ : P.N → (Ω × R)/Ao be the map defined by φ(P + t) = [E(t), t]
where E(t) denotes the integer part of the real t and where [E(t), t] is the class in
(Ω × R)/Ao of [E(t), t] ∈ Ω × R. Since the tiling invariant under no translations,
the application φ is well defined. It is straightforward to check that φ is continuous
for the tiling topology and for the dyadic topology on Ω. So the map φ extends
by continuity to XN

P and factorizes to a a map φ from XT
P to the suspension

(Ω× R)/Ao.
Conversely, let ψ : Z×R→ XN

P defined by ψ(n, t) = P +n+ t. This application is
continuous for the dyadic topology, so it extends by continuity to Ω× R. We have
ψ(n+1, t−1) = ψ(n, t) for any n ∈ Z and any t ∈ R, so ψ(n, t) is constant along the
orbits of the Z action on Z×R which is dense in Ω×R. Thus ψ is constant along
the Z-orbits in Ω × R and therefore ψ factorizes to a map ψ from the suspension
(Ω × R)/Ao to XN

P . It is plain to check that ψ ◦ φ = Id on the set P.N and that
φ◦ψ = Id on the set π(N×R) where π : Ω×R→ (Ω×R)/Ao denotes the canonical
projection. By density of these sets and by continuity of the maps, the egalities are
true on the whole space and so φ is an homeomorphism from XN

P onto (Ω×R)/Ao.
It is straightforward to show that φ commutes with the R-actions. �

4. Examples

We construct in this section a family of tilings of H2 of finite affine type, indexed
by sequences on a finite alphabet. For uncountably many of them, the tilings will be
aperiodic and repetitive, the action on the associated hull will be free and minimal.
A description of these actions in terms of double-suspension is given.

4.1. Construction of the examples. To construct such tilings we will use the
hyperbolic Penrose’s tiling described in section 2.1, so we will keep the notations
of this section. Recall that its stabilizer group under the action of G, is the group
〈 R 〉 generated by the affine map R. The main idea is to ”decorate” this tiling in
order to break its symmetry, the decoration will be coded by a sequence on a finite
alphabet. By a decoration, we mean that we will substitute to each tile t the same
polygon t equipped with a color. We take the convention that two colored polygons
are the same if and only if the polygons are the same up to an affine map and they
have the same color. By substituting each tile by a colored tile, we obtain a new
tiling of finite affine type with a bigger number of prototiles.
Notice that the coloration is not canonical. It also possible to do the same by
substituting to a tile t, an unique finite family of convex tiles {ti}i, like triangles,
such that the union of the ti is t and the tiles ti overlaps only on their borders. We
choose the coloration only for presentation reasons.

Let r be an integer bigger than 1 and Σ be the set {1, . . . , r}. We associate
to each element of Σ an unique color. Let P be the polygon defined in Section
2.1 to construct the Penrose’s tiling. For an element i of Σ, we denote by Pi the
prototile P colored in the color i. To a sequence w = (wk)k∈Z ∈ ΣZ, we associate
the G-finite-type tiling P(w) built with the prototiles Pi for i in Σ and defined by:

P(w) = {Rq ◦ Sn(Pwq
), n, q ∈ Z}.

Notice that the stabilizer of this tiling is a subgroup of 〈 R 〉.
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The set of sequences on Σ is the product space ΣZ which is a Cantor set for the
product topology. There exists a natural homeomorphism on it called the shift. To
a sequence (wn)n∈Z the shift σ associates the sequence (w′n)n∈Z where w′n = wn+1

for any n ∈ Z. Let Zw denote the closure of the orbit of w by the action of the
shift σ: Zw = {σn(w), n ∈ Z}. The set Zw is a compact metric space stable under
the action of σ. Since P(w).R denotes the tiling image of P(w) by R−1, we get the
relation

(4.1) P(w).R = P(σ(w)).

Notice that this implies that for any w′ ∈ Zw, then P(w′) belongs toXG
P(w). Thanks

to equation 4.1, we obtain the following property:

Lemma 4.1.

• The sequence w is aperiodic for the shift-action, if and only if P(w) is stable
under no non-trivial affine map.
• The dynamical system (Zw, σ) is minimal, if and only if (XG

P(w), G) is min-
imal.

Proof. The first point comes from the relation 4.1 and from the fact that the stabi-
lizer of P(w) is a subgroup of 〈 R 〉. The last point comes from the characterization
of minimal sequences: (Zw, σ) is minimal if and only if each words in w appears
infinitely many times with uniformly bounded gap [17]. This condition is equivalent
to the repetitivity of P(w). Since P(w) is repetitive if and only if (XG

P(w), G) is
minimal, we get the result. �

Remark 4.2. The two systems (XG
P , G) and (XG

P((1)n∈Z), G), are conjugate. The
map φ : P.G → P((1)n∈Z).G defined by φ(P.g) = P((1)n).g is well defined and
bijective. The maps φ and φ−1 are continuous for the tiling topology. So φ extends
by continuity to an homeomorphism, denoted again φ, from XG

P to XG
P((1)n). It is

straightforward to check that φ is a conjugacy map.

Cette remarque est-elle absolument nécessaire?
Recall that we have defined the group N = {z 7→ z + t, t ∈ R} and that XN

P
stands for the closure (for the tiling topology) of the N orbit P.N of the uncolored
tiling P. Notice that the continuous action of R on XG

P preserves the orbit P.N so
it defines an homeomorphism of XN

P that we denote also by R. We consider on the
space XN

P ×Zw ×R∗
+ equipped with the product topology, the homeomorphism R

defined by R(T , w′, t) = (T .R, σ(w′), t/2). Since the action of R on the R∗
+ factor

is co-compact, the quotient space (XN
P ×Zw×R∗

+)/R, where the points in the same
R orbit are identified, is a compact space.

The affine group G also acts on the right on XN
P × Zw × R∗

+; where the action
of an element g : z 7→ az + b is given by the homeomorphism

(T , w′, t) 7→ (T − bt, w′, at) = (T , w′, t).g.

It is straightforward to check that the application R commutes with this action,
so this defines a G continuous action on the quotient space (XN

P × Zw × R∗
+)/R.
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Proposition 4.3. Let w be an element of ΣZ and let XN
P and XG

P(w) be respectively
the closures (for the tiling topology) of the orbits P.N and P(w).G.
Then the map

P(w).G → (XN
P × Zw × R∗

+)/R
P(w).g 7→ [(P, w, 1).g]

where [x] denotes the R-class of x, extends to a conjugacy map between (XG
P(w), G)

and
(
(XN

P × Zw × R∗
+)/R, G

)
.

Proof. Let Φ be the map P.N × Zw × R∗
+ → XG

P(w) defined by Φ(P + τ, w′, t) =
(P(w′) + τ).Rt where Rt denotes the map z 7→ tz. The application Φ is continuous
for the tiling topology on P.N , so it extends by continuity to a continuous map
from XN

P ×Zw×R∗
+ to XG

P(w). It is plain to check that Φ◦R = Φ on P.N×Zw×R∗
+,

thanks to relation 4.1. By the density of the set P.N in XN
P and by continuity of

the maps, the relation is true on the whole space XN
P × Zw × R∗

+. Therefore the
map Φ factorizes on a continuous map Φ : (XN

P ×Zw×R∗
+)/R → XG

P(w). Since the
stabilizer of the tiling P(w) is a subgroup of the one generated by the map R, and
by reation 4.1, the map Ψ : P(w).G →

(
XN
P × Zw × R∗

+

)
/R where Ψ(P(w).g) =

[(P, w, 1).g] for g ∈ G is well defined. It is straightforward to check that Ψ is
continuous, so it extends to a continuous map from XG

P(w) to
(
XN
P ×Zw ×R∗

+

)
/R

that we denote again Ψ. Furthermore we have Φ◦Ψ = Id on P(w).G and Ψ◦Φ = Id
on the dense set π(P.N × Zw × R∗

+) where π denotes the canonical projection
XN
P × Zw × R∗

+ →
(
XN
P × Zw × R∗

+

)
/R. By continuity of the maps, the relations

are true on the whole space and so Φ is an homeomorphism. It is straightforward
to check that Φ commutes with the action. �

Notice that, XN
P s locally the Cartesian product of a Cantor set by an interval

of R. For w ∈ ΣZ, XG
P(w) is locally homeomorphic the product of a Cantor set by

an open subset (a slice) of R∗
+ × R since the Cartesian product of two Cantor sets

is again a Cantor set. The G action preserves each slice.

4.2. Ergodic properties of Penrose’s tilings. For a metric space X and a con-
tinuous action of a group Γ on it, a Γ-invariant measure is a measure µ defined
on the Borel σ-algebra of X which is invariant under the action of Γ i.e.: For any
measurable set B ⊂ X and any g ∈ Γ, µ(B.g) = µ(B). For instance, any group Γ
acts on itself by right multiplication, there exists only (up to a scalar) one measure
invariant for this action: it is called the Haar measure.

Any action of an amenable group Γ (like Z, R and all their extensions) on a
compact metric space X admits a finite invariant measure and in particular, any
homeomorphism f of X preserves a probability measure. An ergodic invariant
measure µ is such that every measurable functions constant along the orbits are
µ almost surely constant. Every invariant measure is the sum of ergodic invariant
measures [17]. A conjugacy map sends the invariant measure to invariant measure
and the ergodic measures to the ergodic measures.

In our case, the group of affine maps G, is the extension of two groups isomorphic
to R, hence is amenable. It is well known that the only invariant measures for the
suspension action

(
(X × R)/Af ,R

)
are locally the images through the canonical

projection π : X ×R→ X × R/Af of the measures µ⊗ λ where µ is a f -invariant
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measure on X and λ denotes the Lebesgue measure of R. The proof is actually
contained in Property 4.4.

It is well known also that the map o : x 7→ x+ 1 on the dyadic set of integers Ω,
admits only one invariant probability measure: the Haar probability measure on
Ω. Hence the suspension of this action

(
(Ω× R)/Ao,R

)
admits only one invariant

probability measure. By Proposition 3.3, XN
P has only one invariant probability

measure ν. Notice that the map R preserves XN
P , and since RNR−1 = N , the map

R preserves all the N -invariant measures of XN
P hence preserves ν. Nevertheless,

the local product decomposition of ν is not invariant by R, because R divides by 2
the length of the intervals of the N -orbit. So R has to inflate the Haar measure on
Ω by a factor 2.

Proposition 4.4. Let w ∈ ΣZ, and let XN
P be the closure of the orbit P.N .

A finite invariant measure of
(
(XN

P ×Zw×R∗
+)/R, G

)
is locally the image through

the projection XN
P ×Zw×R∗

+ → (XN
P ×Zw×R∗

+)/R of a measure ν⊗µ⊗m where

• ν is the only invariant probability measure of (XN
P ,R);

• m is the Haar measure of (R∗
+,×);

• µ is a finite invariant measure of (Zw, σ).

Proof. It is enough to prove this for an ergodic finite G-invariant measure θ on the
suspension (XN

P × Zw × R∗
+)/R. Since R acts cocompactly on XN

P × Zw × R∗
+,

θ defines a finite measure on a fundamental domain of R, and the sum of all the
images of this measure by R defines a σ-finite measure θ on XN

P ×Zw ×R∗
+ which

is G and R-invariant.
Let π2 : XN

P × Zw × R∗
+ → Zw be the projection to the second coordinate. This

map being equivariant with respect to the actions of Z respectivelly given by R
on XN

P × Zw × R∗
+ and the shift action on Zw, we get that π2∗θ is shift invariant

measure on Zw. The measure θ can be disintegrated over π2∗θ = µ by a family of
measures {λw′}w′ defined for µ-almost every w′ ∈ Zw on XN

P × {w′} × R∗
+ such

that

θ(B × C) =
∫

C

λw′(B)dµ(w′),

for any Borel sets B ⊂ XN
P × R∗

+ and C ⊂ Zw.
The G-invariance of θ implies that the measures λw′ are almost G-invariant. The
projection to the first coordinate π1 : XN

P × {w′} × R∗
+ → XN

P is N -equivariant.
The measures π2∗λw′ are then N -invariant measures, hence are proportional to ν.
Each measure λw′ can be disintegrated over ν by a family of measures {mx,w′}x,w′

on R∗
+ defined for ν almost every x ∈ XN

P such that

λw′(B × {w′} × I) =
∫

B

∫
I

mx,w′dν(x),

for any Borel sets B ⊂ XN
P and I ⊂ R∗

+. Each measure λw′ is invariant under
the action of maps of the kind z 7→ az for a ∈ R∗

+. It is then straightforward to
check that the measures mx,w′ are multiplication-invariant. By unicity of the Haar
measure, there exists a measurable positive function (x,w′) 7→ h(x,w′) defined
almost everywhere so that mx,w′ = h(x,w′)m. The N -invariance of the measures
λw′ implies that the map h is almost surely constant along the N -orbits, and the
R-invariance of θ implies that h is almost surely constant along the R-orbits. This
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defines then a measurable map on the quotient space by R which is G-invariant,
the ergodicity of θ implies that this map is almost surely constant. �

Notice that an invariant measure on XG
P(w) can be decomposed locally into the

product of a measure on a Cantor set by a measure along the leaves. Since the map
R does not preserves the transversal measure on Ω in XN

P , the holonomy groupoid
of XG

P(w) does not preserves the transversal measure on the Cantor set.
The G-action is locally free and acts transitively on each leave, so each orbits
inherits a hyperbolic 2-manifolds structure. Actually XG

P(w), can be equipped with
a continuous metric with a constant curvature equals to −1 in restriction to each
leave. This metric induces a measure on each leaf which can be locally written as
dxdy/y2. A finite invariant measure on XG

P(w) in restriction on the leaves can be
written dxdy/y (since the Haar measure m for (R∗

+,×) is dy/y). So the density of
these measures with respect to the Riemannian measure is an harmonic function.
The invariant measures of XG

P(w) have then also a geometric interpretation in terms
of harmonic measures, a notion introduced by L. Garnett in [7].

Definition 4.5. A probability measure µ on M is harmonic if∫
M

∆fdµ = 0

for any continuous function f C2 in restriction on the leaves, where ∆ denotes the
Laplace-Beltrami operator in restriction on each leave.

Actually, it is shown in [13] , that in XG
P(w) the notions of harmonic and invariant

measures are the same and such measures can be described in terms of inverse limit
of vectoriel cones.

5. Transformation groupoids

We gather this section with results on groupoids and their C∗-algebras. Good
material on this topic can be found in [?, ?]. Let G be a locally compact groupoid,
with base space X, range and source maps respectively r : G → X and s : G → X.
For any element x of X, we set

Gx = {γ ∈ G such that r(γ) = x}

and
Gx = {γ ∈ G such that s(γ) = x}.

Thourought this section, all the groupoids will be assumed locally compact and
second countable.

5.1. Semi-direct product groupoid. Let H be a locally compact group acting
on a locally compact space X. The semi-direct product groupoid X oH of X by
H is defined by

• X ×H as a topological space ;
• the base space is X and the structure maps are r : XoH → X; (x, h) 7→ x

and s : X oH → X; (x, h) 7→ h−1x ;
• the product is (x, h) · (h−1x, h′) = (x, hh′) for x in X and h and h′ in H.
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Let µ be a left Haar mesure on H. Then the groupoid X o H is equipped with
a Haar system λµ = (λµ

x)x∈X given for any f in Cc(X × H) and any x in X
by λµ

x(f) =
∫

H
f(x, h)dµ(h). Then C∗(X × H,λµ) is the usual crossed-product

C0(X) o H. In this paper, will equip R with its standard Haar measure (i.e the
Lebesgue measure).

5.2. Suspension of a groupoid.

Definition 5.1. Let G be a groupoid with base space X equipped with a Haar system
λ = (λx)x∈X . A groupoid automorphism α : G → G is said to preserve the Haar
System λ if there exists a continuous function ρα : G → R+ such that for any x in
X the measures α∗λx and λα(x) on Gα(x) are in the same class and ρα restricts on
Gα(x) to dα∗λx

dλα(x) . The map ρα is called the density of α.

Remark 5.2. Let G be a groupoid with base space X and Haar system λ = (λx)x∈X

and let α : G → G be an automorphism of groupoid preserving the Haar system λ.
(1) Let us denote for any γ in G by Lγ : Gs(γ) → Gr(γ) the left translation by

γ. Since Lγ ◦ α = α ◦ Lα−1(γ) for any γ in G, we get that

Lγ,∗α∗λ
α−1(s(γ)) = α∗Lα−1(γ),∗λ

s(α−1(γ)) = α∗λ
r(α−1(γ)).

Then Lγ,∗α∗λ
α−1(s(γ)) is a measure on Gr(γ) absolutly continuous with re-

spect to Lγ,∗λ
s(γ) = λr(γ) with density ρα ◦Lγ and thus ρα ◦Lγ−1 = ρα. In

particular ρα is constant on Gx for any x in X.
(2) The automorphism of groupoid α−1 : G → G also preserves the Haar system

λ and ρα−1 = 1/ρα ◦ α.

Definition 5.3. Let G be a groupoid with base space X, range and source map r and
s and let α : G → G be a groupoid automorphism. Using the notations of section 3.2
the suspension of the groupoid G respectively to α is the groupoid Gα

def
==(G ×R)/Aα

with basis (X ×R)/Aα (recall that α induces a homeomorphism on X). For any γ
in G and t in R, let us denote by [γ, t] the class of (γ, t) in Gα.

• The range map rα and the source map sα are defined in the following way:
– rα([γ, t]) = [r(γ), t] for every γ in G and t in R;
– sα([γ, t]) = [s(γ), t] for every γ in G and t in R;

• Let γ and γ′ be elements of G such that s(γ) = r(γ′) and let t be in R, then
[γ, t] ◦ [γ′, t] = [γ ◦ γ′, t];
• [γ, t]−1 = [γ−1, t].

There is an action of R on Gα by automorphisms given for s in R and [γ, t] in Gα

by s · [γ, t] = [γ, t+ s].

Lemma 5.4. Let G be a groupoid with base space X equipped with a Haar sys-
tem λ = (λx)x∈X and let α : G → G be an automorphism preserving the Haar
System λ. Let us assume that ρα = ρα ◦ α. Then Gα admits a Haar system
λα =

(
λ

[x,t]
α

)
[x,t]∈(X×R)/Z

given for any [x, t] in (X × R)/Aα and any continuous

fonction f in Cc

(
G[x,t]

α

)
by

λ[x,t]
α (f) =

∫
Gx

ρα(γ)−tf([γ, t])dλx(γ).

Proof.
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• Let us prove first that the definition of λ[x,t]
α (f) for [x, t] in (X × R)/Aα

and f in Cc

(
G[x,t]

α

)
makes sense.∫

Gx

ρα(γ)−tf([γ, t])dλx(γ) =
∫
Gx

ρα(α(γ))−tf([α−1(α(γ), t])dλx(γ)

=
∫
Gα(x)

ρα(γ)−t+1f([α−1(γ), t])dλα(x)(γ)

=
∫
Gα(x)

ρα(γ)−t+1f([γ, t− 1])dλα(x)(γ)

• Let us show then that (λ[x,t])[x,t]∈(X×R)/Z is a Haar system. Let γ′ be an

element of G, let t be a real number and let f be a function in Cc

(
G[r(γ′),t]

α

)
.

Then

λ[r(γ′),t]
α (f) =

∫
Gr(γ′)

ρα(γ)−tf([γ, t])dλr(γ′)(γ)

=
∫
Gs(γ′)

ρα(γ′ · γ)−tf([γ′ · γ, t])dλs(γ′)(γ)

=
∫
Gs(γ′)

ρα(γ)−tf([γ′ · γ, t])dλs(γ′)(γ)

= λ[s(γ′),t]
α (f ◦ L[γ′,t]),

where the third equality holds in view of remark 5.2.
�

5.3. C∗-algebra of a suspension groupoid. Let us recall first the construction
of the reduced C∗-algebra C∗r (G, λ) associated to a groupoid G with base X and
Haar system λ = (λx)x∈X . Let L2(G, λ) be the C0(X)-Hilbert completion of Cc(G)
equipped with the C0(X)-valued scalar product

〈φ, φ′〉(x) =
∫
Gx

φ̄(γ−1)φ′(γ−1)dλx(γ)

for φ and φ′ in Cc(G) and x in X, i.e the completion of Cc(G) with respect to the
norm ‖φ‖ = supx∈X〈φ, φ〉1/2. The C0(X)-module structure on Cc(G) extends to
L2(G, λ) and 〈•, •〉 extends to a C0(X)-valued scalar product on L2(G, λ). Recall
that an operator T : L2(G, λ) → L2(G, λ) is called adjointable if there exists an
operator T ∗ : L2(G, λ) → L2(G, λ), called the adjoint of T such that 〈T ∗φ, φ′〉 =
〈φ, Tφ′〉 for all φ and φ′ in L2(G, λ). Notice that the adjoint, when it exists is
unique and that operator that admits an adjoint are automatically C0(X)-linear
and continuous. The set of adjointable operators on L2(G, λ) is then a C∗-algebra
with respect to the operator norm. Then any f in Cc(G) acts as an adjointable
operator on L2(G, λ) by convolution

f · φ(γ) =
∫
Gr(γ)

f(γ′)φ(γ′−1γ)dλr(γ)(γ′)

where φ is in Cc(G), the adjoint of this operator being given by the action of
f∗ : γ 7→ f̄(γ−1). The convolution product provides a structure of involutive
algebra on Cc(G) and using the action defined above, this algebra can be viewed as
a subalgebra of the C∗-algebra of adjointable operators of L2(G, λ). The reduced
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C∗-algebra C∗r (G, λ) is then the closure of Cc(G) in the C∗-algebra of adjointable
operators of L2(G, λ). Namely, if we define for x in X the measure on Gx by
λx(φ) =

∫
Gx φ(γ−1)dλx(γ) for any φ in Cc(Gx), then L2(G, λ) is a continuous field

of Hilbert spaces over X with fiber L2(Gx, λx) at x in X. The corresponding C0(X)-
structure on C∗r (G, λ) is then given for h in C0(X) by the multiplication by h ◦ s.
Let us denote for any x in X by νx the representation of C∗r (G, λ) on the fiber
L2(Gx, λx). Then for any f in C∗r (G, λ), we get that ‖f‖C∗

r (G,λ) = supx∈X ‖νx(f)‖.

Lemma 5.5. Let G be a locally compact groupoid with base space X equipped with
a Haar system λ = (λx)x∈X and let α : G → G be an automorphism preserving the
Haar System λ. Let us define the continuous map ρ′α : G → R; γ 7→ ρα(γ−1). Then
α induces a unique automorphism α̃ of the C∗-algebra C∗r (G, λ) such that for every
f in Cc(G) we have α̃(f) = (ρ′αρα)1/2f ◦ α−1.

Proof. The map Cc(G) → Cc(G); φ 7→ ρ
′1/2
α φ ◦ α−1 extends to a continuous linear

and invertible map W : L2(G, λ)→ L2(G, λ) such that

〈W · φ,W · φ〉(x) = 〈φ, φ〉(α−1(x)),

for all x in X. Its inverse W−1 is defined by W−1(φ) = (ρ′α ◦ α)−1/2φ ◦ α for all φ
in Cc(G). Let us define

α̃ : C∗r (G, λ)→ C∗r (G, λ); x 7→W · x ·W−1.

Then W · f ·W−1 = (ρ′αρα)1/2f ◦ α−1 for all f in Cc(G). �

Recall that if A is a C∗-algebra and if β is an automorphism of A then the
mapping torus of A is the C∗-algebra

Aβ = {f ∈ C([0, 1], A) such that β(f(1)) = f(0)}.
Namely, the mapping torus Aβ can be viewed as the algebra of continuous function
h : R → A such that h(t) = β(h(t + 1)) for all t in R. In this picture, there is
an action of R on Aβ by translations defined for t in R and f in Aβ by t · f(s) =
f(t − s) for any s in R. Translations then define a strongly continuous action by
automorphisms β̂ of R on Aβ . By the mapping torus isomorphism, we have a
natural Morita equivalence between Aoβ Z and Aobβ R.

Let α be an automorphism of a groupoid G preserving a Haar system λ and
with density ρα. For a function f in Cc(Gα), we define f̂ in Cc([0, 1] × G) ⊂
C([0, 1], C∗r (G, λ)) by f̂(t, γ) = ρ

−t/2
α (γ)ρ′−t/2

α (γ)f([γ, t]). We can check easily that
f̂ belongs to the mapping torus C∗r (G, λ)α̃.

Proposition 5.6. Let G be a locally compact groupoid with basis space X equipped
with a Haar system λ = (λx)x∈X and let α : G → G be an automorphism preserving
the Haar System λ such that ρα ◦α = ρα. Then there is a unique automorphism of
C∗-algebras

Λα : C∗r (Gα, λα)→ C∗r (G, λ)α̃

such that Λα(f) = f̂ for any f in Cc(Gα).

Proof. Let f be a function of Cc(Gα). Then

‖f̂‖C∗
r (G,λ)α̃

= sup
t∈[0,1]

‖f̂(t, •))‖C∗
r (G,λ)

= sup
t∈[0,1], x∈X

‖νx(f̂(t, •))‖
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On the other hand, ‖f‖C∗
r (Gα,λα) = sup

t∈[0,1], x∈X

‖ν[x,t](f)‖, where ν[x,t] is the repre-

sentation of C∗r (Gα, λα) on the fiber L2(Gα,[x,t], λα,[x,t]) at the fiber [x, t] ∈ (X ×
R)/Aα. If we define for t in [0, 1] the map πt : G → Gα : γ 7→ [γ, t], then

Cc(G[x,t])→ Cc(Gx) : φ 7→ ρ′
−t/2
α φ ◦ πt

extends to an isometry Wt : L2(Gα,[x,t], λα,[x,t]) → L2(Gx, λx) and Wt conjugate
ν[x,t](f) and νx(f̂(t, •)). Thus ‖f̂‖C∗

r (G,λ)α̃
= ‖f‖C∗

r (Gα,λα) and

Cc(Gα)→ C∗r (G, λ)α̃; f 7→ f̂

extends to a monomorphism Λα : C∗r (Gα, λα)→ C∗r (G, λ)α̃. The set

Aα = {h ∈ Cc([0, 1]× G) such that h(1, α(γ)) = ρ′
t/2
α ρt/2

α h(0, γ) for all γ ∈ Γ}

is dense in C∗r (G, λ)α̃. Let us define for an element h of Aα the map h̃ : G ×R→ C
as the unique map such that

• h̃(γ, t) = ρ′
−t/2
α ρ

−t/2
α h(t, γ) for all γ in G and t in [0, 1];

• h(α(γ), t) = h(γ, t+ 1) for all γ in G and t in R.

Then h̃ defines a continuous map of Cc(Gα) whose image under Λα is h. Hence Λα

has dense range in C∗r (G, λ)α̃ and thus is surjective. �

Remark 5.7. With the notations of the above proposition, let us define for a real s
the automorphism of groupoid θs : Gα → Gα; [γ, t] 7→ [γ, s+t]. Then θs is preserving
the Haar system λα = (λ[x,t])[x,t]∈X×R/Z with density Gα → R; [γ, t] 7→ ρα(γ)s.
We obtain from lemma 5.5 an automorphism θ̃s of C∗r (Gα, λα) which gives rise to
a strongly continous action of R on C∗r (Gα, λα) by automorphism. On the other
hand, the isomorphism Λα : C∗r (Gα, λα) → C∗r (G, λ)α̃ of proposition 5.6 is then
R-equivariant, where the action of R on C∗r (G, λ)α̃ is the action ̂̃α associated to a
mapping torus.

6. The dynamic of the uncolored Penrose tiling under translations

As we have seen before, the continuous hull XR
P of the action of the uncolored

Penrose tiling P under the actions of R by translations is the suspension Ω×R
Ao

of the
odometer homeomorphism o : Ω→ Ω; x 7→ x+1, where Ω is the dyadic completion
of the integers. The R-algebra C(Ω×R

Ao
) is then the mapping torus algebra of C(Ω)

with respect to automorphism induced by o. In consequence, the crossed-product
algebras C(XR

P)oR and C(Ω)oZ are Morita equivalent. The purpose of this section
is to recall the explicit description of the isomorphism C(Ω)oZ

∼=→ C(XR
P)oR arising

from this Morita equivalence.
For this, let us define on Cc(Ω× R) the C(Ω) o Z-valued inner product

〈ξ, ξ′〉(ω, k) =
∫

R
ξ̄(ω, s)ξ′(ω − k, s+ k)ds

for ξ and ξ′ in Cc(Ω×R) and (ω, k) in (Ω×R). This inner product is positive and
gives rise to a right C(Ω)oZ-Hilbert module E , the action of C(Ω)oZ being given
for h in Cc(Ω× Z) and ξ in Cc(Ω× R) by

ξ · h(ω, t) =
∑
n∈Z

ξ(n+ ω, t− n)h(n+ ω, n)
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for (ω, k) in Ω× R. The right C(Ω) o Z-Hilbert module E is also equipped with a
left action of C

(
Ω×R
Ao

)
o R given for f in Cc

(
Ω×R
Ao
× R

)
and ξ in Cc(Ω× R) by

f · ξ(ω, t) =
∫

R
f([ω, t], s)ξ(ω, t− s)ds

for (ω, k) in Ω× R. We get in this way a C
(

Ω×R
Ao

)
o R− C(Ω) o Z imprimitivity

bimodule which implements the Morita equivalence we are looking for. Actually,
there is an isomorphism of right C(Ω) o Z-Hilbert module

Ψ : E → L2([0, 1])⊗ C(Ω) o Z

defined in a unique way by Ψ(g) = g ⊗ δ0 for g in Cc(R) supported in (0, 1) (here
δ0 is the Dirac function at 0 ∈ Z). Using the right C

(
Ω×R
Ao

)
o R-module structure

of the C
(

Ω×R
Ao

)
o R−C(Ω) o Z imprimitivity bimodule E and the isomorphism Ψ,

we get an isomorphism

(6.1) C

(
Ω× R
Ao

)
o R

∼=→ K(L2([0, 1]))⊗ C(Ω) o Z.

This isomorphism can be described as follows. Let us define for f and g in L2([0, 1])
the rank one operator

Θf,g : L2([0, 1])→ L2([0, 1]); h 7→ f〈g, h〉.

We define for ξ and ξ′ in Cc(Ω× R) the continuous function of Cc

(
Ω×R
Ao
× R

)
ΘΩ

ξ,ξ′([ω, s], t) =
∑
k∈Z

ξ(ω + k, s− k)ξ̄′(ω + k, s− t− k)

for all ω in Ω and s and t in R. It is straightforward to check that ΘΩ
ξ,ξ′ is well

defined and that
ΘΩ

ξ,ξ′ · η = ξ〈ξ′, η〉
for all η in Cc(Ω×R). If we set for f and g in Cc(R) with support in (0, 1) and for φ
in C(Ω), ξ = 1⊗f , ξ′ = φ⊗g and ξ′′ : Ω×R→ R; (ω, t) 7→ g(t+1), then the image
of ΘΩ

ξ,ξ′ under the isomorphism of equation 6.1 is Θf,g⊗φ ∈ K(L2([0, 1]))⊗C(Ω)oZ
and moreover,

(6.2) ΘΩ
ξ,ξ′([ω, s], t) =

∑
k∈Z

f(s− k)φ̄(ω + k)ḡ(s− t− k).

Let us denote by u the unitary of C(Ω)oZ corresponding to the positive generator
of Z. Then the image of ΘΩ

ξ,ξ′′ under the ismorphism of equation 6.1 is Θf,g ⊗ u ∈
K(L2([0, 1]))⊗ C(Ω) o Z and moreover,

(6.3) ΘΩ
ξ,ξ′′([ω, s], t) =

∑
k∈Z

f(s− k)ḡ(s+ 1− t− k).

Let us define by α the automorphism of the groupoid Ω×R
Z o R by

• α([ω, s], t) = ([ω/2, s/2], t/2) if ω is even;
• α([ω, s], t) = ([(ω + 1)/2, (s+ 1)/2], t/2) if ω is odd.
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Notice that α−1([ω, s], t) = ([2ω, 2s], 2t) for all ω in Ω and s and t in R. Then
α preserves the Haar system of Ω×R

Z o R arising from the Haar mesure on R and
has constant density ρα = 2. Hence according to lemma 5.5, the automorphism
of groupoid α induces an automorphism α̃ of C∗-algebra C

(
Ω×R

Z
)

o R such that
α̃(h) = 2h ◦ α−1 for all h in C

(
Ω×R

Z × R
)
. We are now in position to describe how

α̃ is transported under the isomorphism of Equation (6.1) to an automorphism Υ
of K(L2([0, 1]))⊗ C(Ω) o Z. With ξ, ξ′ and ξ′′ as defined above,

α̃(ΘΩ
ξ,ξ′)([ω, s], t) = 2ΘΩ

ξ,ξ′([2ω, 2s], 2t)

= 2
∑
k∈Z

f(2s− k)φ̄(2ω + k)ḡ(2s− 2t− k)

= 2
∑
k∈Z

f(2s− 2k)φ̄(2ω + 2k)ḡ(2s− 2t− 2k) +(6.4)

2
∑
k∈Z

f(2s− 2k − 1)φ̄(2ω + 2k − 1)ḡ(2s− 2t− 2k − 1)

and

α̃(ΘΩ
ξ,ξ′′)([ω, s], t) = 2ΘΩ

ξ,ξ′′([2ω, 2s], 2t)

= 2
∑
k∈Z

f(2s− k)ḡ(2s+ 1− 2t− k)

= 2
∑
k∈Z

f(2s− 2k)ḡ(2s+ 1− 2t− 2k) +(6.5)

2
∑
k∈Z

f(2s− 2k − 1)ḡ(2s− 2t− 2k).

To complete the description of the automorphism of K(L2([0, 1]))⊗ C(Ω) o Z cor-
responding to α̃, we will need to introduce some extra notations. We define the
partial isometries U0, U1 and V of L2([0, 1]) by

• U0f(t) =
√

2f(2t) if t ∈ [0, 1/2] and U0f(t) = 0 otherwise;
• U1f(t) =

√
2f(2t− 1) if t ∈ [1/2, 1] and U1f(t) = 0 otherwise;

• V f(t) = f(t+ 1/2) if t ∈ [0, 1/2] and V f(t) = 0 otherwise,
for f in C([0, 1]). Let use define also the endomorphisms W0 and W1 of the C∗-
algebra C(Ω) by W0φ(ω) = φ(2ω) and W1φ(ω) = φ(2ω + 1), for φ in C(Ω) and ω
in Ω. Using this notations, equations 6.4 and 6.5 can be rewriten

α̃(ΘΩ
ξ,ξ′)([ω, s], t) =

∑
k∈Z

U0f(s−k)V0φ̄(ω+k)U0ḡ(s−t−k)+
∑
k∈Z

U1f(s−k)V1φ̄(ω+k)U1ḡ(s−t−k)

and

α̃(ΘΩ
ξ,ξ′′)([ω, s], t) =

∑
k∈Z

U0f(s−k)U1ḡ(s− t−k+1)+
∑
k∈Z

U1f(s−k)U0ḡ(s− t−k).

Thus, in view of equations 6.4 and 6.5, we get that

Υ(Θf,g ⊗ φ) = ΘU0f,U0g ⊗ V0φ+ ΘU1f,U1g ⊗ V1φ

and
Υ(Θf,g ⊗ u) = ΘU0f,U1g ⊗ u+ ΘU1f,U0g ⊗ 1.



16 OYONO-OYONO AND PETITE

From this we deduce

Υ(k ⊗ φ) = U0 · k · U∗0 ⊗ V0φ+ U1 · k · U∗1 ⊗ V1φ

and

Υ(k ⊗ u) = U0 · k · U∗1 ⊗ u+ U1 · k · U∗0 ⊗ 1
= U0 · k · U∗0 · V ⊗ u+ U1 · k · U∗1 · V ∗ ⊗ 1
= (U0 · k · U∗0 + U1 · k · U∗1 ) · (V ⊗ u+ ·V ∗ ⊗ 1)

where the second equality holds since V ∗ · U0 = U1 and V · U1 = U0 and the third
holds since V ∗U1 = V U0 = 0. In consequence, if we extends Υ to the multiplier
algebra of K(L2([0, 1]))⊗ C(Ω) o Z, we finally obtain that the automorphism Υ is
the unique morphism of C∗-algebra such that

Υ(k ⊗ φ) = U∗0 · k · U0 ⊗ V0φ+ U∗1 · k · U1 ⊗ V1φ

and

(6.6) Υ(1⊗ u) = V ⊗ u+ V ∗ ⊗ 1,

where k is in K(L2([0, 1])), φ is in C(Ω) and 1⊗ u and V ⊗ u+ V ∗ ⊗ 1 are viewed
as multipliers of K(L2([0, 1]))⊗ C(Ω) o Z.

The following lemma will be useful to compute the K-theory of the C∗-algebra
of the Penrose hyperbolic tiling. For short, we will denote from now K(L2([0, 1]))
by K.

Lemma 6.1. Let A be the unitarisation of K⊗C(Ω) o Z and let f be a norm one
function of L2([0, 1]). Then the unitaries

(1−Θf,f ⊗ 1) + Θf,f ⊗ u
and

(6.7) ΘU0f,U1f ⊗ u+ ΘU1f,U0f ⊗ 1 + 1−ΘU0f,U0f ⊗ 1−ΘU1f,U1f ⊗ 1

of A are homotopic.

Proof. If we set f0 = f and complete to a Hilbertian basis f0, . . . , fn, . . . of L2([0, 1]),
then U0f0, . . . , U0fn, . . . ;U1f0, . . . , U1fn, . . . is a Hilbertian basis of L2([0, 1]). In
this basis the unitary of equation 6.7 can be written down

0
1

. . .

u
0

. . .
1

0
. . .

0
1

. . .


which is homotopic to 

u
1

. . .

0
0

. . .
0

0
. . .

1
1

. . .


.
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All unitaries that can be writen down in such way in some hilbertian basis of
L2([0, 1]) are homotopic and since this is the case for 1 − Θf,f ⊗ 1 + Θf,f ⊗ u, we
get the result. �

7. The C∗-algebra of a Penrose hyperbolic tiling

Let us consider the semi-direct product groupoid G = (XR
P × Zw) o R corre-

sponding to the diagonal action of R on XR
P × Zw, by translation on XR

P and
trivial on Zω. Let us denote by λ = (λ(P′,ω))(P′,ω)∈XR

P×Zw
the Haar system pro-

vided by the left Haar mesure on R. Let us define the groupoid automorphism
αω : G → G; (P ′, ω′, t) 7→ (R · P ′, σ(ω′), 2t). Then αω preserves the Haar system
λ with constant density ραω = 1/2 and thus according to lemma 5.4 the mapping
torus groupoid Gαω

admits a Haar system λαω
. The semi-direct product groupoid

XG
P(w) o R, where R acts on XG

P(w) by translations, is equipped with an action of
R by automorphisms βt : XG

P(w) o R → XG
P(w) o R; (T , s) 7→ (2t · T , 2ts) for any

t in R. The automorphism βt preserves the Haar system with constant density 2t

and thus in view of proposition 5.6 induced a strongly continuous action of R on
the C∗-algebra of the semi-direct groupoid G.

Lemma 7.1. Let ω be an element of {1, . . . , n}Z. Then there is a unique isomor-
phism of groupoids Ψω : Gαω −→ XG

P(w) o R such that:

(1) Ψω([P + x, ω, y, 0]) = (P(ω) + x, y) for all x and y in R;
(2) Ψω is equivariant with respect to the actions of R;
(3) Ψω,∗λαω is the Haar system on XG

P(w) o R provided by the Haar measure
on R;

(4) The map

Cc(XG
P(w) o R)→ Cc(Gαω

); f 7→ f ◦Ψω

induced a R-equivariant isomorphism

Ψ̃ω : C0(XG
P(w)) o R→ C∗(Gαω

, λαω
).

Proof. For T in XR
P and ω′ in {1, ...n}Z, let us define the Penrose hyperbolic tiling

T (ω′) by coloring T with ω′. Let us denote by Rt the action of 2t on XG
P(w). If

ω′ belongs to Zω, then T (ω′) belongs to XG
P(w) and XR

P × Zω → XG
P(w); (T , ω′) 7→

T (ω′) is continuous. Since (T ·R)(σ(ω′)) = T (ω′) ·R for all T in XR
P and ω′ in Zω,

the continuous map

G × R→ XG
P(w) o R; (T , ω′, x, y) 7→ (T (ω′)Ry, 2yx)

induces a continuous morphism of groupoids

Ψω : Gαω → XG
P(w) o R.

This map is clearly injective since the equality T (ω′)Rt = T ′(ω′′) for t in R, T and
T ′ in XR

P and ω′ and ω′′ in Zω holds if and only if t is integer, ω′ = σt(ω′′) and
T = T ′Rt. To prove surjectivity, let us remark that any element of XG

P(w) can be
written as T (ω′)Ra, with a in R and T in XR

P . We get then

Ψω([T , ω′, 2−at, a]) = (T (ω′)Ra, t)

for all t in R.
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It is then straightforward to check that condition (3) of the lemma is satisfied.
The uniqueness of Ψω is a consequence on one hand of the equivariance and on the
other hand of the density of the R-orbit of P in XR

P . Condition (4) follows then
from condition (3).

�

Proposition 7.2. Using the notations of lemmas 5.5 and 7.1, the C∗-algebras
C(XG

P(w)) oG and C∗r (G, λ) oα̃ω
Z are Morita equivalent.

Proof. Recall that G = R o R∗
+, where the group (R∗

+, ·) acts on (R,+) by multi-
plication. Iterate crossed-products leads to an isomorphism

C(XG
P(w)) oG ∼= (C(XG

P(w)) o R) o R∗
+.

If we identify the groups (R,+) and (R∗
+, ·) using the isomorphism

R→ R∗
+; t 7→ 2t,

this provides the action under consideration in lemma 7.1 of R on C(XG
P(w)) o R

and hence, the algebras C(XG
P(w)) o G and C∗(Gαω

, λαω
) are isomorphic. In view

of lemma 5.6, the C∗-algebra C(XG
P(w)) o G is isomorphic to C∗r (G, λ)α̃ o R. But

since C∗r (G, λ)α̃ is the mapping torus algebra with respect to the automorphism
α̃ : C∗r (G, λ) → C∗r (G, λ), the crossed product C∗-algebra C∗r (G, λ)α̃ o R is Morita
equivalent to C∗r (G, λ) oα̃ Z and hence we get the result. �

8. The K-theory of the C∗-algebra of a Penrose hyperbolic tiling

Let us consider the semi-direct groupoid G = (XR
P × Zw) o R corresponding to

the diagonal action of R on XR
P × Zw, by translation on XR

P and trivial on Zω.
According to proposition 7.2 we have an isomorphism

K∗(C(XG
P(w)) oG)

∼=→ K∗(C∗r (G, λ) oα̃ω
Z)

induced by the Morita equivalence. In order to compute this K-theory group. We
will need to recall some basic facts concerning the K-theory group of a crossed
product of a C∗-algebra A by an action of Z provided by an automorphism θ of A.
This K-theory can be computed by using the Pimnsner-Voiculescu exact sequence

K0(A) θ∗−Id−−−−→ K0(A) ι∗−−−−→ K0(Aoθ Z)x y
K1(Aoθ Z) ι∗←−−−− K1(A) θ∗−Id←−−−− K1(A)

,

where ι∗ is the morphism induced in K-theory by the inclusion ι : A ↪→ A oθ Z
and θ∗ is the morphism in K-theory induced by θ. The vertical maps K∗(A oθ

Z)−→K∗+1(A) are given by the composition

K∗(Aoθ Z)
∼=−→ K∗(Aθ obθ R)

∼=−→ K∗+1(Aθ)
ev∗−→ K∗+1(A),

where
• Aθ is the mapping torus of A with respect to the action θ endowed, with

its associated action θ̂ of R;
• the first map is induced by the Morita equivalence between A oθ Z and
Aθ obθ R;
• the second map is the Thom-Connes isomorphism;
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• the third map is induced in K-theory by the evaluation map ev : Aθ →
A; f 7→ f(0).

This yields short exact sequences

(8.1) 0→ CoinvK0(A)→ K0(Aoθ Z)→ InvK1(A)→ 0

and

(8.2) 0→ CoinvK1(A)→ K1(Aoθ Z)→ InvK0(A)→ 0,

where InvK∗(A) and CoinvK∗(A) stand respectively for the invariants and the
coinvariants group of K∗(A) with respect to the action of Z provided by the au-
morphism of group θ∗ (recall that for an abelian group M equipped with an auto-
morphism Ψ then the group of coinvariants of M is the quotient group of M by the
subgroup {x−Ψ(x), x ∈M}). Moreover the inclusions in these exact sequence are
induced by ι∗. In order to compute K∗(C∗r (G, λ) oα̃ω

Z), we will need the following
lemma which is straightforward to prove.

Lemma 8.1. Let Z be a Cantor set and let us denote by C(Z,Z) the algebra of
continuous and integer valued functions on Z. For a compact open subset E of Z
we denote by χE the characteristic function of E.

(1) we have an isomorphism C(Z,Z)→ K0(C(Z)); χE 7→ [χE ].
(2) K1(C(Z)) = {0}.

Plugging C∗r (G, λ) oα̃ω
Z into the short exact sequences (8.1) and (8.2), we get

(8.3) 0→ CoinvK0(C∗r (G, λ))→ K0(C∗r (G, λ) oα̃ω
Z)→ InvK1(C∗r (G, λ))→ 0

and

(8.4) 0→ CoinvK1(C∗r (G, λ))→ K1(C∗r (G, λ) oα̃ω
Z)→ InvK0(C∗r (G, λ))→ 0.

According to equation 6.1, the C∗-algebra C∗r (G, λ) is isomorphic to C(Zω) ⊗
K ⊗ C(Ω) o Z. The K-theory of C∗r (G, λ) can be the computed by using the
Künneth formula: In view of lemma 8.1, K0(C(Zω)) ∼= C(Zω,Z) is torsion free and
K1(C(Zω)) = {0} and by Morita equivalence, we get that

K0(C∗r (G, λ)) ∼= C(Zω,Z)⊗K0(C(Ω) o Z)

and
K1(C∗r (G, λ)) ∼= C(Zω,Z)⊗K1(C(Ω) o Z).

This isomorphism, up to the Morita equivalence and to the isomorphism of equation
(6.1) are implemented by the external product in K-theory and will be precisely
described later on. Once again, K∗(C(Ω) o Z) can be computed from the short
exact sequences (8.1) and (8.2), and we get, using lemma 8.1 that

(8.5) K0(C(Ω) o Z) ∼= CoinvC(Ω,Z)

and

(8.6) K1(C(Ω) o Z) ∼= InvC(Ω,Z) ∼= Z.
The isomorphism of equation (8.5) is induced by the composition

C(Ω, Z)
∼=
↪→ K0(C(Ω))→ K0(C(Ω) o Z),

which factorizes through CoinvC(Ω, Z), where the first map is described in lemma
8.1, and the second map is induced on K-theory by the inclusion C(Ω) ↪→ C(Ω)oZ.
In the first isomorphism of equation 8.6 the class of [u] in K1(C(Ω) o Z) of the
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unitary u of C(Ω) o Z corresponding to the positive generator of Z is mapped to
the constant function 1 of C(Ω,Z).

Lemma 8.2. Let ν be the Haar measure on Ω. Then
(1)

∫
fdν is in Z[1/2] for all f in C(Ω,Z);

(2) C(Ω,Z)→ Z[1/2]; f 7→
∫
fdν factorizes through an isomorphism

CoinvC(Ω,Z)
∼=→ Z[1/2].

Proof. It is enought to check the first point for characteristic function of compact-
open subset of Ω. For an integer n and k in {0, . . . , 2n−1}, we set Fn,k = 2nΩ +
k. Then (Fn,k)n∈N, 0≤k≤2n−1 is a basis of compact open neighborhoods for Ω and
thereby, every compact open subset of Ω is a disjoint union of some Fn,k. Since
ν(Fn,k) = 2−n, we get the first point.

The measure µ being invariant by translation, the map

C(Ω,Z)→ Z[1/2]; f 7→
∫
fdν

factorizes through a group morphism CoinvC(Ω,Z) → Z[1/2]. This morphism
admits a cross-section

(8.7) Z[1/2]→ CoinvC(Ω,Z); 2−n 7→ [χFn,0 ].

This map is well defined since Fn,0 = Fn+1,0

∐
(2n + Fn+1,0) and thus [χFn,0 ] =

[χFn+1,0 ]+[χ2n+Fn+1,0 ] = 2[χFn+1,0 ] in CoinvC(Ω,Z). Since the (χFn,k
)n∈N, 0≤k≤2n−1

generates C(Ω,Z) as an abelian group, it is enought to check that the cross-section
of equation 8.7 is a left inverse on χFn,k

, which is true since [χFn,k
] = [χk+Fn,0 ] =

[χFn,0 ] in CoinvC(Ω,Z). �

Proposition 8.3. Let C(Zω,Z[1/2]) ∼= C(Zω,Z)⊗Z[1/2] be the algebra of contin-
uous function on Zω, valued in Z[1/2] (equipped with the discrete topology). Then
with the notations of the proof of lemma 8.2, we have isomorphisms

(1)

C(Zω,Z[1/2])
∼=−→ K0(C(Zω)⊗ C(Ω) o Z)

χE

2n
7→ [χE ⊗ χFn,0 ],

where E is a compact open subset of Zω and χE is its characteristic func-
tion.

(2)

C(Zω,Z)
∼=−→ K1(C(Zω)⊗ C(Ω) o Z)

χE 7→ [χE ⊗ u+ (1− χE)⊗ 1],

where u is the unitary of C(Ω) o Z corresponding to the positive generator
of Z.

Proof. As we have already mentionned, K∗(C(Zω)) is torsion free and the Künneth
formula provides isomorphisms

K0(C(Zω))⊗K0(C(Ω) o Z)
∼=→ K0(C(Zω)⊗ C(Ω) o Z)

[p]⊗ [q] 7→ [p⊗ q],
where p and q are some matrix projectors with coefficients respectively in C(Zω)
and C(Ω) o Z, and
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K0(C(Zω))⊗K1(C(Ω) o Z)
∼=→ K1(C(Zω)⊗ C(Ω) o Z)

[p]⊗ [v] 7→ [p⊗ v + (Ik − p)⊗ Il],
where p is a projector in Ml(C(Zω)) and v is a unitary in Mk(C(Ω) o Z). The
proposition is then consequence of lemmas 8.1, 8.2 and of the discution related to
equations (8.5) and (8.6). �

In order to compute the invariants and the coinvariants of

K∗(C∗r (G, λ)) ∼= K∗(C(Zω)⊗K ⊗ C(Ω) o Z)),

we will need a carefull description of the action induced in K-theory by the auto-
morphism σ∗⊗µ of C(Zω)⊗K⊗C(Ω)oZ), where σ∗ is the automorphism of C(Ω)
induced by the shift σ and where Υ was defined in section 6.

Lemma 8.4. If we equip C(Zω) ⊗ K ⊗ C(Ω) o Z with the Z-action provided by
σ∗ ⊗Υ and under the Z-equivariant isomorphism

C∗r (G, λ) ∼= C(Zω)⊗K ⊗ C(Ω) o Z,

the action induced by αω on K0(C∗r (G, λ) ∼= C(Zω,Z[1/2]) and on K1(C∗r (G, λ) ∼=
C(Zω,Z) are given by the automorphisms of abelian groups

Ψ0 : C(Zω,Z[1/2]) → C(Zω,Z[1/2])
f 7→ 2f ◦ σ−1

and

Ψ1 : C(Zω,Z) → C(Zω,Z)
f 7→ f ◦ σ−1.

Proof. According to proposition 8.3 and to equation (6.4) of section 6 and using the
Morita equivalence between C(Zω)⊗C(Ω)oZ and C(Zω)⊗K⊗C(Ω)oZ, in order to
describe Ψ0, we have to compute the image under (σ∗⊗Υ)∗ of [χE⊗Θf,f⊗χFn,0 ] ∈
K0(C(Zω)⊗K ⊗ C(Ω) o Z) where,

• χE is the characteristic function of a compact open subset E of Zω;
• χFn,0 is the characteristic function of Fn,0 = 2nΩ for n ≥ 1;
• Θf,f is the rank one projector associated to a norm 1 function f of L2([0, 1]).

We have

σ∗ ⊗Υ(χE ⊗Θf,f ⊗ χFn,0) = χσ(E) ⊗ΘU0f,U0f ⊗ V0χFn,0 + χσ(E) ⊗ΘU1f,U1f ⊗ V1χFn,0

= χσ(E) ⊗ΘU0f,U0f ⊗ χFn−1,0 ,

where the last equality holds since V0χFn,0 = χFn−1,0 and V1χFn,0 = 0. Since
ΘU0f,U0f is again a rank one projector, then up to the Morita equivalence between
C(Zω) ⊗ C(Ω) o Z and C(Zω) ⊗ K ⊗ C(Ω) o Z, the image of [χE ⊗ χFn,0 ] ∈
K0(C(Zω)⊗C(Ω)oZ) under (σ∗⊗Υ)∗ is [χσ(E)⊗χFn−1,0 ] ∈ K0(C(Zω)⊗C(Ω)oZ).
Using proposition 8.3, this completes the description of Ψ0. For Ψ1, notice first that
up to the isomorphism

K0(C(Zω))⊗K0(K ⊗ C(Ω) o Z)
∼=→ K1(C(Zω)⊗K ⊗ C(Ω) o Z)

provided by the Künneth formula, the action of (σ∗ ⊗Υ)∗ is σ∗∗ ⊗Υ∗ and then the
result is a consequence of lemma 6.1 and of proposition 8.3. �
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Let us equip C(Zω,Z[1/2]) and C(Zω,Z) with the Z-actions respectively pro-
vided by Ψ0 and Ψ1. Then since ‖Ψ0(h)‖ = ‖2h‖ for any h in C(Zω,Z[1/2]), we
get that InvC(Zω,Z[1/2]) = {0} We are now in position to get a complete de-
scription of the K-theory of C(XG

P(w)) o G. In view of the short exact sequences
of equations (8.3) and (8.4), the two following theorems are then consequences of
lemma 8.4 and of proposition 8.3.

Theorem 8.5. We have a short exact sequence

0→ CoinvC(Zω,Z[1/2]) ι0→ K0(C(XG
P(w)) oG)→ InvC(Zω,Z)→ 0,

where up to the Morita equivalence C(XG
P(w)) o G ∼= C∗r (G, λ) oα̃ω

Z, the element
ι0[2−nχE ] is the image of [χE ⊗Θf,f ⊗ χFn,0 ] ∈ K0(C(Zω)⊗K⊗C(Ω) o Z) under
the morphism induced in K-theory by the inclusion

C(Zω)⊗K ⊗ C(Ω) o Z ∼= C∗r (G, λ) ↪→ C∗r (G, λ) oα̃ω
Z,

where

• χE is the characteristic function of a compact open subset E of Zω;
• χFn,0 is the characteristic function of Fn,0 = 2nΩ;
• Θf,f is the rank one projector associated to a norm 1 function f of L2([0, 1]).

Theorem 8.6. We have an isomorphism

CoinvC(Zω,Z)
∼=→ K1(C(XG

P(w)) oG)

induced on the coinvariants by the composition

C(Zω,Z) ∼= K0(C(Zω))
⊗[u]→ K1(C(Zω)⊗C(Ω)oZ) ∼= K1(C∗r (G, λ)→ K1(C∗r (G, λ)oα̃ω

Z),

where

• ⊗[u] is the external poduct in K-theory by the class in K1(C(Ω)oZ) of the
unitary u of C(Ω) o Z corresponding to the positive generator of Z;
• the last map in the composition is the morphism induced in K-theory by

the inclusion C∗r (G, λ) ↪→ C∗r (G, λ) oα̃ω
Z.

The short exact sequence of theorem 8.5, admits an explicit splitting which can
be describe in the following way: Assume first that (Zω, σ) is minimal. In particular,
InvC(Zω,Z) ∼= Z is generated by 1 ∈ C(Zω,Z). Let us considerer the following
diagram, whose left square is commutative

K1(C∗(R)) −−−−→ K1(C∗(G, λ))y y
Z ∼= K0(C) −−−−→ K0(C(XN

P × Zω)) ev∗−−−−→ K0(C(Ω× Zω))

,

where

• the horizontal map of the left square are induced by the inclusion C ↪→
C(XN

P × Zω).
• vertical maps are the Thom-Connes isomorphism.
• The map ev : C(XN

P × Zω))−→C(Ω × Zω) is induced by the continuous
map Ω→ XN

P
∼= (Ω× R)/Ao; x 7→ (x, 0);
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Up to the Morita equivalence between C∗(G, λ) and C(Zω)⊗C(Ω)oZ, the left down
stair case is the boundary of the Pimnsner-Voiculescu six-term exact sequence.
From this, we see that K1(C∗(G, λ) ∼= Z is generated by the image of the canonical
generator of K1(C∗(R)) ∼= K1(C0(R)) ∼= K0(C) ∼= Z. On the other hand, we have
a diagram with commutative square

K0(C
∗(R) o R∗+) −−−−−→ K0(C(XG

Pω
) o G) −−−−−→

∼=
K0(C

∗(Gαω , λαω ) o R) −−−−−→
∼=

K0(C
∗(G, λ)αω o R)??y ??y ??y ??y

K1(C
∗(R)) −−−−−→ K1(C(XG

Pω
) o R) −−−−−→

∼=
K1(C

∗(Gαω , λαω )) −−−−−→
∼=

K1(C
∗(G, λ)αω )??yev∗

K0(C
∗(G, λ))

where,

• the horizontal map of the left square are induced by the inclusion C∗(R) ↪→
C(XG

Pω
) o R;

• the horizontal map of the middle square are induced by the isomorphism
of lemma 7.1
• the horizontal map of the left square are induced by the isomorphism of

proposition 5.6
• the first row of vertical maps are Thom-Connes isomorphisms.

It is then straightforward to check that the downstaircase of the diagram is indeed
induced by the inclusion C∗(R) ↪→ C(XN

P × Zω) o R = C∗(G, λ). Notice that
K0(C∗(R) o R∗

+) ∼= Z (by Thom-Connes isomorphism). Moreover, the inclusion
K(L2(R∗

+)) ∼= C0(R∗
+) o R∗

+ ↪→ C0(R) o R∗
+
∼= C∗(R) o R∗

+ provides a generator
for K0(C∗(R) o R∗

+) whose image under the left vertical map is the canonical
generator for K1(C∗(R)) ∼= K0(C) ∼= Z. Using the description of the boundary
map of Pimnsner-Voiculescu six-term exact sequence, we see that if e is any rank
one projector in K(L2(R∗

+)) ∼= C0(R∗
+) o R∗

+ ⊂ C∗(R) o R∗
+. Then p can be viewed

as an element of C(XG
Pω

) o G whose class in K-theory provides a section for the
short exact sequence of theorem 8.5.

In general, InvC(Zω,Z) is generated by characteristic functions of Z-invariant
compact-open subsets of Zω. According to proposition 4.3, any Z-invariant compact-
open subset E of Zω provides a R-invariant compact subset Ẽ of XG

P . Hence, with
above notations, if χ eE is the characteristic function for Ẽ, then χ eEe can be viewed as
an element of C(XG

Pω
) oG. Let s : InvC(Zω,Z)→ K0(C(XG

Pω
) oG) be the group

homomorphism uniquelly defined by s(χE) = χ eEe for E a Z-invariant compact-
open subset of Zω. Then s is a section for the short exact sequence of theorem
8.5.

9. The cyclic cocycle associated to a harmonic probabilty

Recall that according to discution ending section ??, a probability is harmonic if
and only if it is G-invariant. In this section, we associate to an harmonic probability
a 3-cyclic cocycle on the smooth cross product algebra of XG

P(ω)oG. This cyclic
cocycle is indeed builded out a 1-cyclic cocycle on the algebra of smooth (along
the leaves) functions on XG

P(ω) by using the analogue in cyclic cohomology of the
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Thom-Connes isomorphism (see [6]). We give a description of this cocycle and we
discuss an odd version of the gap-labelling.

9.1. Review on smooth cross products. We collect here results from [6] con-
cerning smooth cross products by an action of R that we will need later on.

Let A be a Frechet algebra with respect to an increasing family of semi-norms
(‖ • ‖k)k∈N.

Definition 9.1. A smooth action on A is a homomorphism α : R → Aut A such
that

(1) For every t in R and a in A, the function t 7→ αt(a) is smooth.
(2) For every integers k and m, there exist integers j and n and a real C such

that
∥∥∥ dk

dtkαt(a)
∥∥∥

m
≤ C(1 + t2)j/2‖a‖n for every a in A.

If α is a smooth action on A, then the smooth cross product AoαR is defined
as the set of smooth functions f : R→ A such that

‖f‖k,m,n
def== sup

t∈R
(1 + t2)k/2

∥∥∥∥ dm

dtm
f(t)

∥∥∥∥
n

< +∞

for all integers k,m and n. The smooth cross product AoαR provided with the
family of semi-norm ‖•‖k,m,n for k,m and n integers together with the convolution
product

f ∗ g(t) =
∫
f(s)αs(g(t− s))dt

is then a Frechet algebra. Notice that a smooth action α on a Frechet algebra A
gives rise to a bounded derivation Zα of AoαR defined by Zα(f)(t) = tf(t) for all
f in AoαR and t in R.

Let AG
P(ω) be the algebra of continuous and smooth along the leaves functions

on XG
P(ω), i.e functions whose restrictions to leaves admit at all order differential

which as functions on XG
P(ω) are continuous. Let β0 and β1 be the two actions of

R on AG
P(ω) respectively induced by

R×XG
P(ω) → XG

P(ω); (t, T ) 7→ T + t

and
R×XG

P(ω) → XG
P(ω); (t, T ) 7→ T ·R2t

.

Let X and Y be respectively the vector fields associated to β0 and β1. Then AG
P(ω)

is a Frechet algebra with respect to the family of semi-norms

‖ • ‖k,l : f 7→ sup
XG
P(ω)

|XkY l(f)|,

where k and l run through integers. It is clear that β0 is a smooth action on AG
P(ω).

Moreover,

R×AG
P(ω) oβ0 R→ AG

P(ω) oβ0 R; (t, f) 7→ [s 7→ β1(f(2−ts))]

is an action of R on AG
P(ω)oβ0R by automorphisms. This action is not smooth in

the previous sense. Nevertheless, the action β1 satisfies conditions (1),(2) and (3)
of [6, Section 7.2] with respect to the family of functions ρn : R → R; t 7→ 22n|t|,
where n runs through integers. In this situation, we can define the smooth cross
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product AG
P(ω)oβ0Roρ

β1R of AG
P(ω)oβ0R by β1 to be set of smooth functions f :

R→ AG
P(ω)oβ0R such that

‖f‖k,l,m,n
def== sup

t∈R
ρk(t)

∥∥∥∥ dl

dtl
f(t)

∥∥∥∥
m,n

< +∞

for all integers k, l,m and n. Then AG
P(ω)oβ0Roρ

β1R provided with the family of
semi-norm ‖•‖k,l,m,n for k,m and n integers together with the convolution product
is a Frechet algebra. Moreover, this algebra can be viewed as a dense subalgebra of
C(XG

P(ω)) oG. As for smooth actions, the action β1 gives rise to a derivation Zβ1

of AG
P(ω)oβ0Roρ

β1R (defined by the same formula).

9.2. The 3-cyclic cocycle. Let η be a G-invariant probability on XG
P(ω). Define

τω,η : AG
P(ω) ×A

G
P(ω) → C; (f, g) 7→

∫
Y (f)gdη.

Using the Leibnitz rules and the invariance of G, it is straightforward to check that
τω,η is 1-cyclic cocycle. In [6] was constructed for a smooth action α on a Frechet
algebra A a homomorphism Hn

λ (A)→ Hn+1
λ (Aoα R), where H∗

λ(•) stands for the
cyclic cohomology. This homomorphism is indeed induced by a homomorphism
at the level of cyclic cocycles #α : Zn

λ (A) → Zn+1
λ (AoαR) and commutes with

the periodisation operator S. Hence it gives rise to homomorphim in periodic
cohomology HP ∗(A) → HP ∗+1(AoαR) which turns out to be an isomorphism.
This isomorphism is for periodic cohomology the analogue of the Thom-Connes
isomorphism in K-theory.

We give now the description of #β0τω,η. Let us define first Xβ0 : AG
P(ω)oβ0R→

AG
P(ω)oβ0R and Yβ0 : AG

P(ω)oβ0R→ AG
P(ω)oβ0R respectively byXβ0f(t) = X(f)(t)

and Yβ0f(t) = Y (f)(t), for all f in AG
P(ω)oβ0R and t in R. Using the relation

Y ◦ β0
t = β0

t ◦ Y − t ln 2β0
t ◦X and applying the definition of #0

β , we get:

Proposition 9.2.
(1)

#β0τω,η(f, g, h) = −2πiη(Yβ0f ∗ g ∗ Zβ0h(0) + Zβ0f ∗ g ∗ Yβ0h(0)

−2πi ln 2(η(1/2Zβ0
2f ∗ g ∗Xβ0h(0) + Zβ0f ∗ Zβ0g ∗Xβ0(h)(0)− 1/2Xβ0f ∗ g ∗ Zβ0

2(0))

for all f , g and h in AG
P(ω)oβ0 o R

(2) The cocycle #β0τω,η is β1-invariant, i.e #β0τω,η(β1
t f, β

1
t g, β

1
t h) = #β0τω,η(f, g, h)

for all t in R and f , g and h in AG
P(ω)oβ0 o R.

According to [6, Section 7.2], the action β1 on AG
P(ω)oβ0 o R also gives rise

to a homomorphism #β1 : Zn
λ (AG

P(ω)oβ0R) → Zn+1
λ (AG

P(ω)oβ0Roρ
β1R) which in-

duces an isomorphim HP ∗(AG
P(ω)oβ0R)

∼=−→ HP ∗+1(AG
P(ω)oβ0Roρ

β1R). A direct
application of the definition of #β1 leads to

Lemma 9.3. Let φ be a 3-cyclic cocycle for AG
P(ω)oβ0R. Let us define for any f, g

and h in AG
P(ω)oβ0Roρ

β1R.

φ̃(f, g, h) = 2πı
∫

t0+t1+t2=0

f(t0)β1
t0g(t1)β

1
−t2(t2).
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Then

#β1φ(f0, f1, f2, f3) = −φ̃(f0, f1, f2 ∗ Zβ1f3) + φ̃(Zβ1f0 ∗ f1, f2, f3)

− φ̃(f0, Zβ1f1 ∗ f2, f3)− φ̃(Zβ1f0, f1 ∗ f2, f3)

Definition 9.4. With above notations, the 3-cyclic cocycle on AG
P(ω)oβ0Roρ

β1R
associated to the Penrose hyperbolic tiling coloured by ω and to a G-invariant prob-
ability η on XG

P(ω) is φω,η = #β1#β0τω,η.

Notice that if we perform this construction for the tiling of the euclidian space
with continuous hull XR2

with respect to the R2-action by translations, we get a
3-cyclic cocycle which is indeed equivalent to the 1-cycle cocycle on C(XR2

)oR2 ∼=
(C(XR2

)oR)oR arising from the trace on C(XR2
)oR associated to an R-invariant

probability on XR2
.

The class of φω,η in HP 1(AG
P(ω)oβ0Roρ

β1R) is the image of the class of τω,η

under the composition of isomorphism

HP 1(AG
P(ω))

∼=−→ HP 0(AG
P(ω)oβ0R)

∼=−→ HP 1(AG
P(ω)oβ0Roρ

β1R).

The 3-cyclic cocycle φω,η provides a linear map

K1(AG
P(ω)oβ0Roρ

β1R)→ C; x 7→ 〈φω,η, •〉.

Recall from proposition 4.4 that G-invariant probabilities onXG
P(ω) are in one to one

correspondance with Z-invariant probabilities on Zω. Let η̂ be the probability on
Zω associated to η. On can show indeed that there is a natural choice of generator
for K1(C(XG

P(ω)) o G) coming from K1(AG
P(ω)oβ0Roρ

β1R) under the morphism
induced by the inclusion AG

P(ω)oβ0Roρ
β1R ↪→ C(XG

P(ω)) o G whose range under

〈φω,η, •〉 generates Z[η̂] def== {η̂(E), E compact open subset of Zω}. To make this
statement more precise, let us consider the Frechet algebra S(R, C(Zω)) of C(Zω)-
valued Schwartz functions on R equipped with the convolution product f ∗ g(t) =∫
f(s)g(t − s)ds for any f and g in S(R, C(Zω)) (S(R, C(Zω)) can be viewed in

fact as the smooth cross product of C(Zω) by the trivial action of R). Using the
groupoids homomorphism G = (XG

P(ω) × Zω) o R → Zω o R; (T , ω′, t) 7→ (ω′, t)
(the action of R on Zω being trivial), we see that S(R, C(Zω)) can be viewed as
a subalgebra of C(XN

P ) o R (indeed S(R, C(Zω)) is a Frechet subalgebra of the
smooth cross product of the algebra of smooth elements of C(XN

P )). Moreover,
with notations of section 4, this subalgebra is R-invariant. Let us then define the
smooth suspension of S(R, C(Zω))

Bω = {f : R→ S(R, C(Zω)) smooth and such that

f(t+ 1, ω′, s) = f(t, σ(ω′), s/2); s, t ∈ R, ω′ ∈ Zω}.

In view of lemma 7.1, the Frechet algebra Bω can be viewed as a β1-invariant
Frechet subalgebra of AG

P(ω)oβ0R. Hence, Bω oρ
β1 R is a Frechet subalgebra of

AG
P(ω)oβ0R oρ

β1 R. On can show then the following :

• The composition of inclusions

Bω oρ
β1 R ι

↪→ AG
P(ω)oβ0R oρ

β1 R ↪→ C(XG
P(ω)) oG
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induces an isomorphism

K1(Bω oρ
β1 R)

∼=−→ K1(C(XG
P(ω)) oG);

•
{〈φω,η, ι∗(x)〉; x ∈ K1(Bω oρ

β1 R)} = Z[η̂].
This can be view as an odd version of the gap labelling, the then question arising

being whether we have

{〈φω,η, x〉; x ∈ K1(AG
P(ω)oβ0R oρ

β1 R)} = Z[η̂]?
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