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RÉSUMÉ
Ce travail est une étude sur des systèmes dynamiques liés à des dynamiques minimales

sur un ensemble de Cantor. La première partie concerne la dynamique topologique des sys-
tèmes minimaux de Cantor et plus spécifiquement, le groupe d’automorphismes de Z-sous
shifts de faible complexité, les problèmes d’équivalences orbitales entre Z et Zd actions et
leurs relations avec la spectre continu. La seconde partie est dédiée à la notion plus géomé-
trique d’ensemble de Delone qui sert de modèle aux quasi-cristaux. Nous les étudions dans les
géométries euclidienne et hyperbolique. Nous nous intéressons tout particulièrement à leurs
propriétés ergodiques et géométriques ainsi qu’à l’équivalence orbitale dans ce contexte. Fi-
nalement, la dernière partie traite des propriétés des configurations minimisantes du modèle
de Frenkel-Kontorova associé à un environnement de type quasi-cristal.

ABSTRACT
This work is a study of the dynamical systems related to minimal actions on a Cantor

set. The first chapter concerns the topological dynamic of minimal Cantor systems, with
a focus on the automorphisms groups of Z subshift, the problem of topological orbit equi-
valence between Z and Zd-actions and their relations with their continuous spectrum. The
second chapter is related to the more geometrical notion of Delone set, which is a model for
quasicrystals. We study them in the Euclidean and Hyperbolic geometries. We give some
of their ergodic and geometric properties and we explore the orbital equivalence class in
this context. The final chapter provides properties on the minimizing configurations of the
Frenkel-Kontorova model associated with an environment of quasicrystal type.
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Introduction

Ce travail est une étude sur des systèmes dynamiques liés plus ou moins directement à
une dynamique minimale sur un ensemble de Cantor (système minimal de Cantor). En plus
de nous intéresser à la dynamique topologique de ces systèmes minimaux de Cantor, nous
regarderons la notion plus géométrique d’ensemble de Delone dans différentes géométries.
Ces ensembles servent de modèle aux quasi-cristaux. Finalement nous étudierons le modèle
de Frenkel-Kontorova associé à un quasi-cristal. Ces axes de recherche sont motivés par
diverses raisons.

Citons tout d’abord la découverte des quasi-cristaux en 1982 par l’équipe de D. Shecht-
man [SBGC84] qui a remis en cause un paradigme de la cristallographie. Une modélisation
de la structure d’un quasi-cristal consiste à considérer chaque atome comme un point d’un
espace euclidien. L’ensemble de ces points forme alors un ensemble de Delone. Une autre
modélisation est possible par l’intermédiaire des pavages où les atomes sont situés à l’inté-
rieur des pavés. Par exemple le quasi-cristal découvert par Schechtman et al correspond à
une version tridimensionnelle du fameux pavage de Penrose [Mac82], obtenu par une substi-
tution de type Pisot. En fait, ces deux modélisations par des pavages ou des ensembles de
points, sont équivalentes [BBG06]. Nous privilégions celle des ensembles de Delone car elle
évite de tenir compte de la géométrie des pavés qui s’avère inutile pour nos propos.

La découverte des quasi-cristaux soulève de nombreuses questions, notamment sur leur
possible classification. Il faut, au préalable, déterminer des invariants calculables à partir de
leur structure. Pour se faire, nous allons leur associer un système dynamique, appelé système
de Delone dont les propriétés sont reliées à leurs propriétés combinatoires. Inversement, la
construction d’ensembles de Delone, nous donnera une famille de systèmes dynamiques aux
comportements riches et variés. Cette relation entre la dynamique et la combinatoire est,
en fait, très classique et remonte aux origines de la théorie ergodique pour déboucher, par
exemple, à une preuve du théorème de Szemerédi par Furstenberg [Fur81]. De ce fait, l’étude
des systèmes de Delone peut être considérée comme une généralisation de la dynamique
symbolique. Comme nous le verrons dans le chapitre 2, il se trouve de plus, que les systèmes
de Delone sont intrinsèquement liés à des dynamiques sur l’ensemble de Cantor. La structure
du quasi-cristal de Schechtman incite à se concentrer tout particulièrement sur les systèmes
d’entropie nulle, comme les systèmes substitutifs.

D’autre part, le modèle de Frenkel-Kontorova est un modèle précis et notoirement connu
de la physique pour représenter la dislocation d’un cristal. Ce modèle à l’avantage d’être
simple à expliciter et universel, dans le sens où il peut modéliser une grande variété de
phénomènes physiques différents [BK04, FBGG05]. Il décrit comment une chaîne infinie
d’atomes "minimise l’énergie totale d’un système" lorsque cette énergie prend en compte les
interactions entre les proches voisins et un environnement extérieur. Quand l’environnement
est périodique, pour un cristal par exemple, les théories dites KAM faible discrète et d’Aubry-
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Mather permettent d’étudier ces configurations minimisantes. On peut donc se demander
quelles propriétés de ces configurations sont préservées dans le contexte quasi-périodique.

Ajoutons en dernier lieu, que les systèmes de Cantor sont également intéressants du
point de vue de l’équivalence orbitale où, rappelons le, deux actions de groupe G

1

y X
1

et G
2

y X
2

sont dites orbitalement équivalentes (topologiquement) s’il existe un homéo-
morphisme entre les espaces X

1

et X
2

qui envoie les G
1

-orbites sur les G
2

-orbites, les deux
groupes n’étant pas forcément isomorphes. Lorsque les espaces sont connexes, un argument
utilisant les théorèmes de Baire, nous montre que cette notion n’est pas très différente de
celle de la conjugation. À l’opposé, lorsque les espaces sont des ensembles de Cantor, ces no-
tions deviennent distinctes. De plus, il y a un nombre indénombrable de classe d’équivalence
orbitale [HPS92, GMPS10]. Ce phénomène diffère énormément de l’équivalence orbitale me-
surée (où l’on ne considère que des applications mesurées) puisque il n’existe qu’une seule
classe d’équivalence orbitale parmi toutes les actions de groupes moyennables dénombrables
[Dye59, OW80, CFW81].

En relation avec ces problématiques, nous présentons des résultats que nous avons obte-
nus dans différents articles. Ceux-ci sont cités par un numéro entre crochets (ex. [1]) alors que
les travaux d’autres auteurs sont cités par un acronyme entre crochet (ex. [AO95]). L’ordre
de présentation des résultats suit l’ordre croissant du nombre notions qu’il faut introduire
pour les énoncer.

Ainsi le chapitre 1 concerne l’étude de systèmes minimaux de Cantor. La première section
regroupe les résultats sur les Z-actions et la seconde sur des actions de groupes résiduelle-
ment finis. Nous regardons différents types d’invariants des systèmes minimaux de Cantor.
L’entropie étant largement étudiée, nous nous focalisons sur d’autres invariants qui ont été
particulièrement peu examinés, notamment pour les systèmes d’entropie nulle. En vue de gé-
néralisation aux ensembles de Delone, nos résultats concernent essentiellement la dynamique
symbolique.

Le groupe des automorphismes d’un sous-shift unidimensionnel de faible complexité est
étudié dans la section 1.1.2. Nous montrons en particulier dans [7] que ce groupe a une faible
croissance. Plus précisément, le quotient de ce groupe par celui engendré par le shift est fini
pour des sous-shifts minimaux ayant une complexité non super-linéaire, comme les sous-shifts
substitutifs. Inversement, nous montrons que n’importe quel groupe fini peut être réalisé de
cette manière. Nous construisons également un système symbolique d’entropie nulle dont le
groupe d’automorphismes est isomorphe à Zd ainsi qu’un sous-shift de complexité polyno-
miale arbitrairement grande avec un groupe d’automorphismes virtuellement isomorphe à
Z.

Un second exemple d’invariant d’un Z-système topologique (X,T ) est le spectre continu,
i.e. l’ensemble des valeurs � 2 S1 telles qu’il existe une fonction continue f : X ! S1
vérifiant f �T = �f . Les exemples typiques de systèmes substitutifs avec un spectre continu
non trivial, i.e. non faiblement mélangeant, sont donnés par les substitutions de type Pisot.
Dans la sous-section 1.1.3, nous expliquons pourquoi ces systèmes sont conjugués en mesure
à un échange de domaines euclidiens. Ce résultat, présenté dans [8], étend à n’importe
quelle substitution de type Pisot unimodulaire (sans condition combinatoire) un résultat de
Arnoux-Ito [AI01].

La sous-section 1.1.4, se rapporte aux relations entre le spectre continu d’un Z-système de
Cantor (X,T ) et sa classe d’équivalence orbitale. Nous obtenons dans [4], des restrictions sur
les possibles spectres au sein d’une même classe d’équivalence orbitale forte. Il se trouve que
les arguments des valeurs propres E(X,T ) forme un sous-groupe de l’intersection des images
du groupe de dimension de (X,T ) par toutes ses traces (noté I(X,T )). Nous montrons que
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le groupe quotient I(X,T )/E(X,T ) est sans torsion lorsque le groupe des infinitésimaux est
trivial. Ces hypothèses sont optimales pour ce résultat.

Nous considérons des sous-shifts minimaux pour des groupes résiduellement finis, éven-
tuellement non commutatifs, dans la seconde section 1.2, via une généralisation de la notion
de suite Toeplitz obtenue dans [5]. Ceci nous servira de base pour comprendre les propriétés
possibles des ensembles de Delone dans différentes géométries. Si le groupe est moyennable,
nous réalisons grâce à ces exemples, n’importe quel simplexe de Choquet de mesures de pro-
babilité invariantes par l’action [6]. En particulier, pour le groupe Zd, d � 1, nous montrons
que tout Z-système Toeplitz est orbitalement équivalent à un Zd-sous-shift, également de
type Toeplitz.

Le chapitre 2 est dédié aux ensembles de Delone. La première section présente quelques
définitions et propriétés générales sur les systèmes associés. Nous nous intéressons à ces
ensembles en géométrie euclidienne (section 2.2) et en géométrie hyperbolique (section 2.3).

La notion d’ensemble de Delone linéairement répétitif généralise celle d’ensemble substi-
tutif. Ces ensembles linéairement répétitifs possèdent de nombreuses propriétés géométriques
et dynamiques rigides (voir le survol [1]). Nous expliquons dans la sous-section 2.2.1, des
résultats obtenus dans [3] : un tel système n’a qu’un nombre fini de systèmes de Delone
apériodiques non conjugués comme facteur. De plus, chacun de ces facteurs est également
linéairement répétitif.

La sous-section 2.2.2 relève de l’étude de l’équivalence orbitale pour les systèmes de
Delone euclidiens. Un invariant est alors le groupe des homéomorphismes de l’enveloppe qui
sont homotopes à l’identité. Dans [2], nous prouvons que ce groupe est simple et ouvert dans
l’ensemble de tous les homéomorphismes. Par un profond résultat de Ben Ami et Rubin
[BAR10], nous obtenons que ce groupe est un invariant complet d’équivalence orbitale.

La notion d’ensemble de Delone trouve également une extension dans le cadre de la
géométrie hyperbolique [Pen80, MM98, Moz97]. Après avoir présenté divers exemples dans
la sous-section 2.3.1, nous expliquons des différences avec le cas euclidien. Par exemple, d’un
point de vue ergodique, nous verrons dans la sous-section 2.3.2 que les mesures invariantes
pour l’action ne sont plus associées aux mesures transverses invariantes, mais plutôt à la
notion géométrique de mesures harmoniques. Nous construisons des systèmes minimaux avec
un nombre arbitraire de mesures de probabilités harmoniques et ergodiques. Ces résultats
sont issus de mes travaux de thèses et publiés dans [13]. Du point de vue des C⇤-algèbres,
qui donnent des invariants topologiques et géométriques, il n’existe pas de traces. Chaque
mesure harmonique donne alors un cocycle 3 cyclique sur la C⇤-algèbre associée au système.
Nous donnons dans la sous-section 2.3.3 la K-théorie et la cohomologie de Čech pour une
famille d’exemples de systèmes de Delone hyperboliques que nous avons traitée dans [12].

Nos travaux sur le modèle de Frenkel-Kontorova sont décris dans le dernier chapitre. Nos
preuves utilisent les notions rappelées dans le chapitre 2. La section 3.1 traite des résultats
de [10] et se restreint au cas de la dimension 1 sous des hypothèses standard sur l’énergie
d’interaction et un environnement induit par un quasi-cristal. Nous montrons que chaque
configuration minimisante admet un nombre de rotation, que ce nombre dépend continûment
de la configuration et que tout réel positif est un tel nombre de rotation. Ceci généralise, en
partie, des résultats de [ALD83].

La dernière section est plus générale et concerne le modèle de Frenkel-Kontorova en
dimension quelconque avec un environnement presque périodique. Ceci revient à considérer
une famille d’énergie qui est stationnaire par rapport à un système dynamique minimal.
Nous introduisons alors dans [11], la notion de configuration calibrée (plus forte que celle de
configuration minimisante) et nous prouvons son existence pour certains environnements du
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système dynamique. En dimension 1, sous des conditions incluant le modèle de la section
3.1, nous montrons l’existence de ces configurations calibrées pour tout environnement dans
ce contexte.
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Chapitre 1

Étude d’actions minimales sur un

ensemble de Cantor

Tout au long de ce chapitre, nous regarderons des actions continues de divers groupes
sur un ensemble de Cantor X.

Dans la première section, nous nous restreindrons aux Z-actions minimales. Après avoir
rappelé quelques définitions de base, nous étudierons les automorphismes de sous-shifts de
faible complexité dans la sous-section 1.1.2. Nous expliquerons nos travaux sur la conjecture
Pisot dans la sous-section 1.1.3. Enfin, la sous-section 1.1.4, sera dédiée aux relations entre
le spectre continu d’un système de Cantor et sa classe d’équivalence orbitale.

La seconde partie (section 1.2) concernera principalement l’étude d’actions minimales
et libres de groupes résiduellement finis. Nous proposerons des exemples de sous-shifts, via
une généralisation des notions d’odomètre et de suite Toeplitz décrites dans les sous-sections
1.2.1 et 1.2.2 avec diverses propriétés ergodiques. Finalement la dernière sous-section traitera
de l’apport de ces constructions dans la théorie de l’équivalence orbitale.

1.1 Actions minimales de Z sur un ensemble de Cantor

1.1.1 Notations

Nous nous intéresserons dans cette partie à l’action minimale (toutes les orbites sont
denses) d’un homéomorphisme T sur un ensemble de Cantor X. Rappelons qu’un système
(Y, S) est un facteur de (X,T ) s’il existe une surjection continue ⇡ : X ! Y qui commute
avec les actions. Le système (X,T ) est alors une extension de (Y, S). Cette extension est
dite presque injective si l’application facteur ⇡ est injective sur un ensemble G

�

dense (au
sens de Baire).

Nous considérerons en particulier des sous-shifts. Ainsi ⌃ désignera un alphabet fini
et � : ⌃Z ! ⌃Z l’application shift définie par �((x

i

)
i2Z) = (x

i+1

)
i2Z. Un sous-shift est

alors le système dynamique (X,�) donné par un sous-ensemble fermé X ⇢ ⌃Z, �-invariant
(�(X) = X).

Un mot w est un élément du monoïde libre ⌃⇤ engendré par ⌃ avec l’opération de la
concaténation, i.e. w = x

1

. . . x
`

pour x
i

2 ⌃. L’entier ` � 1 est alors la longueur du mot w,
notée |w|. Le langage L(X) d’un sous-shift X est la collection des mots w (ou facteurs) de
la forme w = x

j

. . . x
j+`�1

pour une suite x = (x
i

)
i

2 X et un indice j 2 Z. Nous dirons
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que j est une occurrence du mot w dans la suite x. Nous utiliserons le même terme pour
une suite finie. La complexité du sous-shift p

X

(`) est le nombre de mots du langage L(X)
de longueur `.

Les sous-shifts minimaux sont caractérisés par le fait que pour toute suite x du sous-shift
et pour tout mot w du langage, l’ensemble des occurrences de ce mot est non vide est est rela-
tivement dense, ou, autrement dit, le mot w apparait une infinité de fois dans x et la distance
entre deux occurrences consécutives est uniformément bornée. Des exemples classiques de
sous-shifts minimaux sont donnés par des substitutions (voir [Que87] pour une introduction
détaillée sur ces systèmes). Rappelons qu’une substitution ⇠ est un morphisme sur ⌃⇤ défini
par une application ⌃ ! ⌃⇤, tel qu’il existe une lettre a 2 ⌃ vérifiant lim

k

|⇠k(a)| = +1. Il
lui est associé une matrice d’incidence M

⇠

= (m
a,b

)
a,b2⌃

où m
a,b

est le nombre d’occurences
de la lettre a dans le mot ⇠(b). Une substitution est dite primitive si sa matrice d’incidence
est primitive, i.e. une puissance de la matrice a tous ses coefficients strictement positifs. Le
système dynamique associé à ⇠ est alors le sous-shift ⌦

⇠

défini par :

{x 2 ⌃Z; tout facteur de x est un facteur de d’un certain mot ⇠n(a) avec n � 1, a 2 ⌃}.

Lorsque la substitution est primitive, il est connu que le système (⌦
⇠

,�) est linéairement
récurrent, i.e. : il existe une constante L > 1 telle que pour tout entier ` � 1, tout mot de
longueur L` du langage du sous-shift contient tous les mots de longueur ` du sous-shift. Ces
systèmes sont minimaux et uniquement ergodiques (voir [Que87, Dur00]). Les propriétés des
systèmes linéairement récurrent sont décris dans le chapitre 2 sous-section 2.2.1.

Un autre exemple classique de système symbolique est le sous-shift sturmien Il s’agit de
l’ensemble des suites qui codent une orbite de la rotation d’angle irrationnel ↵ 2 [0, 1]\(R\Q)
sur le cercle identifié à l’intervalle [0, 1[ mod 1 avec la partition {[0, 1 � ↵[, [1 � ↵, 1[}. En
d’autres termes, il s’agit de l’ensemble des suites de la forme (b(n+1)↵+�c�bn↵+�c)

n2Z 2
{0, 1}Z où � 2 [0, 1[ et b·c désigne la partie entière. Ce sous-shift a été introduit et étudié
en détail dans [MH40] où il est montré qu’il est est minimal, uniquement ergodique et est
une extension presque injective de la rotation d’angle ↵ sur le cercle. Seuls les points de
l’orbite de 0 ont plusieurs (deux) pré-images. En dehors de cette orbite, l’extension est une
conjugaison mesurée [K ur03].

1.1.2 Automorphismes de systèmes symboliques de faible complexité

Un automorphisme d’un système dynamique topologique (X,T ) est un homéomorphisme
de X qui commute avec la transformation T . Le groupe engendré par ces transformations
est noté Aut(X,T ). Il est non trivial car il contient celui engendré par l’homéomorphisme
T lui même hT i ⇢ Aut(X,T ). Une définition similaire existe dans le cadre mesurable : pour
une mesure invariante µ fixée, les automorphismes sont alors bi-mesurables et préservent
cette mesure. Le groupe qu’ils engendrent, noté C(T ) est appelé centralisateur de (X,T, µ).

L’étude du centralisateur est classique et a été largement étudié en théorie ergodique.
C’est par exemple le cas pour les systèmes mélangeant de rang finis (voir [Fer97] pour un
survol). Mentionnons quelques résultats dans ce contexte. D. Ornstein montre dans [Orn72]
que pour un système mélangeant de rang un, son centraliseur est réduit au groupe hT i. Plus
tard del Junco [dJ78] montra la même propriété pour le sous-shift de Chacon qui est de
rang un mais seulement faiblement mélangeant. Finalement pour les systèmes mélangeant
de rangs finis, King et Thouvenot [KT91] prouvèrent que le groupe quotient C(T )/hT i est
fini, ou autrement dit, les groupes C(T ) et hT i sont virtuellement isomorphes.

Dans le cadre topologique et symbolique, il semble que Hedlund [Hed69] fut le premier
à étudier groupe des automorphismes du full shift. Cette étude fut étendue aux sous-shifts
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de types finis mélangeant (ou même seulement d’entropie positive) par notamment Boyle,
Lind et Rudolph [BLR88], Kim et Roush [KR90] et Hochmann [Hoc10]. Ils montrent que
ces groupes sont gros dans le sens où ils contiennent :

— n’importe quelle somme directe dénombrable de groupe Z ou de groupes finis,
— le produit libre sur un nombre dénombrable de générateurs,
— le groupe Aut({1, . . . , n}Z,�) pour tout entier n � 1.

Un argument essentiel est alors le théorème de Curtis-Hedlund-Lyndon qui stipule que
chaque automorphisme d’un sous-shift (X,�) est donné par une fonction de bloc glissant
(sliding block codes), ou automate cellulaire. Cela implique en particulier que le groupe
Aut(X,�) est dénombrable. La réalisation de groupes passe alors par la notion de mar-
queurs.

De nombreuses questions restent ouvertes sur ces groupes pour un sous-shift en général.
Ainsi on se pose les questions de base sur les groupes, sont ils : moyennables ? sofiques ? finie-
ment engendrés ? quel est leur centre ? leurs quotients ?.... et leur relation avec la dynamique
du sous-shift. Par exemple la question suivante est toujours ouverte.

Question 1.1.1 Les groupes Aut({1, 2, 3}Z,�) et Aut({1, 2}Z,�) sont ils algébriquement iso-
morphes ?

Dans le cadre de l’entropie nulle peu de chose sont connues. Host et Parreau [HP89] ont
cependant donné des résultats remarquables pour une famille de substitutions de longueur
constante (dite bijective). Ils montrent un résultat de rigidité : les groupes C(�) et Aut(X,�)
sont identiques et sont virtuellement le groupe h�i. Durant la même période, Lemańczyk et
Mentzen [LM88] réalisent n’importe quel groupe fini comme groupe quotient C(�)/h�i pour
des systèmes substitutifs dans la classe données par Host et Parreau.

Très récemment, Cyr et Kra [KC15] ont montré que pour un sous-shift transitif avec
une complexité sous-quadratique, le groupe Aut(X,�)/h�i est de torsion, signifiant que
n’importe quel élément est d’ordre fini. Leur preuve passe par un problème de coloriage de
Z2 et utilise une version affaiblie de la conjecture de Nivat démontrée par Quas et Zamboni
[QZ04].

Dans un travail en commun avec S. Donoso, F. Durand et A. Maass [7], nous montrons
que la complexité contraint le groupe des automorphismes à être petit.

Théorème 1.1.2 ([7]) Soit (X,�) un sous-shift minimal infini. Si sa complexité vérifie

lim inf
n!1

p
X

(n)

n
< 1,

alors le groupe Aut(X,�)/h�i est fini et le cardinal de Aut(X,�)/h�i divise le nombre d’or-
bites asymptotiques.

Rappelons que les orbites des éléments x, y 2 X du sous-shift, munit d’une distance dist,
sont asymptotiques si pour un certain entier p, dist(�nx,�n+py) tend vers 0 quand n tend
vers l’infini. Combinatoirement, cela signifie que, quitte à “shifter” une des suites x, y, elles
coïncident à partir d’un certain rang. Un argument classique de Morse et Hedlund montre
qu’un sous-shift infini (apériodique) contient toujours une paire asymptotique (voir par
exemple le chapitre 1 de [Aus88]). La condition sur la complexité implique qu’il n’y a qu’un
nombre fini d’orbites asymptotiques [7]. Cette condition était déjà apparue dans une preuve
de l’excellent livre de Queffélec [Que87]. Malheureusement lors de la dernière éditon, cette
preuve disparut.
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Le théorème 1.1.2 concerne tous les sous-shifts sturmiens et les sous-shifts linéairement
répétitifs (substitutifs par exemple) car ils ont des complexités linéaires. Précisons dans le
cas sturmien, qu’il est bien connu qu’il n’existe qu’une paire asymptotique (e.g. [Dur00]).
Leur groupe d’automorphismes est donc trivial. Nous retrouvons également les résultats de
Salo et Törmä [ST16] sur les groupes d’automorphismes de substitutions de type Pisot et
nous prouvons leur conjecture.

La condition sur la complexité impose au sous-shift d’être d’entropie nulle. Pour autant
il est possible d’avoir des complexités avec une croissance sous-exponentielle arbitraire [7].
Citons, qu’au même moment, et indépendamment de nous, Cyr et Kra [CK15] ont obtenu
des résultats analogues sur la relation entre la complexité et le groupe d’automorphismes
dans [CK15]. Cependant leur preuve est plus combinatoire que la notre. Note preuve, plus
topologique, nous permet d’avoir quelques résultats pour des systèmes topologiques plus
généraux que les sous-shifts.

L’idée de notre preuve est basée sur la remarque suivante : un automorphisme pré-
serve l’ensemble des paires asymptotiques. Dans le cas minimal, si l’automorphisme fixe
une paire, c’est une puissance du shift. Ainsi le groupe des automorphismes modulo le shift
Aut(X,�)/h�i, agit librement sur l’ensemble des orbites des paires asymptotiques.

Il en ressort qu’une étude de ces paires asymptotiques nous permet d’étudier le groupe
des automorphismes et même de réaliser des exemples, qui montrent que le théorème 1.1.2
est optimal.

Théorème 1.1.3 Pour tout groupe fini G, il existe un sous-shift minimal substitutif (X,�)
tel que Aut(X,�) est isomorphe à G� Z.

Ce résultat généralise un peu ceux obtenus par Host-Parreau et Lemańczyk-Mentzen. En
outre, nous en donnons une preuve directe. Ajoutons que dans le cas substitutif, il existe
un algorithme pour déterminer les paires asymptotiques [BD01] et donc on peut espérer un
algorithme pour déterminer le groupe Aut(X,�)/h�i pour un sous-shift substitutif.

Peu de résultats sont connus quant à la réalisation de groupes d’automorphismes pour
des sous-shifts de faible complexité. Nous laissons donc la question suivante ouverte.

Question 1.1.4 Étant donné un groupe dénombrable G (pas nécessairement finement en-
gendré). Existe-t-il un sous-shift qui admette ce groupe comme groupe d’automorphismes ?

Au delà du cas du théorème 1.1.3, nous ne savons réaliser que le groupe Zd, pour tout
d � 1, comme groupe d’automorphismes [7]. La difficulté n’étant pas de donner un exemple
contenant Zd mais dont le groupe est exactement isomorphe à Zd. À l’inverse, si le système a
une récurrence polynomiale, nous savons que le groupe des automorphismes a également une
croissance polynomiale (théorème 3.8 [7]). Il s’agit donc d’un groupe virtuellement nilpotent
par un résultat célèbre de Gromov. Ces exemples nous poussent à proposer la question
suivante qui genéraliserait le théorème 1.1.2.

Question 1.1.5 Soit (X,�) un sous-shift minimal tel que

d = inf{� 2 N; lim inf
n

p
X

(n)/n� < +1} > 0.

Est il vrai que Aut(X,�) est virtuellement isomorphe à Zk pour 0 < k  d ?

La dynamique et en particulier les facteurs des systèmes contraignent également le groupe
des automorphismes. Pour un groupe G, on note par [f, g] = fgf�1g�1 le commutateur de
f, g 2 G. On définit, par récurrence, la suite de sous-groupe de commutateurs G

1

= G et
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G
i+1

engendré par les commutateurs [G
i

, G], i � 1. Un groupe est alors dit nilpotent de
classe d si G

d

est trivial. Lorsque G est un groupe nilpotent de classe d, un nilsystème de
classe d est donné par un sous-groupe discret � ⇢ G cocompact et une translation à droite,
R

g

: x 7! xg telle que le système (G/�, R
g

) soit minimal. Nous obtenons, dans ce contexte,
le résultat suivant.

Théorème 1.1.6 ([7]) Soit (X,�) une extension presque injective d’un nilsystème de classe
d (G/�, R

g

). Alors Aut(X,�) est un groupe nilpotent de classe au plus d et est un sous-groupe
de Aut(G/�, R

g

).

Ainsi pour un système Toeplitz (cf section 1.2.2), qui est une extension presque injective
d’un odomètre, i.e. une translation sur un groupe abélien (nilpotent de classe 1), son groupe
d’automorphismes est abélien et est un sous-groupe des automorphismes de son facteur
équicontinu maximal.

Ajoutons, qu’en construisant des extensions symboliques presque injectives de nilsys-
tèmes, nous obtenons à partir de ce théorème des systèmes symboliques de complexité poly-
nomiales arbitrairement grande avec un groupe d’automorphismes virtuellement isomorphe
à Z [7].

Le théorème 1.1.6 se prouve en utilisant une remarque similaire sur les paires asymp-
totiques : le groupe des automorphismes préserve l’ensemble des paires proximales, i.e. les
paires de points x, y 2 X tels que lim inf

n!1

dist(�nx,�ny) = 0. Rappelons qu’un résultat
classique (voir par exemple lemme 2.1 dans [7]) assure que les fibres d’extensions presque in-
jectives de systèmes minimaux donnent des paires proximales. Ceci nous permet de montrer
que chaque automorphisme se factorise via l’application facteur. La conclusion vient ensuite
de l’étude des automorphismes de nilsystèmes.

1.1.3 Sur la conjecture Pisot

Un approche classique, initiée par par Hadamard [Had98] et Morse [Mor21], pour étudier
une dynamique géométrique, comme l’étude d’un difféomorphisme d’une variété, consiste
à coder sa dynamique par un sous-shift via une partition de Markov. Cette dynamique
symbolique est en général plus simple à étudier. Dans son papier fondateur, Rauzy [Rau82]
prend le problème sous la vision inverse : étant donné un sous-shift, peut-on lui associer
une représentation géométrique ? Comme un ensemble de Cantor n’est pas homéomorphe à
une variété, la "représentation géométrique" s’entend par une conjugaison en mesure. Par
exemple Rauzy considére dans [Rau82] le sous-shift associé à la substitution de Tribonacci

⌧ : 1 7! 12, 2 7! 13 et 3 7! 1.

Il montre que ce système est conjugué en mesure à une rotation minimale sur le tore T2. Plus
tard, Arnoux et Rauzy [AR91] montrèrent qu’un sous-shift dont la complexité est 2n + 1
et satisfait une condition combinatoire appelée Condition (*) (condition satisfaite par le
sous-shift associé à ⌧) est mesurablement conjugué à un échange de 3 intervalles.

La propriété fondamentale utilisée par Rauzy dans [Rau82] est que la substitution de
Tribonacci ⌧ est une substitution de type Pisot.

Définition 1.1.7 Soit ⇠ une substitution primitive et P
⇠

le polynôme caractéristique de sa
matrice d’incidence M

⇠

. La substitution est dite de type Pisot si le polynôme P
⇠

admet a
une racine dominante � > 1 et les autres racines �0 vérifient 0 < |�0| < 1.
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Rappelons qu’une substitution ⇠ est dite unimodulaire lorsque detM
⇠

= ±1.
Ainsi pour une substitution de type Pisot, la valeur propre de Perron de M

⇠

est alors un
nombre Pisot-Vijayaraghan, i.e. : tous ses conjugués algébriques sont de module strictement
plus petit que 1.

Remarquons que le fait d’être Pisot ne dépend pas de la combinatoire de la substitution,
mais uniquement de son abélianisé M

⇠

et que toute puissance d’une substitution de type
Pisot est encore de type Pisot. Ainsi à partir d’une substitution de type Pisot, comme ⌧ ,
il est possible de créer d’autres substitutions de type Pisot en prenant des puissances de ⌧
puis en permutant les lettres, comme par exemple pour la substitution 1 7! 1123, 2 7! 211
et 3 7! 21.

Les résultats de Rauzy ont donné lieu à la conjecture (encore ouverte) suivante :

Conjecture 1.1.8 (Conjecture Pisot) Le sous-shift engendré par une substitution de type
Pisot a un spectre purement discret, i.e., est conjugué en mesure à une translation sur un
groupe.

Ajoutons également que cette conjecture implique un résultat de rigidité : tous les systèmes
substitutifs de type Pisot, avec la même matrice d’incidence, sont mesurablement conjugués.
Beaucoup de travaux se sont focalisés sur cette conjecture. La stratégie classique reprend celle
initiée par Rauzy dans [Rau82] : on essaye de montrer que le système substitutif est conjugué
en mesure à un échange de domaines (voir définition 1.1.9). Puis on prouve que cet échange
de domaines, qui a une structure géométrique, est conjugué en mesure à une translation sur
un groupe. Précisons tout d’abord ce que l’on entend par échange de domaines.

Définition 1.1.9 Nous appelons échange de domaines le système dynamique mesurable
(E,B,Leb, T ) où E est un compact régulier ⇤ d’un espace euclidien, Leb désigne la mesure
de Lebesgue normalisée sur E et B la tribu borélienne de E telle que

— Il existe des compacts réguliers E
1

, . . . , E
n

tels que E = E
1

[ · · · [ E
n

.
— Les ensembles E

i

sont disjoints en mesure.
— Leb(T (E)) = Leb(E).
— Pour chaque indice i, l’application T restreint à E

i

est une translation telle que
T (E

i

) ⇢ E.

Des résultats classiques en théorie de la mesure assurent que pour un échange de domaines,
l’application T est injective en dehors d’un ensemble de mesure nulle et que l’application T�1

est mesurable Un échange de domaines est dit auto-affine, s’il existe un nombre fini d’appli-
cations affines f

1

, . . . , f
`

, partageant la même partie linéaire, telles que E =
S

`

i=1

f
i

(E).
Un premier résultat important dans le sens de la conjecture, est dû à Host [Hos86a]

qui démontre que n’importe quelle fonction propre d’un système substitutif primitif est
continue. Il montre également dans un papier non publié mais très cité, que la conjecture
Pisot est vraie pour les substitutions unimodulaires sur un alphabet à deux lettres lorsqu’une
condition combinatoire, appelée condition de forte coïncidence, est satisfaite. Cette condition
apparaissait déjà dans [Dek78]. Barge et Diamond [BD02] montrèrent ensuite que n’importe
quelle substitution de type Pisot sur un alphabet à deux lettres vérifiant cette condition.
La conjecture Pisot est donc vraie dans ce cas [HS03]. En suivant la stratégie de Rauzy,
mais par une approche différente de celle de Host, Arnoux et Ito dans [AI01], associent
à chaque substitution unimodulaire, un échange de domaine auto-affine appelé fractal de
Rauzy. Ils prouvèrent que cet échange de domaine est mesurablement conjugué au système
substitutif à condition que la substitution satisfasse une condition combinatoire. Peu de

⇤. un compact est dit régulier s’il est égal à la fermeture de son intérieur.
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temps après, Canterini et Siegel généralisent les résultats de Host à toutes les substitutions
Pisot unimodulaires [CS01], et non unimodulaires dans [Sie03, Sie04], mais sans supprimer
la condition de forte coïncidence. Ces résultats ont conduit à une énorme quantité de travaux
pour étudier les fractals de Rauzy (voir [Fog02] et ses références).

Dans un travail en commun avec F. Durand [8], nous généralisons des résultats de [AI01]
et [CS01], en supprimant la condition combinatoire : n’importe quel système substitutif de
type Pisot unimodulaire est conjugué en mesure à un échange de domaine auto-affine.

Théorème 1.1.10 ([8]) Soit ⇠ une substitution unimodulaire de type Pisot sur d lettres
et (⌦, S) le sous-shift associé. Alors il existe une transformation d’échange de domaines
auto-affine (E,B,Leb, T ) dans Rd�1 et une application continue F : ⌦ ! E qui est une
conjugaison mesurable entre les deux systèmes.
De plus, en notant ⇡ : Rd�1 ! Rd�1/Zd�1 la projection canonique :

— il existe une application linéaire N telle que F � ⇠ = N � F .
— L’application ⇡ � F définit un facteur entre le système (⌦, S) est une translation
minimale sur le tore Rd�1/Zd�1.

— Il existe un entier r � 1 tel que presque toute fibre de ⇡ � F est de cardinal fini r.

La translation minimale est explicitement décrite dans [CS01, Fog02]. Pour montrer la
conjecture Pisot, il reste encore à montrer que cet échange de domaine est conjugué à la
translation minimale sur le tore, ou encore que la constante r = 1. Précisons que l’échange
de domaine n’est pas, a priori, le fractal de Rauzy classique associé à ⇠ car, à la différence
de [AI01, Hos92], la matrice N n’est pas forcément identique à une restriction de la ma-
trice d’incidence M

⇠

. De plus notre construction diffère assez nettement de la construction
géométrique de [AI01].

Pour éviter les problèmes classiques de combinatoire, notre stratégie a été, tout d’abord,
de modifier la substitution : en utilisant la notion de mots de retours, la combinaison des
résultats de [Dur98a, Dur98b, DHS99] montrent que le système substitutif est conjugué
à un système avec une substitution propre, i.e. ayant des propriétés combinatoires sympa-
thiques, comme celle de forte coïncidence. Malheureusement cette nouvelle substitution peut
posséder, en plus des valeurs propres originales, les valeurs 0 et 1. Nous prouvons ensuite
qu’un système substitutif avec un spectre dynamique non trivial se factorise sur un échange
de domaines, grâce à une approximation des fonctions propres donnée dans [BDM05]. Une
troisième étape consiste finalement à montrer la conjugaison mesurée lorsque le système
substitutif a suffisament de valeurs propres. Ces résultats combinés nous donnent alors le
théorème 1.1.10. Cette troisième étape suit le même schéma de preuve que dans [CS01] mais
sans utiliser les propriétés standard d’irreducibilité de la substitution. Nous utilisons de façon
essentielle que le nombre de valeurs propres dynamiques multiplicativement indépendantes
est égal à

P
0<|�|<1

dimE
�

où E
�

désigne l’espace caractéristique associé à la valeur propre
� de la matrice d’incidence de la substitution.

Cette condition nous permet d’espérer de pouvoir étendre ces résultats à une classe plus
grande de substitutions, comme celle de type Salem, où la valeur propre de Perron est un
nombre de Salem et les autres valeurs propres ont un module inférieur à 1. Malheureusement
nous ne connaissons pas de substitution de ce type ayant suffisamment de valeurs propres,
même si a priori les restrictions arithmétiques de [FeMN96b] ne l’empêchent pas.

Une autre possibilité d’extension de ces résultats serait également dans le cadre linéaire-
ment répétitif. Une première classe d’exemples dans ce sens a été réalisée dans [BJS12].
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1.1.4 Équivalence orbitale forte et valeurs propres

Des systèmes dynamiques sont orbitalement équivalents s’il existe une bijection entre
leurs espaces de phases préservant leur structure (mesurée, topologique, ...) et envoyant
chaque orbite sur une orbite. Cette notion est apparue tout d’abord dans le contexte des
actions de groupes préservant une mesure de probabilité (on parle dans ce cas d’équiva-
lence orbitale mesurable) lors de l’étude des algèbres de Von Neuman [MVN36]. Un résultat
notable de cette théorie est qu’il n’existe qu’une seule classe d’équivalence orbitale parmi
toutes les actions de groupes moyennables [Dye59, OW80]. Motivés par ces résultats et la
caractérisation de l’équivalence orbitale en termes d’algèbres de Von Neumann, Giordano
Putnam et Skau ont obtenu un des résultats les plus importants dans ce contexte : les classes
d’équivalences orbitales topologiques de Z-action minimale sur un ensemble de Cantor sont
caractérisées par le groupe K

0

de la C⇤-algèbre associée [GPS95] .
Plus précisément, deux Z-systèmes minimaux de Cantor (X,T ) et (Y, S) sont orbita-

lement équivalents (topologiquement) ou OE, s’il existe un homéomorphisme F : X ! Y
envoyant les orbites de T sur celles de S. Cela signifie qu’il existe des fonctions ↵ : X ! Z
et � : X ! Z telles que

F (Tx) = S↵(x)F (x) et F (T �(x)x) = SF (x), 8x 2 X.

Lorsque ces fonctions ↵ et � sont continues, Boyle dans [Boy83] démontre que les systèmes
sont alors flip conjugués, i.e. le système (X,T ) est conjugué soit à (Y, S) soit à (Y, S�1). Si
les fonctions ↵ et � admettent au plus un point de discontinuité, on dit alors que les systèmes
(X,T ) et (Y, S) sont fortement orbitalement équivalents (ou Strongly Orbit Equivalent SOE).
Cette notion est en fait une relation d’équivalence sur les systèmes minimaux de Cantor.

Rappelons comment est défini l’invariant total d’équivalence orbitale : le groupe K0.
Notons par H(X,T ) le groupe quotient C(X,Z)/hf�f �T, f 2 C(X,T )i, où C(X,Z) désigne
l’ensemble des fonctions continues sur X à valeurs dans Z et hf � f � T, f 2 C(X,T )i son
sous-groupe engendré par les cobords du sytèmes (X,T ). La classe d’une fonction f sera
notée [f ]. Nous définissons le cône positif H+(X,T ) par l’ensemble {[f ]; f 2 C(X,N)}. Le
triplet

K0(X,T ) = (H(X,T ), H+(X,T ), [1])

est un groupe ordonné ([f ] � [g] ssi [f � g] 2 H+(X,T )) unitaire, d’unitée [1] : la classe de
la fonction constante égale à 1. Algébriquement, K0(X,T ) est un groupe de dimension (voir
[Eff81]). Nous dirons que deux groupes de dimension sont isomorphes s’ils sont isomorphes
et l’isomorphie préserve les cônes positifs et les unités.

Le groupe des infinitésimaux est alors le sous-groupe Inf(K0(X,T )) = {[f ];
R
fdµ =

0 pour toute mesure de probabilité T -invariante}. Le triplet quotient
K0(X,T )/Inf(K0(X,T )) est :

(H(X,T )/Inf(K0(X,T )), H(X,T )+/Inf(K0(X,T )), [1] mod Inf(K0(X,T ))).

Il forme également un groupe de dimension.

Théorème 1.1.11 ([GPS95]) Soient (X,T ) et (Y, S) deux systèmes minimaux de Cantor.
Alors, les systèmes (X,T ) et (Y, S) sont SOE si et seulement si leur groupe de dimension
K0(X,T ) et K0(Y, S) sont isomorphes en tant que groupe de dimension.
Les systèmes (X,T ) et (Y, S) sont OE si et seulement si les groupes K0(X,T )/Inf(K0(X,T ))
et K0(Y, S)/Inf(K0(Y, S)) sont isomorphes en tant que groupe de dimension.
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Ajoutons que le groupe K0(X,T ) est totalement explicite lorsque l’on peut décrire le système
minimal en terme de diagramme de Bratteli [HPS92, DHS99], comme par exemple pour un
système substitutif. On obtient ainsi le fait contre-intuitif, qu’un sous-shift sturmien (X,�)
est OE au système minimal (X,�2).

Il en ressort également que l’on peut construire une infinité indénombrable de groupes
de dimension K0(X,T ), et donc une infinité de classes d’équivalence orbitale. Ceci est très
différent du cadre mesurable où tous les Z-systèmes sont équivalents entre eux.

Il est alors naturel de se demander quelles sont les propriétés dynamiques préservées au
sein d’une même classe d’équivalence orbitale (forte ou pas). Par exemple dans [HPS92],
un isomorphisme affine est construit entre l’ensemble des traces du groupe de dimension
K0(X,T ) et l’ensemble M(X,T ) des mesures de probabilités invariantes par l’action. Ainsi
le simplexe des mesures de probabilité invariantes d’un système est un invariant de SOE.
À l’inverse, l’entropie n’est pas un invariant de SOE, car à l’intérieur d’une même classe, il
est possible de construire un exemple de système avec une entropie arbitraire (finie ou non)
[BH94, Orm97, Sug03].

Concernant le spectre continu du système dynamique, moins de choses sont connues.
Ormes, dans [Orm97] démontre notamment, que le groupe des valeurs propres racines de
l’unité est un invariant de SOE, mais pas de OE. Il montre, de plus, qu’à l’intérieur d’une
classe d’OE fixée, il est possible de réaliser n’importe quel groupe dénombrable du cercle
(éventuellement trivial) comme groupe de valeurs propres mesurables.

Dans [IO07, CDHM03], est apparue une restriction sur le groupe additif des valeurs
propres continues E(X,T ) = {↵ 2 R; exp(2i⇡↵) est une valeur propre continue de (X,T )}.
C’est un sous-ensemble de l’image du groupe K0(X,T ) par ses traces :

E(X,T ) ⇢ I(X,T ) :=
\

µ2M(X,T )

⇢Z
fdµ; f 2 C(X,Z)

�
.

Ce résultat peut être vu comme une version similaire des résultats de Schwartzman sur
les cycles asymptotiques [Sch57], mais transposés dans le cas d’ensembles de Cantor (voir
également [Pac86, Exe87]).

Dans un travail en commun avec M.I. Cortez et F. Durand, nous montrons la restriction
suivante sur le spectre continu.

Théorème 1.1.12 ([4]) Soit (X,T ) un système minimal de Cantor sans infinitésimaux,
i.e. InfK0(X,T ) = {[0]}. Alors le groupe quotient I(X,T )/E(X,T ) est sans torsion.

Pour illustrer ce résultat, prenons le cas où K0(X,T ) = Z + ↵Z = I(X,T ) avec ↵ un
nombre irrationnel, comme c’est le cas, par exemple, pour un sous-shift sturmien. Le seul
sous-groupe propre de Z + ↵Z sans torsion étant le groupe Z, le théorème implique que
n’importe quel autre système (Y, S) SOE à (X,T ), admet comme groupe additif de valeur
propre E(Y, S) soit le groupe Z + ↵Z (c’est le cas pour un système sturmien), soit admet
le groupe Z. Il est alors topologiquement faiblement mélangeant (c’est le cas donné par les
réalisations de Ormes [Orm97]). Mentionnons, que des résultats similaires ont été obtenus
par Giordano, Handelman et Hosseini [GHH].

Précisons également que l’hypothèse sur les infinitésimaux est optimale. En effet, si
(X,�) désigne un sous-shift sturmien, le système (X,�2) est également minimal, admet
la même mesure de probabilité invariante que (X,�), admet des infinitésimaux (donné par
des corbords pour � qui ne sont pas des cobords pour �2), et il est standard de vérifier que
I(X,�2) = I(X,�) = Z+ ↵Z alors que E(X,�2) = Z+ 2↵Z.
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Nous donnons en outre, dans [4], un exemple où le groupe quotient I(X,T )/E(X,T ) a
de la torsion et qui montre que le groupe d’automorphismes Aut(X,T ) (voir la section 1.1.2)
n’est pas invariant dans la classe d’OE.

La preuve du théorème 1.1.12 passe par les partitions de Kakutani-Rohlin et leurs des-
criptions en terme de diagrammme de Bratteli-Vershik. Comme dans la section 1.1.3, une
description fine des fonctions propres continues à partir du diagramme nous permet de don-
ner des conditions arithmétiques sur les valeurs propres additives au sein du groupe E(X,T ).

En paraphrasant ce théorème, nous obtenons, pour (X,T ) un système minimal de Cantor
sans infinitésimaux, que l’ensemble {E(Y, S); (Y S) système minimal de Cantor SOE à (X,T )}
est inclu dans

{� sous-groupe dénombrable de I(X,T );Z ⇢ �, I(X,T )/� est sans torsion}.

On se demande alors si, en fait, ceci caractérise complètement les sous-groupes de valeurs
propres au sein d’une même classe d’équivalence orbitale. Nous obtenons seulement une
réponse partielle, grâce à un résultat de réalisation de Sugisaki [Sug11].

Proposition 1.1.13 ([4]) L’inclusion précédente est une égalité si et seulement si : pour
tout sous-groupe dénombrable dense � ⇢ R contenant Z, il existe un système de Cantor
minimal (X,T ) tel que E(X,T ) = � et K0(X,T ) ' (�,� \ R+, 1).

Techniquement, pour réaliser la condition de cette proposition avec des diagrammes de
Bratteli, il nous est nécessaire d’avoir une bonne vitesse d’approximation (de type sommable)
de vecteurs définis par � par une suite de matrices à coefficients entiers. Malheureusement,
nous n’avons pas trouvé de résultats d’approximation satisfaisant ces conditions.

1.2 Actions minimales de groupes résiduellement finis
Peu d’exemples et de résultats sont connus pour les actions continues et libre de groupes

non commutatifs sur des ensembles de Cantor. Il se trouve que cette première base est
nécessaire pour se forger une intuition pour l’étude d’ensembles de Delone dans différentes
géométries. Une classe d’exemples de sous-shifts qui puisse s’étendre assez facilement à des
groupes plus généraux que Z sont les sous-shifts Toeplitz. Nous verrons qu’ils fournissent
une riche classe de dynamiques, tout particulièrement pour l’équivalence orbitale.

Les Z-sous-shifts Toeplitz ont été introduits par Jacobs et Keane [JK69] en adaptant une
technique de Toeplitz [Toe28] pour créer des fonctions presque périodiques (au sens de H.
Bohr) explicites. Du fait de leur nature arithmetico-combinatoire, cette famille de Z-sous-
shifts a fourni de nombreux exemples de Z-actions minimales avec des propriétés ergodiques
et dynamiques intéressantes et a été largement étudiée [GJ00, Dow05]. Citons notamment
Williams [Wil84], qui utilise ces sous-shifts pour créer une Z-action minimale mais possédant
une infinité non dénombrable de mesures de probabilité ergodiques invariantes. Généralisant
ce résultat, Downarowicz [Dow91] montre l’existence d’un tel sous-shift dont le simplexe des
mesures de probabilité invariantes est affinement homéomorphe à un simplex de Choquet
arbitraire. Le spectre continu des sous-shifts Toeplitz est bien compris car on sait décrire
explicitement leur facteur équicontinu maximal : c’est un odomètre [MP79] (mais voir [DL98]
pour une preuve). Plus précisément, Downarowicz et Lacroix caractérisent les sous-shifts
Toeplitz comme étant les systèmes symboliques qui sont des extensions presque injectives
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d’odomètres [DL98]. De plus n’importe quel entropie finie peut être réalisée par un sous-
shift Toeplitz [K ur03]. Il est également possible de réaliser topologiquement diverses autres
propriétés ergodiques par ces systèmes Toeplitz [Dow97].

Dans cette section, nous généraliserons la notion de suite Toeplitz à une classe plus large
de groupe et nous étendrons quelques propriétés connues à ces actions. Pour cela, il nous
faudra tout d’abord généraliser la notion d’odomètre aux groupes résiduellement finis (sous-
section 1.2.1), puis voir les propriétés relatives des suites Toeplitz dans la sous-section 1.2.2.
Nous verrons finalement l’apport de ces exemples dans la théorie de l’équivalence orbitale
dans la sous section 1.2.3.

1.2.1 Groupes résiduellement finis et odomètres

Un groupe au plus dénombrable G est dit résiduellement fini s’il existe une suite �
1

�
· · · � �

n

� �
n+1

� · · · de sous-groupes de G d’indices finis telle que leur intersection soit
triviale : \

n�1

�
n

= {e}, (1.2.1)

où e désigne l’élément neutre de G.
Bien évidement un groupe fini est résiduellement fini. Un premier exemple infini est

le groupe des entiers Z, avec la suite de groupes �
n

= n!Z. Plus généralement, un résultat
classique de Mal’cev [Mal39], assure que pour tout corps K de caractéristique nulle, n’importe
quel groupe finiment engendré de GL

n

(K) est résiduellement fini. En particulier, le groupe
libre F

n

et le groupe des tresses B
n

engendrés par n éléments sont résiduellement finis.
Dans la suite, nous supposerons que G est un groupe dénombrable, finiment engendré et
résiduellement fini.

Pour un tel groupe, il existe ainsi des projections canoniques ⇡
n

: G/�
n+1

! G/�
n

sur
les ensembles de classes à droites. Nous appelons G-sous-odomètre ou adding machine associé
à la suite (�

n

)
n

, la limite projective suivante :

 �
G = lim �(G/�

n

,⇡
n

) = {(x
n

)
n

2
1Y

n=1

G/�
n

; ⇡
n

(x
n+1

) = x
n

8n � 1}.

On munit chaque ensemble fini G/�
n

de la topologie discrète, et
 �
G est un sous-ensemble

compact de
Q

1

n=1

G/�
n

pour la topologie produit. Le groupe G agit continûment par multi-
plication à gauche sur

 �
G : pour h 2 G et (g

n

)
n

2  �G , h.(g
n

)
n

:= (h
.n

g
n

)
n

où h
.n

· désigne la
multiplication à gauche par l’élément h dans G/�

n

. Cette action généralise l’odomètre usuel
(pour le groupe Z) puisqu’on peut montrer qu’une telle action est équicontinue et minimale
sur un ensemble de Cantor [5]. Ajoutons que deux suites de sous-groupes emboîtés (�

(1)

n

)
n

(�
(2)

n

)
n

, donnent des sous-odomètres aux dynamiques différentes dès que �
(2)

1

n’est inclus
dans aucun groupe �

(1)

n

. Il est donc facile d’en créer un nombre indénombrable.
Une subtilité apparait dans le contexte non commutatif. En effet, lorsque les groupes

�
n

sont normaux, les quotients G/�
n

ont une structure de groupe et
 �
G également. Nous

appelons alors
 �
G un odomètre. Du fait la relation (1.2.1), G est un sous-groupe de

 �
G et

son action correspond à la multiplication sur
 �
G , elle est donc libre : le stabilisateur de tout

point est trivial. Réciproquement, n’importe quel groupe topologique homéomorphe à un
ensemble de Cantor est un odomètre [Ser63, Proposition 0]. Par des résultats classiques, on
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peut aussi montrer que n’importe quel sous-odomètre est le quotient d’un odomètre par un
sous-groupe fermé [5].

Ajoutons que les valeurs propres mesurables d’un sous-domètre
 �
G = lim �(G/�

n

,⇡
n

), sont
les caractères � : G! S1 telles que �(�) = 1, 8� 2 �

n

[5].

1.2.2 Sous-shift Toeplitz

Pour un alphabet fini ⌃, l’action à gauche du shift � : G y ⌃G sur l’ensemble des
fonctions x : G ! ⌃, est défini pour g 2 G par �g(x)(h) = x(g�1h), pour tout h 2 G.
Lorsque ⌃ est muni de la topologie discrète, ⌃G est un ensemble de Cantor et l’action du
shift est continue. Comme pour le cas de Z, un sous-ensemble fermé X ⇢ ⌃G invariant par
l’action du shift est appelé sous-shift.

Définition 1.2.1 Une suite x 2 ⌃G est dite Toeplitz si pour tout indice g 2 G, il existe un
sous-groupe d’indice fini � ⇢ G tel que ��(x)(g) = x(��1g) = x(g), pour tout � 2 �.

00 0

0

0

00

0 0

0

0 0

0

00

0 0

0 0

0 0

Figure 1.1 – Étape 1. On colorie e par 0 puis on prolonge par �
1

-périodicité où �
1

=
ha3, b3, aba�1, a�1ba, bab�1, b�1abi et a, b désignent des générateurs du groupe libre F

2

.

Le lecteur attentif remarquera que si l’on permute l’ordre des quantificateurs, on obtient
la définition de suite périodique pour un sous-groupe d’indice fini. Étant donné une suite
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0 11

1

1

0 0

0

0

00

0 0

0

0 0

0

0
1

0
1

01 0 1

01 0 1

0
1

0
1

Figure 1.2 – Étape 2. On complète par 1 la coloration du domaine fondamental de �
1

puis
on prolonge par �

2

-périodicité pour un certain groupe �
2

⇢ �
1

.

décroissante de sous-groupe (�
n

)
n

d’indices finis et d’intersection triviale, il est possible de
construire une suite croissante de domaines fondamentaux finis D

n

pour G/�
n

de sorte queS
n

D
n

= G et chaque D
n+1

est une union de translatés de D
n

. On construit alors par
récurrence une suite Toeplitz de la façon suivante : à l’étape n, on choisit arbitrairement
x
|Dn

(pour les indices non encore définis) puis on prolonge par �
n+1

-périodicité : pour tout
� 2 �

n+1

, h 2 D
n

, on pose x(�h) := x(h) (voir les figures 1.1 et 1.2).
Un G-sous-shift Toeplitz X est l’adhérence d’une orbite, par l’action du shift, d’une

suite Toeplitz {�g(x); g 2 G}. La G-action restreinte à ce sous-shift est alors régulièrement
récurrent, dans le sens où pour tout voisinage V de x, il existe un sous-groupe � ⇢ G d’indice
fini tel que ��(v) 2 V pour tout � 2 � [Kri06, 5]. Cette condition est plus forte que la presque
périodicité et assure donc que l’action de G est minimale sur ce sous-shift [Aus88]. Nous
dirons que la restriction de l’action du shift sur le sous-shift X est fortement régulièrement
récurrent s’il existe un voisinage W arbitrairement petit de x tel que {� 2 G;��(x) 2 W}
est un sous-groupe normal de G d’indice fini. Bien évidemment cette condition implique la
récurrence régulière.

Dans un travail en commun avec M. I. Cortez, nous caractérisons les sous-shifts qui sont
des extensions presque injectives de sous-odomètres en étendant au contexte non commutatif
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les résultats de [DL98, Cor06]. Rappelons que le système (X,G) est une extension presque
injective du système (

 �
G,G) s’il existe une application continue ⇡ : X ! �G surjective, com-

mutant avec les actions, telle que ⇡ est injective sur un ensemble G
�

-dense (au sens de Baire).

Théorème 1.2.2 ([5]) Un sous-shift minimal (X,G) est une extension presque injective
d’un sous-odomètre (resp. un odomètre) (

 �
G,G) par ⇡ si et seulement si X est un G-sous-

shift Toeplitz (resp. fortement régulièrement récurrent).
De plus l’ensemble des points d’injectivité de ⇡ est l’ensemble des suites Toeplitz de X.

Ce théorème implique en particulier que le facteur équicontinu maximal d’un sous-shift Toe-
plitz est un sous-odomètre

 �
G [Aus88]. Ces systèmes partagent donc le même spectre continu.

En fait, nous pouvons être beaucoup plus précis, et caractériser exactement l’odomètre en
fonction de la combinatoire d’une suite Toeplitz. Il en ressort le théorème d’existence sui-
vant :

Théorème 1.2.3 ([5]) Pour tout sous-odomètre
 �
G , il existe une suite Toeplitz x 2 {0, 1}G

telle que (
 �
G,G) est le facteur équicontinu maximal du G-sous-shift Toeplitz associé à x.

Citons également le travail de Krieger [Kri06] qui, lorsque le groupe G est moyennable,
réalise n’importe quelle entropie par un sous-shift Toeplitz.

1.2.3 Équivalence orbitale pour les sous-shifts Toeplitz

Nous considérons ici le cas d’un groupe G résiduellement fini, finiment engendré et moyen-
nable. Ainsi chaque action continue de G sur un espace métrique compact admet une mesure
de probabilité invariante. Le théorème 1.2.2 peut faire penser que les sous-shifts Toeplitz et
les odomètres ont des dynamiques très proches. Nous montrons, en fait, qu’il n’en est rien
dans le contexte mesuré. Il est possible de réaliser n’importe simplexe (raisonnable) de me-
sures de probabilité invariantes par l’action du shift sur un sous-shift Toeplitz.

Théorème 1.2.4 ([6]) Pour tout simplexe de Choquet K et n’importe quel odomètre
 �
G , il

existe un G-sous-shift Toeplitz X qui est une extension presque injective de (
 �
G,G) et dont

l’ensemble des mesures de probabilité invariantes est affinement homéomorphe à K.

Ce résultat généralise celui de Downarowicz [Dow91] au cadre non commutatif moyen-
nable. Une grande différence est que notre preuve est constructive. Elle repose sur une
description de la dynamique par une partition à la Kakutani-Rohlin à l’aide d’une suite de
Følner (F

n

)
n

. Nous construisons une telle suite avec une propriété combinatoire : il en existe
une de sorte qu’à chaque étape, F

n+1

est pavable par des translatés de F
n

et chaque F
n

est
un domaine fondamental pour le groupe �

n

(voir également [Wei01]). Nous en déduisons
que pour une suite de matrices d’incidences (M

n

)
n

vérifiant des conditions arithmétiques
données par la suite de nombres (card F

n+1

/card F
n

)
n

, il existe une suite Toeplitz dont
le remplissage à l’étape n est “contrôlé” par la matrice M

n

. Nous obtenons le résultat en
décrivant le simplexe K par une limite inverse de simplexes de dimensions finies, ce qui nous
donne les matrices d’incidences.

Une autre conséquence de notre construction arrive dans le contexte de l’équivalence
orbitale. Suite à de nombreux travaux Giordano, Matui, Putnam et Skau [GMPS10] montrent
que pour toute Zd-action (X,Zd) minimale sur un ensemble de Cantor, il existe une Z-
action (Y, S) minimale sur un Cantor qui lui est orbitalement équivalente, i.e. il existe un
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homéomorphisme de X ! Y préservant les orbites des systèmes. Dans ce contexte, le groupe
de dimension modulo les infinitésimaux (définition similaire à celle de la section 1.1.4) est
également un invariant total de l’équivalence orbitale [GMPS10].

Ce résultat est similaire à ceux de [OW80, CFW81] dans le contexte mesuré. Cependant,
on ne sait toujours pas s’il peut s’étendre à n’importe quelle action minimale sur un Cantor
d’un groupe dénombrable moyennable. À l’opposé, on sait que le même résultat est faux
pour des groupes libres puisque Gaboriau [Gab00] a montré que si des actions des groupes
libres F

n

et F
p

sont orbitalement équivalentes (même seulement mesurablement) alors le
rang des groupes est préservé, i.e. n = p. De plus, nous ne savons toujours pas quelles sont
les Z-actions qui peuvent être réalisées comme des classes de Zd-actions. Nous donnons dans
[6] une réponse partielle qui apparait comme un corollaire de notre preuve du théorème
1.2.4.

Théorème 1.2.5 ([6]) Soit (X,Z) un Z sous-shift Toeplitz. Alors pour tout entier d � 1,
il existe un Zd sous-shift Toeplitz qui est orbitalement équivalent à (X,Z).

Pour le démontrer, nous utilisons une description en terme de partition de Kakutani-
Rohlin pour caractériser le groupe de dimension modulo les infinitésimaux associés à la
Zd-action. En appliquant directement le résultat de [GMPS10], il suffit alors de décrire
le groupe de dimension d’un Z-sous-shift Toeplitz par une limite inverse de groupes pour
donner une suite de matrices d’incidences permettant de définir le Zd-Toeplitz.
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Chapitre 2

Systèmes de Delone

Les concepts de base reliés aux ensembles de Delone euclidiens ou hyperboliques sont rap-
pelés dans la première section, notamment la notion d’enveloppe topologique (sous-section
2.1.1) et ses propriétés géométriques (sous-section 2.1.2).

La section 2.2 ne traite que du cas euclidien. Nous décrivons d’abord quelques proprié-
tés des ensembles linéairement répétitifs dans la sous-section 2.2.1, puis nous traitons des
propriétés des homéomorphismes de l’enveloppe dans la sous-section 2.2.2.

La dernière section est relative aux ensembles de Delone en géométrie hyperbolique.
Nous rappelons quelques constructions, qui ne sont pas toujours simple à trouver dans la
littérature, dans la sous-section 2.3.1. La sous-section 2.3.2 concerne le lien entre les mesures
harmoniques et les mesures invariantes des systèmes associés. La dernière sous-section traite
de la K-théorie d’une famille d’exemple d’ensembles de Delone hyperboliques.

2.1 Généralités

2.1.1 Ensemble de Delone et enveloppe topologique

Nous considérerons à la fois la géométrie euclidienne et hyperbolique. Ainsi, en suivant
les notions issues de [BG03], G désignera dans cette section

— soit le groupe Rd des translations de l’espace euclidien de dimension d � 1,
— soit le groupe des transformations affines {z 7! az + b; a > 0, b 2 R} vu comme sous-

groupe d’isométries du demi plan hyperbolique H2 = {z 2 C;=(z) > 0} munit de la
métrique ds2 = dx

2
+dy

2

y

2 .
Remarquons que les deux groupes agissent par isométries transitivement et librement sur
leur espace homogène associé de sorte que l’on peut identifier ces groupes d’isométries et
leurs espaces. Le groupe G est munit d’une distance invariante par multiplication à gauche.
Nous noterons par B

R

(x) la boule de rayon R > 0 centrée en un point x 2 G. Nous renvoyons
le lecteur à [LP03, KP00] pour une présentation détaillée des ensembles de Delone euclidiens
et à [Rud89, Rob96, Sol97] pour une introduction aux propriétés des systèmes de Delone
associés. Tout ce qui est présenté dans cette section peut s’étendre aux pavages et à des
groupes de Lie connexes [BG03].

Définition 2.1.1 Un (r
X

, R
X

)-ensemble de Delone X ⇢ G est un sous-ensemble
— r

X

-uniformément discret, i.e. pour tout x 2 X, card B
rX (x) \X  1 ;
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— R
X

-relativement dense, i.e. pour tout point y 2 G, card B
RX (y) \X � 1.

Pour alléger les notations, nous parlerons d’ensemble de Delone, sans préciser les constantes
r
X

et R
X

. Un R-patch P est un sous-ensemble fini de X de la forme B
R

(x) \ X pour un
certain x 2 X. Deux patchs P

1

et P
2

sont dits G-équivalents s’il existe une isométrie g 2 G
telle que g(P

1

) = P
2

. Un ensemble de Delone X est dit de G-type fini si pour tout R > 0, il
n’existe qu’un nombre fini de classes de G-équivalence de R-patchs. Un point y 2 X est une
occurrence d’un R-patch P si les patchs B

R

(y) \X et P sont G-équivalents.
Nous allons donner à présent une topologie sur l’ensemble des ensembles de Delone de

G-type fini. Remarquons tout d’abord qu’à chaque ensemble de Delone X, nous pouvons
associer une mesure de Radon ⌫

X

:=
P

x2X

�
x

où �
x

désigne la mesure de Dirac en x. Comme
l’ensemble des mesures M(G, r, R) obtenus à partir de (r,R)-ensembles de Delone est un
sous-ensemble du dual des fonctions continues à support compact C

c

(G,R). La topologie
faible-* induit une topologie métrique sur cet ensemble fermé, appelée topologie de Gromov-
Hausdorff, où une suite (X

n

)
n2N d’ensembles de Delone converge vers X si et seulement si

pour tout ouvert borné U de G, la suite d’ensembles (U \X
n

)
n2N converge vers U \X pour

la topologie de Hausdorff. De façon plus combinatoire, pour cette topologie, deux ensembles
de Delone sont proches s’ils coïncident, par une isométrie de G proche de l’identité, sur une
grande boule centrée à l’origine.

Le groupe des transformations G agit continûment par translation à droite ⇤ sur l’en-
semble des ensembles de Delone de G-type fini X.g := g�1(X) = {g�1(x); x 2 X}. Cette
action peut également être vue comme la restriction de l’action par translation à droite de
G sur M(G, r, R) donnée par ⌫.g(f) := ⌫(f(g�1·)) pour ⌫ 2 M(G), f 2 C

c

(G,R) et g 2 G.
L’enveloppe topologique ⌦(X) de l’ensemble de Delone X est la fermeture pour la to-

pologie de Gromov-Hausdorff de l’orbite de X par l’action de G. Le système dynamique
(⌦(X),G) est alors appelé système de Delone. Il est direct de montrer que ⌦(X) est un
ensemble métrique compact (cf [KP00]). Le fait de se restreindre aux ensembles de Delone
de G-type fini implique une certaine rigidité : chaque élément est un ensemble de Delone
X 0 dont chaque patch est équivalent à un patch de X [KP00, BG03]. De plus, l’action de G
est continue et le système dynamique (⌦(X),G) possède, par construction, une orbite dense
(celle de X). Un résultat classique donne la caractérisation combinatoire suivante.

Proposition 2.1.2 ([Aus88]) Soit X un ensemble de Delone de G-type fini. Le système
de Delone (⌦(X),G) est minimal si et seulement si X est répétitif : i.e. pour tout rayon
R > 0 et pour tout R-patch P de X, il existe une constante M(R) > 0 telle que n’importe
quelle boule de rayon M intersectée avec X contient une occurence de P.

Nous dirons qu’un ensemble de Delone X est apériodique si pour tout g 2 G \ {e}
X.g 6= X. Cet ensemble est dit totalement apériodique si pour tout ensemble Y 2 ⌦(X) et
pour tout g 2 G \ {e} Y.g 6= Y ou, autrement dit, l’action de G sur ⌦(X) est libre. Dans le
cas commutatif G = Rd, si X est répétitif et apériodique, alors il est totalement apériodique.
Ce n’est pas le cas dans le cadre non commutatif. Les exemples classiques d’ensembles de
Delone apériodiques répétitifs en géométrie euclidienne sont données par les méthodes de
coupée-projection [dB81, KD86] et de substitution [Gar77, GS89]. Rappelons que le pavage de
Penrose peut être obtenu par ces deux méthodes. Nous renvoyons à la sous-section 2.3.1 pour
des exemples d’ensembles de Delone apériodiques et répétitifs en géométrie hyperbolique.
Pour des exemples sur des groupes de Lie plus généraux, nous réferrons par exemple à
[Moz97].

⇤. Le choix de l’action à droite deviendra clair lors de la présentation de la structure géométrique de
l’enveloppe.
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Pour des raisons techniques, il est utile d’introduire également le sous-ensemble de l’en-
veloppe ⌅ appelé transversale canonique défini comme

⌅(X) = {Y 2 ⌦(X); l’origine e 2 Y }.

Topologiquement, il est assez simple de voir que l’hypothèse de G-type fini implique que
cet ensemble est totalement discontinu. Lorsque l’ensemble de Delone X est répétitif et
totalement apériodique, c’est un ensemble de Cantor. Il est transverse à la dynamique dans
le sens où pour tout g 2 G \ {e} suffisamment proche de l’identité, les ensembles ⌅(X).g et
⌅(X) sont disjoints.

2.1.2 Structure géométrique de l’enveloppe

Nous rappelons ici la structure géométrique de lamination de ces enveloppes. Nous faisons
référence à [BBG06, BG03] pour une présentation plus détaillée.

Soit (⌦, dist) un espace métrique compact, et supposons qu’il existe un recouvrement
par des ouverts U

i

et des homéomorphismes, appelés carte, h
i

: U
i

! V
i

⇥ ⌅
i

où V
i

est
un ensemble ouvert du groupe de Lie G et ⌅

i

est un espace métrique compact totalement
discontinu. La collection d’ouverts et d’homéomorphismes (U

i

, h
i

) est appelé atlas d’une
lamination plate si pour chaque application de transition h

i,j

= h
i

�h�1

j

, il existe un g
i,j

2 G
et un homéomorphisme f

i,j

: ⌅0

j

⇢ ⌅
j

! ⌅0

i

⇢ ⌅
i

de sorte que h
i,j

s’écrive dans son domaine
de définition

h
i,j

(g, ⇠) = (g
i,j

.g, f
i,j

(⇠)), (2.1.1)

où g
i,j

.g désigne la multiplication à gauche de x 2 G par g
i,j

. Il est important de noter que
l’élément g

i,j

et l’homéomorphisme f
i,j

sont indépendants des coordonnées (g, ⇠). Deux atlas
sont dits équivalents si leur union est également un atlas de lamination plate. Une lamination
plate est la donnée d’un espace métrique compact ⌦ et d’une classe d’équivalence d’atlas de
lamination plate. Un atlas est alors dit maximal s’il contient n’importe quel atlas équivalent.
Une boîte est un domaine d’une carte dans l’atlas maximal.

Ainsi un tel espace est une lamination géométrique [CGSY99, chapitre 2]. Plus précisé-
ment une telle lamination est une variété boîte d’allumettes, ou matchbox manifold [AO95]
car son espace transverse est totalement discontinu. Encore plus spécifiquement, il admet
une transversale globale. En résumé, nous avons :

1. des plaques : une plaque est un ensemble de la forme h�1

i

(V
i

⇥ {⇠}) dans une carte.
2. Des verticales : une verticale est un ensemble de la forme h�1

i

({g} ⇥ ⌅
i

) dans une
carte.

Comme les applications de transition envoient les plaques (resp. les verticales) sur des plaques
(resp. des verticales), ces notions sont bien définies, indépendamment du choix de la carte,
et leur union forme un ensemble globalement bien défini. Ainsi une feuille est la composante
connexe des plaques qui s’intersectent. L’espace ⌦ est une union disjointe de feuilles et chaque
feuille a une structure de variété différentiable. Une lamination plate ⌦ est dite minimale si
toutes ses feuilles sont denses dans ⌦. De la même façon, une union disjointe de verticales
est bien définie et est appelée une transversale de ⌦.

De la forme spéciale des applications de transition, on peut définir (indépendamment
du choix de la carte) une action par multiplication à droite par un élément de G proche
de l’identité. Suivant l’appellation originelle [BG03], nous appellerons G-solénoïde † toute

†. Pour éviter une certaine ambiguité avec le terme solénoïde, réservé à des actions équicontinues, certains
auteurs préfèrent utiliser le terme de lamination pavable.
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lamination plate ⌦ dont chaque feuille est isométrique à G. Dans ce cas, l’action locale de
G s’étend en une action globale continue de G sur ⌦. Celle-ci est libre (le stabilisateur de
tout point est trivial) et les feuilles correspondent aux orbites de l’action.

Une propriété importante de cette action est qu’elle envoie une verticale sur une verticale.
Ceci lui donne une prorpiété que nous appellerons un peu abusivement temps de retour
localement constant : i.e. pour tout g 2 G et pour tout point x 2 ⌦ dans une verticale
⌅̃ d’une boîte B, si x.g appartient à une verticale ⌅̃

2

d’une boite B
2

, alors pour tout y 2
⌅̃ suffisamment proche de x, nous avons y.g 2 ⌅̃

2

. Il en ressort que chaque verticale est
transverse à l’action puisque pour tout g 2 G suffisamment proche de l’identité et pour
toute verticale ⌅̃ suffisamment petite, les ensembles ⌅̃.g et ⌅̃ sont disjoints.

Des exemples de G-solénoïdes minimaux sont alors obtenus par des suspensions d’actions
minimales libres d’un réseau, ou d’un semi-réseau cocompact de G (ex : Zd pour G = Rd,
ou le semi-groupe de Baumslag-Solitar pour le groupe G des transformations affines) sur
un ensemble de Cantor ⌅, en prenant des applications temps localement constantes. Voir la
section 1.2 pour de tels exemples. La suspension d’un odomètre (cf sous-section 1.2.1), nous
donne ainsi un G-solénoïde avec une action de G équicontinue.

À l’opposé des systèmes équicontinus, la notion suivante est caractéristique des systèmes
associés aux ensembles de Delone [FS14].

Définition 2.1.3 Le G-solénoïde ⌦ est dit expansif s’il existe un ⌘ > 0 vérifiant pour tout
homéomorphisme h : G ! G tel que h(e) = e, si x, y 2 ⌦ sont tels que sup

g2G
dist(x.g, y.h(g)) < ⌘

alors il existe un g
0

⌘-proche de e tel que x.g
0

= y.

La relation entre les ensembles de Delone et les solénoïdes est donnée par le théorème
suivant.

Théorème 2.1.4 ([BG03]) Soit X ⇢ G un ensemble de Delone totalement apériodique de
G-type fini. Alors l’enveloppe continue de ⌦(X) a une structure de G-solénoïde expansif où
l’action de G sur ⌦(X) coïncide avec celle de G sur le solénoïde.
Réciproquement, si ⌦ est un G-solénoïde expansif minimal, alors il existe un ensemble de
Delone X ⇢ G totalement apériodique de G-type fini et répétitif tel que les systèmes dyna-
miques (⌦,G) et (⌦(X),G) sont conjugués.

La structure de lamination des espaces de Delone avait déjà été remarquée dans [CGSY99,
chapitre 2]. Les boîtes s’obtiennent assez naturellement dans le contexte des pavages. En
effet, pour un R-patch P que l’on peut supposer, quitte à le translater, centré en l’origine,
nous noterons par conv P ⇢ G son enveloppe convexe. Soit iP l’application

iP : conv P⇥ ⌅P ! ⌦(X)

(g, Y ) 7! Y.g = g�1(Y )

où ⌅P désigne l’ensemble {Y 2 ⌅(X), B
R

(0)\Y = P}. Il est alors simple de vérifier que cette
application est un homéomorphisme sur son ensemble image. De plus, la collection de ces
applications forme un atlas de lamination plate. Ainsi l’enveloppe d’un ensemble de Delone
répétititf totalement apériodique est localement homéomorphe au produit cartésien d’un
ensemble de Cantor par un ouvert de G et l’ensemble ⌅(X) est une transversale globale.

Une décomposition en boîtes est une collection de boîtes ouvertes deux à deux disjointes
B = {B(1), . . . , B(t)} de ⌦ telle que l’union de leur fermeture recouvre l’espace ⌦. En identi-
fiant les points appartenant à une même verticale de la fermeture d’une boîte, nous obtenons
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un simplexe B. Comme la lamination est plate, ce simplexe hérite d’une structure supplé-
mentaire de variété branchée [Wil74, BG03], i.e. est localement le recollement de variétés
tangentes entre elles. Cette variété possède donc un espace tangeant en chacun de ses points.
En prenant une suite de décompositions en boîtes (B

n

)
n�0

"bien emboîtées", dans le sens
où chaque verticale d’une boîte de B

n

est incluse dans une verticale d’une boîte de B
n+1

,
plus quelques conditions techniques, Benedetti et Gambaudo obtiennent qu’un G-solénoïde
est conjugué à une limite projective de variétés branchées

lim �(Bn

, f
n

) =

8
<

:(x
n

)
n�0

2
Y

n�0

B
n

; f
n

(x
n+1

) = x
n

9
=

; ,

où chaque f
n

: B
n+1

! B
n

st une application continue surjective, envoyant le lieu singulier
sur le lieu singulier [BG03, Sad03].

2.2 Ensembles de Delone euclidiens

2.2.1 Ensembles linéairement répétitifs

Rappelons que d’après la Proposition 2.1.2, un ensemble de Delone X ⇢ Rd est répétitif
si tout R-patch apparait dans n’importe quelle boule de rayon M . La plus petite valeur M
possible pour un R fixé sera appelée fonction de répétitivité et sera désignée par M

X

(R).

Définition 2.2.1 Un ensemble de Delone X ⇢ Rd est dit linéairement répétitif si sa fonc-
tion de répétitivité M

X

(R) croit au plus linéairement, i.e. il existe une constante L > 1 telle
que M

X

(R)  LR pour tout R > 0.

Dans la suite, nous dirons que X est linéairement répétitif (de constante L). Cette notion est
apparue dans [LP02]. De façon indépendante, la notion similaire de Z-sous-shift linéairement
récurrent avait été introduite, peu de temps auparavant dans [Dur96, DHS99] pour étudier
les relations entre les systèmes substitutifs et les groupes de dimension stationnaires.

Selon le théorème suivant, il s’agit de la croissance la plus lente possible de fonction de
répétitivié pour un ensemble de Delone apériodique.

Théorème 2.2.2 ([LP02], Thm 2.3) Soit d � 1. Il existe une constante c(d) > 1 telle
que tout ensemble de Delone X ⇢ Rd vérifiant

M
X

(R)  c(d)R pour un certain R > 0,

a une période non nulle : i.e. il existe ~v 2 Rd \ {0} tel que X + ~v = X.

Citons également un autre résultat de [LP02] qui stipule que si pour un R > 0, M
X

(R) < 4

3

R,
alors l’ensemble de Delone X a d périodes indépendantes.

Les exemples classiques d’ensembles de Delone apériodiques, c’est-à-dire ceux issus des
substitutions primitives, sont linéairement répétitifs [Sol98]. Pourtant, de différents points
de vue, la collection des ensembles de Delone linéairement répétitifs est petite dans la famille
des ensembles de Delone de Rd. Par exemple, dans [MH40], Morse et Hedlund caractérisent
les sous-shifts sturmiens linéairement récurrents (ou linéairement répétitifs) comme étant
ceux qui codent une rotation d’angle ↵ 2 [0, 1[ dont le développement en fraction continue
est borné. Ces angles sont alors mal approchés par les nombres rationnels. Ils forment un
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ensemble maigre au sens de Baire et de mesure nulle pour la mesure de Lebesgue. Cependant,
cet ensemble est de dimension de Hausdorff maximal 1. Mentionnons que tous ces résultats
ont été étendus aux dimensions supérieures aux ensembles de Delone obtenus par coupé-
projection dans [HKW].

Un ensemble de Delone X ⇢ Rd linéairement répétitif apériodique possède de nombreuses
propriétés rigides. Par exemple d’un point de vue combinatoire, deux occurrences d’un même
R-patch sont à une distance au moins linéaire en R. Ceci implique que la complexité de X est
la plus basse possible [Len04, LP03] : si N

X

(R) désigne le nombre de R-patch, à translation
près, alors N

X

(R) 2 ⇥(Rd) signifiant qu’il existe des constantes cste
1

, cste
2

> 0 telles que
pour tout R suffisamment grand

cste
1

Rd  N
X

(R)  cste
2

Rd.

Sa structure hiérarchique est également très contrainte. Étant donnée n’importe quelle
taille R > 0, il est possible de décomposer X en de gros patchs (chacun contenant au moins
un R-patch) de sorte que le nombre de ces gros patchs, à translation près, est uniformément
borné en R [3]. D’un point de vue structurel, il est possible de décrire le Rd-solénoïde ⌦(X)
par une limite projective de variétés branchées lim �(Bn

, f
n

) avec un nombre fini de variétés
branchées à homéomorphisme près et où la suite des applications (f⇤

n

)
n

en homologie est
uniformément bornée [APC11].

D’un point de vue ergodique, les systèmes associés aux ensembles de Delone linéairement
répétitifs sont minimaux et uniquement ergodiques. Il est même possible de déterminer
des vitesses de convergences du nombre moyen d’occurrences d’un patch [LP03, APC11].
Précisons que ces systèmes sont d’entropie nulle et ne sont jamais mesurablement fortement
mélangeants [1]. Ces ensembles de Delone possèdent bien d’autres propriétés géométriques
et nous renvoyons le lecteur à [1] et ses références pour un survol des différentes propriétés
et caractérisations connues des ensembles de Delone linéairement répétitifs.

D’un point de vue dynamique, nous montrons dans [3] que la famille des ensembles de
Delone linéairement répétitifs est “stable” dans la famille des systèmes de Delone apério-
diques.

Proposition 2.2.3 ([3]) Soit X ⇢ Rd un ensemble de Delone linéairement répétitif de
constante L > 1. Alors il existe une constante C(L, d) (ne dépendant que de L et de d) telle
que pour toute application facteur ⇡ : (⌦(X),Rd) ! (⌦(Y ),Rd) sur un système de Delone
apériodique,

— L’ensemble de Delone Y est linéairement répétitif, et
— chaque fibre de ⇡ contient au plus C éléments.

Ainsi tout système de Delone apériodique facteur d’un ensemble de Delone linéairement
répétitif X est lui aussi linéairement répétitif. De plus, chaque application facteur a des
fibres de cardinal uniformément borné. Concernant la preuve, le premier point se déduit assez
directement des définitions. Quant au second point, il repose sur la propriété de répulsion
des occurrences de patchs. Si un facteur possède beaucoup de pré-images d’un même point,
chacune de ces pré-images définit un R-patch différent en l’origine. Tous ces patchs ont donc
une occurence dans une boule de rayon LR de X. Nous obtenons par l’image de ⇡ un patch
de Y avec des occurrences beaucoup trop proches.

Dans [3], nous en déduisons qu’il ne peut y avoir qu’un nombre fini de tels facteurs non
conjugués.
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Théorème 2.2.4 ([3]) Soient un réel L > 1 et un entier d � 1. Il existe une constante
N(L, d) telle que tout ensemble de Delone X ⇢ Rd linéairement répétitif de constante L, a
au plus N systèmes de Delone apériodiques, non conjugués, facteurs du système (⌦(X),Rd).

Ce résultat étend aux systèmes de Delone un résultat de [Dur00] pour les sous-shifts linéai-
rement récurrent.

La preuve repose de façon essentielle sur les contraintes de structure hiérarchique d’un
ensemble de Delone linéairement répétitif. Pour simplifier, considérons les cas où chaque
facteur ⇡ : ⌦(X) ! ⌦(Y ) est localement constant le long de chaque verticale d’une décom-
position en boîtes de ⌦(X) ' lim �(Bn

, f
n

). Il s’ensuit que chaque facteur ⇡ se factorise en
une application ⇡̃ d’une variété branchée B

n

vers ⌦(Y ). Comme il n’y a qu’un nombre fini
de variétés branchées non isomorphes, il n’y a qu’un nombre fini d’identification possible
des faces d-dimensionnelles de ces variétés branchées par des applications de type ⇡̃. Il suffit
alors de montrer que des facteurs identifiant les mêmes d-faces d’un variété branchée ont
les mêmes fibres impliquant ainsi que les systèmes facteurs sont conjugués. Le cas géné-
ral se déduit de celui-ci en prouvant qu’une application facteur est une perturbation d’une
application localement transversalement constante.

2.2.2 Sur les homéomorphismes de l’enveloppe

Rappelons que deux systèmes de Delone (⌦(X),Rd), (⌦(Y ),Rd) sont dits orbitalement
équivalents ou flot-équivalents, s’il existe un homémomorphisme F : ⌦(X) ! ⌦(Y ) tel que
pour tout x 2 ⌦(X)

F (OrbRd(x)) = OrbRd(F (x)).

Dans le cadre des ensembles de Delone apériodiques, les orbites correspondent aux feuilles
de la lamination, c’est-à-dire aux composantes connexes par arc de cet espace. Ainsi tout
homéomorphisme envoie une feuille sur une feuille. Dire que deux systèmes de Delone sont
flot-équivalents revient donc à dire que leur enveloppe sont homéomorphes. Un invariant na-
turel de flot-équivalence est alors le groupe des homéomorphismes Homeo(⌦(X)) de l’enve-
loppe ⌦(X). Nous nous intéresserons dans cette section à ce groupe et, plus particulièrement
à sa composante connexe de l’identité dans le cadre un peu plus général de Rd-solénoïde ⌦.
Nous montrons en particulier que ce groupe est simple, i.e. il n’admet pas de sous-groupe
normal propre non trivial.

Rappelons que le groupe des homéomorphismes Homeo(M) d’une variété M a déjà bien
été étudié. Dans les années 60, Fisher [Fis60] puis Anderson [And62] ont montré que ce
groupe est simple lorsque la variété M est compacte sans bord. Un résultat important dans
ce domaine est dû à D. Epstein [Eps70] qui a établi une condition suffisante sur un groupe
d’homémomorphismes pour que son sous-groupe dérivé (engendré par les commutateurs)
soit simple. Ainsi, un groupe vérifiant la condition d’Epstein est simple si et seulement s’il
est parfait (i.e. tout élément du groupe s’écrit comme un produit de commutateurs). Plus
tard cette problématique fut étendue aux sous-groupes de difféomorphismes. Mentionnons
alors les travaux de Herman [Her73], Thurston [Thu74] et Mather [Mat74] qui ont fourni une
classification presque complète des groupes simples de difféomorphismes de variétés. Plus
récemment ces problèmes de simplicité, ont été étudiés dans le contexte des feuilletages. Par
exemple, étant donné un feuilletage F d’une variété M , Rybicki [Ryb95] et Tsuboi [Tsu06]
ont caractérisé la simplicité et la perfection de la composante connexe de l’identité du groupe
des difféomorphismes de M préservant le feuilletage F . Précisons que ces groupes ne vérifient
pas la condition d’Epstein.
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Pour donner nos résultats dans ce contexte, nous devons introduire quelques notations.
Pour un Rd-solénoïde ⌦, nous désignerons par D(⌦) le groupe des déformations, i.e. la
composante connexe par arc de l’identité dans Homeo(⌦). En d’autres termes, pour chaque
déformation, il existe un chemin continu d’homéomorphismes (pour la topologie C0) la
reliant à l’identité. De façon générale, pour un groupe topologique G nous noterons par G0

la composante connexe de l’identité dans G.
Dans le cas des systèmes de Delone, certaines subtilités dans les définitions disparaissent

puisque la composante connexe de l’identité est le groupe des déformations.

Proposition 2.2.5 ([2]) Soit ⌦ un Rd-solénoïde expansif. Alors Homeo0(⌦) est égal à
D(⌦) et est ouvert dans Homeo(⌦).

Il s’ensuit par le Théorème 2.1.4 que n’importe quel homéomorphisme d’une enveloppe
⌦(X), suffisamment proche de l’identité, est une déformation. De plus, comme l’identité pré-
serve chaque feuille, remarquons que chaque déformation préserve également chaque feuille.
Nous noterons alors par Homeo

L

(⌦) le groupe des homéomorphismes de ⌦, qui préservent
chaque feuille de ⌦. Ce phénomène est très différent du cas équicontinue car, dans ce cas,
le solénoïde a une structure de groupe topologique abélien où Rd est sous-groupe dense.
Ainsi n’importe quelle translation par un élément x proche de l’élément neutre de ⌦, définit
un homéomorphisme arbitrairement proche de l’identité. Si x n’est pas dans la feuille de
l’élément neutre, cette translation ne préserve aucune feuille.

Un autre sous-groupe apparaissant naturellement dans le cadre des systèmes de Delone
est celui des homéomorphismes préservant des verticales.

Définition 2.2.6 Un homéomorphisme préserve la structure verticale d’un Rd-solénoïde
⌦ si, pour tout point x 2 ⌦ dans une verticale ⌅ d’une boîte B, si f(x) appartient à une
verticale ⌅

2

d’une boite B
2

, alors pour tout y 2 ⌅ suffisamment proche de x, on a f(x) 2 ⌅
2

.

Par exemple, du fait de la propriété de temps de retour localement constant, chaque homéo-
morphisme associé à la Rd-action x 7! x + ~v, ~v 2 Rd, préserve la verticale. Nous noterons
par Homeo

pv

(⌦) l’ensemble des homéomorphismes de Homeo
L

(⌦) préservant la verticale.
De même D

pv

(⌦) désignera la composante connexe par arc de l’identité dans le groupe
Homeo

pv

(⌦).
Nous obtenons, dans le cas général le théorème suivant.

Théorème 2.2.7 ([2]) Soit ⌦ un Rd-solénoïde. Notons par G soit le groupe Homeo
L

(⌦)
soit le groupe Homeo

pv

(⌦). Alors
1. Homeo

L

(⌦)0 = D(⌦) et Homeo
pv

(⌦)0 = D
pv

(⌦) ;
2. G0 est ouvert dans G ;
3. G0 est simple.

Ce théorème concerne aussi bien les enveloppes d’ensembles de Delone apériodiques que les
suspensions de Zd-actions équicontinues, distales, ...

La preuve du Théorème 2.2.7 suit la même stratégie que dans [Fis60] pour des varié-
tés triangulées. En utilisant une généralisation du théorème de Schoenflies dûe à Edwards
et Kirby [EK71], nous montrons que les groupes considérés sont factorisables (ou fragmen-
tables), i.e tout homéomorphisme se décompose en un produit de déformations à supports
arbitrairement petits. Ceci permet de démontrer la Proposition 2.2.5 et les items (1) et (2)
du Théorème 2.2.7. Comme le critère d’Epstein ne s’applique pas ici, nous donnons dans
[2] une condition suffisante pour qu’un sous-groupe de commutateurs de Homeo

L

(⌦) soit
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simple. Nous montrons ensuite que les groupes Homeo
L

(⌦)0 et Homeo
pv

(⌦)0 sont parfaits
et vérifient le critère précédent de simplicité.

Dans le cas particulier de la dimension 1, nous montrons en outre que ces groupes sont
uniformément parfaits : tout élément s’écrit comme un produit de 2 commutateurs [2]. Ce
dernier résultat empêche notamment l’existence de quasi-morphisme sur ces groupes.

Du point de vue de la flot équivalence, grâce à un théorème difficile de Ben Ami et
Rubin [BAR10], nous obtenons également en corollaire de la preuve du Théorème 2.2.7 que
les groupes D(⌦) et D

pv

(⌦) sont des invariants complets de la classe d’équivalence orbitale
du système (⌦,Rd).

Proposition 2.2.8 ([2]) Soient ⌦
1

, ⌦
2

deux Rd-solénoïdes. Pour i = 1, 2, désignons par
G

i

soit le groupe Homeo
L

(⌦
i

)0 soit le groupe Homeo
pv

(⌦
i

)0.
i) Si ⌦

1

et ⌦
2

sont homéomorphes, alors les groupes Homeo
L

(⌦
1

)0 et Homeo
L

(⌦
2

)0

sont isomorphes.
ii) Réciproquement pour tout isomorphisme ' : G

1

! G
2

, il existe un homéomor-
phisme h : ⌦

1

! ⌦
2

tel que '(g) = h � g � h�1 pour tout g 2 G
1

.

Cette propriété montre ainsi que l’on peut interpréter chaque invariant de flot-équivalence
en des termes algébriques. Par exemple, il est montré dans [Jul12] que les croissances asymp-
totiques des fonctions complexité et répétitivité sont des invariants de flot-équivalence. Il
reste à interpréter ces croissances de façon algébrique sur le groupe des homéomorphismes
de l’enveloppe.

2.3 Ensembles de Delone hyperboliques
Dans cette section, nous nous intéresserons aux ensembles de Delone X de l’espace hy-

perbolique H2 qui sont de type fini pour le groupe affine GA = {z 7! az + b; a > 0, b 2 R}

2.3.1 Exemples

Dans l’article [Pen80], Penrose rappelle les principales propriétés de son célèbre pavage
éponyme, et donne en plus un exemple de pavage de H2 de GA-type fini (voir figure 2.1).

Il considère le polygone convexe P
a

de sommets, les points A
n

d’affixe a(p � 1)/2 + i
pour 1  n  3, A

4

d’affixe dans le plan complexe C, 2i + a et A
5

: 2i, pour un paramètre
a > 0 fixé. Le polygone P

a

possède ainsi 5 arêtes géodésiques. Considérons les isométries

R : z 7! 2z et S : z 7! z + a.

Le pavage hyperbolique de Penrose est alors défini par P
a

= {Rk�SnP
a

;n, k 2 Z} (voir figure
2.1). Penrose montre dans [Pen80] qu’il est faiblement apériodique dans le sens où, aucun
groupe cocompact � d’isométries de H2 ne préserve ce pavage. L’argument homologique de
Penrose est le suivant : si cela était le cas, le pavé P

a

pourrait paver la surface compacte
H2/�. Mettons une charge positive sur les arêtes A

4

A
5

et une charge négative sur chaque
arête A

1

A
2

et A
2

A
3

. Comme une arête de type A
4

A
5

ne peut rencontrer qu’une arête de
type A

1

A
2

ou A
2

A
3

, la surface compacte H2/� possède une charge globale nulle. Pourtant
chaque pavé P

a

a une charge négative et la surface doit avoir une charge globale strictement
négative.
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Figure 2.1 – Le pavage hyperbolique de Penrose

L’argument homologique de Penrose a été généralisé de différentes manières, notamment
dans [BW92] pour d’autres espaces non moyennables. De façon plus géométrique, G. Mar-
gulis et S. Mozes font remarquer dans [MM98] que la formule de Gauss-Bonnet implique que
l’aire d’une surface hyperbolique de courbure constante égale à �1, est un multiple entier de
⇡. Comme l’aire de P

a

, qui ne dépend que de ses angles, varie continûment avec le paramètre
a, le pavé P

a

a une aire non rationnellement liée avec ⇡ pour un nombre indénombrable de
paramètres a. Il ne peut donc pas paver une surface compacte.

Le pavage de la figure 2.1 n’est donc pas stable pour un réseau cocompact, cependant
on peut montrer que son stabilisateur est le groupe hRi engendré par la transformation R.
Cette isométrie préserve une géodésique verticale (dans le modèle du demi-plan supérieur).
En décorant les pavés le long de cette géodésique de façon à casser cette symétrie, nous
construisons un pavage non périodique. Dans [GS05], Goodmann-Strauss utilise cette idée.
Il code la dynamique d’une application de l’intervalle sans point périodique, puis il décore les
pavés P

a

selon ce codage de façon à ce que la décoration des pavés le long d’une géodésique
verticale code la dynamique de l’application. Les pavages obtenus avec ces pavés ne sont
invariants par aucune isométrie [GS05]. Ils sont donc totalement apériodiques (voir section
2.1.1). Pour des groupes de Lie semi-simples de rang supérieur à 3, Mozes construit dans
[Moz97] une famille finie de pavés ne pouvant engendrer que des pavages totalement apé-
riodiques. Pour être plus complet sur ce thème, ajoutons qu’un résultat récent de Aubrun,
Barbieri et Thomassé [ABT15] démontrent que n’importe quel groupe dénombrable admet
un pavage totalement apériodique.

Mentionnons également qu’il est possible de construire des ensembles de Delone hyperbo-
liques de type fini par la la méthode de coupé-projection. En effet, il suffit pour cela de consi-
dérer l’espace produit H2 ⇥H2 muni de la distance produit. Le groupe PSL

2

(R)⇥PSL
2

(R)
agit isométriquement sur l’espace produit. Considérons alors un sous-groupe discret �, co-
compact et irréductible : i.e. tel que les groupes �\(PSL

2

(R)⇥{Id}) et �\({Id}⇥PSL
2

(R))
n’engendrent pas un sous-groupe d’indice fini dans �. Notons par ⇡

1

,⇡
2

les projections
H2 ⇥H2 ! H2 sur, respectivement, les premières et secondes coordonnées. Pour une origine
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x 2 H2 ⇥ H2 fixée, soit B ⇢ H2 la boule centrée en ⇡
2

(x) de rayon supérieur au diamètre
d’un domaine fondamental de �, nous considérons alors l’ensemble

X = ⇡
1

{�(x); � 2 �,⇡
2

(�(x)) 2 B} ⇢ H2.

Comme le groupe � est cocompact, il est finiment engendré et l’ensemble X est uniformément
discret. De plus, il n’existe qu’un nombre fini de R-patchs à isométrie prés. Le choix de la
fenêtre B assure que X est relativement dense. Ainsi X forme un ensemble de Delone.

Malheureusement, même si les résultats de théorie des groupes nous assure l’existence de
réseaux � cocompacts et irréductibles, il est difficile d’en construire un de façon effective pour
en faire un dessin explicite. Si l’on relaxe l’hypothèse de cocompacité par celle de covolume
fini (H2⇥H2/� a un volume fini pour la mesure de Haar invariante à droite), il est plus simple
d’en décrire un. Par exemple, considérons l’anneau Z[

p
2], ou Z[

p
d] pour un entier d différent

d’un carré. Il admet deux plongements dans R définis par a+ b
p
2 2 Z[

p
2] 7! a± b

p
2 2 R.

CEux-ci s’étendent en deux plongements denses du groupe PSL
2

(Z[
p
2]) dans PSL

2

(R). Le
produit de ces deux plongements donne alors un plongement de PSL

2

(Z[
p
2]) dans PSL

2

(R)⇥
PSL

2

(R) dont l’image est un sous-groupe discret de covolume fini et irréductible [Mar91,
Zim84]. Il est possible de réaliser des plongements similaires à partir de corps de nombres
quaternioniques pour obtenir des groupes cocompacts irréductibles [MR03].

L’ensemble de Delone obtenu par cette méthode de coupé-projection n’est pas nécessai-
rement totalement apériodique. Il faut alors modifier les patchs en les décorant. Une façon
de l’obtenir est de considérer un sous-shift X ⇢ ⌃� sur un alphabet fini ⌃, dont l’action du
shift est libre (voir section 1.2.2 pour des exemples) et de considérer l’action diagonale de �
sur H2 ⇥H2 ⇥X.

Remarquons qu’il est également possible de faire de même sur H2 ⇥ Q
p

où Q
p

dé-
signe l’ensemble des entiers p-adique pour un nombre premier p avec le groupe d’isométries
PSL

2

(R)⇥ PSL
2

(Q
p

). Nous utilisons une technique similaire dans la section 2.3.3.

2.3.2 Mesures invariantes et mesures harmoniques

À la différence du contexte euclidien, nous verrons qu’il n’est pas possible de définir de
fréquence d’apparition d’un motif pour un ensemble de Delone X de GA type fini.

Ainsi, dans le contexte euclidien, pour un système de Delone (⌦(Y ),Rd) uniquement
ergodique, i.e. admettant une unique mesure de probabilité µ invariante par la Rd action
(c’est le cas pour un ensemble de Delone substitutif), le théorème ergodique de Birkhoff
assure que la limite suivante existe

lim
R!1

1

vol(B
R

(0))

Z

BR(0)

f(Y + ~v)dLeb(~v) =
Z

⌦(Y )

f(x)dµ(x),

pour toute fonction intégrable f : ⌦(Y ) ! R, où Leb désigne la mesure de Lebesgue de Rd.
En prenant comme fonction f , la fonction indicatrice d’une boîte associée à un RP-patch P
centré en l’origine (cf section 2.1.2), nous obtenons en divisant la limite précédente par le
volume de conv P, que la limite suivante existe

lim
R!1

1

vol(B
R

(0))
card {~v 2 B

R

(0); (Y + ~v) \B
RP(0) = P};

ou, autrement dit, que le patch P apparait dans Y avec une certaine fréquence. Cette limite
correspond en fait, avec les notations de la section 2.1.2, à la valeur ⌫(⌅P) pour une certaine
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mesure ⌫ sur la transversale ⌅ obtenue comme limite µ(iP(B✏

(0) ⇥ ⌅P))/vol(B
✏

(0)) lorsque
✏ tend vers 0 [BBG06]. Géométriquement cette mesure correspond à une mesure transverse
invariante.
Définition 2.3.1 Une mesure transverse invariante ⌫ pour une G-lamination est la donnée
d’une mesure positive ⌫

i

sur chaque espace transverse ⌅
i

de la lamination, de sorte que
si B ⇢ ⌅

i

est un borélien contenu dans le domaine de définition de f
i,j

, alors µ
i

(B) =
µ
j

(f
i,j

(B)).
L’hypothèse de l’existence d’une telle mesure est une hypothèse forte.

Proposition 2.3.2 ([13]) Un GA-solénoïde n’admet pas de mesure transverse invariante.
Ceci provient essentiellement du fait que le groupe GA n’est pas unimodulaire, i.e. il admet
une mesure de Haar invariante par multiplication à gauche �

L

qui est différente de la me-
sure de Haar invariante par multiplication à droite �

R

, ou plus précisément, �
L

n’est pas
invariante par la multiplication à droite. Ainsi, étant donnée une mesure transverse inva-
riante {⌫

i

}, il est possible de construire une mesure finie sur le solénoïde qui localement
est le produit de ⌫

i

par �
L

. Nous obtenons alors une contradiction en étudiant l’image de
cette mesure par la GA-action par multiplication à droite. La propriété 2.3.2 peut s’étendre
aisément à n’importe quelle lamination dont les feuilles sont isométriques à un groupe de
Lie non unimodulaire.

Pour passer outre ce problème et étudier les fréquences d’apparition des motifs, nous
devons passer par une autre notion géomé́trique de mesure : les mesures harmoniques. Pour
cela, nous sommes amenés à introduire les formes différentielles sur un G-solénoide ⌦, ou
plus généralement sur une lamination [CGSY99, chapitre 2].

Dans une boîte homéomorphe à V ⇥⌅, nous appellerons k-forme différentielle, k = 0, 1, 2,
une famille de k-formes différentielles réelles (de classe C1) dans les plaques V ⇥ {⇠} qui
dépend continûment du paramètre ⇠ pour la topologie C1. Une k-forme sur ⌦ est alors
donnée par des k-formes différentielles dans chaque boîte compatible sur les intersections,
dans un sens évident. L’espace Ak(⌦) désignera l’espace vectoriel topologique des k-formes
sur ⌦. L’opérateur de différentiation le long des feuilles définit un opérateur d : Ak(⌦) !
Ak+1(⌦).

Les cycles feuilletés, introduits par Sullivan [Sul76], sont des formes linéaires continues
A2(⌦) ! R strictement positives sur les formes strictement positives et qui s’annulent sur les
formes exactes. Un résultat important de [Sul76] est que les cycles feuilletés correspondent
aux mesures transverses invariantes. Ainsi, une autre formulation de la proposition 2.3.2
est : un GA-solénoïde n’admet pas de cycle feuilleté.

Nous sommes alors amenés à étudier la notion plus générale de courant harmonique
introduit par Garnett dans [Gar83]. L’opérateur laplacien le long des feuilles � donne un
opérateur réel A0(⌦) ! A2(⌦) dont l’image Im� est inclu dans l’ensemble des formes
exactes. Un courant harmonique est une forme linéaire continue A2(⌦) ! R strictement
positive sur les formes strictement positives et nulles sur Im�. Les cycles feuilletés sont
donc des exemples de courants harmoniques mais n’importe quelle lamination, en particulier
n’importe quel G-solénoïde, admet un courant harmonique [Gar83, Can03].

Comme pour les cycles feuilletés, en identifiant l’espace des fonctions C1(⌦) et A2(⌦) par
le choix d’une métrique le long des feuilles, il est possible d’associer à un courant harmonique
une mesure positive et finie sur ⌦. Ces mesures, appelées mesures harmoniques, sont alors
caractérisées de la façon suivante : pour n’importe quelle fonction f : ⌦ ! R mesurable
bornée et lisse le long des feuilles, l’intégrale

R
�fdµ = 0 ‡ si et seulement si la mesure µ est

‡. où � désigne le laplacien le long des feuilles pour la métrique choisie
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harmonique [Gar83, Can03].
Une telle mesure se désintègre localement, au travers des cartes, dans V ⇥⌅ en le produit

d’une mesure ⌫ sur l’espace transverse ⌅ par une mesure µ
⇠

harmonique définie sur ⌫- presque
toutes les plaques V ⇥ {⇠}. Il se trouve que chaque mesure µ

⇠

est absolument continue par
rapport à la mesure de Riemann dz le long des feuilles et dont la densité z 7! f(z, ⇠) est, pour
⌫-presque tout ⇠, une fonction harmonique positive. Ainsi pour tout borélien B ⇢ V ⇥⌅, la
mesure de B s’écrit ZZ

B

f(z, ⇠)dzd⌫(⇠).

Bien que cette décomposition ne soit pas unique, la fonction �
µ

: z 7!
R
f(z, ⇠)d⌫(⇠) est

intrinsèque à la mesure harmonique.
Les feuilles d’un G-solénoïde étant simplement connexes, il est possible, en recollant les

fonctions harmoniques f(z, ⇠) définies sur chaque plaque, de définir une fonction globale
f : G ! R

+

harmonique. Dans le cas d’un R2-solénoïde, comme il n’existe pas de fonction
harmonique positive non constante sur le plan, chaque densité locale f est constante. Ainsi
chaque mesure harmonique se désintégre en un produit d’une mesure ⌫ sur la transversale
par la mesure de Riemann et ⌫ définit une mesure transverse invariante.

Garnett donne également dans [Gar83] un théorème ergodique remarquable associé aux
mesures harmoniques. Pour cela, il est nécessaire de considérer pour x un point base d’une
lamination ⌦, la mesure de Wiener P

x

sur l’ensemble des chemins continus � : R
+

! ⌦ tels
que �(0) = x. Cette mesure est obtenue par la théorie du mouvement brownien en utilisant
le noyau de la chaleur.

Théorème 2.3.3 ([Gar83]) Soit µ une mesure harmonique d’une lamination ⌦. Pour
n’importe quelle fonction bornée f : ⌦ ! R, la limite `(x, �) = lim

n!1

1/n
P

n�1

k=0

f(�(i))
existe pour µ-presque tout point x 2 ⌦ et P

x

-presque tout chemin �.
Cette limite est constante le long des feuilles de ⌦ et `(x, �) est constante pour P

x

-presque
tout chemin �. De plus

R
`(x)dµ(x) =

R
f(x)dµ(x).

De la même façon que pour les mesures invariantes, on pourra parler de mesure harmonique
ergodique si la mesure de tout borélien saturé de feuilles est de mesure nulle ou totale. Ainsi
dans le cas d’enveloppe d’un ensemble de Delone de GA-type fini totalement apériodique,
nous pourrons parler de fréquence de passage dans un motif le long d’un chemin brownien
pour une mesure harmonique ergodique.

Théorème 2.3.4 ([13]) Une mesure finie sur un GA-solénoïde est harmonique si et seule-
ment si elle est invariante par l’action du groupe affine.

La preuve vient essentiellement du fait bien connu suivant : en notant �
L

la mesure
de Haar sur GA invariante par multiplication à gauche et R

g

⇤ �
L

la mesure image de
� par la multiplication à droite par g, la fonction ' : g 7! d�/dR

g

⇤ � est une fonction
harmonique minimale, i.e. toute fonction harmonique positive dont le rapport avec ' est
bornée, est proportionnelle à '. Ainsi, pour g

⇤

µ la mesure image d’une mesure harmonique
µ par l’action de g 2 GA, un calcul direct nous permet de conclure que l’intégrale

R
fdg

⇤

µ
est indépendante de g pour toute fonction test f .

Ce résultat peut être étendu au cas des laminations définies par des actions localement
libres du groupe affine. Par exemple, pour une lamination L par surfaces hyperboliques, son
fibré unitaire tangent T 1L hérite également d’une structure de lamination. Cette lamination
T 1L est, de plus, munie de l’action des flots géodésique et horocyclique stable (le long des
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feuilles). Ces deux flots conjoints engendrent une action continue du groupe affine GA. La
même preuve du Théorème 2.3.4 donne que les mesures harmoniques de cette lamination
sont invariantes par l’action conjointe des flots géodésique et horocyclique. Il est possible
alors de montrer que ces mesures se projettent de façon surjective en des mesures hamoniques
sur L. Ceci est fait dans [Mar06, BM08].

En utilisant de plus la strucure de limite projective lim �n

(B
n

, f
n

) de variétés branchées
d’un GA-solénoïde, nous obtenons la caractérisation suivante :

Théorème 2.3.5 ([13]) Il existe une suite de morphismes linéaires (A
n

)
n�0

tel que l’en-
semble des mesures harmoniques est isomorphe à la limite projective de cônes dans l’espace
des 2-chaînes des variétés branchées lim �n

(C
2

(B
n

,R)+, A
n

).

Une caractérisation similaire est donnée pour les mesures transverses invariantes de G-
solénoïde pour G unimodulaire dans [BG03]. La différence est qu’il n’y a pas ici de mesure
transverse invariante. Le Théorème 2.3.4 nous permet de décrire la forme des fonctions lo-
cales �

µ

, pour une mesure harmonique µ. Ce sont des fonctions harmoniques minimales.
La caractérisation s’obtient alors en considérant la suite des intégrales

R
V

�
µ

(z)dz pour des
boîtes de la forme V ⇥ ⌅.

Nous obtenons en corollaire que le nombre de mesures de probabilité harmoniques et
ergodiques est borné par le nombre maximal de faces des variétés branchées. Grâce à cela
nous donnons des exemples explicites avec un nombre arbitraire de mesures harmoniques.

Théorème 2.3.6 ([13]) Pour tout entier r � 1, il existe un ensemble de Delone X ⇢ H2

de GA-type fini, totalement apériodique et répétitif, dont l’enveloppe ⌦(X) a exactement r
mesures de probabilité hamoniques ergodiques.

La réalisation de ces exemples est, par essence, similaire à celle du Théorème 1.2.4. Ce
résultat illustre la grande variété de dynamique que l’on peut obtenir à l’aide des ensembles
de Delone. À l’opposé, si l’on considère des laminations hyperboliques dont la dynamique
transverse est conforme, il y a, dans le cas minimal, une unique mesure harmonique [DK07].
Par la suite, ces exemples de laminations minimales non uniquement ergodiques ont été
étendus au cas de feuilletages lisses d’une variété de dimension 5 dans [Der09] et dans le cas
de la codimension 1 dans [DV11].

2.3.3 C⇤

-algèbres

La géométrie non-commutative des systèmes de Delone étudie les C⇤-algèbres de leur
enveloppe. Le lecteur pourra consulter [Ren80, Ren09] pour des introductions lumineuses
sur les C⇤-algèbres associées aux systèmes dynamiques. Une telle C⇤-algèbre permet alors
de donner des invariants topologiques et géométriques de la lamination. De plus, certains
invariants K-théoriques de systèmes de Delone euclidiens ont une interprétation physique.
En particulier lorsque l’on modélise un quasi-cristal par un ensemble de Delone, l’image
de la K-théorie de l’enveloppe par la trace canonique indice les trous dans le spectre de
l’opérateur de Schrödinger associé au quasi-cristal [Bel92].

Pour un ensemble de Delone euclidien, les traces de la C⇤-algèbre sont en bijection avec
les mesures transverses invariantes de l’enveloppe [BBG06]. Ces algèbres ont été depuis bien
étudiées et ont conduit à diverses preuves de la conjecture du gap-labelling [BBG06, BOO03,
KP03] : pour une action de Rd minimale, l’image de la K-théorie par une trace est le sous-
groupe dénombrable de R engendré par les mesures de clopens (ensembles ouverts et fermés)
de la transversale canonique pour une mesure transversalement invariante.
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La situation est différente lorsque que l’ensemble de Delone est hyperbolique de GA-
type fini, puisqu’il n’existe pas de mesure transversalement invariante (Proposition 2.3.2).
Ainsi, la C⇤-algèbre ne possède pas de trace. Cependant chaque mesure harmonique (ou GA-
invariante par le Théorème 2.3.4) donne un cocyle 3-cyclique ([ENN88]) sur la C⇤-algèbre du
système. Avec Oyono-Oyono, nous avons étudié dans [12] ces C⇤-algèbres pour une famille
spécifique d’exemples. Nous en donnons une description explicite et nous calculons leur
K-théorie ainsi que leur cohomologie de Čech.

La famille d’exemples est obtenue en décorant les pavés du pavage hyperbolique donné
par Penrose dans [Pen80] (voir section 2.3.1). Ainsi pour le pavé P

1

défini dans la section
2.3.1 et un entier i 2 {1, . . . , r}, r � 1, nous noterons par P (i) un ensemble de i+ 5 points,
dont 5 points sont aux sommets du pavé P

1

et i points (la décoration) sont à l’intérieur d’une
boule de rayon 1/6 centrée au barycentre du pavé P

1

. Cette décoration est faite de sorte
que, pour n’importe quel pavage fait de transaltés (pour le groupe affine) de P

1

et pour tout
choix de décoration i pour chaque pavé, correspond un unique ensemble de Delone union
des translatés des P (i). §

Pour une suite w = (w
k

)
k2Z 2 {1, . . . , r}Z, l’ensemble de Delone de GA-type fini P(w)

est défini par P(w) = {Rp �Sn(P (w�q)), n, q 2 Z}, avec les notations de la section 2.3.1. Son
stabilisateur est un sous-groupe de hRi. Désignons par Z

w

= {�n(w), n 2 Z} le sous-shift
engendré par w. Il est assez simple de vérifier que l’ensemble de Delone P(w) est totalement
apériodique si la suite w est non périodique pour le shift et qu’il est répétititf si et seulement
si le système (Z

w

,�) est minimal.
L’enveloppe ⌦(P(w)) de l’ensemble de Delone P(w) a une structure de suspension. Pour

voir cela, considérons GA(Z[1/2]) le groupe des transformations affines a
n,b

: z 7! 2nz+ b où
n 2 Z et b est un rationnel de la forme p/2q p, q 2 Z. Ce groupe agit naturellement à gauche
sur le produit H2 ⇥Q

2

où Q
2

désigne l’ensemble des rationnels 2-adiques. Il agit également
sur Z

w

par a
n,b

.w0 = ��n(w0). Le produit de ces deux actions donne une action à gauche
de GA(Z[1/2]) sur H2 ⇥ Q

2

⇥ Z
w

qui est continue propre et sans point fixe. L’enveloppe
⌦(P(w)) est alors conjuguée au quotient de H2⇥Q

2

⇥Z
w

par cette action. En décomposant
encore plus cette suspension, il est possible de la décrire en termes de double suspension
(suspension de suspension). Ceci nous permet dans [12] d’expliciter sa C⇤-algèbre à partir
de celle donnée par Z

w

.
Ainsi si C(Z

w

, A) désigne l’ensemble des fonctions continues sur Z
w

à valeurs dans l’an-
neau A, nous noterons les groupes quotients par

inv C(Z
w

,Z) = C(Z
w

,Z)/hf = f � �; f 2 C(Z
w

,Z)i,
coinv C(Z

w

,Z) = C(Z
w

,Z)/hf � f � ��1; f 2 C(Z
w

,Z)i,
coinv C(Z

w

,Z[1/2]) = C(Z
w

,Z[1/2])/hf � 2f � ��1; f 2 C(Z
w

,Z[1/2])i.

Théorème 2.3.7 ([12]) Nous avons les isomorphismes suivants :

K0(⌦(P(w)) ' inv C(Z
w

,Z)� coinv C(Z
w

,Z[1/2]), et
K1(⌦(P(w)) ' coinv C(Z

w

,Z).

§. Dans [12] nous considérons la décoration d’un pavage. Le choix de la décoration est fait ici pour se
placer dans le contexte équivalent d’ensemble de Delone.
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Concernant la cohomologie de Čech à coefficients entiers, nous avons

Ȟ0(⌦(P(w)),Z) ' inv C(Z
w

,Z),
Ȟ1(⌦(P(w)),Z) ' coinv C(Z

w

,Z),
Ȟ2(⌦(P(w)),Z) ' coinv C(Z

w

,Z[1/2]).

Le lecteur remarquera que ces invariants topologiques sont similaires aux groupes de dimen-
sion de la dynamique sur la transversale (cf section 1.1.4). Ajoutons que les isomorphismes
sont décrits de façon explicite dans [12].
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Chapitre 3

Modèle de Frenkel-Kontorova

associé à un quasi-cristal

Introduction
Le modèle de Frenkel-Kontorova (FK) [BK04, FBGG05] décrit comment une chaîne infi-

nie d’atomes "minimise l’énergie totale d’un système" lorsque cette énergie prend en compte
les interactions entre les proches voisins et un environnement extérieur. Les configurations
sont modélisées par une suite (x

n

)
n2Z ⇢ Rd où x

n

représente la position de l’atome in-
dicé par n. Une configuration (x

n

)
n2Z est dite minimisante pour une énergie d’interaction

E : Rd ⇥Rd ! R si l’énergie de chaque segment (x
m

, x
m+1

, . . . , x
n

) ne peut être abaissée en
changeant la configuration à l’intérieur du segment sans changer les deux points du bord.
Plus formellement, en notant

E(x
m

, x
m+1

, . . . , x
n

) :=

n�1X

k=m

E(x
k

, x
k+1

),

une configuration (x
n

)
n2Z est dite minimisante si pour tous les entiers m < n et pour tous

les points y
m

, y
m+1

, . . . , y
n

2 Rd vérifiant y
m

= x
m

et y
n

= x
n

, nous avons

E(x
m

, x
m+1

, . . . , x
n

)  E(y
m

, y
m+1

, . . . , y
n

).

En dimension d = 1, un exemple classique d’énergie d’interaction E est de la forme
E(x, y) = V (x) + U(y � x) où V : R ! R est potentiel 1-périodique (V (x + 1) = V (x)
pour tout réel x) représentant l’interaction avec un environnement à structure périodique,
et U : R ! R représentant l’interaction entre les atomes. En particulier, le modèle original
de Frenkel-Kontorova [FK38] considère l’énergie d’interaction E(x, y) = 1/2(1� cos(⇡x)) +
1/2C(y � x � µ)2, pour des paramètres C et µ, Les hypothèses suivantes sur les potentiels
sont dites classiques et étendent le modèle original :

— régularité : U et V : R ! R sont C2 ;
— twist, ou stricte convexité : U

00
(x) > 0, 8x 2 R ;

— super-linéarité : lim
x!±1

U(x)

|x|

= +1.

Il est alors simple de montrer que des configurations minimisantes existent dans ce
contexte et que l’ensemble de ces configurations est fermé pour la topologie produit sur

37



RZ. Ces configurations ont été initialement décrites par S. Aubry -P.Y Le Daeron [ALD83].
Leurs travaux précurseurs ainsi que ceux, indépendants, de J. Mather [Mat82, Mat91] et de
nombreux autres (voir les survols [MF94, CI99, Fatar]), ont débouchés à la théorie d’Aubry-
Mather qui donne une assez bonne compréhension de ces configurations minimisantes. Ajou-
tons que les propriétés du modèle FK ont été étendues aux dimensions supérieures par E.
Garibaldi et P. Thieullen dans [GT11].

À la vue de ces résultats et de ceux sur les ensembles de Delone, il est naturel d’espé-
rer pouvoir comprendre également les propriétés des configurations minimisantes dans un
contexte quasi-périodique. À notre connaissance, ce problème fut initalement étudié dans
[vE99]. La première section de ce chapitre concerne quelques propriétés de ces configurations
dans le cas de la dimension 1, sous des hypothèses classiques, et avec un potentiel V équi-
variant relativement à un quasi-cristal. La seconde section traite d’une énergie d’interaction
presque périodique en dimension quelconque. Cela revient à considérer une famille d’énergies
stationnaire par rapport à un système dynamique minimal. Ce contexte englobe celui de la
première section.

3.1 FK associé à un quasi-cristal de dimension un
Pour une énergie de la forme E(x, y) = V (x) + U(y � x) où U, V : R ! R satisfont les

hypothèses classiques et V est périodique, Aubry et Le Daeron, montrent dans [ALD83],
que chaque configuration minimisante (x

n

)
n2Z ⇢ R admet un nombre de rotation ⇢, i.e. la

limite suivante existe :
lim

n!±1

x
n

n
= ⇢ � 0.

Remarquons que l’inverse de cette limite peut s’interpréter en termes de densité de particules
de la configuration minimisante. Aubry et Le Daeron montrent également que le nombre de
rotation ⇢ dépend continûment de la configuration minimisante (x

n

)
n2Z (pour la topologie

produit). De plus, ces nombres de rotations ne possèdent aucune propriété arithmétique par-
ticulière puisque tout réel positif est le nombre de rotation d’une configuration minimisante.
Ce dernier point implique aussi qu’il existe un nombre indénombrable de configurations mini-
misantes. Précisons qu’Aubry et Le Daeron démontrent, en fait, des résultats beaucoup plus
précis concernant la combinatoire de ces configurations. Nous nous restreindrons cependant
à leurs derniers résultats mentionnés.

Avec J.M. Gambaudo et P. Guiraud [10], nous étendons ces résultats au contexte d’un
potentiel V quasi-périodique associé à un quasi-cristal X ⇢ R. Pour la suite, nous dirons
que X ⇢ R est un quasi-cristal si

1. X est un ensemble de Delone de R-type fini (voir section 2.1.1) ;
2. X est répétitif (voir proposition 2.1.2) ;
3. Pour tout R-patch P de X et tout réel x 2 R, la limite suivante existe

lim
M!+1

card{v 2 [x�M,x+M ]; v est une occurrence de P}
2M

= ⌫(P) > 0,

uniformément et indépendamment de x.
Rappelons que la condition (2), par la proposition 2.1.2, est équivalente à la minimalité de la
R-action sur l’enveloppe de X. La condition (3) est équivalente à l’unique ergodicité de cette
dernière action (voir la section 2.3.2). Par exemple, les ensembles de Delone linéairement
répétitifs forment des quasi-cristaux (voir la section 2.2.1).
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Pour un quasi-cristal fixé X, nous considérerons des fonctions fortement X-équivariantes
(ou strongly equivariant functions) dans le sens de [Kel03]. Un potentiel V : R ! R est dit
fortement X-équivariant s’il existe une constante R

V

> 0 telle que

V (x) = V (y), 8x, y 2 R tels que (B
RV (x) \X)� x = (B

RV (y) \X)� y.

Ainsi, si x et de y sont deux occurrences d’un même R
V

-patch, la valeur du potentiel est la
même en ces deux points.

Bien évidemment un potentiel périodique est fortement équivariant pour un quasi-cristal
périodique. De façon général, si � :=

P
x2X

�
x

désigne la mesure de Radon associée à un
quasi-cristal X, et si g : R ! R est une fonction lisse (resp. Cp) à support compact. Il est
alors simple de vérifier que la convolution g⇤� donne une fonction fortement équivariante lisse
(resp. Cp). Il est simple également de voir que toute fonction fortement équivariante s’étend
de façon unique en une fonction continue sur l’enveloppe de X, V̂ : ⌦(X) ! R [10, Kel03].
Cette fonction vérifie V̂ (X � t) = V (t) pour tout réel t et V̂ est localement constante sur
les verticales ⌅ (cf section 2.1.2). L’enveloppe est alors un espace similaire au cercle dans le
cas périodique.

Dans ce contexte, nous obtenons le résultat suivant.

Théorème 3.1.1 ([10]) Pour un quasi-cristal X, un potentiel V : R ! R C2 fortement
X-équivariant et une fonction U : R ! R, C2, super-linéaire et strictement convexe, nous
avons

i) toute configuration minimisante (x
n

)
n

admet un nombre de rotation

⇢((x
n

)
n

) = lim
n!±1

x
n

n
.

ii) La fonction nombre de rotation (x
n

)
n

7! ⇢((x
n

)
n

) est continue pour la topologie
produit.

iii) Tout nombre ⇢ � 0 est le nombre de rotation d’une configuration minimisante.

La stratégie de la preuve d’Aubry et Le Daeron dans le cas périodique [ALD83] consiste à
montrer que les configurations minimisantes ont une combinatoire particulière : si on projette
une telle configuration (x

n

)
n

sur le cercle R/Z, il existe un homéomorphisme f du cercle,
préservant l’orientation tel que f(x

n

mod Z) = x
n+1

mod Z, pour tout entier n. Ainsi, une
telle configuration admet un nombre de rotation. Cette propriété combinatoire remarquable
repose sur le fameux lemme de croisement d’Aubry qui utilise fortement la condition twist.

Nous suivons une stratégie similaire dans le cas quasi-périodique [10], où nous montrons
qu’une configuration minimisante admet une combinatoire particulière. Plus précisément, si
x, y 2 R sont deux occurrences d’un même R0-patch de X ((B

R

0(x) \X) � x = (B
R

0(y) \
X)� y, R0 � R

V

), alors

|card ({x
n

}
n

\B
R

0(x))� card ({x
n

}
n

\B
R

0(y))|  3.

Grâce à cette propriété et à la fréquence uniforme des occurrences des patchs de X (condition
(3)), nous obtenons l’existence des nombres de rotation et leur continuité. Si l’hypothèse
d’unique ergodicité était enlevée, nous obtiendrions que la suite (x

n

/n)
n

admet plusieurs
valeurs d’adhérences.

Remarquons que cette condition combinatoire est un peu plus faible que dans le cas
périodique puisqu’elle n’implique pas que chaque configuration minimisante est l’orbite d’un
homéomorphisme de l’enveloppe ⌦(X).
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Pour construire des configurations minimisantes avec un nombre de rotation prescrit,
nous considérons des configurations finies qui minimisent l’énergie totale sur un motif avec
un nombre bien choisi d’atomes. Une limite de ces configurations, en prenant des motifs de
plus en plus grands, nous donne une configuration minimisante adéquate.

Pour conclure cette section, ajoutons qu’il existe un point de vue plus dynamique des
configurations minimisantes. En remarquant qu’un minimum est un point critique, nous
obtenons des équations d’Euler-Lagrange discrètes : pour toute configuration minimisante
(x

n

)
n

et pour tout entier n,

@E

@y
(x

n�1

, x
n

) +
@E

@x
(x

n

, x
n+1

) = 0.

Ce qui se traduit, sous les hypothèses standard, par
(
p
n+1

= p
n

� V 0(x
n

)

x
n+1

= x
n

� (U 0)�1(p
n

� V 0(x
n

)),

en posant p
n

= x
n+1

� x
n

. En conséquence, toute configuration minimisante est une orbite
d’un homéomorphisme � de R2 appelé application standard (ou standard map) qui possède
de nombreuses propriétés. Dans le cas périodique, cet homéomorphisme se projette en un
homéomorphisme sur le fibré tangent du cercle S1⇥R. Dans le cas quasi-périodique, il s’étend
en un homéomorphisme du fibré tangent de l’enveloppe ⌦(X)⇥R. Il est alors naturel de se
demander si les propriétés classiques des homéomorphismes de l’anneau s’étendent dans le
contexte quasi-périodique. Une première étude de base a été effectuée dans [AP10].

3.2 FK multidimensionel et stationnaire
Nous étendons le modèle de FK quasi-périodique à un contexte plus général dans [11]

avec, cette fois, une approche lagrangienne plus proche du point de vue de Mather. Afin de
simplifier la présentation, nous ne donnerons pas ici les hypothèses les plus faibles pour les
résultats et nous en référons à [11] pour le lecteur interessé.

Nous considérons une famille d’énergie d’interaction en dimension supérieure d � 1
E

!

: Rd⇥Rd ! R, dépendant d’un environnement !. Nous supposons de plus, que la famille
de tous les environnements forme un espace métrique compact ⌦ muni d’une Rd-action
continue ⌧ : Rd ⇥ ⌦ ! ⌦, telle que le système dynamique (⌦, {⌧

t

}
t2Rd) soit minimal. Nous

nous intéressons aux familles d’énergies {E
!

}
!2⌦

possédant une forme lagrangienne, i.e.
dont il existe une fonction continue L : ⌦⇥ Rd ! R, appelée lagrangien, telle que

8! 2 ⌦, 8x, y 2 Rd, E
!

(x, y) = L(⌧
x

(!), y � x).

Le triplet (⌦, {⌧
t

}
t2Rd , L) est appelé modèle d’interaction presque périodique ⇤.

Définition 3.2.1 Soit (⌦, {⌧
t

}
t2Rd , L) un modèle d’interaction presque périodique. Le la-

grangien L est dit super-linéaire si

lim
R!+1

inf
!2⌦

inf
ktk�R

L(!, t)

ktk = +1.

⇤. Précisons que l’expression “presque périodique” est liée à la minimalité du système et est plus générale
que la notion de “presque périodique au sens de H. Bohr”
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L est dit faiblement twist s’il existe une fonction U : ⌦ ! R, C0 telle que pour tout ! 2 ⌦,
la fonction Ẽ

!

(x, y) := E
!

(x, y) + U(⌧
x

!)� U(⌧
y

(!) est C2 et

8x, y 2 Rd,
@2Ẽ

!

@x@y
(x, ·) < 0 et

@2Ẽ
!

@x@y
(·, y) < 0 p.p.

Dans ce contexte, nous retrouvons tous les exemples traités dans la section précédente 3.1.

Exemple 3.2.2 (Ex. périodique) Pour ⌦ = R/Z et ⌧
t

la translation par t 2 R modulo
Z, nous retrouvons l’énergie d’interaction originelle en prenant L(!, t) = V (!) + U(t) pour
! 2 R/Z, t 2 R, avec U : R ! R et V : R/Z ! R continue.

Exemple 3.2.3 (Ex. quasi-cristal) De même, en considérant ⌦(X) l’enveloppe d’un quasi-
cristal X et une fonction continue V̂ : ⌦(X) ! R, le lagrangien L(!, t) = V̂ (!) +U(t) pour
! 2 ⌦(X) et t 2 R, nous retrouvons l’énergie d’interaction associée à un quasi-cristal traitée
dans la section 3.1.

Remarquons que dans ces deux cas, les propriétés de super-linéarité et twist de la fonction
U impliquent les propriétés de super-linéarité et de faible twist du lagrangien.

Exemple 3.2.4 (Ex. presque périodique au sens de Bohr) Le lagrangien défini, pour
des constantes K

1

,K
2

,�, par

L((!
1

,!
2

), t) =
1

2
|t� �|2 + K

1

(2⇡)2
(1� cos 2⇡!

1

) +
K

2

(2⇡)2
(1� cos 2⇡!

2

),

où t 2 R et (!
1

,!
2

) 2 T2, donne également un modèle d’interaction presque périodique,
super-linéaire et faiblement twist pour le flot ⌧

t

(!) = ! + t(1,
p
2) 2 T2.

Ainsi le contexte de modèle d’interaction quasi-périodique est beaucoup plus large que
celui étudié dans la section précédente puisque il englobe des systèmes expansifs, équicontinus
ou avec des régularités intermédiaires (distal, etc . . .). Ajoutons que ce modèle stationnaire
a déjà été étudié pour l’équation d’Hamilton-Jacobi dans le contexte stationnaire ergodique
(la dépendence en ! n’est alors que mesurable et l’action de ⌧ est ergodique) [LS03, DS09,
DS12] ou alors associé à des fonctions presque périodiques au sens de H. Bohr (par ex.
[SdlL12, Ish99]).

Remarquons qu’un modèle d’interaction presque périodique avec un lagrangien L super-
linéaire implique les propriétés suivantes pour chaque énergie d’interaction E

!

: Rd⇥Rd ! R,
! 2 ⌦ :

— stationnarité : 8t, x, y 2 Rd E
!

(x+ t, y + t) = E
⌧t(!)

(x, y).
— bornée par translation : 8R > 0, sup

ky�xkR

E
!

(x, y) < +1.
— uniforme continuité par translation : 8R > 0 E

!

(x, y) est uniformément continue en
ky � xk  R.

— super-linéarité : lim
R!+1

inf
ky�xk�R

E!(x,y)

ky�xk

= +1.
Sous les seules hypothèses de super-linéarité, de borné par translation et d’uniforme conti-
nuité par translation de l’énérgie, l’existence de configuration bi-infinie minimisante n’est
pas clair. Nous savons prouver seulement l’existence de configuration minimisante semi-
infini (x

n

)
n�0

(voir proposition 3.2.6). Nous obtenons tout de même un peu plus, car nous
montrons que ces configurations sont calibrées. C’est une notion clef dans la théorie KAM
faible.
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Définition 3.2.5 Nous disons qu’une configuration (x
n

)
n

est c-calibrée pour une énergie
d’interaction E (au niveau c 2 R) si pour tous les entiers m < n,

E(x
m

, . . . , x
n

)� (m� n)c  inf
k�1

inf
y0=xm,...,yk=xn

[E(y
0

, . . . , y
k

)� kc].

Il est simple de voir qu’une configuration calibrée (x
n

)
n

est une configuration minimisante,
mais la réciproque n’est pas vraie. Mentionnons également, qu’en ces termes, Aubry et Le
Daeron prouvent dans [ALD83] que pour une énergie d’interaction périodique en dimension
d = 1, toute configuration minimisante est en faite calibrée pour un certain c.

Sous des hypothèses assez faible, nous obtenons l’existence de configuration semi-infinie
calibrée.

Proposition 3.2.6 ([11]) Pour une énergie d’interaction E : Rd ⇥ Rd ! R, C0, super-
linéaire, bornée par translation et uniformément continue par translation, il existe une cali-
bration c̄ 2 R et une configuration (x

n

)
n�0

c̄-calibrée.

Nous avons donc pour un modèle d’interaction presque périodique (⌦, {⌧
t

}
t2Rd , L), avec un

lagrangien L C0 et super-linéaire, l’existence de configurations calibrées semi-infinies pour
tout environnement ! 2 ⌦. La preuve de la proposition 3.2.6 provient d’une généralisa-
tion directe de la stratégie moderne de la théorie d’Aubry-Mather et est similaire à celle de
[Zav12]. Le modèle FK apparait naturellement comme une discrétisation en temps de l’équa-
tion d’Hamilton Jacobi. Le pendant discret des solutions de viscosité ou solution KAM faible
de ces équations, sont les fonctions propres d’un opérateur dit de Lax-Oleinik. L’étude de
cet opérateur, nous permet dans l’annexe de [11] de démontrer la proposition 3.2.6.

Pour un modèle d’interaction quasi-périodique, une calibration importante est donnée
par l’énergie minimale.

Définition 3.2.7 Pour une famille d’interaction {E
!

}
!2⌦

de forme lagrangienne, l’énergie
minimale est la quantitée

Ē = lim
n!+1

inf
!2⌦

inf
x0,...,xn2Rd

1

n
E

!

(x
0

, . . . , x
n

).

Cette limite est en fait un supremum par super-additivité et est finie pour L super-linéaire.
Cette constante Ē joue le rôle d’un drift et E

!

(x, y)� Ē est similaire à une “distance signée”.
Nous montrons dans [11] l’existence de configurations Ē-calibrées bi-infinies pour les

environnements ! qui sont dans le projeté de l’ensemble de Mather : Mather(L) ⇢ ⌦⇥Rd,
défini un peu plus loin (définition 3.2.10). Pour être plus précis, notons pr : ⌦⇥ Rd ! ⌦ la
projection sur la première coordonnée, nous avons :

Théorème 3.2.8 ([11]) Soit (⌦, {⌧
t

}
t2Rd , L) un modèle d’interaction presque périodique,

avec L un lagrangien superlinéaire C0. Alors pour tout ! 2 pr(Mather(L)), il existe une
configuration Ē-calibrée (x

n

)
n2Z telle que x

0

= 0 et sup
n

kx
n+1

� x
n

k < +1.

Pour définir l’ensemble de Mather, il faut tout d’abord considérer la notion de mesure
holonomique. Une telle mesure µ est une mesure de probabilité sur ⌦⇥ Rd telle que

8f 2 C0(⌦),

Z
f(!)µ(d!, dt) =

Z
f(⌧

t

!)µ(d!, dt).

La mesure de Dirac �
(!,0)

est un exemple de mesure holonomique. Plus généralement, n’im-
porte quelle mesure de probabilité invariante par l’application standard est holonomique.

La proposition suivante est fondamentale pour les configurations calibrées, car elle relie
leur existence avec un problème de minimisation ergodique plus simple à traiter.
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Proposition 3.2.9 ([11]) Si L est C0 super-linéaire, alors Ē = inf{
R
Ldµ;µ est holonomique}

et l’infimum est atteint pour une certaine mesure.

Une mesure qui réalise l’infimum précédent est dite minimisante.

Définition 3.2.10 L’ensemble de Mather de L est l’ensemble

Mather(L) :=
[

µ minimisante

supp(µ) ⇢ ⌦⇥ Rd.

L’ensemble de Mather est non vide (Proposition 3.2.9) et est en fait compact lorsque le
lagrangien L est super-linéaire [11]. Il est cependant possible que son projeté pr(Mather(L))
ne rencontre pas toutes les orbites du flot ⌧ . Dans l’exemple 3.2.4, en prenant � = 0, il est
simple de voir que Ē = 0 et que les mesures minimisantes sont des combinaison convexes de
mesures de Dirac. De plus la projection de l’ensemble de Mather ne rencontre qu’un nombre
fini de ⌧ -orbite.

Dans les exemples associés aux quasi-cristaux, nous montrons, en dimension d = 1, que
cette pathologie disparait. Dans ce cas, le projeté de l’ensemble de Mather rencontre toutes
les orbites.

Plus précisément, pour ⌦ un R-solénoïde (voir section 2.1.2), nous dirons qu’un lagran-
gien L : ⌦⇥R ! R est transversalement constant si pour toute verticale ⌅, L(·, t)

|⌅

est loca-
lement constant pour tout t fixé. Dans la suite, nous appellerons modèle quasi-cristallin un
tel modèle d’interaction (⌦, {⌧

t

}
t2R, L) avec un lagrangien L super-linéaire, faiblement twist

et transversalement constant. L’exemple 3.2.3 pour une fonction V fortement X-équivariante
donne un exemple d’un tel système.

Théorème 3.2.11 ([11]) Soit (⌦, {⌧
t

}
t2R, L) un modèle quasi-cristallin où l’action ⌧ est

uniquement ergodique. Alors le projeté de l’ensemble de Mather pr(Mather(L)) rencontre
toute ⌧ -orbite. En particulier, pour tout ! 2 ⌦, il existe une configuration Ē-calibrée (x

n,!

)
n2Z

pour E
!

avec des sauts et une distance à l’origine uniformément bornés en ! :

sup
!2⌦

sup
n2Z

|x
n+1,!

� x
n,!

| < +1, et sup
!2⌦

|x
0,!

| < +1.

La démonstration du théorème 3.2.8 n’est pas directe et passe par l’étude des propriétés
du potentiel de Mañé. La preuve du théorème 3.2.11 provient d’une description des mesures
invariantes sur le solénoïde via des tours de Kakutani-Rohlin et d’une analyse de la combi-
natoire des configurations minimisantes dans ce contexte, via l’étude du potentiel de Mañé
et le lemme de croisement d’Aubry.

Remarquons que la théorie d’Aubry-Mather dans le cas périodique, montre que l’en-
semble de Mather est inclus dans un graphe de ⌦ ⇥ R. Nous ne savons pas démontrer ce
dernier point dans notre contexte, même si nous en sommes proche. Des simulations numé-
riques (semi-rigoureuses) tendent à assurer l’existence de ces graphes invariants. De plus,
dans le cas particulier de l’équation du pendule quasi-périodique, où l’on remplace le terme
usuel en sin par une fonction fortement équivariante par rapport à ensemble de Delone
donné par une substitution Pisot, ou par une suite sturmienne, nous obtenons l’existence
d’une solution de viscosité et l’ensemble de Mather est supporté dans un graphe donné par
cette solution. Ici les calculs sont assez explicites et nous devons utiliser fortement que les
suites considérées sont balancées ce qui assure une vitesse de convergence rapide pour les
moyennes ergodiques du nombre d’apparition d’un motif arbitraire.
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Abstract. Linearly repetitive Delone sets are the simplest aperiodic repetitive
Delone sets of the Euclidean space, e.g. any self similar Delone set is linearly
repetitive. We present here some combinatorial, ergodic and mixing properties
of their associated dynamical systems. We also give a characterization of such
sets via the patch frequencies. Finally, we explain why a linearly repetitive
Delone set is the image of a lattice by a bi-Lipschitz map of the space.
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1. History and motivations

The notion of linearly recurrent subshift has been introduced in [Du, DHS] to study
the relations between substitutive dynamical systems and stationary dimension
groups. In an independent way, the similar notion of linearly repetitive Delone
sets of the Euclidean space Rd appears in [LP1]. For a Delone set X of Rd, the
repetitivity functionMX(R) is the leastM (possibly infinite) such that every closed
ball B of radius M intersected with X contains a translated copy of any patch
with diameter smaller than 2R.

A Delone set X is said linearly repetitive if there exists a constant L such
that MX(R) < LR for all R > 0. Observe that we can assume that the constant L
is greater than 1. According to the following theorem, the slowest growth for the
repetitivity function of an aperiodic Delone set is linear.

Theorem 1 ([LP1, Thm. 2.3]). Let d ≥ 1. There exists a constant c(d) > 0 such
that for any Delone set X of Rd such that

MX(R) < c(d)R for some R > 0,

then X has a non-zero period.

Financial support from the ANR SUBTILE 0879. This work is part of the program MathAmSud
DYSTIL 12Math-02.
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Even more, if for some R, MX(R) < 4
3R, then the Delone set X is a crystal,

i.e., has d independent periods ([LP1, Thm. 2.2 ]).
The classical examples of aperiodic Delone systems, e.g., the ones arising

from substitution, are linearly repetitive.

Lemma 2 ([So2, Lem. 2.3]). A primitive self similar tiling is linearly repetitive.

In many senses that we will not specify, the family of linearly repetitive Delone
sets is small inside the family of all the Delone sets of the Euclidean space Rd. For
instance, in the class of Sturmian subshifts, several authors [MH, Du1, Du, LP2]
show the following result.

Proposition 3. The Sturmian subshift associated to an irrational number α is lin-
early recurrent if and only if the coefficients of the continued fraction of α are
bounded.

Let us recall that for the standard topology, the set of numbers with bounded
continued fraction are badly approximable by rational numbers. It is known that
they form a Baire meager set, with 0 Lebesgue measure but with Hausdorff di-
mension 1.

As we shall see, the linearly repetitive Delone sets possess many rigid prop-
erties. In the next section we present some combinatorial properties of these sets.
For instance, their complexity appears to be the slowest possible among all the
aperiodic repetitive Delone sets. Section 3 is devoted to the structure of the hull
of an aperiodic linearly repetitive Delone set. A tower system with uniform bound
is described. We deduce from this the main properties of the system. We focus
in Section 4 on the ergodic properties of dynamical systems associated to linearly
repetitive Delone sets. They are strictly ergodic (i.e., each patch appears with a
frequency). But they are not wild since they are never measurably mixing. They
satisfy also a subbaditive ergodic theorem. We present a characterization of the
linear repetitivity by using a bound on the frequencies of the occurrences of the
patches. The dynamical factors of these systems are studied in Section 5. They
admit as factors just a finite number of non conjugate aperiodic Delone systems.
We give also a characterization of their continuous and measurable eigenvalues by
studying cohomological equations. The last section concerns the deformation of
linearly repetitive Delone sets: each one is the image through a Lipschitz map of
a lattice in Rd.

2. Combinatorial properties

In this section we give the basic definitions and combinatorial properties concerning
linearly repetitive Delone sets of Rd. Most of these properties are obvious for self-
similar tilings. Recall that a set X ⊂ Rd, with d ≥ 1, is a (rX , RX)-Delone set (or
a Delone set for short) if it is a discrete subset of the Euclidean space Rd, with
the following properties:
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1. Uniform discreteness: each open ball of radius rX > 0 in Rd contains at most
one point of X .

2. Relative density: each closed ball of radius RX in Rd contains at least one
point of X .

A classical example is given by the lattice Zd of points with integer coefficients is
a Delone set. But notice also that the image of any Delone set by a bi-Lipschitz
map of Rd provides a Delone set. We denote by BR(x) the Euclidean closed ball
of radius R > 0 centered at the point x ∈ Rd.

2.1. Return vectors to a patch

Let X be a (rX , RX)-Delone set. A R-patch is a set of the kind P = X ∩ BR(x)
centered at some point x ∈ X and for some R > RX

1. In the rest of this paper
we assume that all the Delone sets have finite local complexity, that is for any real
R > 0 there is a finite number of R-patches, up to translations. This is actually
equivalent to the fact X −X is a discrete subset of Rd [La].

For a R-patch P, we define the set

RP(X) = {v ∈ Rd : P+ v is a R-patch of X}.
It is called the set of return vectors to P. For a fixed center xP of P, any point in
RP(X) + xP =: XP is an occurrence of the patch P.

Observe that the null vector 0 always belongs to RP(X). It is straightforward
to check that XP is a Delone set when X is linearly repetitive (see definition in
the introduction). Furthermore, XP has finite local complexity because XP−XP ⊂
X −X .

When X is aperiodic and linearly repetitive with constant L, there are uni-
form bounds on the constants rXP and RXP associated to the Delone set XP. The
following lemma shows that two occurrences of a patch can not be too close. The
proof can be found in [Le, Lem. 2.1] and in [So2, Du1].

Lemma 4. Let X be a linearly repetitive aperiodic Delone set with constant L > 1.
Then, for every patch P = X ∩BR(x) with x ∈ X, R > 0, we have

R

L+ 1
≤ rXP ≤ RXP ≤ LR.

Proof. By contradiction: let us assume there exist x ̸= y ∈ X with

(X ∩BR(x)) − x = X ∩BR(y)− y

and

rX ≤ ∥x− y∥ <
R

(L+ 1)
.

Then for any point z′ in BR(x)∩X , we have z′ +(y− x) ∈ X . For any z ∈ X , the
set X ∩BR(x) contains a translated copy centered in z′ ∈ X ∩BR(x) of the patch
B R

L+1
(z) ∩X . Thus z′ + (y − x) ∈ X ∩B R

L+1
(z′) and finally z + (y − x) ∈ X and

1Note: a given patch may be defined by several centers x and radius R. So when we consider a
R-patch P, we choose a center xP and a radius R.
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so X + (y − x) ⊂ X . In a similar way we obtain X + (x − y) ⊂ X , so that finally
we get X + x− y = X contradicting the aperiodicity of X . !

This repulsion property on the occurrences of patches has several conse-
quences on the combinatorics of the Delone set X .

First of all on the complexity. Let us denote NX(R) the number of different
R-patches BR(x) ∩ X with x ∈ X , up to translation. Since any ball of radius
MX(R) contains the centers of occurrences of any R-patch, we easily deduce that
NX(R)

1
d = O(MX(R)) as R → ∞ (see [LP2]).

Lemma 5 ([Le, Lem. 2.2]). Let X be an aperiodic linearly repetitive Delone set.
Then

lim inf
R→+∞

NX(R)

Rd
> 0.

From this, we conclude that for an aperiodic linearly repetitive Delone set
MX(R) = O(NX(R)

1
d ) as R → ∞.

Proof. As X is relatively dense, there exist constants λ1 > 0 and R1 > 0 such that

♯(X ∩BR(x)) ≥ λ1R
d for any x ∈ X, R ≥ R1.

By the previous lemma all the patches (X −x)∩BR(0) for x ∈ X ∩B R
3(L+1)

(0) are

pairwise different. Thus for any R ≥ 3(L+ 1)R1, we have

NX(R) ≥ ♯(X ∩B R
3(L+1)

(0)) ≥ λ1

(
R

3(L+ 1)

)d

,

that gives us the result. !

Another property is on the hierarchical structure of the linearly repetitive
Delone sets, that is quite simple: for any size R > 0, it is possible to decompose the
Delone set into big patches (each one containing a R-patch), so that the number of
these patches, up to translations, is independent of the size R. To be more precise,
we need the notion of Voronöı cell of a patch. For a (rX , RX)-Delone set X , the
Voronöı cell Vx of a point x ∈ X is the set

Vx =
{
y ∈ Rd : ∥y − x∥ ≤ ∥y − x′∥, ∀x′ ∈ X

}
.

It is then direct to check that any Voronöı cell Vx is a convex polyhedra, its
diameter is smaller or equal to 2RX and it contains the ball B rX

2
(x). Moreover

when the Delone set X is of finite local complexity, the collection of Voronöı cells
{Vx}x∈X forms a tiling of Rd of finite local complexity.

For a patch R-patch P = BR(xP)∩X of a repetitive Delone set X , we denote
by VP,x the Voronöı cell associated to the Delone set XP and an occurrence x ∈ XP.
Notice that the Voronöı cell associated to the set of return vectors RP(X) and a
return vector v ∈ RP(X), is the Voronöı cell of the occurrence xP + v ∈ XP

translated by the vector −xP.
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It follows by Lemma 4 that for an aperiodic linearly repetitive Delone set
with constant L, for any R-patch P,

diamVP,x ≤ 2LR, B R
2(L+1)

(x) ⊂ VP,x, for any x ∈ XP. (2.1)

Lemma 6 ([CDP, Lem. 11]). Let X be an aperiodic linearly repetitive Delone set
with constant L. There exists an explicit positive constant c(L) such that for every
R > 0 and every R-patch P = X ∩ BR(x), the collection {X ∩ VP,x : x ∈ XP}
contains at most c(L) elements up to translation.

Observe here that the bound, explicit in the proof, does not depend on the
combinatorics of X but just on the constant of repetitivity.

Proof. Let us consider B the union of Voronöı cells VP,x, x ∈ XP that intersects
the ball BL2R(0). We have then

BL2R(0) ⊂ B ⊂ BL2R+2LR(0).

By linear repetitivity, B ∩X contains a translated copy of any patch of the kind
X ∩ VP,x with x ∈ XP. Since any Voronöı cell contains a ball of radius R

2(L+1) , the
number of patches in B ∩X of the kind X ∩ VP,x with x ∈ XP is smaller than

volBRL(L+2)(0)

volB R
2(L+1)

(0)
≤ (2L(L+ 2)2)d = c(L). !

Even stronger, the next lemma gives for an aperiodic linearly repetitive De-
lone set, a uniform bound (in R) on the number of occurrences of a patch inside
a ball of radius KR.

Lemma 7. Let X be an aperiodic linearly repetitive Delone set with constant L ≥ 1,
and let K ≥ L. Then for any R-patch P of X and any point y ∈ Rd,

♯{v ∈ Rd; P− v ⊂ BKR(y) ∩X} ≤ 12dKdLd.

Proof. Let B be the union of all the Voronöı cells VP,x, x ∈ XP that intersect the
ball BKR(y). It follows that

B ⊂ BKR+2LR(y).

By Lemma 4, the sets B R
2(L+1)

(z), where the points z ∈ BKR(y) ∩ XP are occur-

rences of P, are pairwise disjoint and are included in B. Then it follows that

♯{v ∈ Rd; P− v ⊂ B} ≤ vol(B)

volB R
2(L+1)

(0)
≤ 2d(K + 2L)d(L+ 1)d,

that gives us the result. !

Here again, observe that the bound depends just on the repetitivity constant.
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3. Structure of the hull of a linearly repetitive Delone set

3.1. Background on solenoids, boxes

In this section, we will see the specific geometrical structure of the associated hull
Ω of an aperiodic repetitive Delone set. We recall here, from [BBG, BG], the local
structure of this space.

3.1.1. Local transversals and return vectors. Let (Ω,Rd) be an aperiodic minimal
Delone system. The canonical transversal of Ω is the set Ω0 composed of all Delone
sets in Ω that contain the origin 0. This terminology is motivated by the fact that
if Y is in Ω0, then every small translation of Y will not be in Ω0. A cylinder in Ω
is a set of the form

CY,S := {Z ∈ Ω | Z ∩BS(0) = Y ∩BS(0)},
where Y ∈ Ω and S > 0 are such that Y ∩ BS(0) ̸= ∅. The next lemma is well
known.

Proposition 8. Every cylinder in Ω is a Cantor set. Moreover, a basis for the
topology of Ω is given by sets of the form

{Z − v | Z ∈ CY,S , v ∈ Bε(0)}.
In particular, the canonical transversal Ω0 is a Cantor set.

A local transversal in Ω is a clopen (both closed and open) subset of some
cylinder in Ω. By Proposition 8, a local transversal C is a Cantor set. This implies
that the recognition radius defined as

rec(C) := inf{S > 0 | CY,S ⊆ C for all Y ∈ C}
is finite. The motivation to define rec(C) is the following: suppose that a Delone
set Y ∈ Ω is given and we want to check if Y belongs to C. Then it suffices to look
whether the patch Y ∩Brec(C)(0) is equivalent to Yi ∩Brec(C)(0) for some Yi. Of
course, if C = CY,S , then its recognition radius is smaller than S. Proposition 8
implies also that the collection

{CY,S | Y ∈ C, S > rec(C)}
forms a basis for its topology. Indeed, since C is a Cantor set, it is easy to find a
finite set {Y1, . . . , Ym} in C such that

C =
m⋃

i=1

CYi,rec(C).

Given a local transversal C and D ⊆ Rd, the following notation will be used
throughout the paper:

C[D] = {Y − x | Y ∈ C, x ∈ D}.
As we define a return vector to a patch, one can define the set of return vectors to
a local transversal. Given a local transversal C and a Delone set Y ∈ Ω, we define

RC(Y ) = {x ∈ Rd | Y − x ∈ C}.
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When Y belongs to C, we refer to RC(Y ) as the set of return vectors of Y to C.
The following lemma is standard (see, e.g., [C])

Lemma 9. Let C be a local transversal. Then for each Y ∈ C, the set of return
vectors RC(Y ) is a repetitive Delone set. Moreover, the following quantities

r(C) =
1

2
inf{∥x− y∥ x, y ∈ RC(Y ), x ̸= y}, and (3.1)

R(C) = inf{R > 0 RC(Y ) ∩BR(y) ̸= ∅ for all y ∈ Rd}, (3.2)

do not depend on the choice of Y in C.

3.1.2. Solenoids and boxes. In this section, we recall some definitions and results
of [BBG, BG] that will be used throughout the paper. The hull Ω is locally home-
omorphic to the product of a Cantor set and Rd. Moreover, there exists an open
cover {Ui}ni=1 of Ω such that for each i ∈ {1, . . . , n}, there are Yi ∈ Ω, Si > 0
and open sets Di ⊆ Rd such that Ui = CYi,Si [Di] and the map hi : Di × Ci → Ui

defined by hi(t, Z) = Z − t is a homeomorphism. Furthermore, there are vectors
vi,j ∈ Rd (depending only on i and j) such that the transition maps h−1

i ◦ hj

satisfy
h−1
i ◦ hj(t, Z) = (t− vi,j , Z − vi,j) (3.3)

at all points (t, Z) where the composition is defined. Following [BG], we call such
a cover a Rd-solenoid’s atlas. It induces, among others structures, a laminated
structure as follows. First, slices are defined as sets of the form hi(Di × {Z}).
Equation (3.3) implies that slices are mapped onto slices. Thus, the leaves of
Ω are defined as the smallest connected subsets that contain all the slices they
intersect. It is not difficult to check, using (3.3), that the leaves coincide with the
orbits of Ω.

A box in Ω is a set of the form B := C[D] where C is a local transversal
in Ω, and D ⊆ Rd is an open set such that the map from D × C to B given by
(x, Y ) +→ Y − x is a homeomorphism. This is true, for instance, if D ⊆ Br(C)(0)
(cf. (3.1)).

3.2. Tower systems

In this section we review the concepts of box decompositions and tower systems
introduced in [BBG, BG]. We focus on linearly repetitive Delone sets. The main
results of this section can be found in [AC]. For all this section, Ω denotes the hull
of an aperiodic repetitive Delone set X .

3.2.1. Box decompositions and derived tilings. A box decomposition is a finite and
pairwise-disjoint collection of boxes B = {B1, . . . , Bt} in Ω such that the closures
of the boxes in B cover the hull. For simplicity, we always write Bi = Ci[Di], where
Ci and Di are fixed and Ci is contained in Bi. In particular, the set Di contains
0. We refer to Ci as the base of Bi. In this way, we call the union of all Ci the base
of B. The reasoning for fixing a local transversal in each Bi comes from the fact
that box decompositions can be constructed in a canonical way starting from the
set RC(Y ) of return vectors to a given local transversal C [BBG].
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An alternative way of understanding a box decomposition is given by a family
of tilings, known as derived tilings, which are constructed by intersecting the box
decomposition with the orbit of each Delone set in the hull.

Let us start by recalling some basic definitions about tilings. A tile T in Rd is
a compact set that is the closure of its interior (not necessarily connected). A tiling
T of Rd is a countable collection of tiles that cover Rd and have pairwise disjoint
interiors. Tiles can be decorated : they may have a color and/or be punctured at an
interior point. Formally, this means that decorated tiles are tuples (T, i, x), where
T is a tile, i lies in a finite set of colors, and x belongs to the interior of T . Two
tiles have the same type if they differ by a translation. If the tiles are punctured,
then the translation must also send one puncture to the other, and when they are
colored, they must have the same color.

To construct a derived tiling, the idea is to read the intersection of the boxes
in the box decomposition with the orbit of a fixed Delone set in the hull. In the
sequel, it will be convenient to make the following construction. Let {Ci}ti=1 be a
collection of local transversals and {Di}ti=1 be a collection of bounded open subsets
of Rd containing 0. Define B = {Ci[Di]}ti=1 and observe that the sets in B are not
necessarily boxes of Ω. For each Y ∈ Ω, define the (decorated) derived collection
of B at Y by

TB(Y ) := {(Di + v, i, v) | i ∈ {1, . . . , t}, v ∈ RCi(Y )}.
The following lemma gives the relation between box decomposition and tilings.

Lemma 10 ([AC, Lem. 3.1 ]). Let B = {Ci[Di]}ti=1, where the Ci’s are local
transversals and the Di’s are open bounded subsets of Rd that contain 0. Then, B
is a box decomposition if and only if TB(Y ) is a tiling of Rd for every Y ∈ Ω. In
this case, we call TB(Y ) the derived tiling of B at Y .

Proof. It is easy to see that if B is a box decomposition, then TB(Y ) is a tiling for
every Y ∈ Ω. We now show the converse. For convenience, set C = ∪iCi. Fix Y ∈ Ω
and suppose there are i, j ∈ {1, . . . , t}, Y1 ∈ Ci, Y2 ∈ Cj , x1 ∈ Di and x2 ∈ Dj

such that Y = Y1 − x1 = Y2 − x2. This implies that the tiles Di − x1 and Dj − x2

of TB(Y ) meet an interior point. Since TB(Y ) is a tiling, these tiles must coincide,
and hence i = j and x1 = x2. We conclude i the maps hi : Ci×Di → Ci[Di] given
by (Y, t) &→ Y − t are one-to-one, and moreover their image are pairwise disjoint.
It is then straightforward to check that the maps hi are homeomorphims. !

3.2.2. Properly nested box decompositions. A box decomposition B′={C′
i[D

′
i]}t

′

i=1

is zoomed out of another box decomposition B = {Cj[Dj ]}tj=1 if the following prop-
erties are satisfied:

(Z.1) If Y ∈ C′
i is such that Y − x ∈ Cj − y for some x ∈ D′

i and y ∈ Dj, then
C′

i − x ⊆ Cj − y.
(Z.2) If x ∈ ∂D′

i, then there exist j and y ∈ ∂Dj such that C′
i − x ⊆ Cj − y.

(Z.3) For every box B′ in B′, there is a box B in B such that B ∩ B′ ̸= ∅ and
∂B ∩ ∂B′ = ∅.
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For each i ∈ {1, . . . , t′} and j ∈ {1, . . . , t} define

Oi,j = {x ∈ D′
i | C′

i − x ⊆ Cj}. (3.4)

(Z.4) For each i ∈ {1, . . . , t′} and j ∈ {1, . . . , t},

D′
i =

t⋃

j=1

⋃

x∈Oi,j

Dj + x,

where all the sets in the right-hand side of the equation have pairwise
disjoint interiors.

Observe that in the case that Dj is connected, then properties (Z.1) and (Z.2)
imply (Z.4).

Since we are considering the C′
i’s and Cj ’s as the bases of the boxes, we ask

the following additional property to be satisfied:

(Z.5) The base of B′ is included in the base of B, that is, ∪iC′
i ⊆ ∪jCj .

By (Z.4), we have that the tiling TB′(Y ) is a super-tiling of TB(Y ) in the sense
that each tile T in TB′(Y ) can be decomposed into a finite set of tiles of TB(Y ).
By (Z.3), one of these tiles is included in the interior of T .

Lemma 11. For every j ∈ {1, . . . , t} we have

Cj =
t′⋃

i=1

⋃

x∈Oi,j

C′
i − x.

Proof. By the definition of Oi,j and (Z.1), it suffices to show that every Y ∈ Cj

belongs to the interior of some box C′
i[D

′
i]. Suppose not, then Y ∈ C′

i−x with x ∈
∂D′

i for some i since B′ is a box decomposition. Moreover, by (Z.2) we deduce that
Y must be in the boundary of some box Bj′ in B, which gives a contradiction. !

3.3. Tower systems of linearly repetitive Delone system

A tower system is a sequence of box decompositions (Bn)n∈N such that Bn+1 is
zoomed out of Bn for all n ∈ N. An iteration of the construction of zoomed out
box decomposition gives the following result.

Theorem 12 ([BBG]). The hull of any aperiodic minimal Delone set possesses a
tower system.

We have explained in Section 3.2.1 how to construct a box decomposition
and in Section 3.2.2 the notion of zoomed out box decomposition. In this section,
we specify the construction of a tower system to the linear repetitive case.

Fot a decreasing sequence (Cn)n∈N of local transversals with diameter going
to 0, and a tower system (Bn)n, we say that (Bn)n is adapted to (Cn)n, if for any
n ∈ N we have Bn = {Cn,i[Dn,i]}tni=1 such that Cn = ∪iCn,i and tn is a positive
integer. In this case, for each n ∈ N∗ we define, as in (3.4),

O(n)
i,j = {x ∈ Dn,i | Cn,i − x ⊆ Cn−1,j} (3.5)
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and

m(n)
i,j = ♯O(n)

i,j

for every i ∈ {1, . . . , tn} and j ∈ {1, . . . , tn−1}. The transition matrix of level n
(associated to the tower system (Bn)n∈N) is then defined as the matrix Mn =

(m(n)
i,j )i,j , so Mn has size tn × tn−1. From (Z.4), we get

vol(Dn,i) =

tn−1∑

j=1

m(n)
i,j vol(Dn−1,j). (3.6)

Given a box decomposition B = {Ci[Di]}ti=1, define its external and internal
radius by

Rext(B) = max
i∈{1,...,t}

inf{R > 0 : BR(0) ⊇ Di};

rint(B) = min
i∈{1,...,t}

sup{r > 0 : Br(0) ⊆ Di},

respectively. Define also rec(B) = maxi∈{1,...,t} rec(Ci).
With all theses definitions, we can state the following result for aperiodic

linearly repetitive Delone systems.

Theorem 13 ([AC, Thm. 3.4]). Let X be an aperiodic linearly repetitive Delone
set with constant L > 1 and 0 ∈ X. Given K ≥ 6L(L + 1)2 and s0 > 0, set
sn := Kns0 and Cn := CX,sn for all n ∈ N. Then, there exists a tower system
(Bn)n of Ω adapted to (Cn)n∈N that satisfies the following additional properties:

i) for every n ≥ 0, Cn+1 ⊆ Cn,1;
ii) there exist constants

K1 :=
1

2(L+ 1)
− L

K − 1
and K2 :=

LK

K − 1
,

which satisfy 0 < K1 < 1 < K2, such that for every n ∈ N we have

K1sn ≤ rint(Bn) < Rext(Bn) ≤ K2sn; (3.7)

iii) for every n ∈ N,
rec(Bn) ≤ (2L+ 1)sn. (3.8)

As an application of this result, we have the nice following structure.

Theorem 14. Let X be an aperiodic linearly repetitive Delone set. Then, the tower
system of Ω obtained in Theorem 13 satisfies the following:

1. For every n ∈ N∗, the matrix Mn = (m(n)
i,j )i,j has strictly positive coefficients;

2. The matrices {Mn}n∈N∗ are uniformly bounded in size and norm.

In the self-similar case, the family of matrices {Mn} can be reduced to only
one element.
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Proof. Take the notations of Theorem 13. Indeed, by the definition of linearl repeti-
tivity, we haveMX(rec(Bn)) ≤ L rec(Bn) for all n ∈ N∗. Combining this with (3.8),
the left-hand inequality of (3.7) and the definition of sn we get

MX(rec(Bn)) ≤
L(2L+ 1)

KK1
rint(Bn+1).

Since K ≥ 6L(L + 1)2, it follows that L(2L + 1) ≤ K1K and we obtain for all
n ≥ 0

MX(rec(Bn)) ≤ rint(Bn+1).

Thus any rec(Bn)-patch occurs in a set Dn+1,i ∩ Y for any Y ∈ Cn+1,i, and the

coefficients m(n)
i,j are positive. Moreover, since Dn,i is included in a ball of radius

Rext(Bn−1) and each Dn−1,j contains a ball of radius rint(Bn−1), we deduce from
3.6 that

tn−1∑

j=1

m(n)
i,j ≤

(
Rext(Bn−1)

rint(Bn−1)

)d

≤
(
K

K2

K1

)d

.

So we get that the matrices {Mn}n are uniformly bounded. !

4. Ergodic properties of linearly repetitive system

4.1. Background on transverse invariant measure

A Borel measure µ on the hull Ω of a repetitive Delone set is translation invariant
if µ(B − v) = µ(B) for every Borel set B and v ∈ Rd. It is well known that any
continuous Rd action on a compact space admits an invariant measure.

Let C be a local transversal and 0 < r < r(C). Each translation invariant
measure µ induces a measure ν on C (see [Gh] for the general construction): given
a Borel subset V of C, its transverse measure is defined by

ν(V ) =
µ(V [Br(0)])

vol(Br(0))
,

where vol denotes the Euclidean volume in Rd. This gives a measure on each C,
which does not depend on small r. The collection of all measures defined in this
way is called the transverse invariant measure induced by µ. It is invariant in the
sense that if V is a Borel subset of C and x ∈ Rd is such that V − x is a Borel
subset of another local transversal C′, then ν(V − x) = ν(V ). Conversely, the
measure µ of any box B written as C[D] may be computed by the equation

µ(C[D]) = vol(D)× ν(C).

For a tower system (Bn)n≥0 where Bn = {Cn,i[Dn,i]}tni=1 from (Z.4), Lemma
11 and the definition of transverse invariant measures, we get

ν(Cn−1,j) =
tn∑

i=1

ν(Cn,i)m
(n)
i,j . (4.1)
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Fix n ∈ N. From the relation µ(Cn,i[Dn,i]) = vol(Dn,i)ν(Cn,i) and the fact that
Bn is a box decomposition, it follows that

tn∑

j=1

vol(Dn,j)ν(Cn,j) = 1. (4.2)

4.2. Unique ergodicity and speed of convergence

When the system (Ω,Rd) has a unique translation invariant probability measure,
the system is called uniquely ergodic. The unique ergodicity implies combinatorial
properties for the Delone set. The dynamical system (Ω,Rd) is uniquely ergodic, if
and only if any Delone set X ∈ Ω has uniform patch frequencies, i.e., any patch P
occurs with a positive frequency; more precisely: Let XP be the set of occurrences
of the patch P in X , and let (DN )N be a nested sequence of d-cube DN of side N ,
then the following limit exists.

lim
N→∞

♯XP ∩DN

vol(DN )
=: freq(P).

The number freq(P) is called the frequency of P. Notice the difference with the
standard Birkhoff ergodic Theorem that asserts a convergence only for almost all
Delone set of the hull.

Theorem 15. Let X be an aperiodic linearly repetitive Delone set of Rd and Ω its
hull. Then the system (Ω,Rd) is uniquely ergodic.

The original proof is due to Lagarias and Pleasants in [LP2]. By using the
identification between a transverse invariant measure and the inverse limit of top
homologies of branched manifolds, the authors in [BBG] show that in the case
described in Theorem 14, the system is uniquely ergodic. This proof is independent
of the original one.

Actually for linearly repetitive system, we can be much more precise and give
informations on the speed of convergence of the limit. For instance the following is a
stronger result of Lagarias and Pleasants [LP2], that implies the unique ergodicity.

Theorem 16 ([LP2]). Let X be a linearly repetitive Delone set of Rd. There exists
a δ > 0 such that, for every patch P of X, there is a number freq(P) so that

∣∣∣∣
XP ∩DomN

vol(DomN )
− freq(P)

∣∣∣∣ = O(N−δ),

where DomN is either a d-cube with side N or a ball of radius N . The O-constant
may depend on the patch P.

In [AC], a proof of this theorem is given using the structure Theorem 14 and
relating the constant δ with the matrices Mn by the following way

δ = d− logK

(
1− sup

n
||Mn||−1

1 ||Mn+1||−1
1

)
,

where logK denotes the logarithm in base K.
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4.3. Non-mixing properties

A translation invariant probability measure µ on a the hull Ω of a Delone set is
said to be measurably strongly mixing if for any Borel sets A,B in Ω,

lim
∥v∥→∞

µ((A − v) ∩B) = µ(A)µ(B). (4.3)

In this section, we show the following proposition which is analogous to the-
orem of Dekking and Keane [DK] for substitutive subshifts.

Proposition 17 ([C0]). Let X be a linearly repetitive Delone set of Rd and Ω its
hull. Then the system (Ω,Rd) is not measurably strongly mixing.

The proof’s strategy is the same as for self-similar tiling in [So1] or for linear re-
current Cantor system in [CDHM]. But we need sharp estimates on the transverse
measures of clopen sets, provided by Theorem 13.

Assume that the Delone set X is aperiodic and linearly repetitive with con-
stant L. Let µ be the unique translation invariant probability measure on the hull
Ω, and let ν be the associated transverse invariant measure. Let (Bn)n≥0 be the
tower system given by Theorem 13 where for each integer n, Bn = {Cn,i[Dn,i]}tni=1.

Lemma 18. For the tower system of Ω given by Theorem 13, we have

inf
n≥1

1≤i≤n

vol(Dn,i)ν(Cn,i) >

(
K1

KK2

)d

=: c > 0.

Proof. With equation 4.1, for any 1 ≤ i ≤ tn, we get

ν(Cn,i) ≥
tn+1∑

j=1

ν(Cn+1,j). (4.4)

By definition, for any 1 ≤ i ≤ tn, the domain Dn,i contains a ball or radius rint(Bn)
and for 1 ≤ j ≤ tn+1 the domain Dn+1,j is included in a ball of radius Rext(Bn+1).
Thus, as in the proof of Theorem 14, we deduce from Theorem 13

vol(Dn+1,j)

vol(Dn,i)
≤

(
Rext(Bn−1)

rint(Bn−1)

)d

≤
(
K

K2

K1

)d

= c−1. (4.5)

Thus it follows from (4.2), that for any n ≥ 0 and 1 ≤ i ≤ tn

vol(Dn,i)ν(Cn,i) ≥
tn+1∑

j=1

cvol(Dn+1,j)ν(Cn+1,j) = c. !

For the tower system (Bn)n, we define as in Definition 3.4, for integers p ≥
n > 0

O(p,n)
i,j := {x ∈ Dp,i | Cp,i − x ⊆ Cn−1,j}, for 1 ≤ i ≤ tp; 1 ≤ j ≤ tn−1 (4.6)

and
m(p,n)

i,j = ♯O(p,n)
i,j .



206 J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite

Then it is straightforward to check that the tp × tn−1 matrix

(m(p,n)
i,j )i,j = Mp · · ·Mn.

Lemma 19. For the tower system of Ω given by Theorem 13, we have for n ≥ 2,
and 1 ≤ j ≤ tn

lim infp→+∞ min
1≤i≤tp

m(p,n)
i,j

vol(Di,p)
≥ ν(Cn−1,j)

(
K1

K2

)d

c.

Proof. Let X ∈ ∩n≥0C(n). By the unique ergodicity, we have

lim
R→+∞

1

vol(BR(0))
♯{BR(0) ∩RCn,j (X)} = ν(Cn,j). (4.7)

Since for every p > n, the set Cp ⊂ Cp−1,1, we get for any 1 ≤ i ≤ tp,

m(p,n)
i,j ≥ m(p−1,n)

1,j ≥ ♯{Dp−1,j ∩RCn−1,j (X)}.

Hence we conclude by this inequality and inequality (4.5) that

lim infp→+∞ min
1≤i≤tp

m(p,n)
i,j

vol(Dp,i)
≥lim infp→+∞

♯{Dp−1,j ∩RCn−1,j (X)}
vol(Dp,i)

≥c lim infp
♯{Dp−1,j ∩RCn−1,j (X)}

vol(Dp−1,j)

≥c lim
p

♯{Brint(Bp−1)(0) ∩RCn−1,j (X)}
vol(BK2

K1
rint(Bp−1)

(0))
,

since Dp−1,j contains the ball Brint(Bp−1)(0) and is contained in the ball ⇐= disp

BRext(Bp−1)(0) ⊂ BK2
K1

rint(Bp−1)
(0).

We obtain the conclusion by the equality (4.7). !

Now we are able to prove Proposition 17.

Proof of Proposition 17. Let n be an integer such that ν(Cn) <
(

K1
K2

)d
c2. For

p ≥ n, Let Fp,1 ⊂ Rd be the set of vector v such that there exists a 1 ≤ j ≤ tp
satisfying Cp,1−v∩Cp,j ̸= ∅ andDp,j−v∩Dp,1 ̸= ∅. Let C̃(n, v) = (Cn,1−v)∩Cn,1.
We will show that

lim infp→∞ inf
v∈Fp,1

ν(C̃(n, v)) > ν(Cn,1)
2

which implies that the system (Ω,Rd) is not strongly mixing.

For x ∈ O(p,n+1)
1,1 = {x ∈ Dp,1 | Cp,1 − x ⊆ Cn,1}, and v ∈ Fp,1, we have by (Z.1)

and by i) in Theorem 13

Cp+1,1 − (v + x) ⊂ Cp+1 − x ⊂ Cp,1 − x ⊂ Cn,1.
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Thus for any x ∈ O(p,n+1)
1,1 and v ∈ Fp,1 we get Cp+1,1 − x ⊂ C̃(n, v). Then

ν(C̃(n, v)) ≥ ♯O(p,n+1)
1,1 ν(Cp+1,1) = m(p,n+1)

1,1 ν(Cp+1,1).

By Lemma 19, we obtain

lim infp→∞ inf
v∈Fp,1

ν(C̃(n, v))

≥ lim infp→∞
m(p,n+1)

1,1

vol(D1,p)
ν(Cp+1,1) vol(D1,p)

≥ ν(Cn,1)c

(
K1

K2

)d

lim infp→∞ν(Cp+1,1) vol(D1,p)

≥ ν(Cn,1)c

(
K1

K2

)d

lim infp→∞ν(Cp+1,1)vol(D1,p+1)c by inequality (4.5)

≥ ν(Cn,1)

(
K1

K2

)d

c2 > ν(Cn,1)
2. !

4.4. Subadditive ergodic theorem

In Section 4.2 we recall that the linearly repetitive systems are uniquely ergodic.
Actually such systems satisfy also a subadditive ergodic theorem. Let B(Rd) de-
notes the family of bounded subsets in Rd. A real-valued function F : B(Rd) → R
is called subadditive if

F (Q1 ∪Q2) ≤ F (Q1) + F (Q2)

for any disjoint sets Q1, Q2 ∈ B(Rd). For a Delone set X , the function F is called
X-invariant if

F (Q) = F (Q + t) whenever Q ∈ B(Rd) and t+ (Q ∩X) = (t+Q) ∩X.

For instance, given a patch P of the Delone set X , the function B ∈ B(Rd) )→
−XP ∩ B where XP denotes the set of occurrences of the patches P in X , is a
subadditive X-invariant function.

Theorem 20 ([DL, BBL]). Let X be a linearly repetitive Delone set in Rd. Then X
satisfies the uniform ergodic theorem: i.e., for any X-invariant subadditive func-
tion F and any nested sequence (Dn)n of d-cubes with side-lengths going to infinity
as n goes to infinity, the following limit exists

lim
n→+∞

F (Dn)

vol(Dn)
,

and is independent of the sequence (Dn)n.

It is then easy to deduce from this result that the associated dynamical system
is uniquely ergodic. The converse is false, in [DL], the authors give an example of
a Sturmian sequence that does not satisfy the subadditive ergodic theorem. They
prove also a more stronger form of this theorem.
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The lower density ν(P) of a R-patch P is the quantity

ν(P) := lim infn→∞
♯XP ∩Bn(0)

vol(Bn(0))
vol(BR(0)).

The results in [BBL] have this direct corollary.

Proposition 21. If X is a repetitive (rX , RX) Delone set verifying the uniform
subadditive ergodic theorem, then X satisfies positivity of weights, i.e.,

inf
P is an R-patch, R ≥ RX

ν(P) > 0.

Notice that in dimension 1, the positivity of weights property is sufficient to
ensure the unique ergodiciy (see [Bo]). Actually, one can deduce from Lemma 18
that a linearly repetitive Delone set satisfies the positivity of weights.

4.5. A characterization of linear repetitivity

In [Le02], D. Lenz characterizes the subshifts that admit a uniform subadditive
ergodic Theorem by uniform positivity of weights. This can be considered as an
averaged version of linear repetitivity. For Delone systems, it is shown in [Bes,
BBL] that the linear repetitivity is equivalent to positivity of weights plus some
balancedness of the shape of patterns. For a Voronöı cell V of a Delone set, let us
define:

rint := sup{r > 0;V contains a ball of radius r}.
Rext := inf{R > 0;V is contained in a ball of radius R}.

The distorsion of V is the constant λ(V ) := Rext(V )/rint(V ).

Theorem 22 ([BBL]). Let X be an aperiodic Delone set in Rd of finite type. Then
X is linearly repetitive if and only if for any R-patch P of X, R > 0: the set XP

of occurrences of P is a (rP, RP)-Delone set such that

(i) supP,x∈XP
λ(Vx) < +∞ where Vx denotes the Voronöı cell of x.

(ii) The Delone set X satisfies the positivity of weights (see Proposition 21).

One can find in [BBL] another similar equivalent condition to linear repeti-
tivity. Notice that in dimension d = 1, the distorsion of any compact Voronöı cell
is equal to 1. Thus the condition (ii) is equivalent to the linear repetitivity.

For an aperiodic linearly repetitive Delone set, the properties (i)–(ii) arise
from the properties recalled in Subsections 2.1 and 4.4.

Let us also mention in Chapter On the non commutative geometry for tilings,
a characterization of Sturmian sequences that are linearly repetitive by using met-
rics arising from the Connes distance.
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5. Factors of linearly repetitive system

A factor map between two Delone systems (Ω1,Rd) and (Ω2,Rd) is a continuous
surjective map π : Ω1 → Ω2 such that π(X − v) = π(X) − v, for every X ∈ Ω1

and v ∈ Rd.
In symbolic dynamics it is well known that topological factor maps between

subshifts are always given by sliding-block-codes. An equivalent notion for the
Delone system is the local derivability: i.e., there exists a constant s0 > 0 such that
for any radius R > 0, if two Delone sets X,Y ∈ Ω1 satisfy X ∩ BR+s0(0) = Y ∩
BR+s0(0) then π(X)∩BR(0) = π(Y )∩BR(0). However there are examples of factor
maps on Delone systems that are not sliding-block codes ([Pe, RS]). Nevertheless,
the following lemma shows that factor maps between Delone systems are not far
from being sliding-block-codes. Similar results can be found in [CD, CDP, HRS].

Lemma 23. Let X1 and X2 be two Delone sets. Suppose X1 has finite local com-
plexity and π : ΩX1 → ΩX2 is a factor map. Then, there exists a constant s0 > 0
such that for every ε > 0, there exists Rε > 0 satisfying the following: For any
R ≥ Rε, if X and X ′ in ΩX1 satisfy

X ∩BR+s0(0) = X ′ ∩BR+s0 (0),

then
(π(X)− v) ∩BR(0) = π(X ′) ∩BR(0)

for some v ∈ Bε(0).

Proof. The Delone set X2 has also finite local complexity because ΩX2 is compact.
Let r0 and R0 be positive constants such that X2 is a (r0, R0)-Delone set. Since
all the elements of ΩX2 are (r0, R0)-Delone sets, if two different points y1, y2 of
Rd satisfy (X − y1) ∩BR(a) = (X − y2) ∩ BR(a) for some X ∈ ΩX2 , a ∈ Rd and
R > R0, then ∥y1 − y2∥ ≥ r0

2 (for the details see [So1]).

Let 0 < δ0 < min{ r0
4 ,

1
R0

}. Since π is uniformly continuous, there exists
s0 > 1 such that if X and X ′ in ΩX1 verify X ∩Bs0(0) = X ′ ∩Bs0(0) then

(π(X)− v) ∩B 1
δ0
(0) = π(X ′) ∩B 1

δ0
(0),

for some v ∈ Bδ0(0). Let 0 < ε < δ0. By uniform continuity of π, there exists
0 < δ < 1

s0
such that if X and X ′ in ΩX1 verify X ∩B 1

δ
(0) = X ′ ∩B 1

δ
(0) then

(π(X)− v) ∩B 1
ε
(0) = π(X ′) ∩B 1

ε
(0), (5.1)

for some v ∈ Bε(0). Now fix R ≥ Rε = 1
δ − s0, and let X and X ′ be two Delone

sets in ΩX1 satisfying

X ∩BR+s0(0) = X ′ ∩BR+s0 (0). (5.2)

Observe that X and X ′ satisfy (5.1), and (X − a) ∩ Bs0(0) = (X ′ − a) ∩ Bs0(0),
for every a in BR(0). The choice of s0 ensures that

(π(X)− a− t(a)) ∩B 1
δ0
(0) = (π(X ′)− a) ∩B 1

δ0
(0), (5.3)
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for some t(a) ∈ Bδ0(0). Let us prove the map a "→ t(a) is locally constant. For
a ∈ BR(0), let 0 < sa < 1

δ0
−R0 be such that Bsa(a) ⊆ BR(0). Every a′ ∈ Bsa(0)

verifies B 1
δ0

−∥a′∥(−a′) ⊂ B 1
δ0
(0). Let a′ ∈ Bsa(0). This inclusion and (5.3) imply

(π(X)− a− a′ − t(a))∩B 1
δ0

−∥a′∥(−a′) = (π(X ′)− a− a′)∩B 1
δ0

−∥a′∥(−a′). (5.4)

On the other hand, from the definition of the map a "→ t(a) we deduce

(π(X)− a− a′ − t(a+ a′)) ∩B 1
δ0
(0) = (π(X ′)− a− a′) ∩B 1

δ0
(0),

which implies

(π(X)−a−a′−t(a+a′))∩B 1
δ0

−∥a′∥(−a′) = (π(X ′)−a−a′)∩B 1
δ0

−∥a′∥(−a′). (5.5)

Since ∥t(a) − t(a + a′)∥ ≤ r0
2 , from equations (5.4), (5.5) and the remark of the

beginning of the proof we conclude t(a) = t(a+a′) for every a′ ∈ Bs(0). Therefore
the map a "→ t(a) is constant on Bsa(a).

Furthermore, due to δ0 > ε and (5.2), Equation (5.1) implies there exists
v ∈ Bε(0) such that

(π(X)− v) ∩B 1
δ0
(0) = π(X ′) ∩B 1

δ0
(0). (5.6)

For a = 0, from (5.3) and (5.6) we have that t(0) = v or ∥v − t(0)∥ ≥ r0
2 .

Since ∥t(0)− v∥ ≤ δ0 + ε < 2δ0 < r0
2 , we conclude t(0) = v and then t(a) = v for

every a ∈ BR(0). This property together with (5.3) and (5.6) imply that

(π(X)− v) ∩BR(0) = π(X ′) ∩BR(0).

This conclude the proof. !

Lemma 24 ([CD, Lem. 3]). Let X1 and X2 be two Delone sets with finite local
complexity. If π : ΩX1 → ΩX2 is a factor map and X1 is linearly repetitive, then
(ΩX2 ,Rd) is linearly repetitive.

Proof. Let X ∈ ΩX1 . Consider 0 < ε < 1 and s0, R(ε) > 0 the positive constants
of Lemma 23 associated to ε. Since X is linearly repetitive with some constant
L, for any y ∈ Rd there exists v ∈ BL(R+s0)(y) such that (X − v) ∩ BR+s0(0) =
X ∩BR+s0 (0). From Lemma 23, there exists t ∈ Bε(0) such that (π(X)− v− t)∩
BR(0) = π(X) ∩ BR(0). This implies that any ball of radius L(R + s0) + 2ε in
π(X) contains a copy of π(X)∩BR(0). Since Ls0+2ε is smaller than the constant
Ls0 + 2, it follows that π(X) is linearly repetitive. !

Actually from the proofs of Lemmas 4 and 24 we can get a uniform bound
on the linear repetitivity constant of the factor system.

Lemma 25. Let X1 and X2 be two Delone sets with finite local complexity. If
π : ΩX1 → ΩX2 is a factor map and X1 is linearly repetitive with constant L > 1,
then there exists Rπ > 0 such that for every R > Rπ and every R-patch P of X2,
a copy of P appears in every ball of radius 3LR of X2 and any two occurrences of
P in X2 are at distance at least R/4L.
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5.1. Finite number of aperiodic Delone systems as factors

The aim of this section is to prove the following theorem that is a generalization
of a result in [Du1] in the context of subshifts.

Theorem 26 ([CDP, Thm. 12]). Let L > 1, d ≥ 1. There exists a constant N(L, d)
such that any linearly repetitive Delone set X of Rd with constant L, has at most
N(L, d) aperiodic Delone system factors of (ΩX ,Rd) up to conjugacy.

The bound N(L, d) is essentially due to the constants arising in Lemmas 6
and 7. The proof relies on a generalization of these lemmas and on the specific
structure of the factor maps for linearly repetitive Delone systems.

The next result says that factor maps between linearly repetitive Delone
systems are finite-to-one. A proof of that result in the context of subshifts and
Delone systems can be found in [Du1] and in [CDP, Prop. 5] respectively. Here we
include the proof in the case where the factor map is a sliding-block-code.

Proposition 27. Let X be a linearly repetitive Delone set with constant L. There
exists a constant C > 0 (depending only on L) such that If X ′ is an aperiodic
Delone set and π : (ΩX ,Rd) → (ΩX′ ,Rd) is a factor map, then for every Y ∈ ΩX′ ,
the fiber π−1({Y }) contains at most C elements.

Proof. For simplicity we will assume that π is a sliding-block-code. That means
there exists s0 > 0 such that if X1 and X2 ∈ ΩX verify X1 ∩ BR+s0(0) = X2 ∩
BR+s0(0) for an R > 0, then π(X1)∩BR(0) = π(X2)∩BR(0). From Lemma 24 the
Delone set X ′ is linearly repetitive, and if R is sufficiently large, Lemma 25 implies
that for any x ∈ Rd a copy of the patch X ′ ∩BR(x) appears in X ′ ∩B3LR(y), for
every y ∈ Rd. Let Y ∈ ΩX′ andX1, . . . , Xn be different Delone sets in ∈ π−1({Y }).
Because these Delone sets are different, for every sufficiently large R, the patches
Xi ∩BR(0) are pairwise distinct. Linear repetitivity of X ensures the existence of
points v1, . . . , vn ∈ BLR(0) such that each X − vi∩BR(0) is a copy of Xi∩BR(0),
for every 1 ≤ i ≤ n. This implies that π(X) − vi ∩ BR−s0(0) = Y ∩ BR−s0(0).
From this and Lemma 25 we get that ∥vi − vj∥ ≥ R−s0

4L , from which we deduce
that n ≤ C, where C is a constant that depends only on L. !

The following proposition is a straightforward generalization of Lemma 21 in
[Du1]. A proof in our setting can be found in [CDP, Prop. 6]. Here we omit the
proof.

Proposition 28. Let (Ω,Rd) be a minimal Delone system and φ1 : (Ω,Rd) →
(Ω1,Rd), φ2 : (Ω,Rd) → (Ω2,Rd) be two factor maps. Suppose that (Ω2,Rd) is
non-periodic and φ1 is finite-to-one. If there exist X,Y ∈ Ω and v ∈ Rd such that
φ1(X) = φ1(Y ) and φ2(X) = φ2(Y − v), then v = 0.

We have already defined the notion of return vector of a patch, now let us
define the notion of return vector of a Voronöı cell of a patch. For a patch P of X
and v ∈ XP, VP,v denotes the Voronöı cell of the point v of the Delone set XP. We



212 J. Aliste-Prieto, D. Coronel, M.I. Cortez, F. Durand and S. Petite

say that w ∈ Rd is a return vector of VP,v ∩X if (X −w)∩VP,v = X ∩VP,v. We set
for n ≥ 1, v ∈ XP,

Pn,w,v the patch (X − w − v) ∩BLnR(0).

Notice that Pn,w,v + v + w is a patch of X . When there is no confusion about n
and v, we write Pw instead of Pn,w,v.

The following lemma generalizes Lemma 6.

Lemma 29. Let n ∈ N∗ and X be an aperiodic linearly repetitive Delone set with
constant L. There exists a constant C(n, L) > 0 such that for every sufficiently
large R > 0 and every R-patch P, the collection {Pn,w,v : w is a return vector of
VP,v ∩X} has at most C(n, L) elements, for every v ∈ XP.

Proof. Let P = X ∩ BR(xP) and v ∈ XP. Lemma 4 implies that the Voronöı cell
VP,v contains the ball B R

2(L+1)
(v). Then for every pair of return vectors u and w of

VP,v, the patches Pu and Pw coincides at the ball B R
2(L+1)

(0). The proof concludes

using the fact that in X ∩B2L(LnR)(0) there is at least one copy of each patch Pw,
Pu and applying Lemma 4 to the return vectors of the patch Pw ∩B R

2(L+1)
(0). !

Proof of Theorem 26. It is enough to suppose thatX is an aperiodic linearly repet-
itive Delone set with constant L > 1. Let n ∈ N be such that

Ln − 1− 12L− 64L2 > 1. (5.7)

We call M(n, L) the number of coverings of a set with c(L)c(n, L) elements, where
c(L) and c(n, L) are the constants of Lemma 6 and Lemma 29 respectively. For
every 1 ≤ i ≤ M(n, L) + 1, let Xi be a non-periodic Delone set such that there
exists a topological factor map πi : ΩX → ΩXi , and letX0 = X . We will show there
exist 1 ≤ i < j ≤ M(n, L) + 1 such that (ΩXi ,Rd) and (ΩXj ,Rd) are conjugate.

Since M(n, L) is finite, we can take the same constant s0 > 0 and Rπ of
Lemmas 23 and 25 respectively, associated to each πi. Fix 0 < ε < 1. Let R >
sup{s0, Rπ + ε, 17L} be sufficiently large such that Lemma 6 and Lemma 29 are
applicable to R-patches of X , and such that Lemma 23 is applicable to ε and
each πi.

Consider the patch P = BR(0) ∩X , and v1, . . . , vN ∈ XP such that for every
v ∈ XP, there exist 1 ≤ i ≤ N and u ∈ Rd satisfying VP,v ∩X = (VP,vi ∩X) + u.
Roughly speaking, every set of the kind VP,v∩X is a translated of some set VP,vi∩X .
Since R > R1, Lemma 6 ensures N ≤ c(L).

For every 1 ≤ j ≤ N , let wj,1, . . . , wj,mj be return vectors of VP,vj ∩X , chosen
in order that for every return vector w of VP,vj ∩X , there exists 1 ≤ i ≤ mj such
that Pn,w,vj is equal to Pn,wj,i,vj =: Pwj,i . Since R > R1, Lemma 29 implies that
mj ≤ c(n, L), for every 1 ≤ j ≤ N . Therefore, the collection

F = {Pwj,l : 1 ≤ l ≤ mj , 1 ≤ j ≤ N}
contains at most c(L)c(n, L) elements.

We define R′ = (Ln − 1)R− ε− 4LR. The choice of n ensures that R′ > 0.
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For every 1 ≤ i ≤ M(n, L) + 1, we define the following relation on F :

Pwj,l ↔i Pwk,m if and only if for everyX ′, X ′′ ∈ ΩX such that X ′∩BLnR(0) =
Pwj,l and X ′′ ∩ BLnR(0) = Pwk,m , there exist v ∈ B2ε(0) and w ∈ B4LR(0) such
that πi(X ′) ∩BR′(0) = (πi(X ′′) + v + w) ∩BR′(0).

Since LnR − s0 ≥ (Ln − 1)R ≥ R, from Lemma 23 it follows this relation is
reflexive, so non empty. Since the cardinal of F is bounded by c(L)c(n, L), there
are at most M(n, L) different relations of this kind. So, there exist 1 ≤ i < j <
M(n, L) + 1 such that ↔i=↔j.

In the sequel, we will prove that (ΩXi ,Rd) and (ΩXj ,Rd) are conjugate. For
that, it is sufficient to show that if Y, Z ∈ ΩX are such that πi(Y ) = πi(Z) then
πj(Y ) = πj(Z).

Let Y and Z be two Delone sets in ΩX such that πi(Y ) = πi(Z). Without
loss of generality, we can suppose that 0 is an occurrence of P in Y and in Z − u0,
where u0 is some point in B4LR(0). The patches of Y and Z are translated of the
patches of X . This implies there exist 1 ≤ q0, r0 ≤ N such that

Y ∩BLnR(0) = Pwq0,l0
and (Z − u0) ∩BLnR(0) = Pwr0,k0

,

for some 1 ≤ l0 ≤ mq0 and 1 ≤ k0 ≤ mr0 .

It is possible to show that Pwq0,l0
↔i Pwr0,k0

and Pwq0,l0
↔j Pwr0,k0

for R
sufficiently large (see Claim 1 in the proof of [CDP, Thm. 12]).

Let s be any other occurrence of P in Y . Repeating the same argument for
Y +s and Z+s, we deduce there exist us ∈ B4LR(0) and 1 ≤ qs, rs ≤ N such that

(Y + s) ∩BLnR(0) = Pwqs,ls
and (Z + s− us) ∩BLnR(0) = Pwrs,ks

,

for some 1 ≤ ls ≤ mqs and 1 ≤ ks ≤ mrs . Then we get Pwqs,ls
↔j Pwrs,ks

. This
implies there exist ts ∈ B2ε(0) and ws ∈ B4LR(0) such that

πj(Y + s) ∩BR′(0) = (πj(Z + s− us) + ts + ws) ∩BR′(0).

Showing that ws−us+ ts does not depend on s (see Claim 2 in the proof of [CDP,
Thm. 12]), we get there exists y ∈ Rd such that for every occurrence s of P in Y ,

πj(Y + s) ∩BR′(0) = (πj(Z + s) + y) ∩BR′(0), and then

πj(Y ) ∩BR′(s) = (πj(Z) + y) ∩BR′(s).

The diameter of the Voronöı cells of P is less than 4LR (see 2.1), which is less than
R′. Hence,

πj(Y ) = πj(Z) + y.

We conclude with Propositions 27 and 28. !
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5.2. Factors on groups and cocycles

Cocycles and cohomological equations play an important role in the study of fac-
tors dynamical systems, time change for flows orbit equivalence, . . . We adapt this
notion to the context of Delone system (Ω,Rd). Let G denotes the group Rm or
Tm = Rm/Zm. A continuous G-cocycle is a continuous function α : Ω × Rd → G
so that

α(Y, v + w) = α(Y, v) + α(Y + v, w) for all Y ∈ Ω, v, w ∈ Rd.

An important question which appears in many problems, is to known if the coho-
mological equation

α(Y, v) = ψ(Y + x)− ψ(Y )

has a measurable, continuous solution ψ : Ω → G. This solution is called a transfer
function and if it exists, α is called a coboundary.

In Section 5.2.2 we will give a necessary and sufficient condition to find so-
lutions to the cohomological equation for linearly repetitive Delone systems. We
will focus on transversally locally constant cocycle α, i.e.: if there exists r, R > 0
such that for any Y, Y ′ ∈ Ω and x ∈ BR(0),

if Y ∩BR(0) = Y ′ ∩BR(0) then α(Y, x) = α(Y ′, x).

More generally a cocycle α is transversally Hölder if there exist constants K > 0
and δ ∈ (0, 1) such that for all r > 0, Y, Y ′ ∈ Ω and x ∈ Br(0),

if Y ∩BR(0) = Y ′ ∩BR(0) then |α(Y, x)− α(Y ′, x)| ≤ Kr−δ.

5.2.1. Examples of cohomological equations. Let us see first some dynamical prob-
lems where the cohomological equation appears.

Let us denote by ⟨., .⟩ the usual inner product in Rd and µ be an ergodic
Rd invariant probability measure on the hull Ω. A vector λ ∈ Rd is a measurable
eigenvalue of the system (Ω,Rd) if there exists a measurable function ψ : Ω → S1
such that

ψ(Y + v) = e2iπ⟨λ,v⟩ψ(Y ) for all v ∈ Rd and µ− a.e. Y ∈ Ω.

If the function ψ is continuous, then λ is called a continuous eigenvalue. The map
(Y, v) )→ e2iπ⟨λ,v⟩ is a S1-cocycle over (Ω,Rd). Then passing in additive notation
T1, we have λ is a measurable (resp. continuous) eigenvalue of (Ω,Rd) if and only if
there is a measurable (resp. continuous) solution ψ : Ω → T1 to the cohomological
equation

⟨λ, v⟩ = ψ(Y + v)− ψ(Y ) mod Z.
A continuous eigenvalue gives then a topological factor on the closure of an

orbit in the one-dimensional torus T1. More generally, one can consider the closure
O of an orbit of a n-rotations on the n-torus Tn, n ≤ d, that are factors of the
system (Ω,Rd). More precisely, take θ = (θ1, . . . , θn) ∈ Rn and let A : Rd × Tn →
Tn be the continuous action defined by

A(v, x) = x+ [v, θ] where [v, θ] = (v1θ1, . . . , vnθn).
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The map (Y, v) !→ [v, θ] is a Tn-cocycle over (Ω,Rd). It is standard to show that
the system (O,A) is a topological factor of (Ω,Rd) if and only if there exists a
continuous solution ψ : Ω → Tn to the cohomological equation

[v, θ] = ψ(Y + v)− ψ(Y ).

5.2.2. Characterization of continuous coboundary. A seminal work for the char-
acterization of continuous eigenvalues of symbolic systems given by a primitive
substitution, is in [H]. The authors of [CDHM, BDM1] generalize these results to
the linearly recurrent symbolic systems and to finite rank systems in [BDM2]. An
extension to Zd-action on a Cantor set is presented in [CGM]. We present here a
part of the results in [C] that treat only continuous cocycles and generalizes the
results of [CGM].

For a box decomposition B = {Ci[Di]}ti=1 (see Section 3.2.1), a first retrun
vector to C = ∪iCi is a vector v ∈ Rd with label (i, j) ∈ {1, . . . , t}2, such that

Ci − v ∩ Cj ̸= ∅ and Ci[Di] ∩Cj [Dj] ̸= ∅.

We denote by F the set of first return vectors to C associated with B, and by
C(v) = Ci ∩ (Cj + v) for a return vector v with label (i, j).

A tower system (Bn = {Cn,i[Dn,i]}tni=1)n is well distributed if it satisfies the
properties i)–iii) in Theorem 13 and moreover for every n ≥ 0, and every first
return vector v ∈ Fn with label (i, j) there are x and x′ in Dn+1,1 such that for
X ∈

⋂
n Cn, X − x ∈ Cn,i and X − x′ ∈ Cn,j and v = x− x′.

It is straightforward to check that this extra condition holds when eachDn+1,i

is big enough: more precisely when for any n ≥ 0

rint(Bn+1) ≥ (Rrec(Bn) +Rext(Bn))L ≥ MX(Rrec(Bn) +Rext(Bn)). (5.8)

For a linearly repetitive Delone set X , it is direct to check that for a constant K
big enough, the tower system given by Theorem 13, satisfies inequality (5.8). Thus
any linearly repetitive Delone system admits a well-distributed tower system. In
the following | · | denotes the usual distance to the origin when G = Rm or Tm.

Theorem 30 ([C]). Let X be a linearly repetitive Delone set in Rd, G be the group
Rm or Tm, α be a continuous G-cocycle over (Ω,Rd), and (Bn)n≥0 be a well-
distributed tower system. Then α is a tansversally Hölder coboundary with contin-
uous transfer function if and only if the series

∑

n≥0

sup
v∈Fn

ω∈Cn(v)

|α(ω, v)|

converges, where each Fn denotes the set of first return vectors associated with Bn.

In [C] appears also similar necessary conditions for a cocycle to be a cobound-
ary on a general Delone system (without the assumption of linear repetitivity).
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5.2.3. Characterization of the measurable eigenvalues. To be more complete on
the problem of eigenvalues, let us mention that a characterization of measurable
eigenvalues of linearly recurrent Cantor system is given in [BDM1] and measurable
coboundary for linearly repetitive Delone systems in [C0].

Theorem 31 ([C0]). Let (Ω,Rd) be a linearly repetitive Delone system, µ be the
unique invariant measure, G be the group Rm or Tm, α be a transversally locally
constant G-cocycle over (Ω,Rd), and (Bn)n≥0 be a tower system well-distributed.
Then the following are equivalent.

1. The series
∑

n≥0

sup
v∈Fn

ω∈Cn(v)

|α(ω, v)|2 converges, where each Fn denotes the set of

first return vectors associated with Bn.
2. There exists a measurable function ψ : Ω → G such that for µ-a-e X ∈ Ω,

α(X, v) = ψ(X − v)− ψ(X), for all v ∈ Rd.

Moreover ψ ∈ L2(Ω,Rm, µ) when G = Rm.

6. Bi-Lipschitz equivalence to a lattice

Let X1 and X2 be two Delone sets in Rd. We say that they are bi-Lipschitz equiv-
alent if there exists a homeomorphism φ : X1 → X2 and a constant ∆ ≥ 1 such
that ∀x, x′ ∈ X, x ̸= x′

1

∆
≤ ∥φ(x) − φ(x′)∥

∥x− x′∥ ≤ ∆.

The map φ is then called a bi-Lipschitz homeomorphism between X1 and X2.
The problem to know whether two Delone sets are bi-Lipschitz equivalent

was raised by Gromov in [Gro93], and boiled down in Toledo’s review [Tol] to
the following question for the two-dimensional Euclidean space: Is every Delone
set in R2 bi-Lipschitz equivalent to Z2? Counterexamples to this question were
given independently by Burago and Kleiner [BK] and McMullen [McM]. Moreover,
McMullen also showed that when relaxing the bi-Lipschitz condition to a Hölder
one, all Delone set (with or without finite local complexity) in Rd are equivalent.
Later, Burago and Kleiner [BK1] gave a sufficient condition for a Delone set to
be bi-Lipschitz equivalent to Z2 and asked the following question: If one forms a
Delone set in the plane by placing a point in the center of each tile of a Penrose
tiling, is the resulting set bi-Lipschitz equivalent to Z2? They studied the more
general question of knowing whether a Delone set arising from a cut-and-project
tiling is bi-Lipschitz equivalent to Z2 (recall that the Penrose tiling is also a cut-
and-project tiling [Bru]) and solved it in some cases that do not include the case
of Penrose tilings, thus leaving the former question open. Recently, Solomon [Solo]
gave a positive answer for Penrose tiling by using the fact that it can be constructed
using substitutions. In fact, Solomon proved that each Delone set arising from a
primitive self-similar tiling in R2 is bi-Lipschitz to Z2.
The following result was proved in [ACG1].
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Theorem 32. Every linearly repetitive Delone set in Rd is bi-Lipschitz equivalent
to Zd.

Notice that Theorem 32 is trivial when the dimension d = 1 since, in this
case, every Delone set (with no extra assumptions) is bi-Lipschitz equivalent to
Z. As an application of the work of Laczkovich [L], Solomon in [Solo] showed also
that for every self-similar tiling of Rd of Pisot type there is a bounded displacement
between its associated Delone set X and βZd for a β > 0 (i.e., there is a bijection
φ : X → βZd such that Φ− Id is bounded).

The strategy of the proof of Theorem 32 is the following. First consider the
easy case where all the Voronöı cells V of a Delone set X have a unit volume. Thus
any finite union of N Voronöı cells meet at least N unit squares, and conversely
N unit squares meet at least N Voronöı cells. So by the transfinite form of Hall’s
marriage lemma, there exists a bijection between the collection of Vornöı cells
and the units squares, so that any cell intersects its image. This defines a map
φ : X → Zd such that φ− Id is bounded.
For the general case, we need to consider the measurable function f : Rd → R
defined by

f(x) =
∑

y:x∈Vy

1

volVy
x ∈ Rd,

where Vy denotes the Voronöı cell of the point y ∈ X . If φ : Rd → Rd is a bi-
Lipschitz map so that its Jacobian determinant is f , standard calculus show us that
the image φ(V ) of any Voronöı cell V of X has volume 1. The proof of Theorem
32 consists then to generalize to all dimension d a sufficient condition given by
Burago and Kleiner [BK1] in dimension 2 to solve the equation det Dφ = f with
φ an unknown bi-Lipschitz map. This condition involves analytical tools and the
density deviation of the points of X with respect to its average. This last point is
controlled by the Lagarias and Pleasants Theorem 16.
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ON THE SIMPLICITY OF HOMEOMORPHISM GROUPS OF A

TILABLE LAMINATION

JOSÉ ALISTE-PRIETO AND SAMUEL PETITE

Abstract. We show that the identity component of the group of homeomor-
phisms that preserve all leaves of a Rd- tilable lamination is simple. Moreover,
in the one dimensional case, we show that this group is uniformly perfect. We
obtain a similar result for a dense subgroup of homeomorphisms.

1. Introduction

In this paper it is shown that the connected component of the identity of the
group HomeoL(⌦) of all leaf-preserving homeomorphisms of a minimal tilable lam-
ination ⌦ in any dimension is a simple group. We also prove that this group is
equal to the group of homeomorphisms that are isotopic to the identity and that is
open in HomeoL(⌦).

Similar results were obtained in the 60’s by G. Fisher [7] for the group of all
homeomorphisms of a closed topological manifold of dimension smaller or equal
than three. The algebraic simplicity for groups of homeomorphisms and di↵eo-
morphisms of manifolds has been widely studied in the literature: In 1961, R.
Anderson [2], generalizing the work of G. Fisher [7], showed the group of stable
homeomorphisms of a manifold is simple. Later, D. Epstein [6] established su�-
cient conditions on a group of homeomorphisms, for the commutator subgroup to
be simple. This means that a group satisfying Epstein’s conditions is simple if and
only if it is perfect (i.e. its commutators subgroup is the whole group).

It is also worth mentioning the works of M. Herman [9], W. Thurston [18] and
J. Mather [12] who provided a nearly complete classification for the simplicity of
di↵eomorphism groups on manifolds.

Given a smooth foliation F over a manifold M , T. Rybicki [15] and T. Tsuboi
[16] studied the simplicity and perfectness of the identity component of the group
GF (M) of all leaf preserving di↵eomorphisms of (M,F). Notice here that these
groups do not satisfy Epstein’s conditions.

On the other hand, tilable laminations have been recently introduced as a geo-
metric model for the study of non-periodic tilings [3]. They also appear as sus-
pensions of minimal Cantor Zd-actions, like minimal subshifts. In addition, they
include some classical laminated spaces as the dyadic solenoid. These spaces are
locally homeomorphic to the product of an open set in Rd and a Cantor set. In
other words, these are laminated spaces with a Cantor transversal. They are also

1991 Mathematics Subject Classification. 57S05, 37C85 .
Key words and phrases. leaf preserving homeomorphisms, tilable lamination.
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endowed with a natural Rd-action, which we we call the translation flow. Like in the
case of foliations of manifolds, groups of homeomorphisms on tilable laminations in
general do not satisfy Epstein’s conditions.

We denote by D(⌦) the group of deformations, that is, D(⌦) is the path con-
nected component of the identity in Homeo(⌦) endowed with the C0-topology. We
conjointly consider the following class of homeomorphisms, which arises naturally in
the context of non-periodic tilings, namely the group of homeomorphisms preserving
the vertical structure (see the precise definition in Section 2) denoted Homeo

vsp

(⌦).
Roughly speaking, such homeomorphisms map any small Cantor transversal into a
Cantor transversal. Notice that Homeo

vsp

(⌦) is a dense subgroup of HomeoL(⌦).
Let D

vsp

(⌦) denote the path connected component of the identity in Homeo
vsp

(⌦).
Our aim is to show the simplicity of these groups.

Another motivation for studying these groups comes from topological orbit equiv-
alence theory: two tilable laminations ⌦

1

,⌦
2

are orbit equivalent if there is a home-
omorphism between the spaces mapping any orbit onto an orbit. Because of the
totally disconnected transversal structure, ⌦

1

and ⌦
2

are orbit equivalent if and
only if they are homeomorphic. A di�cult result of Rubin [14] asserts that the group
Homeo(⌦) is a complete invariant of the orbit equivalence class of the lamination ⌦:
Any algebraic group isomorphism of these groups is induced by an homeomorphism
on the topological laminations. It follows that the group D(⌦) is an invariant of
flow equivalence.

For a topological group G, we denote by G0 the connected component of the
identity in G.

Theorem 1.1. Let ⌦ be a minimal tilable lamination. Let G be either HomeoL(⌦)
or Homeo

vsp

(⌦). Then,

(1) Homeo0L(⌦) = D(⌦) and Homeo0
vsp

(⌦) = D
vsp

(⌦);
(2) G0

is open in G;

(3) G0

is simple.

Moreover, when the translation flow is expansive, e.g. for tiling spaces, the
connected component of the identity in Homeo(⌦) is the group of deformations.

Proposition 1.2. Let ⌦ be a minimal tilable lamination. If the translation flow is

expansive, then the identity component Homeo0(⌦) is equal to D(⌦) and is open in

Homeo(⌦).

The proof of Theorem 1.1 follows the same strategy as in [7] for the triangulated
manifolds (see [4] for a recent survey). In the next section we recall basic properties
of tilable laminations and their homeomorphisms. By using a generalization of the
Schoenflies Theorem due to R. Edwards and R. Kirby, we show, in Section 3, the
groups under consideration satisfy the partition property (called also fragmenta-
tion property), and we prove Proposition 1.2 and the items (1), (2) of Theorem
1.1. We give in Section 4 a su�cient condition for a commutator subgroup of
HomeoL(⌦) to be simple. Next, we prove in Section 5 that the groups HomeoL(⌦)
and Homeo

vsp

(⌦) are perfect and we conclude the proof of Theorem 1.1 with the
main result of Section 4. In the last section, we show, for the one-dimensional case,
that these groups are uniformly perfect: more precisely, any element can be written
as a product of two commutators in the group. This last result is similar to [8] for
C1 leaf preserving di↵eomorphisms of C1 foliations.
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2. Preliminaries

2.1. Background on tilable lamination. We recall here some basic properties
of tilable laminations and we refer to [3] for a more detailed exposition. Let ⌦ be
a compact metric space. Assume that there exist a cover of ⌦ by open sets U

i

and
homeomorphisms called charts h

i

: U
i

! D
i

⇥ C
i

where C
i

is a topological space
and D

i

is an open set of Rd. These open sets and charts define an atlas of a flat

lamination if the transition maps h
j

� h�1

i

read on their domains of definition

(1) h
i,j

(t, c) = (t+ a
i,j

, �
i,j

(c)),

where the a
i,j

’s are elements of Rd and the maps �
i,j

are continuous. Two atlases
are equivalent if their union is also an atlas.

A flat lamination is the data of a compact metric space ⌦ together with an
equivalence class of atlases L. A box is the domain of a chart in the maximal atlas
of L. For any point x in a box B with coordinates (t

x

, c
x

) in the chart h, the set
h�1(D⇥{c

x

}) is called the slice and the set h�1({t
x

}⇥C) is called the vertical of x
in B. Since a transition map transforms slices into slices and verticals into verticals,
these definitions make sense. As usual, a leaf of ⌦ is the smallest connected set
that contains all the slices it intersects. From (1), it is clear that each leaf is a
manifold with a flat Riemannian metric.

Definition 2.1. A tilable lamination (⌦,L) (or a Rd-solenoid) is a flat lamination
such that

• every leaf of L is isometric to Rd.
• There exists a transversal ⌅ (a compact subset of ⌦ such that for any leaf
L of L, L\⌅ is non empty and a discrete subset with respect the manifold
topology of the leaf L) which is a Cantor set.

For short, we will speak about ⌦ as a tilable lamination when there is no con-
fusion. If every leaf is dense in ⌦, we say that the lamination is minimal. By
(1), the action by translations on Rd can be transported to a local action (also by
translations) along the slices. In fact, these local translations induce a continuous
and free Rd-action T over ⌦, see [3] for details. We refer to this action as the
translation flow over ⌦. To simplify the notations we write ! � t := T (t,!) for !
in ⌦ and t in Rd. It is easy to see that the leaves of the lamination coincide with
the orbits of the translation flow. Again by (1), the canonical orientation on Rd

induce an orientation on each leaf of ⌦. Given a box B that reads h�1(D ⇥ C)
in a chart h, by identifying a vertical in B with the Cantor set C, we can write
B = T (C,D) = C �D, thus avoiding the explicit reference to the chart h.

Basic examples of minimal tilable laminations are given by the suspensions of
minimal Zd action on a Cantor set with locally constant ceiling functions. The
tilable lamination structure also appears in the dynamical systems associated to
non-periodic repetitive tilings and Delone sets of the Euclidean space, see [3]. In
these examples, the translation flow is expansive in the following sense (see [13]).

Definition 2.2. Let ⌘ > 0. The translation flow of a tilable lamination ⌦ is said to
be ⌘-expansive if when one has points x, y 2 ⌦ and a homeomorphism h : Rd ! Rd

satisfying h(0) = 0 and d(x � t, y � h(t)) < ⌘ for all t 2 Rd, then there must exist
t
0

2 B
⌘

(0) such that x� t
0

= y.
The translation flow is said expansive, if it is ⌘-expansive for some constant ⌘.
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This last property will allow us to show, in the next section, that any homeo-
morphism that is close enough to the identity must by leaf-preserving.

A box in ⌦ is said to be internal if its closure is included in another box of ⌦.
In all the rest of the paper, any box will be supposed to internal. An internal box
B is said to be of ball type if it can be written as B = C �D, where D is an open
ball in Rd. Instead, if D is a d-cube (a

1

, b
1

)⇥ · · ·⇥ (a
d

, b
d

) in Rd, then B is said to
be a box of cubic type. In this case, and if f is a `-face (0  `  d) of the cube D,
then the set C � f is said to be an `-vertical boundary of B. A box cover of ⌦ is a
cover {B

i

}
i

of ⌦, where each B
i

is a box. Box covers of ball type and cubic type
are defined in the same way.

Definition 2.3. A collection of boxes B = {B
i

}t
i=0

in ⌦ is a box decomposition, if
the following assertions hold:

(1) the B
i

’s are pairwise disjoint,
(2) the closures of the B

i

’s form a cover of ⌦.

Also, if the boxes B
i

are of cubic type, then B is a box decomposition of cubic type.

Box decompositions were introduced in [3] as a tool in the study of tilable lam-
inations. The key lemma (see bellow) asserts that any box cover of cubic type
can be turned into a box decomposition of cubic type. It follows that every tilable
lamination admits a box decomposition of cubic type.

Lemma 2.4 ([3]). Let ⌦ be a tilable lamination and {B
i

}t
i=0

be a box cover of cubic

type of ⌦. Then, there exists a box decomposition of cubic type B0 = {B0
i

}n
i=0

, such

that, for all i, whenever B0
i

intersects B
j

for some j, then it is included in B
j

.

The union of all the `-vertical boundaries (0  `  d) of all the boxes of a box
decomposition of cubic type B is called the `-skeleton of B.

2.2. Homeomorphisms of tilable laminations. Let ⌦ be a tilable lamination
and denote by Homeo(⌦) the set of homeomorphisms of ⌦. We endow it with the
C0-topology, which is induced by the distance

�(f, g) = sup
x2⌦

d(f(x), g(x)) + sup
x2⌦

d(f�1(x), g�1(x)), f, g 2 Homeo(⌦).

The support of a homeomorphism f in Homeo(⌦) is defined by

supp f = {x 2 ⌦ | f(x) 6= x}.

It is easy to see that supp f is f -invariant and supp�f��1 = �(supp f) for every
� 2 Homeo(⌦).

Since the verticals of a tilable lamination ⌦ are totally disconnected, the path-
connected components coincide with the leaves of the lamination. Thus, every
element of Homeo(⌦) maps each leaf onto a (possibly di↵erent) leaf. We define
HomeoL(⌦) be the group of all leaf-preserving homeomorphisms of ⌦. Recall that
a homeomorphism f of ⌦ is homotopic to the identity, if there exists a continuous
map F : [0, 1] ⇥ ⌦ ! ⌦ such that F (0, ·) = Id and F (1, ·) = f . If, in addition,
F (t, ·) is a homeomorphism of ⌦ for each t 2 ⌦, then we say that f is isotopic to the

identity or a deformation. The set D(⌦) denotes the group of all the deformations.
Clearly, homeomorphisms that are homotopic to the identity belong to HomeoL(⌦).
If ⌦ is minimal, then the converse is also true.
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Theorem 2.5 ([1],[11]). Let ⌦ be a minimal tilable lamination. Then every f 2
HomeoL(⌦) is homotopic to the identity. In particular, for every f 2 HomeoL(⌦),
there is a continuous map �

f

: ⌦ ! Rd

, called the displacement of f , which is

uniquely defined by the equation

f(!) = ! � �
f

(!) for all ! 2 ⌦.

We say the displacement of f is smaller than " when ||�||1 < ".
When the translation flow is expansive, we get the following refinement.

Proposition 2.6. Let ⌦ be tilable lamination. Suppose its translation flow is ⌘-
expansive. Then, HomeoL(⌦) is open in Homeo(⌦).

Proof. Define B = {f 2 Homeo(⌦) | �(f, Id) < ⌘} and take any f 2 B. Since
the translation flow is free and homeomorphisms map leaves onto leaves, for every
! 2 ⌦ there is a continuous map h : Rd ! Rd such that f(!)� s = f(!� h(s)) for
all s 2 Rd.

Thus,

d(f(!)� s,! � h(s))  �(f, Id) < ⌘ for all s 2 Rd.

It follows from the expansivity of ⌦ that there exists a t
0

2 Rd such that f(!) =
! � t

0

. Since ! was arbitrary, this means that f preserves each leaf and thus
f 2 HomeoL(⌦), which means that B ⇢ HomeoL(⌦). The fact that HomeoL(⌦) is
open now follows from a standard argument. ⇤

Corollary 2.7. If the translation flow on the tilable lamination ⌦ is expansive,

then Homeo0(⌦) is open and

Homeo0(⌦) = Homeo0L(⌦).

Proof. Since the connected component is the greatest connected set containing the
identity, we have Homeo0L(⌦) ⇢ Homeo0(⌦). By Proposition 2.6 and the connexity
property, we get Homeo0(⌦) ⇢ HomeoL(⌦) and so Homeo0(⌦) ⇢ Homeo0L(⌦),
which concludes the proof. ⇤

In the context of laminations arising from the study of non-periodic tilings, an
important class of homeomorphisms is given by homeomorphisms with the following
property.

Definition 2.8. A homeomorphism f 2 Homeo(⌦) preserves the vertical structure
if, given a point x in a vertical C of a box B and a vertical C 0 of a box B0 containing
f(x), then there is a clopen subset C̃ ⇢ C containing x such that for every y 2 C̃,
f(y) 2 C 0.

Alternatively, provided that ⌦ is minimal, a map f 2 HomeoL(⌦) preserves
the vertical structure if and only if its deplacement � is transversally locally con-
stant. In the context of non-periodic repetitive tilings, this notion corresponds to
the notion of strong pattern-equivariance (see [10]) of the map t 7! �

f

(! � t) for
any fixed ! 2 ⌦. We denote by Homeo

vsp

(⌦) the collection of homeomorphisms
preserving the vertical structure. It is plain to check that Homeo

vsp

(⌦) is dense
in Homeo(⌦). We will denote by D

vsp

(⌦) the path-connected component of the
identity in Homeo

vsp

(⌦).
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3. Partition property

Definition 3.1. A group G of homeomorphisms of ⌦ satisfies the partition property

if for every box cover {B
i

}t
i=0

of ⌦, and for any f 2 G, there exists a decomposition
f = g

1

· · · g
`

where g
i

2 G and supp g
i

⇢ B
j(i)

for i = 1, . . . , `.

In this section, following [7] and using the box decomposition structure of tilable
laminations we show:

Proposition 3.2. Let ⌦ be a minimal tilable lamination. The two groups Homeo0L(⌦)
and Homeo0

vsp

(⌦) satisfy the partition property.

We will also show assertions (1) and (2) of Theorem 1.1. To prove this result, we
will use several lemmas. We start by showing that every map having its support
included in a box of ball type is a deformation.

Lemma 3.3. Let ⌦ be a minimal tilable lamination and B be a box of ball type.

Any map g 2 HomeoL(⌦) (resp. in Homeo
vsp

(⌦)), with support in the interior of

B is a deformation of the identity (resp. g 2 D
vsp

(⌦)).

Proof. The proof is classical by using the Alexander’s trick. We can assume that
the closure B of the box reads h�1(D⇥C) in a chart h, with D a closed ball in Rd

of radius r > 0 centered at the origin. Since the support of the map g is in B, the
map g preserves any slice of the box B. So, for any c 2 C, let g

c

: D ! D be the
map defined by g(h�1(t, c)) = h�1(g

c

(t), c) for t 2 D. Now, for any t 2 [0, 1], let
F
t

: D ⇥ C ! D ⇥ C be the map

F
t

(x, c) =

(
((1� t)g

c

( x

1�t

), c) if |x| < r(1� t)

(x, c) if |x| � r(1� t).

It is plain to check the map h�1F
t

h gives an isotopy between the identity and
the map g.

In the case where g 2 Homeo
vsp

(⌦), up to subdivide the clopen set C, we
can assume that the map g

c

is independent of c. Hence the isotopy is also in
Homeo

vsp

(⌦). ⇤
Given two subsets A ⇢ B of a topological space X, an embedding f : A ! B is

a continuous and injective map. This embedding is proper if f�1(@B) = A \ @B.
The next theorem says that any proper embedding of a neighborhood of a compact
set K into a ball, su�ciently close to the identity, can be isotoped to an embedding
which is the identity on K. Moreover the isotopy depends continuously of the
embedding. This theorem, true in any dimension, generalizes a version of the
Schoenflies Theorem.

Theorem 3.4. [5] Let D be a (closed or open) ball in Rd

, K ⇢ D a compact subset

and U a neighborhood of K in D. Then, for any proper embedding f : U ! D
close enough of the identity (for the C0

topology), there exists a continuous map

H : U ⇥ [0, 1] ! D such that:

• For any t 2 [0, 1], H(·, t) : U ! D is a proper embedding.

• H(·, 0) = f(·) and H(·, 1)|K = Id|K .
• There is a compact neighborhood K

2

of K in U , such that for any t 2 [0, 1],
H(·, t)|U\K2

= f(·)|U\K2
.

• H depends continuously on f for the C0

topology.
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Applied in our context, a first consequence is that any map close to the identity
can be interpolated by a map with a support in a box.

Lemma 3.5. Let ⌦ be a tilable lamination, let B be a box of ball type and B0

be a box with closure included in B. Then there exists an " > 0 such that for any

homeomorphism f 2 HomeoL(⌦) (resp. Homeo
vsp

(⌦)) with a displacement smaller

than ", there exists a map g 2 HomeoL(⌦) (resp. Homeo
vsp

(⌦)) with supp g ⇢ B
such that g|B0 = f|B0

. Moreover, the displacement of g depends continuously on f

for the C0

-topology.

Proof. Without loss of generality, we may assume that B reads h�1(D
3

⇥ C) in a
chart h with D

3

a ball in Rd. Assume that D
1

⇥ C is a compact neighborhood of
h(B0) with D

1

⇢ D
3

a compact subset and let D
2

⇢ D
3

be a neighborhood of D
1

.
We consider a map f 2 HomeoL(⌦) with a displacement smaller than " (defined

later). By continuity, for a small enough ", the set f(h�1(D
2

⇥ C)) is in B, and
for any c 2 C, f(h�1(D

2

⇥ {c})) ⇢ h�1(D
3

⇥ {c}). For any c 2 C, let f
c

: D
2

!
D

3

be the embedding defined by f
c

(·) = (hfh�1)(·, c) and let K be a compact
neighborhood of @D

2

proper in U = D
2

\ D
1

. For an " small enough and for
any c 2 C, Theorem 3.4 applied to the maps f

c

: U ! D
3

, gives us embeddings
h
c

= H
c

(·, 1) : U ! D
3

. We define then the maps f̄
c

: D
3

! D
3

by f̄
c|U := h

c

and f̄
c|D1

:= f
c|D1

and f̄
c|D3\D2

:= Id|D3\D2
Let f̄ : B ! B be the map defined

by f̄ � h�1(t, c) = h � (f̄
c

(t), c) for any (t, c) 2 D
3

⇥ C. By construction, f̄ is
a homeomorphism, f̄|h�1

(D1⇥C)

= f|h�1
(D1⇥C)

and f̄|@B = Id|@B . So f̄ can be
extended by the identity to all the tilable lamination ⌦ to define a homeomorphism.
This gives the map g.

Here again, when f 2 Homeo
vsp

(⌦), up to subdividing the clopen set C, we can
assume that the map f

c

is independent of c. So the same is true for f̄ and it belongs
to Homeo

vsp

(⌦). ⇤

Proposition 3.6. Let ⌦ be a minimal tilable lamination and B = {B
i

}k
i=1

be a

box cover of ⌦. Then, there are " > 0 and an integer ` > 0 such that for every

f 2 HomeoL(⌦) (resp. in Homeo
vsp

(⌦)) with displacement smaller than ", there
exists a decomposition f = g

1

· · · g
`

with g
i

2 HomeoL(⌦) (resp. Homeo
vsp

(⌦)) and
supp g

i

⇢ B
j(i)

.

Proof. Let B0 = {B0
0

, B0
1

, . . . , B0
m

} be the box decomposition of cubic type given
by Lemma 2.4. Up to subdividing each box B0

i

into smaller boxes, we can assume
that the closure of every box B0

i

is included in a box B
j(i)

. We will construct,
by induction on 0  i  d, a homeomoprhism f

i

which equals the identity on a
neighborhood of the i-skeleton of B0 and equals f outside. At each step, we use
Lemma 3.5 to approximate f

i�1

by maps with support in a small box.

For any 0-vertical boundary V of a box B0
i

, let B(0)

V

be a box containing V in its

interior and included in a box B
j(i)

. Let B
(0)

1

, . . . , B
(0)

n

be the collection of these

boxes containing all the 0-vertical boundaries. Up to refine the boxes B(0)

i

, we can

assume that they are pairwise disjoint. The union of all theses boxes B
(0)

i

covers
the 0-skeleton of B0.

Step 0. Applying Lemma 3.5 to any box B
(0)

i

and any neighborhood of the 0-

vertical V \B(0)

i

(when not empty), we get, for an " small enough, a g
i

2 HomeoL(⌦)

with supp g
i

⇢ B
(0)

i

such that g
i

= f on a neighborhood of V \ B
(0)

i

. It follows
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that the maps g
1

, . . . , g
n

commute; and f
0

= g�1

1

� · · · � g�1

n

� f is the identity
in a neighborhood U

0

of the 0-skeleton of B0. Moreover the displacement of f
0

continuously depends on the displacement of f .
Step i. 1  i  d�1. Let us assume that f

i

2 HomeoL(⌦) equals the identity on
a neighborhood U

i�1

of the i� 1-skeleton of B0. We do the same as for the former

step. Let B(i)

1

, . . . , B
(i)

ni be a collection of boxes such that any i-vertical boundary

V of B0 is in the interior of a box B
(i)

j

⇢ B
t(j)

. Up to refine the boxes B
(i)

j

, we

may assume that the sets B(i)

j

\U
i�1

are pairwise disjoint. Applying Lemma 3.5 to

any box B
(i)

j

and to a neighborhood of the i-vertical (V \ U
i�1

) \ B
(i)

j

(when not

empty), we have, for an " small enough, a g
(i)

j

2 HomeoL(⌦) with supp g(i)
j

⇢ B
(i)

j

such that g(i)
j

= f on a neighborhood of (V \ U
i�1

) \ B
(i)

j

. We get that the maps

g
(i)

1

, . . . , g
(i)

ni commute; and f
i

= (g(i)
1

)�1 � · · · � (g(i)
ni )

�1 � f
i�1

is the identity in a
neighborhood of the i-skeleton.

Hence the homeomorphism f
d�1

preserves each box B0
i

, and f
d�1

can be written
as the composition of homeomorphisms with support in each box of the decomposi-
tion B0. Moreover if f 2 Homeo

vsp

(⌦), then f
d�1

2 Homeo
vsp

(⌦) also. This proves
the proposition. ⇤

The following proposition shows the assertions (1) and (2) of Theorem 1.1.

Proposition 3.7. Let ⌦ be a minimal tilable lamination. Then, D(⌦) is open in

HomeoL(⌦) and D(⌦) = Homeo0L(⌦). Similarly, D
vsp

(⌦) is open in Homeo
vsp

(⌦)
and D

vsp

(⌦) = Homeo0
vsp

(⌦).

Proof. Let B = {B
i

}k
i=1

be a box cover of ball type of ⌦. Let ⇢ be the Lebesgue num-
ber of B and consider an atlas B0 = {B0

j

}`
j=1

of ⌦ such that the diameter of any box
B0

j

is smaller than ⇢. Then by Proposition 3.6, any map f 2 HomeoL(⌦) with dis-
placement small enough, can be written as a product of maps g

i

2 HomeoL(⌦) with
support in a B0

j(i)

. Thus by Lemma 3.3 we get that any g
i

is in D(⌦), and finally

f 2 D(⌦). This means that the identity lies in the interior of D(⌦). Standard argu-
ments on topological groups show then that D(⌦) is open and closed in HomeoL(⌦)
and D(⌦) = Homeo0L(⌦). The proof is similar for the group Homeo

vsp

(⌦). ⇤
Finally, we can obtain the proof of Proposition 3.2.

of Proposition 3.2. Let H be either Homeo0L(⌦) or Homeo0
vsp

(⌦) and let B be an
atlas of ⌦. Proposition 3.7 gives us a constant ⌘ > 0 such that any element of
HomeoL(⌦) (resp. in Homeo

vsp

(⌦)) with a displacement smaller than ⌘ is in D(⌦)
(resp. D

vsp

(⌦)). Up to refining the covering B, we can assume that every element
of B has a diameter smaller than ⌘. Since the group H is connected, it is enough to
show the partition property for any f 2 H with an arbitrary small displacement ".
By taking the " given by Proposition 3.6, we can write f as a product of elements
g
i

in HomeoL(⌦) with displacement smaller than ⌘. By Proposition 3.7, we get
g
i

2 H and this shows the partition property. ⇤

4. Simplicity of the commutator subgroup

Epstein’s result [6] asserts that if a group of homeomorphism is factorizable and
acts transitively on open sets, then its commutator subgroup is simple. Let ⌦ be a
minimal tilable lamination and let G be a subgoup of Homeo0L(⌦). In general, we
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cannot expect G to act transively on open sets. We need to replace the transivity
condition with another one which is more adapted to laminated spaces. Thus, we
give here, a su�cient condition on a subgroup of Homeo0L(⌦) so that the derived
subgroup is simple.

Theorem 4.1. Let ⌦ be a minimal Rd

tilable lamination. Let G ⇢ Homeo0L(⌦) be
a group such that:

i) G satisfies the partition property.

ii) For any boxes B
1

= C �D
1

, B
2

= C �D
2

of ball type whose closures lie in

a box B = C �K, there exists a g 2 G0
such that B

2

⇢ g(B
1

).

Then the derived group G0 = [G,G] is simple.

Proof. LetN be a non-trivial normal subgroup ofG0. We have to show thatN = G0.

Lemma 4.2. There exists an atlas B of the solenoid ⌦ such that for every box B
of B there is a map n

B

2 N such that B and n
B

(B) are disjoint.

Proof. Let Id 6= n 2 N . There is a box B
0

= C
0

�D
0

of ball type such that B
0

and
n(B

0

) are disjoint. Since the translation flow is free and minimal and translations
have the vertical structure preserving property, it follows that for every x 2 ⌦,
there is a clopen subset C

x

⇢ C
0

and an open ball D
x

⇢ Rd with D
0

⇢ D
x

such
that C

x

�D
x

is a box of ⌦ containing the point x.
Let B̃

x

be a box included in C
x

� D
x

containing the point x. By hypothesis
ii), there is a g 2 G0 such that B̃

x

⇢ g(C
x

� D
0

). It is then straightforward to
check that the box B̃

x

is disjoint from its image by the map g � n � g�1 2 N . The
collection of boxes {B̃

x

}
x2⌦

satisfies the condition of the statement. ⇤

Let B be the finite cover given by Lemma 4.2 of the tilable lamination ⌦ by boxes
and let ⇢ > 0 be its Lebesgue number. Let us recall that for any ball of radius ⇢
in ⌦ there exists a box of B containing this ball. Let B

1

be a box cover of cubic
type of ⌦, equivalent to B, and such that any box has a diameter smaller than ⇢.
It follows that when two boxes B

1

, B
2

of B
1

are intersecting, there exists a box B
of B containing B

1

[B
2

.
The following is an algebraic lemma due to T. Tsuboi [17].

Lemma 4.3 ([17, Lemma 3.1]). Let B be a box and n be an homeomorphism such

that n(B) \ B = ;. Then for any homeomorphisms a, b 2 G with supports in B,

the commutator [a, b] can be written as a product of 4 conjugates of n and n�1

.

Proof. Let h = n�1an, since the supports are disjoint, we have hb = bh. So we get

aba�1b�1 = nhn�1bnh�1n�1b�1

= nhn�1h�1hbnh�1b�1bn�1b�1

= n(hn�1h�1)(bhnh�1b�1)(bn�1b�1).

⇤

Now, for each B 2 B
1

, let G
B

be the subgroup of G of homeomorphisms with
support in B, and let H be the subgroup of G generated by all the G

B

with
B 2 B

1

. By the partition property (item i)), the groups H and G are the same. It
is well-known that the commutator subgroup of H is generated by the conjugates
of commutators of elements in a generating set of H. So to prove the theorem, we
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just have to show for any boxes B
1

, B
2

in B
1

, and for f
1

2 G
B1 and f

2

2 G
B2 , that

the commutator [f
1

, f
2

] belongs to N .
If the boxes B

1

and B
2

do not intersect, then every point of ⌦ is fixed by either
f
1

or f
2

, which means that [f
1

, f
2

] = id and thus belong to N .
Suppose now that B

1

and B
2

intersect and let B be a box in B containing B
1

[B
2

.
By Lemma 4.2, there exists a n 2 N such that B \n(B) = ;. Thus by Lemma 4.3,
we have [f

1

, f
2

] 2 N , and then H 0 = N . ⇤

5. Perfectness

To show that the groups Homeo0L(⌦) and Homeo0
s

(⌦) are simple, we will first
prove in this section they are perfect. For this, we need the next lemma stating
a transitivity of the action of the group D

vsp

(⌦) on specific boxes of a same box.
This is a reinforcement of condition ii) in Theorem 4.1. We will deduce then the
perfectness. This will imply, together with the partition property, that these groups
satisfy the conditions of Theorem 4.1, and henceforth they are simple.

Lemma 5.1. Let B
1

= C � D
1

and B
2

= C � D
2

be two boxes of ball type, and

let B
0

= C � V be a box containing the closures of B
1

and B
2

. Then there exists a

g 2 D
vsp

(⌦) such that B
2

= g(B
1

).

Proof. Let h be the chart associated to the box C � V . The boxes B
1

and B
2

read respectively h�1(D
1

⇥ C) and h�1(D
2

⇥ C), with D
1

, D
2

two balls in V .
Up to composing with a translation T

⇢

, we may assume that D
1

⇢ D
2

⇢ V or
D

2

⇢ D
1

⇢ V . In both cases, it is straightforward to construct a homeomorphism
 2 D

vsp

(⌦) with support in C�V such that  (h�1(D
1

)⇥C)) = h�1(D
2

⇥C). ⇤
The proof of the next theorem follows directly the ideas of Frédéric Le Roux

(see Theorem 1.1.3 in [4] for a proof on a surface). On a manifold, this shows
directly that the group of homeomorphism is simple. Here, because of the lack of
homogeneity, it enables just to show the groups Homeo0L(⌦) and Homeo0

vsp

(⌦) are
perfect.

Theorem 5.2. For ⌦ a minimal Rd

-tilable lamination, the groups Homeo0L(⌦) and
Homeo0

vsp

(⌦) are perfect.

Proof. Let H denotes either Homeo0L(⌦) or Homeo0
vsp

(⌦). We have to show that
any element of H can be written as a commutators product. It is simple to find
two non commuting elements a, b 2 D

vsp

(⌦) with supports in a box B ⇢ ⌦ of ball
type. So the element g = [a, b] 2 H is not the identity. We will show that N(g), the
normal subgroup generated by g, contains all the elements f of H with support in
the box B. Recall that a conjugate of a commutator is still a commutator, it will
follow that f can be written as a finite product of commutators. Since the box B
is arbitrary, we get the conclusion by the partition property (Proposition 3.2).

We have g 6= Id, so we consider a box B0 ⇢ B such that g(B0) and B0 are disjoint.
In a chart h, we may assume that B0 reads h�1(B

r

(0)⇥C) where B
r

(0) denotes the
Euclidean ball in Rd of radius r > 0 centered at 0. For any integer n � 0, we define
a nested sequence of boxes B

n

:= h�1(B
r/2

n+1(0) ⇥ C). It is simple to construct
an element  of D

vsp

(⌦) with support in B0, such that  (B
n

) = B
n+1

of n � 0.
We get then that the homeomorphism k = [ , g] 2 N(g) satisfies k(B

n

) = B
n+1

for n � 0 and supp k ⇢ B0 [ g(B0) (k is the product of  and g �1g�1that have
disjoint supports).
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Let A
n

= B
n

\ B
n+1

and let us show that N(g) contains all the element of H
with support in A

1

. For any � 2 H with a support in A
1

, we claim that �k and
k are conjugate: notice, we have k = ��1(�k)� on A

0

,
F

n�0

A
n

=
F

n�0

gn(A
0

) =F
n�0

(�k)n(A
0

) and k|B\B0
= �k|B\B0

; It is then standard to check that the con-

tinuous homeomorphism �̃ defined by

�̃|An
:= (�k)n�k�n

|An
for any n � 0 and �̃|⌦\B0

= Id,

can be extended by continuity to
S

n�0

A
n

= B
0

, is in H and satisfies k = �̃�1(�k)�̃
on ⌦. We get then �k 2 N(k) ⇢ N(g), so � 2 N(g).

Finally, let f 2 H with a support in B. By Lemma 5.1, there exists a � 2 H such
that the support of �f��1 is in A

1

. So by the last result we have f 2 N(g). ⇤

We have then the groups Homeo0L(⌦) and Homeo0
vsp

(⌦) equal their commutator
groups. So by Lemma 5.1 and Theorem 4.1, we get the main result: Theorem 1.1.

6. Uniform perfectness in dimension one

Theorem 5.2 asserts that any homeomorphism of a tilable lamination ⌦ is a
product of commutators. For the one dimension, we can be more precise.

Theorem 6.1. For ⌦ a minimal R-tilable lamination, any element of Homeo0L(⌦)
(resp. D

vsp

(⌦)) can be written as a product of two commutators of Homeo0L(⌦)
(resp. D

vsp

(⌦)).

Before proving this theorem, we need some technical lemmas. The first one
solves the problem of perfectness for homeomorphisms with support in a box. Re-
call that any map f 2 Homeo0L(⌦) preserves the orientation, so, if � denotes its
displacement, for any ! 2 ⌦, the map R 3 t 7! t+ �(! � t) 2 R is increasing.

Lemma 6.2. Let ⌦ be a minimal R-tilable lamination and let f 2 Homeo0L(⌦)
(resp. Homeo0

vsp

(⌦)) with support included in a box B. Then there exists a home-

omorphism g 2 Homeo0L(⌦) (resp. Homeo0
vsp

(⌦)) with support in B such that

gfg�1 = f2

. In particular f = [g, f ].

Proof. Since f preserves the orientation, it preserves each slice of the box B = C�I,
with C a clopen set and I an interval. For any x 2 C, we denote by f

x

: I ! I the
increasing map induced on the slice of x: i.e. defined by f

x

(t) = t + �(x � t) so
that f(x� t) = x� f

x

(t) for any t 2 I.
For any z

0

2 {z 2 B; f 6= Id}, let the vertical C
z0 be C � t

0

where z
0

writes
x
0

� t
0

with x
0

2 C, t
0

2 I. We define the local strip

V
z0 := {x� t; x 2 C, t

0

 t < f
x

(t
0

)}.

By the definition, the sets {fn(V
z0) = V

f

n
(z0)

}
n2Z are pairwise disjoints, and

[
n2Zfn(V

z0) is a f -invariant open set. Hence there exist a collection at most
countable of points {z

n

}
n�0

⇢ {f 6= Id} and local strips V
n

= V
zn such that

supp f = [
n�0

[
p2Zfp(V

n

) and the sets {[
p2Zf

p(V
n

)}
n�0

are pairwise disjoint.

Notice that since f preserves the orientation, a point is fixed by f if and only it is
a fixed point of f2. So we have supp f = supp f2.
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For each n � 0, z
n

= x
n

� t
n

with t
n

2 I, x
n

2 C, let h
n

: [t
n

, f
zn(tn)) !

[t
n

, f2

zn
(t

n

)) be the bijective a�ne map fixing t
n

. It is then straightforward to
check that the continuous map g

n

defined on [
p2Zfp(V

n

) by

g
n|fp

(Vn)
:= f2p � h

n

� f�p,

can be continuously extended by the identity to @[
p2Zfp(V

n

) and satisfies f2�g
n

=
g
n

� f where it is defined. Hence we can define a homeomorphism g on ⌦ with
support in B such that g|[p2Zfp

(Vn)
= g

n

for every n � 0. Notice furthermore that

g is in Homeo0
vsp

(⌦) when f is. ⇤
The next lemma, is a version of lemma 3.5 without the condition to be close of

the identity.

Lemma 6.3. Let ⌦ be a minimal R-tilable lamination and let f 2 Homeo0L(⌦)
(resp. Homeo0

vsp

(⌦)). Suppose that B0 = C � J and B = C � I are boxes of cubic

type such that the closure of f(B0) [ B0
is contained in B. Then, there exists a g

in D(⌦) (resp. D
vsp

(⌦)) with support contained in B such that f |
B

0 = g|
B

0
.

Proof. Without loss of generality, we may assume that I, J are two open intervals
such that 0 2 J ⇢ I. Consider ⌘ : I ! [0, 1] a continuous function that is equal to
zero on the boundary of I, is equal to one on J and a�ne on each component of
I \ J . Let � be the displacement function of f , and define  : ⌦ ! R by

 (x� t) = ⌘(t)�(x� t) for any x 2 C, t 2 I,

and by zero on the complement of B. It is clear that  is a continuous function.
Thus, g(x) := x�  (x) is continuous and coincides with f on B0, and since J ⇢ I,
it is also increasing by the choice of ⌘. It is plain to check g 2 D(⌦). ⇤
Lemma 6.4. Let ⌦ ba a minimal R-tilable lamination and let f 2 Homeo0L(⌦)
(resp. Homeo0

vsp

(⌦)). Then there exist two boxes B0 ⇢ B and two homeomorphisms

f
1

, f
2

2 Homeo0L(⌦) (resp. Homeo0
vsp

(⌦)) such that

• supp f
2

⇢ B;

• f
1

|
B

0 = Id|
B

0
;

• f = f
1

� f
2

.

Proof. Let x be a point of ⌦. The points x and f(x) are in the same leaf, so they
belong to a same box B = C � I of cubic type. By continuity, there exists a small
box x 2 B0 = C � J such that the closures of B0, f(B0) are in B. Let f

2

be the
map given by Lemma 6.3, and let f

1

= f � f�1

2

. It is straightforward to check they
satisfy the conditions of the lemma. ⇤

Next we need a topological lemma on one dimensional tilable laminations. If
B = C � (a, b) is a box of cubic type, for an element x 2 C � b, its return time to

C � a is
⌧
C�a

(x) = inf{t > 0; x� t 2 C � a}.
By minimality, ⌧

C�a

(x) is finite for any x 2 C � b, and the map ⌧
C�a

: C � b ! R
is locally constant, hence continuous.

Lemma 6.5. Let ⌦ be a R-tilable lamination, and let B = C � (a, b) be a box of

cubic type. Then the following map is an homeomorphsim.

{(x, t); x 2 C � b, 0  t  ⌧
C�a

(x)} �! ⌦ \B
(x, t) 7! x� t.
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The proof is plain.

of Theorem 6.1. Let us denote by H the group Homeo0L(⌦) or Homeo0
vsp

(⌦) and
let f 2 H. Let f

1

and f
2

be the homeomorphims in H and B,B0 be the boxes
given by Lemma 6.4. From Lemma 6.5 applied to the box B0 = C � (a, b), and
since the map ⌧

C�a

is locally constant, there exists a clopen partition {C
1

, . . . , C
`

}
of C such that for any i, ⌧

C�a

|C
i

is constant, equals to ⌧
i

and {C
i

� [0, ⌧
i

]}`
i=1

is a
covering of ⌦ \B by closed boxes with interior pairwise disjoint.

Hence, the map f
1

preserves any box C
i

�[0, ⌧
i

], so it can be written as a product
of maps g

1

· · · g
`

, where any g
i

2 H and supp g
i

⇢ C
i

� [0, ⌧
i

]. By Lemma 6.2, f
2

is a commutator and any g
i

is a commutator [a
i

, b
i

] where the homeomorphisms
a
i

, b
i

2 H have their support in the box C
i

� [0, ⌧
i

]. Since two homeomorphisms
with disjoint interior of supports commute, we have

f
1

=
`Y

i=1

g
i

=
`Y

i=1

[a
i

, b
i

] = [
`Y

i=1

a
i

,

`Y

i=1

b
i

].

It follows that f may be written as a product of two commutators. ⇤
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Mathématique Fondamentale et Appliquée,
CNRS-UMR 7352,
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LINEARLY REPETITIVE DELONE SYSTEMS HAVE A
FINITE NUMBER OF NON PERIODIC DELONE SYSTEMS

FACTORS.

MARÍA ISABEL CORTEZ, FABIEN DURAND, AND SAMUEL PETITE

Abstract. In this paper we prove linearly repetitive Delone systems
have finitely many Delone system factors up to conjugacy. This result
is also applicable to linearly repetitive tiling systems.

1. Introduction

The concepts of tiling dynamical system and Delone dynamical system are
extensions to Rd-actions of the notion of subshift (see [Ro]). Classical ex-
amples are those generated by self-similar tilings, as the Penrose one, which
have been extensively studied since the 90’s. For details and references see
for example [Ro, So1]. Systems arising from self-similar tilings are known
to be linearly repetitive (see [So2, Lemma 2.3]), this means there exists a
positive constant L, such that every pattern of diameter D appears in every
ball of radius LD in any tiling of the system. This concept has been first
defined in [LP]. Linearly repetitive tiling and Delone systems can be seen
as a generalization to Rd-actions of the notion of linearly recurrent subshift
introduced in [DHS].
We study the factor maps between Delone systems. The main result is
the following: linearly repetitive Delone systems have finitely many Delone
system factors up to conjugacy. As noticed in [So3], tiling systems are
topologically conjugate to Delone systems. This conjugacy also preserves
linear repetitivity. Consequently, the results that we present can be easily
extended to linearly repetitive tiling systems.
The main result of this paper was obtained in the context of subshifts in
[Du1]. A key tool used in [Du1], is the existence of sliding-block-codes for
factor maps between subshifts (Curtis-Hedlund-Lyndon Theorem). Unlike
subshifts, factor maps between two tiling systems are not always sliding-
block-codes (see [Pe] and [RS]). The lack of this property appears to be the
main di�culty of this work. To surmount this obstacle, we carefully dissect
continuity of factor maps, by means of Voronöı cells and return vectors.
This paper is organized as follows: In Section 2 we recall basic concepts
and results about Delone systems. In Section 4 we show the factor maps

1991 Mathematics Subject Classification. 37B50,
Key words and phrases. Delone sets, tiling systems, factor maps, linearly repetitive,

Voronöı cell.

1
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from linearly repetitive Delone systems to Delone systems are finite-to-one.
Finally, Section 5 is devoted to the proof of the main theorem.

2. Definitions and background

In this section we give the basic definitions and properties concerning Delone
sets. For more details we refer to [LP] and [Ro]. Let r and R be two positive
real numbers. A (r, R)-Delone set X is a discrete subset of Rd satisfying the
following two properties:

(1) Uniform discreteness: each open ball of radius r > 0 in Rd contains
at most one point of X.

(2) Relative density: each closed ball of radius R > 0 in Rd contains at
least one point of X.

A (r, R)-Delone set X, in short a Delone set, has finite local complexity if
X �X is locally finite, i.e. the intersection of X �X with any bounded set
is finite.
The translation by a vector v 2 Rd of a Delone set X, is the Delone set X�v

obtained after translating every point of X by �v. Observe that X � v has
finite local complexity if and only if X has finite local complexity. A Delone
set is said to be non periodic if X � v = X implies v = 0.
Let R > 0 and X be a Delone set. We say that P ✓ X is the R-patch of X

centered at the point y 2 Rd if

P = X \B

R

(y),

where B

R

(y) denotes the open ball of a radius R centered at y. If there is
no confusion, we refer to a R-patch of X merely as a patch. A sub-patch of
the patch P is a patch of X included in P . A patch Q is a translated of the
patch P if there exists v 2 Rd such that P � v = Q. The vector v 2 Rd is a
return vector of the patch P in X if P � v is a patch of X. An occurrence

of the patch P of X centered at y 2 Rd is a point w 2 Rd such that y � w

is a return vector of P . Observe the patch P � (y � w) is the translated of
P centered at w.
The R-atlas A

X

(R) of X is the collection of all the R-patches centered at a
point of X translated to the origin. More precisely:

A
X

(R) = {X \B

R

(x)� x; x 2 X}.
The atlas A

X

of X is the union of all the R-atlases, for R > 0. Notice that
X has finite local complexity if and only if A

X

(R) has finite local complexity
for every R > 0.
The Delone set X is repetitive if for each R > 0 there is a finite number
M > 0, such that for every closed ball B of radius M the set B\X contains
a translated patch of every R-patch of X. Observe that any repetitive Delone
set has necessarily finite local complexity.
The Voronöı cell of a point x 2 X is the compact subset

V

x

= {y 2 Rd; ||x� y||  ||x0 � y|| for any x

0 2 X}.
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Notice that if X is a Delone set has finite local complexity, then each Voronöı
cell of X is a polyhedra, and there is a finite number of Voronöı cells of X

up to translations.

2.1. Delone systems. We denote by D the collection of the Delone sets of
Rd. The group Rd acts on D by translations:

(v, X) 7! X � v for v 2 Rd and X 2 D.

Furthermore, this action is continuous with the topology induced by the
following distance: take X, X

0 in D, and define A the set of " 2 (0,

1p
2

) such
that there exist v and v

0 in B

"

(0) with

(X � v) \B

1/"

(0) = (X 0 � v

0) \B

1/"

(0),

we set

d(X,X

0) =
⇢

inf A if A 6= ;
1p
2

if A = ;.
Roughly speaking, two Delone sets are close if they have the same pattern
in a large neighborhood of the origin, up to a small translation.
A Delone system is a pair (⌦, Rd) such that ⌦ is a translation invariant
closed subset of D. The orbit closure of a Delone set X in D is the set ⌦

X

=
{X + v : v 2 Rd}. This is invariant by the Rd-action, and, it is compact if
and only if X has finite local complexity (see [Ro] and [Ru]). Every X

0 2 ⌦
X

is a (r, R)-Delone set if X is a (r, R)-Delone set, and for any real R > 0, we
have A

X

0(R) ⇢ A
X

(R). If all the orbits are dense in ⌦
X

, the Delone system
(⌦

X

, Rd) is said to be minimal. It is shown in [Ro] that the Delone set X

is repetitive if and only if the system (⌦
X

, Rd) is minimal. In that case, for
any X

0 2 ⌦
X

and any R > 0 the R-atlases A
X

0(R),A
X

(R) are the same. If
in addition, X is non periodic, then every Delone set in ⌦

X

is non periodic.
A factor map between two Delone systems (⌦

1

, Rd) and (⌦
2

, Rd) is a con-
tinuous surjective map ⇡ : ⌦

1

! ⌦
2

such that ⇡(X � v) = ⇡(X) � v, for
every X 2 ⌦

1

and v 2 Rd.
In symbolic dynamics it is well-known that topological factor maps between
subshifts are always given by sliding-block-codes. There are examples which
show that this result can not be extended to Delone systems ([Pe], [RS]).
The following lemma shows that factor maps between Delone systems are
not far from being sliding-block-codes. A similar result can be found in
[HRS].

Lemma 1. Let X

1

and X

2

be two Delone sets. Suppose X

1

has finite local

complexity and ⇡ : ⌦
X1 ! ⌦

X2 is a factor map. Then, there exists a constant

s

0

> 0 such that for every " > 0, there exists R

"

> 0 satisfying the following:

For any R � R

"

, if X and X

0
in ⌦

X1 verify

X \B

R+s0(0) = X

0 \B

R+s0(0),

then

(⇡(X)� v) \B

R

(0) = ⇡(X 0) \B

R

(0)
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for some v 2 B

"

(0).

Proof. The Delone set X

2

has also finite local complexity because ⌦
X2 is

compact. Let r

0

and R

0

be a positive constant such that X

2

is a (r
0

, R

0

)-
Delone set. Since all the elements of ⌦

X2 are (r
0

, R

0

)-Delone sets, if two
di↵erent points y

1

, y

2

of Rd satisfy (X � y

1

)\B

R

(a) = (X � y

2

)\B

R

(a) for
some X 2 ⌦

X2 , a 2 Rd and R > R

0

, then ky
1

� y

2

k � r0
2

(for the details see
[So1]).

Let 0 < �

0

< min{ r0
4

,

1

R0
}. Since ⇡ is uniformly continuous, there exists

s

0

> 1 such that if X and X

0 in ⌦
X1 verify X \B

s0(0) = X

0 \B

s0(0) then

(⇡(X)� v) \B 1
�0

(0) = ⇡(X 0) \B 1
�0

(0),

for some v 2 B

�0(0). Let 0 < " < �

0

. By uniform continuity of ⇡, there exists
0 < � <

1

s0
such that if X and X

0 in ⌦
X1 verify X \ B 1

�
(0) = X

0 \ B 1
�
(0)

then

(2.1) (⇡(X)� v) \B 1
"
(0) = ⇡(X 0) \B 1

"
(0),

for some v 2 B

"

(0). Now fix R � R

"

= 1

�

� s

0

, and let X and X

0 be two
Delone sets in ⌦

X1 satisfying

(2.2) X \B

R+s0(0) = X

0 \B

R+s0(0).

Observe that X and X

0 satisfy (2.1), and (X�a)\B

s0(0) = (X 0�a)\B

s0(0),
for every a in B

R

(0). The choice of s

0

ensures that

(2.3) (⇡(X)� a� t(a)) \B 1
�0

(0) = (⇡(X 0)� a) \B 1
�0

(0),

for some t(a) 2 B

�0(0). Let us prove the map a ! t(a) is locally constant.
For a 2 B

R

(0), let 0 < s

a

<

1

�0
� R

0

be such that B

sa(a) ✓ B

R

(0). Every
a

0 2 B

sa(0) verifies B 1
�0
�ka0k(�a

0) ⇢ B 1
�0

(0). Let a

0 2 B

sa(0). This inclusion
and (2.3) imply

(2.4) (⇡(X)�a�a

0�t(a))\B 1
�0
�ka0k(�a

0) = (⇡(X 0)�a�a

0)\B 1
�0
�ka0k(�a

0).

On the other hand, from the definition of the map a ! t(a) we deduce

(⇡(X)� a� a

0 � t(a + a

0)) \B 1
�0

(0) = (⇡(X 0)� a� a

0) \B 1
�0

(0),

which implies
(2.5)
(⇡(X)�a�a

0�t(a+a

0))\B 1
�0
�ka0k(�a

0) = (⇡(X 0)�a�a

0)\B 1
�0
�ka0k(�a

0).

Since kt(a)� t(a + a

0)k  r0
2

, from equations (2.4), (2.5) and the remark of
the beginning of the proof we conclude t(a) = t(a+ a

0) for every a

0 2 B

s

(0).
Therefore the map a 7! t(a) is constant on B

sa(a).
Furthermore, due to �

0

> " and (2.2), Equation (2.1) implies there exists
v 2 B

"

(0) such that

(2.6) (⇡(X)� v) \B 1
�0

(0) = ⇡(X 0) \B 1
�0

(0).
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For a = 0, from (2.3) and (2.6) we have that t(0) = v or kv � t(0)k � r0
2

.
Since kt(0)�vk  �

0

+" < 2�

0

<

r0
2

, we conclude t(0) = v and then t(a) = v

for every a 2 B

R

(0). This property together with (2.3) and (2.6) imply that

(⇡(X)� v) \B

R

(0) = ⇡(X 0) \B

R

(0).

This conclude the proof. ⇤

3. Example of a prime Delone system

In this section, we will study a specific Delone system, and we will prove
this system is prime in the following sense: there exist no aperiodic Delone
system as a strict factor. Starting from a multidimensional discrete odome-
ter, we built a symbolic extension of it which is 2 to 1 for only one orbit and
1-1 for any others. The suspension of the symbolic system is then conjugate
to a Delone system and is one extension of a suspension of the odometer
system with the same properties as the first extension. Thanks this we show
this Delone system is prime.
Let G be a topological group compact and totally disconnected group, such
that Zd is a dense subgroup.
For instance, let (Z

n

)
n�0

be a sequence of decreasing sub lattices with finite
index in Zd such that

T
n�0

Z

n

= {0}. For any n, the inclusion defines a
canonical homomorphism p

n

: Zd

/Z

n+1

! Zd

/Z

n

.
The group G given by the inverse limit of the (Zd

/Z

n

, p

n

)
n

, namely

G = {(x
n

)
n

, x

n

2 Zd

/Z

n

and x

n

= p

n

(x
n+1

)}.

By the topology induced by the product topolgy , G is compact and totally
disconnected. Let i be the map i : Zd 3 z 7! ([z]

n

)
n

2 G, where ([z]
n

)
denotes the class of z in Zd

/Z

n

. It is staightfrward to check that i is a
homorphism, is 1-1 because

T
n�0

Z

n

is trivial and the image is dense in G.
The group Zd acts on G by translation of element of i(Zd).
Let F : G ! {0, 1} be a map continuous in all points exept in 0. Let �

F

be theà graph of F , �
F

= {(g, F (g)), g 2 G}. The closure of �
F

for the
product topology, is then the unon of �

F

with the point (0,

¯
F (0)) where

¯
F (0) = F (0) + 1mod1. Moreover, we suppose the map F to be invariant
under no rotations, i.e.: F (g + i(z)) 6= F (g) for any g 2 G and z 2 Zd. For
explicit examples See [ARTICLE MIC ou these].
Now, we consider the Zd subshift X given by taking the closure in the
product space {0, 1}Zd of the sequence (F (i(z))

z2Zd . By the very hypothesis,
the system (X, Zd) is minimal and there exists a factor map ⇡ : X ! G. For
any g 2 G is ⇡

�1({g}) is one point or two points if g 2 i(Zd).
The group Zd acts also by integer translation on Rd. The suspension of the
Zd-action is the quotient by the diagonal Zd action on X ⇥ Rd. In [BBG],
it is shown that this suspension is conjugated to a Delone system.
It is straightforward to check that the factor map ⇡ : X ! G extends to a
continuous factor map from the suspension of X onto the susepension of G,
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which is 1-1 for every Zd-orbit in G exept for i(Zd). We conclude thanks
the following lemma.

Lemma 2. Let (X, Rd) be a dynamical system and ⇡ : X ! G a factor map

onto an minimal equicontinuous action (G, Rd) such that ⇡ is 1-1 on every

Rd

orbit exept one, and 2-1 oherwise.

If (Y, Rd) is a non periodic factor of (X, Rd), then (Y, Rd) is a factor of

(G, Rd).

4. Preimages of factor maps.

In the rest of this paper we suppose that all the Delone sets have finite local
complexity.
A Delone set X is linearly repetitive if there exists a constant L > 0 such
that for every patch P in X, any ball of radius Ldiam(P ) intersected with X

contains a translated patch of P . In this instance we say that X is linearly

repetitive with constant L. Notice the constant L must be greater or equal
than 1, and if X is linearly repetitive with constant L, then it is linearly
repetitive with constant L

0, for every L

0
> L. Every Delone set in the orbit

closure of a linearly repetitive Delone set is linearly repetitive with the same
constant. When X is linearly repetitive, we call (⌦

X

, Rd) a linearly repetitive

Delone system.
The following lemma shows the factors of linearly repetitive systems are also
linearly repetitive with a uniform control on the constants. This was already
proven for subshifts in [Du1].

Lemma 3. Let X be a linearly repetitive Delone set with constant L. If

X

0
is a Delone set such that (⌦

X

0
, Rd) is a topological factor of (⌦

X

, Rd),
then there exists a constant ⌧

X

0
> 0 such that if P is a patch of X

0
with

diam(P ) � ⌧

X

0
, then for any y 2 Rd

, the set X

0 \ B

5Ldiam(P )

(y) contains a

translated patch of P .

Proof. Let ⇡ : ⌦
X

! ⌦
X

0 be a topological factor, where X is a (r
X

, R

X

)-
linearly repetitive Delone set with constant L, and X

0 is a (r
X

0
, R

X

0)-Delone
set. We can assume that ⇡(X) = X

0. Let s

0

> 0 be the constant of Lemma
1. Fix 0 < " < Ls

0

and consider R

"

> 0 as in Lemma 1. We set

⌧

X

0 = max{s
0

, R

"

, R

X

, R

X

0}.

Let P be a patch in X

0 with diam(P ) = D � ⌧

X

0 , and let v 2 P ⇢ X

0. Let
Q = (X�v)\B

D+s0(0). Since diam(Q)  2(D+s

0

), for every y 2 Rd there
exists w 2 B

2L(D+s0)

(y) such that (X � w) \ B

D+s0(0) = Q. Then, from
Lemma 1 there exists t 2 B

"

(0) such that

(X 0 � v) \B

D

(0) = (X 0 � w � t) \B

D

(0).

Since (X 0 � v) \ B

D

(0) contains a translated of P , this shows that every
ball of radius 2L(D + s

0

) + "  5LD in X

0 contains a translated of P as
sub-patch. ⇤
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The next Lemma follows the same lines of Lemma 2.4 in [So2]. We show
the set of occurrences of a R-patch of a linearly repetitive Delone set and
its factors is uniformly discrete with a constant depending linearly on R.

Lemma 4. Let X be a non periodic linearly repetitive Delone set with con-

stant L, and let X

0
be a non periodic Delone set such that (⌦

X

0
, Rd) is a

topological factor of (⌦
X

, Rd). There exists a constant M

X

0
> 0 such that

for every R � M

X

0
and for every R-patch P of X

0
, if x 2 Rd \ {0} is a

return vector of P , then kxk � R/(11L).

Proof. Let R

0
> 0 be a real such that any patch of the kind X

0 \ B

R

0(y),
with y 2 Rd, has diameter greater than ⌧

X

0 , where ⌧

X

0 is the constant given
by Lemma 3. Let M

X

0 = 110LR

0 + R

0 and P be the R-patch X

0 \ B

R

(v)
with R > M

X

0 and v 2 Rd. Suppose there exists x 2 Rd, with 0 < kxk <

R/(11L), such that P + x is a patch of X

0. For any y 2 Rd, consider the
patches

Q

y

= X

0 \B

R

0(y) and S

y

= X

0 \B

R

0
+kxk(y).

Since
⌧

X

0  diam(S
y

)  2(R0 + kxk),
from Lemma 3, every ball of radius 10L(R0 + kxk) intersected with X

0 con-
tains a translated of S

y

. By the very hypothesis, we have

10L(R0 + kxk) < 10LR

0 +
10R

11
 R

11
+

10R

11
= R.

This implies there exists w 2 Rd such that S

y

+ w is a sub-patch of X

0 \
B

R

(v) = P . Because P +x is also a patch of X

0, we have Q

y

+w +x is also
a patch of X

0 and a sub-patch of S

y

+ w. Hence Q

y

+ w + x = Q

y+x

+ w

and
Q

y

+ x = Q

y+x

.

Since y is arbitrary, we conclude that X

0 + x = X

0, which contradicts the
non periodicity of X

0 if x 6= 0. ⇤

We recall the following definition: A factor map ⇡ : (⌦, Rd) ! (⌦0
, Rd) is said

to be finite-to-one (with constant D) if for all y 2 Y we have |⇡�1({y})|  D.
The next result is a technical lemma we use in Proposition 6 to show that
factor maps between linearly repetitive Delone systems are finite-to-one.

Lemma 5. Let ⇡ : (⌦
X

, Rd) ! (⌦
X

0
, Rd) be a factor map, where X is

a linearly repetitive Delone set with constant L, and X

0
is a non periodic

Delone set. We denote by s

0

the constant given by Lemma 1.

For every 0 < " <

s0
2

, there exists a constant R

⇡

such that for any R > R

⇡

there are at most n  (55L

2)d

patches P

1

, . . . , P

n

satisfying for every 1 
i  n the following conditions:

i) P

i

= (X � w

i

) \B

R+s0(0), for some w

i

2 Rd

,
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ii) If X” belongs to ⌦
X

and X” \ B

R+s0(0) = P

i

, then there exists

v 2 B

✏

(0) such that

(⇡(X”)� v) \B

R

(0) = ⇡(X) \B

R

(0),

iii) The patch (X�w

i

)\B

R+s0�2✏

(0) is not a sub-patch of P

j

, for every

1  j  n, j 6= i.

Proof. Let 0 < " <

s0
2

, R

⇡

= max{s
0

, M

X

0
, R

✏

} and R > R

⇡

, where M

X

0 is
the constant given by Lemma 4 and R

✏

by Lemma 1. Let P

1

, . . . , P

n

be n

patches of X satisfying the conditions i), ii), iii).
Let 1  i  n. We have

diam(P
i

)  2(R + s

0

)  4R.

Linear repetitivity implies there exists v

i

2 B

4LR

(0) such that

(X � v

i

)
\

B

R+s0(0) = P

i

.

Then by ii), there is u

i

2 B

✏

(0) satisfying

Q = (⇡(X � v

i

) + u

i

) \B

R

(0) = (⇡(X)� v

i

+ u

i

) \B

R

(0),

where Q = ⇡(X)\B

R

(0) (observe that Q does not depend on i). This means
the set Q + v

i

� u

i

is a patch of ⇡(X). As {v
i

� u

i

, 1  i  n} is included
in B

4LR+✏

(0) and R > M

X

0 , Lemma 4 implies the number of elements in
{v

i

� u

i

, 1  i  n} is bounded by
vol(B

4LR+✏

(0))

vol
⇣
B R

11L
(0)

⌘  (55L

2)d

.

If n is greater than (55L

2)d, then there exist i 6= j such that v

i

�u

i

= v

j

�u

j

,
and ||v

i

�v

j

|| < 2✏. This implies the patch (X�v

i

)\B

R+s0�2✏

(0) is included
in the patch (X � v

j

) \ B

R+s0(0) = P

j

, which contradicts the condition
iii). ⇤
The next result was proven in [Du1] for subshifts. We use it with Proposition
7 to conclude the proof of the main theorem.

Proposition 6. Let X be a linearly repetitive Delone set with constant L.

If ⇡ : (⌦
X

, Rd) ! (⌦
X

0
, Rd) is a factor map such that X

0
is a non periodic

Delone set, then ⇡ is finite-to-one with constant (55L

2)d

.

Proof. Let X

0
0

2 ⌦
X

0 . Suppose there exist n > (55L

2)d elements X

1

, . . . ,X

n

of ⌦
X

, such that ⇡(X
i

) = X

0
0

, for each 1  i  n. Since they are all di↵erent,
there exists R

0

> 0 such that for any R � R

0

, the patches X

i

\ B

R

(0) are
pairwise distinct.
Let 0 < " <

s0
2

and R

⇡

be the constant given by Lemma 5. Lemma 1
ensures that for any Y 2 ⌦

X

satisfying Y \ B

R

(0) = X

i

\ B

R

(0), with
1  i  n and R > max{R

0

, R

✏

+ s

0

, R

⇡

+ s

0

}, there exists v 2 B

✏

(0)
such that (⇡(Y )� v) \B

R�s0(0) = X

0
0

\B

R�s0(0). This means the patches
X

1

\B

R

(0), · · · , X

n

\B

R

(0) satisfy conditions i) and ii) of Lemma 5. Then
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we deduce there exist di↵erent i(R) and j(R) in {1, . . . , n} such that the
patch X

i(R)

\B

R�2✏

(0) is a sub-patch of X

j(R)

\B

R

(0). In other words, there
exists v

R

2 B

2✏

(0) such that X

i(R)

\B

R�2✏

(0) = (X
j(R)

+ v

R

) \B

R�2✏

(0).
By the pigeonhole principle, there exist di↵erent i

0

and j

0

in {1, . . . , n}, and
an increasing sequence (R

p

)
p�0

, tending to 1 with p, such that i(R
p

) = i

0

and j(R
p

) = j

0

, for every p � 0. By compactness, we can also assume that
(v

Rp)p�0

converges to a vector v. Thus, for every p � 0 we get

X

i0 \B

Rp�2✏

(0) = (X
j0 + v

Rp) \B

Rp�2✏

(0),

which implies that X

i0 = X

j0 + v and X

0
0

= ⇡(X
i0) = ⇡(X

j0 + v) = X

0
0

+ v.
Since X

i0 6= X

j0 , the vector v is di↵erent from zero, but this contradicts the
non periodicity of X

0
0

. ⇤
The following proposition is a straightforward generalization of Lemma 21
in [Du1].

Proposition 7. Let (⌦, Rd) be a minimal Delone system and �

1

: (⌦, Rd)!
(⌦

1

, Rd), �

2

: (⌦, Rd)! (⌦
2

, Rd) be two factor maps. Suppose that (⌦
2

, Rd)
is non periodic and �

1

is finite-to-one. If there exist X,Y 2 ⌦ and v 2 Rd

such that �

1

(X) = �

1

(Y ) and �

2

(X) = �

2

(Y � v), then v = 0.

Proof. There exists a sequence (v
i

)
i2N ⇢ Rd such that lim

i!+1X� v

i

= Y .
By compactness, we can suppose that the sequence (Y � v

i

)
i2N converges

to a point Y

2

2 ⌦. By continuity, we have �

1

(Y ) = �

1

(Y
2

), and �

2

(Y ) =
�

2

(Y
2

) � v. By compactness, we can suppose that the sequence of points
(Y

2

� v

i

)
i2N ⇢ ⌦ converges to a point Y

3

. So we have �

1

(Y
2

) = �

1

(Y
3

)
and �

2

(Y
2

) = �

2

(Y
3

) � v. Hence we construct by induction a sequence
(Y

n

)
n2N ⇢ ⌦ such that �

1

(Y
n

) = �

1

(Y
n+1

) and �

2

(Y
n

) = �

2

(Y
n+1

)�v for all
n � 1. Since the map �

1

is finite-to-one, there exist i < j such that Y

i

= Y

j

.
Then, we have

�

2

(Y
i

) = �

2

(Y
i+1

)� v = �

2

(Y
i+2

)� 2v = . . . = �

2

(Y
j

)� (j � i)v
= �

2

(Y
i

)� (j � i)v.

Since (⌦
2

, Rd) is non periodic, we conclude v = 0. ⇤
Remark. Following the lines of the proof of Proposition 7, this result can
be generalized to Zd or Rd actions, more precisely: Let G be Rd or Zd.
Let (X,G) be a minimal dynamical system and �

1

: (X,G) ! (X
1

, G),
�

2

: (X,G)! (X
2

, G) be two factor maps. Suppose that (X
2

, G) is free and
�

1

is finite-to-one. If there exist x, y 2 X and g 2 G such that �

1

(x) = �

1

(y)
and �

2

(x) = �

2

(g.y), then g is the identity in G.

5. Number of factors of linearly repetitive Delone systems.

Let X be a Delone set having finite local complexity, and P = X \ B

R

(x)
be a patch of X. We define

X

P

= {v 2 Rd : P + v is a patch of X}.
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Observe that 0 always belongs to X

P

. It is straightforward to check that
X

P

is a Delone set when X is repetitive. Furthermore, X

P

is a Delone set
having finite local complexity because of X

P

� X

P

⇢ X � X. Then we
define the Voronöı cell of P associated to v 2 X

P

as the Voronöı cell of
v + x 2 X

P

+ x. That is,

V

P,v

= {y 2 Rd : ky � (x + v)k  ky � (x + u)k,8u 2 X

P

}.
Notice the Voronöı cell of P associated to v 2 X

P

is the Voronöı cell of
v 2 X

P

translated by the vector x.

Remark 8. It follows from the definition that a (r, R)-Delone set X satisfies
the following: for any x 2 X, the diameter of the Voronöı cell V

x

is smaller
or equal to 2R and B

r
2
(x) is contained in V

x

. If X is linearly recurrent
with constant L, Lemma 4 implies for every su�ciently large R and every
patch P = X \ B

R

(x) of X, the collection X

P

is a ( R

11L

, 2LR)-Delone set.
Therefore, in this instance we have diam(V

P,v

)  4LR and B R
11L

(x + v) ✓
V

P,v

, for every v 2 X

P

.

In the next lemma, we bound the number of ways we can extend a given
patch P to a bigger one. More precisely, this gives an upper bound of the
number (up to translation) of R

0-patches X \B

R

0(x), such that X \B

R

(x)
is a translated of P .

Lemma 9. Let X be a linearly repetitive Delone set with constant L, and

consider 0 < R

1

< R

2

, with R

1

su�ciently large. Then there are at most

n  (44L

2)d

⇣
R2
R1

⌘
d

patches P

1

, · · · , P

n

of X, up to translation, satisfying

for every 1  i  n the following two conditions:

i) there exists v

i

2 Rd

such that P

i

= X \B

R2(vi

).
ii) (X � v

i

) \B

R1(0) = (X � v

j

) \B

R1(0), for every 1  j  n.

Proof. Applying Lemma 4 to the identity factor map on (⌦
X

, Rd), we deduce
there exists M

X

> 0, such that for every R � M

X

and x 2 Rd, the distance
between two di↵erent occurrences of P = X \ B

R

(x) is greater or equal to
R/(11L).
Let M

X

 R

1

< R

2

and n 2 N. Suppose P

1

, · · · , P

n

are patches of X

satisfying conditions i) and ii), and such that for every 1  i  n,
iii) P

i

is not a translated of P

j

, for every j 2 {1, · · · , n} \ {i}.
Condition i) and linear repetitivity of X imply for every 1  i  n, there
exists w

i

2 Rd such that P

i

+ w

i

is a sub-patch of X \ B

2LR2(0). From
condition ii) it follows that for every 1  i  n, the point v

i

+ w

i

is an
occurrence of the patch X \ B

R1(v1

) in the ball B

2LR2(0). Finally, by the
choice of R

1

, conditions ii), iii) and Lemma 4, for every i and j in {1, · · · , n}
such that i 6= j, we get kv

i

+ w

i

� (v
j

+ w

j

)k � R1
11L

, which implies

n  vol(B
2LR2(0))

vol(B R1
22L

(0))
= (44L

2)d

✓
R

2

R

1

◆
d

,
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and achieves the proof. ⇤

The following lemma is certainly well-known, but we did not find any refer-
ence. This shows that a Voronoi cell of a point x in a (r, R)-Delone set X is
completely determined by the points in X \B

4R

(x).

Lemma 10. Let X be a (r, R)-Delone set. Then for every x 2 X one has

V

x

= {y 2 Rd : kx� yk  kx0 � yk, for every x

0 2 X \B

4R

(x)}.

Proof. Let C

x

= {y 2 Rd : kx� yk  kx0 � yk, for every x

0 2 X \B

4R

(x)}.
By definition of Voronöı cell, the inclusion V

x

✓ C

x

is direct.
Observe the set C

x

is convex because is obtained as intersection of convex
sets. Now, suppose there exists y 2 C

x

\ V

x

. Then there exist x

0 2 X,
satisfying V

x

\V

x

0 6= ;, and z 2 ([x, y]\V

x

0) \V

x

, where [x, y] is the segment
with extreme points x and y. Since kx� x

0k  4R and kz � x

0k < kz � xk,
definition of C

x

implies z /2 C

x

, which contradicts the convexity of C

x

. ⇤

Lemma 11. Let X be a non periodic linearly repetitive Delone set with con-

stant L. There exists a positive constant c(L) such that for every su�ciently

large R and every patch P = X \B

R

(x), the collection {X \ V

P,v

: v 2 X

P

}
contains at most c(L) elements up to translation.

Proof. Let R be a big enough positive number, in order to apply Lemma 9
to R

1

= R and R

2

= 8LR.
Let x 2 Rd, P = X \B

R

(x) and v 2 X

P

. Since X

P

+ x is a Delone set with
constant of uniform density equal to 2LR (see Remark 8), Lemma 10 implies
V

P,v

is completely determined by the patch X \B

8RL

(v + x). Furthermore,
the Voronöı cell V

P,v

is contained in the ball B

4RL

(v + x) (see Remark 8).
Then it follows there are at most as many Voronöı cells of P and patches of
the kind X \ V

P,v

, up to translation, as patches Q satisfying the following
two conditions: i) there exists w 2 Rd such that Q = X \ B

8RL

(w) and ii)
w is an occurrence of a translated of P . These two conditions and Lemma
9 imply there are at most

c(L)  (44L

2)d

✓
8LR

R

◆
d

= (352L

3)d

patches of the kind X \ V

P,v

up to translation. ⇤

We have already defined the notion of return vector of a patch, now let us
define the notion of return vector of a Voronöı cell of a patch. For a patch
P = X \B

R

(x) of X and v 2 X

P

, we say that w 2 Rd is a return vector of

V

P,v

\X if (X � w) \ V

P,v

= X \ V

P,v

. We set

P

n,w,v

the patch (X � w � x� v) \B

L

n
R

(0).

Notice that P

n,w,v

+ v + w + x is a patch of X. When there is no confusion
about n and v, we write P

w

instead of P

n,w,v

.
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Lemma 12. Let n 2 N and X be a non periodic linearly repetitive Delone

set with constant L. For every su�ciently large R > 0 and every R-patch

P , the collection {P
w

: w is a return vector of V

P,v

\X} has at most c(n, L)
elements, for every v 2 X

P

.

Proof. Let R

1

= R and R

2

= L

n

R be su�ciently large positive numbers in
order to apply Lemma 9. Let P = X \B

R

(x) be a patch of X and v 2 X

P

.
Since X

P

+ x is a Delone set with constant of uniform discreteness equal to
R

11L

, the Voronöı cell V

P,v

contains the ball B R
22

(v+x). This implies for every
pair of return vectors u and w of V

P,v

it holds that P

w

\B R
22

(0) = P

u

\B R
22

(0).
Thus, from Lemma 9 it follows there are at most

c(n, L)  (44L

2)d

 
L

n

R

R

22L

!
d

= (968L

n+3)d

patches of the kind P

w

. ⇤
Let n 2 N. We call M(n, L) the number of coverings of a set with c(L)c(n, L)
elements, where c(L) and c(n, L) are the constants of Lemma 11 and Lemma
12 respectively.

Theorem 13. Let X be a linearly repetitive Delone set. There are finitely

many Delone system factors of (⌦
X

, Rd) up to conjugacy. Moreover, the

number of factors only depends on the linearly recurrence constant of X.

Proof. Let X be a non periodic linearly repetitive Delone set with constant
L > 1. Let n 2 N be such that

(5.1) L

n � 1� 12L� 176L

2

> 1,

and let R

1

> 1 be a constant such that for every R � R

1

, Lemma 11 and
Lemma 12 are applicable to R-patches of X.
For every 1  i  M(n, L) + 1, let X

i

be a non periodic Delone set such
that there exists a topological factor map ⇡

i

: ⌦
X

! ⌦
Xi , and let X

0

= X.
Let M

Xi be the constant of Lemma 4 associated to X

i

.
Fix 0 < " < 1. For every 1  i  M(n, L) + 1, consider R

(i)

"

and s

(i)

0

the
constants of Lemma 1 associated to ⇡

i

. We define

R

"

= max
i

{R(i)

"

}, s

0

= max
i

{s(i)

0

} and M = max
i

{M
Xi}.

Observe in an open ball of radius r/22L, there is at most one return vector
of a r-patch of X

i

, with r �M , for every 1  i M(n, L) + 1.
We take

R > max{R
"

, s

0

, M + ", R

1

, 45L},
Consider the patch P = B

R

(0) \ X, and v

1

, · · · , v

N

2 X

P

such that for
every v 2 X

P

, there exist 1  i  N and u 2 Rd satisfying V

P,v

\ X =
(V

P,vi \ X) + u. Roughly speaking, every set of the kind V

P,v

\ X is a
translated of some set V

P,vi\X. Since R > R

1

, Lemma 11 ensures N  c(L).
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For every 1  j  N , let w

j,1

, · · · , w

j,mj be return vectors of V

P,vj \ X,
chosen in order that for every return vector w of V

P,vj \ X, there exists
1  i  m

j

such that P

w

is equal to P

wj,i . Since R > R

1

, Lemma 12 implies
that m

j

 c(n, L), for every 1  j  N . Therefore, the collection

F = {P
wj,l : 1  l  m

j

, 1  j  N}

contains at most c(L)c(n, L) elements.
Let R

0 be the constant given by

R

0 = (Ln � 1)R� "� 4LR.

The choice of n ensures that R

0
> 0.

For every 1  i  M(n, L) + 1, we define the following relation on F :

P

wj,lRi

P

wk,m if and only if for every X

0
, X

00 2 ⌦
X

such that X

0\B

L

n
R

(0) =
P

wj,l and X

00 \ B

L

n
R

(0) = P

wk,m , there exist v 2 B

2"

(0) and w 2 B

4LR

(0)
such that ⇡

i

(X 0) \B

R

0(0) = (⇡
i

(X 00) + v + w) \B

R

0(0).

Since L

n

R � s

0

� (Ln � 1)R � R > R

"

, from Lemma 1 it follows this
relation is reflexive, so non empty. Since the cardinal of F is bounded by
c(L)c(n, L), there are at most M(n, L) di↵erent relations of this kind. So,
there exist 1  i < j < M(n, L) + 1 such that R

i

= R
j

.
In the sequel, we will prove that (⌦

Xi , Rd) and (⌦
Xj , Rd) are conjugate. For

that, it is su�cient to show that if Y,Z 2 ⌦
X

are such that ⇡

i

(Y ) = ⇡

i

(Z)
then ⇡

j

(Y ) = ⇡

j

(Z).
Let Y and Z be two Delone sets in ⌦

X

such that ⇡

i

(Y ) = ⇡

i

(Z). Without
loss of generality, we can suppose that 0 is an occurrence of P in Y and in
Z � u

0

, where u

0

is some point in B

4LR

(0). The patches of Y and Z are
translated of the patches of X. This implies there exist 1  q

0

, r

0

 N such
that

Y \B

L

n
R

(0) = P

wq0,l0
and (Z � u

0

) \B

L

n
R

(0) = P

wr0,k0
,

for some 1  l

0

 m

q0 and 1  k

0

 m

r0

Claim 1: P

wq0,l0
R

i

P

wr0,k0
.

Proof of Claim 1: Let X

0 and X

00 be two Delone sets in ⌦
X

such that
X

0 \B

L

n
R

(0) = P

wq0,l0
and X

00 \B

L

n
R

(0) = P

wr0,l0
. Since R � s

0

, R � R

"

and

X

0 \B

L

n
R

(0) = Y \B

L

n
R

(0), X

00 \B

L

n
R

(0) = (Z � u

0

) \B

L

n
R

(0),

By the choice of n and R, Lemma 1 implies there exits z

1

and z

2

in B

"

(0)
such that

(⇡
i

(X 0) + z

1

) \B

(L

n�1)R

(0) = ⇡

i

(Y ) \B

(L

n�1)R

(0), and

(⇡
i

(X 00) + z

2

) \B

(L

n�1)R

(0) = ⇡

i

(Z � u

0

) \B

(L

n�1)R

(0).
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Then we get

(⇡
i

(X 00) + z

2

+ u

0

) \B

(L

n�1)R�4LR

(0)
=⇡

i

(Z) \B

(L

n�1)R�4LR

(0)
=⇡

i

(Y ) \B

(L

n�1)R�4LR

(0)

=(⇡
i

(X 0) + z

1

) \B

(L

n�1)R�4LR

(0).

Therefore

(⇡
i

(X 00)+ z

2

+u

0

� z

1

)\B

(L

n�1)R�4LR�"

(0) = ⇡

i

(X 0)\B

(L

n�1)R�4LR�"

(0),

which implies that P

wq0,l0
R

i

P

wr0,k0
.

Since R
i

= R
j

, from Claim 1 we get P

wq0,l0
R

j

P

wr0,k0
.

Let s be any other occurrence of P in Y . Repeating the same argument for
Y + s and Z + s, we deduce there exist u

s

2 B

4LR

(0) and 1  q

s

, r

s

 N

such that

(Y + s) \B

L

n
R

(0) = P

wqs,ls
and (Z � u

s

) \B

L

n
R

(0) = P

wrs,ks
,

for some 1  l

s

 m

qs and 1  k

s

 m

rs . Then from Claim 1 we get
P

wqs,ls
R

j

P

wrs,ks
. This implies there exist t

s

2 B

2"

(0) and w

s

2 B

4LR

(0)
such that

⇡

j

(Y + s) \B

R

0(0) = (⇡
j

(Z + s� u

s

) + t

s

+ w

s

) \B

R

0(0).

Claim 2: The vector w

s

� u

s

+ t

s

does not depend on s, i.e, there exists
y 2 Rd such that w

s

� u

s

+ t

s

= y for every occurrence s of P in Y .

Proof of Claim 2: Let s

1

and s

2

be two occurrences of P in Y such that the
Voronöı cells of s

1

and s

2

, with respect to set of occurrences of P in Y , have
common points in their borders. Since the diameter of these Voronöı cells
is smaller or equal to 4RL (see remark 8), we get ks

1

� s

2

k  8LR. Then
Then

(⇡
j

(Z) + s

1

+ (s
2

� s

1

)� u

s1 + t

s1 + w

s1) \B

R

0�8LR

(0)
= (⇡

j

(Y ) + s

1

+ (s
2

� s

1

)) \B

R

0�8LR

(0)
= (⇡

j

(Z) + s

2

� u

s2 + t

s2 + w

s2) \B

R

0�8LR

(0).

This implies (�u

s1 + t

s1 + w

s1)� (�u

s2 + t

s2 + w

s2) is a return vector of a
(R0 � 8LR)-patch of ⇡

j

(Z) + s

2

. Since

R

0 � 8LR = R(Ln � 1� 12L)� " � R� " > M,

Lemma 4 implies the non zero vectors of the (R0�8LR)-patches of ⇡

j

(Z)+s

2

have norm greater or equal to (R0 � 8LR)/11L. Thus, due to

k � u

s1 + t

s1 + w

s1 � (�u

s2 + t

s2 + w

s2)k  16LR + 4",
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and

11(16LR + 4") = 176L

2

R + 44L"

< (Ln � 1� 12L� 1)R + 44L"

= R

0 � 8LR + "�R + 44L"

< R

0 � 8LR + L�R + 44L < R

0 � 8LR,

we deduce �u

s1 + t

s1 + w

s1 = �u

s2 + t

s2 + w

s2 , which shows Claim 2.

¿From Claim 2 we get there exists y 2 Rd such that for every occurrence s

of P in Y ,

⇡

j

(Y + s) \B

R

0(0) = (⇡
j

(Z + s) + y) \B

R

0(0), and then
⇡

j

(Y ) \B

R

0(s) = (⇡
j

(Z) + y) \B

R

0(s).

¿From Remark 8, the diameter of the Voronöı cells of P is less than 4LR,
which is less than R

0. Hence,

⇡

j

(Y ) = ⇡

j

(Z) + y.

We conclude with Lemma 6 and Proposition 7. ⇤
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EIGENVALUES AND STRONG ORBIT EQUIVALENCE.

MARÍA ISABEL CORTEZ1,3, FABIEN DURAND2, AND SAMUEL PETITE2

Abstract. We give conditions on the subgroups of the circle to be realized as the subgroups
of eigenvalues of minimal Cantor systems belonging to a determined strong orbit equivalence
class. Actually, the additive group of continuous eigenvalues E(X,T ) of the minimal Cantor
system (X,T ) is a subgroup of the intersection I(X,T ) of all the images of the dimension
group by its traces. We show, whenever the infinitesimal subgroup of the dimension group
associated to (X,T ) is trivial, the quotient group I(X,T )/E(X,T ) is torsion free. We give
examples with non trivial infinitesimal subgroups where this property fails. We also provide
some realization results.

1. Introduction

Two dynamical systems are orbit equivalent if there is a bijection between their phase spaces
that preserves their structures (measure preserving, topological, etc.) and induces a one-to-
one correspondence between their orbits. The notion of orbit equivalence arises first in the
context of probability measure preserving group actions (measurable orbit equivalence), as
a consequence of the study of von Neumann algebras [20, 29]. One of the most remarkable
results in this theory establishes that there is only one orbit equivalence class among the free
ergodic probability measure preserving actions of amenable groups [8, 23].
Motivated by the measurable orbit equivalence results, in particular, the characterization of
the orbit equivalence classes in terms of von Neumann algebras [17, 18], Giordano, Putnam
and Skau obtain in [12] one of the most important results in the context of the orbit equiva-
lence from a topological point of view: the orbit equivalence classes of the minimal Z-actions
on the Cantor set are characterized in terms of the K0 group of the associated C⇤-algebra
(see [26, 32] for an interplay between C⇤-algebras and dynamics). As a consequence, they
obtain that there are as many orbit equivalent classes as reduced simple dimension groups
with distinguished order unit. Thus, unlike the measurable setting, in the topological context
it is natural to ask for the dynamical properties which are preserved under orbit (or strong
orbit) equivalence. For instance, in [15] it is shown that the set of invariant probability
measures of a given minimal Cantor system is a�nely isomorphic to the set of traces of the
associated dimension group. Thus the set of invariant probability measures is preserved, up
to a�ne homeomorphism, under strong orbit equivalence. On the contrary, within a strong
orbit equivalence class it is possible to find a minimal Cantor systems having any possible
entropy (see [2], [22] and [30] for the general case).
In this paper, we study the relation between (strong) orbit equivalence and the spectral
properties of a system. We know from [22] that strong orbit equivalent minimal Cantor
systems share the same subgroup of rational continuous eigenvalues. Thus, if the subgroup
of rational continuous eigenvalues of a minimal Cantor system is not cyclic, then within its
strong orbit equivalence class there is no mixing minimal Cantor systems. It is no longer true
for the orbit equivalence as shown again in [22]. Indeed, Ormes proved (Theorem 8.2 in [22])

M. I. Cortez was partially funded by Anillo Research Project 1103 DySyRF and Fondecyt Research Project
1140213. She thanks the hospitality of the LAMFA UMR 7352 CNRS-UPJV and the ”poste rouge” CNRS
program.
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that in a prescribed orbit equivalence class it is possible to realize any countable subgroup of
the circle as a group of measurable eigenvalues.
In this work we investigate the case of non-rational eigenvalues and whether the dimension
groups induce restrictions (other than those due to the rational eigenvalues) on the groups
of eigenvalues that can be realized within this given strong orbit equivalence class.
It happens that a first restriction has been shown in [16] : the additive group of eigenval-
ues, E(X,T ), of a minimal Cantor system (X,T ), is a subgroup of the intersection of all
the images of the dimension group by its traces. Dynamically speaking, it is a subgroup of
I(X,T ) = \

µ2M(X,T )

�R
fdµ|f 2 C(X,Z)

 
, where M(X,T ) is the set of T -invariant prob-

ability measures of (X,T ) and C(X,Z) is the set of continuous functions from X to Z. An
other proof of this observation can be found in [5] but it was not pointed out.
In this paper we prove the following strong restriction.

Theorem 1. Suppose that (X,T ) is a minimal Cantor system such that the infinitesimal sub-
group of the dimension group K0(X,T ) is trivial. Then the quotient group I(X,T )/E(X,T )
is torsion free.

To illustrate this result, take K0(X,T ) = Z + ↵Z = I(X,T ), with ↵ irrational. This is the
case for a Sturmian subshift. Then within the strong orbit equivalence class of (X,T ) the only
groups of continuous eigenvalues that can be realized are Z, which will provide topologically
weakly mixing minimal Cantor systems, and Z+ ↵Z. Moreover, both can be realized, in the
first case using results in [22] and in the second case it is realized by a Sturmian subshift.
Relations between additive eigenvalues and topological invariants can be found in [28, 27, 24,
11], but they do not apply to Cantor systems.

In Section 2 we recall the concept of Kakutani-Rohlin partitions that will be necessary through
this paper. The next section is concerns the notions and definitions we will need. In particular,
we recall the algebraic notions and dynamical interpretations of dimension group, trace,
infinitesimal and rational subgroup. Section 3 is devoted to the proof of our main result:
Theorem 1. To this aim we use a precise description of entrance times with respect to
some well-chosen Kakutani-Rohlin partitions. We follow the approach proposed in [3, 4] to
tackle eigenvalue problems. Apart from Theorem 1, there are three results that could be of
independent interest. We obtain a new necessary condition to be an eigenvalue (Proposition
9). We give an elementary proof of the fact that E(X,T ) is included in I(X,T ) (Proposition
11). For every ↵ in I(X,T ), we show there exists a continuous function f : X ! Z such that
↵ =

R
fdµ for all T -invariant measure µ (Lemma 12).

In the last section we provide realization examples around Theorem 1. In particular we give
an example where the automorphism group (i.e. the group of self homeomorphism of the
space commuting with the map T ) is not invariant under orbit equivalence.

2. Definitions and background

2.1. Dynamical systems. We introduce here the notations and recall some classical facts.
We refer to [25] for a more detailed expository. By a topological dynamical system, we mean
a couple (X,T ) where X is a compact metric space and T : X ! X is a homeomorphism.
We say that it is a Cantor system if X is a Cantor space; that is, X has a countable basis of
its topology which consists of closed and open sets (clopen sets) and does not have isolated
points. It is minimal if it does not contain any non empty proper closed T -invariant subset.
A dynamical system (Y, S) is called a factor of (X,T ) if there is a continuous and onto map
� : X ! Y , called a factor map, such that � � T = S � �. If � is one-to-one we say that � is
a conjugacy and that (X,T ) and (Y, S) are conjugate. If (X,T ) is minimal and � : X ! Y
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is a factor map for which there exists x 2 X such that ]��1(�(x)) = 1, we say that � is an
almost 1-1 factor map and (X,T ) is an almost 1-1 extension of (Y, S).
We denote by M(X,T ) the set of all T -invariant probability measure µ, defined on the
Borel �-algebra B

X

of X. For such a measure µ, the quadruple (X,B, µ
X

, T ) is called a
measurable dynamical system. This system is called ergodic if any T -invariant measurable
set has measure 0 or 1. Two measurable dynamical systems (X,B, µ, T ) and (Y,B0, ⌫, S)
are measure theoretically conjugate if we can find invariant subsets X0 ⇢ X, Y0 ⇢ Y with
µ(X0) = ⌫(Y0) = 1 and a bimeasurable bijective map  : X0 ! Y0 such that S �  =  � T
and µ( �1B) = ⌫(B) for any B 2 B0.
A complex number � is a continuous eigenvalue (resp. a measurable eigenvalue) of (X,T )
if there exists a continuous (resp. integrable with respect to an invariant measure) function
f : X ! C, f 6= 0, such that f �T = �f ; f is called a continuous eigenfunction, associated to
� . Of course any continuous eigenvalue is a measurable one for any fixed measure. Hence,
every eigenvalue is of modulus 1, i.e., belongs to the circle S1 = {� 2 C; |�| = 1}, and every
eigenfunction has a constant modulus. Notice that any continuous eigenfunction provides a
factor map from (X,T ) to a rotation.
In this work we are mainly concerned with continuous eigenvalues � = exp(2i⇡↵) of minimal
Cantor systems. Such ↵ is call an additive continuous eigenvalue of (X,T ), and the set of
additive continuous eigenvalue, denoted E(X,T ), is an additive subgroup of R called the
group of additive continous eigenvalues. It is well-known that E(X,T ) is countable and
contains Z.
We say two dynamical systems (X,T ) and (Y, S) are orbit equivalent (OE) whenever there
exists a homeomorphism � : X ! Y sending orbits to orbits: for all x 2 X,

� ({Tnx | n 2 Z}) = {Sn�(x) | n 2 Z}.

This induces the existence of maps ↵ : X ! Z and � : X ! Z satisfying: for all x 2 X,

� � T (x) = S↵(x) � �(x) and � � T �(x)(x) = S � �(x).

When ↵ and � have both at most one point of discontinuity, we say (X,T ) and (Y, S) are
strongly orbit equivalent (SOE). We recall below the seminal result in [12] that characterized
these equivalence in terms of dimension groups.

Theorem 2. [12] Let (X,T ) and (Y, S) be two minimal Cantor dynamical systems. The
following are equivalent:

(1) (X,T ) and (Y, S) are strong orbit equivalent.
(2) K0(X,T ) and K0(Y, S) are isomorphic as dimension groups with order units.

The following are also equivalent:

(1) (X,T ) and (Y, S) are orbit equivalent.

(2) K0(X,T )/Inf(K0(X,T )) and K(Y, S)/Inf(K0(Y, S)) are isomorphic as dimension
groups with order units.

2.2. Partitions and towers. Sequences of partitions associated to minimal Cantor systems
were used in [15] to build representations of such systems as adic transformations on ordered
Bratteli diagrams. Here we do not introduce the whole formalism of Bratteli diagrams since
we will only use the language describing the tower structure, even if both languages are very
close. We recall some definitions and fix some notations.
For a minimal Cantor system (X,T ), a clopen Kakutani-Rohlin partition (CKR partition) is
a partition P of X given by

(2.1) P = {T jB(k); 1  k  C, 0  j < h(k)},
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where C, h(1), . . . , h(k) are positive integers, and B(1), . . . , B(C) are clopen subsets of X
such that

C[

k=1

T h(k)B(k) =
C[

k=1

B(k).

The set B =
S

1kC

B(k) is called the base of P. Let

(2.2)
�
P
n

= {T jB
n

(k); 1  k  C
n

, 0  j < h
n

(k)}
 
n2N

be a sequence of CKR partitions. For every n 2 N, we denote B
n

the base of P
n

. To be
coherent with the notations of [3], we assume that P0 is the trivial partition, that is, B0 = X,
C0 = 1 and h0(1) = 1, and for the partition P1, h1(k) = 1 for any integer 1  k  C1.
We say that the sequence {P

n

}
n2N is nested if it satisfies: for any integer n 2 N

(KR1) B
n+1 ✓ B

n

;

(KR2) P
n+1 ⌫ P

n

; i.e., for any A 2 P
n+1 there exists an atom A

0 2 P
n

such that A ✓ A
0
;

(KR3)
T

n2NB
n

consists of a unique point;

(KR4) the sequence of partitions spans the topology of X.

In [15] it is proven that given a minimal Cantor system (X,T ), there exists a nested sequence
of CKR partitions fulfilling (KR1)–(KR4) with the following additional technical conditions:
for any integer n � 0,

(KR5) for any 1  k  C
n

, 1  l  C
n+1, there exists an integer 0  j < h

n+1(l) such that
T jB

n+1(l) ✓ B
n

(k);

(KR6) B
n+1 ✓ B

n

(1).

We associate to the sequence {P
n

}
n2N, the sequence of matrices {M

n

}
n�1, where M

n

=
(m

n

(l, k))1lCn,1kCn�1 is given by

m
n

(l, k) = #{0  j < h
n

(l); T jB
n

(l) ✓ B
n�1(k)}.

Notice that (KR5) is equivalent to: for any n � 1, the matrix M
n

has positive entries.
For n � 0, we set H

n

= (h
n

(l); 1  l  C
n

)T . Since the sequence of partitions is nested, we
have H

n

= M
n

H
n�1 for any n � 1. Notice also that, by the convention,

M1 = H1 = (1, . . . , 1)T .(2.3)

For n > m � 0, we define

P
n,m

= M
n

M
n�1 . . .Mm+1, P1 = M1, and P

n+1 = P
n+1,1.(2.4)

Clearly, we have the relations

P
n,m

(l, k) = #
�
0  j < h

n

(l); T jB
n

(l) ✓ B
m

(k)
 
,(2.5)

for 1  l  C
n

, 1  k  C
m

, and

P
n+1,mH

m

= H
n+1 = P

n+1H1.(2.6)

Along the paper, we will strongly use a technique that we call telescoping: That is, start-
ing from a sequence of CKR partitions {P

n

}
n2N fulfilling (KR1)–(KR6), we will consider

an infinite subsequence of partitions satisfying an additional property. Actually, it is plain
to check that any such subsequence of CKR partition satisfies also (KR1)–(KR6). More-
over, the sequences of the associated matrices of the type {M

n

}
n2N and {P

n,m

}
n>m�0 are

subsequences of the previous ones.

2.3. Dimension groups, traces, infinitesimals and rational subgroups.
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2.3.1. Dimension groups. We recall here some basic definitions of the algebraic notion of
dimension groups arising from the C⇤-alegbras. Relations with dynamical systems will be
explain in the next subsection. Most of the notions arises from [10].
By an ordered group we shall mean a countable abelian group G together with a subset G+,
called the positive cone, such that G+ � G+ = G, G+ \ (�G+) = {0} and G+ + G+ ⇢ G+.
We shall write a  b if b � a 2 G+. We say that an ordered group is unperforated if a 2 G
and na 2 G+ for some a 2 G and n 2 N implies that a 2 G+. Observe that an unperforated
group is torsion free. We say (G,G+) is acyclic whenever G is not isomophic to Z. By an
order unit for (G,G+) we mean an element u 2 G+ such that for every a 2 G, a  nu for
some n 2 N.

Definition 1. A dimension group (G,G+, u) with distinguished order unit u is an un-
perforated ordered group (G,G+) satisfying the Riesz interpolation property, i.e., given
a1, a2, b1, b2 2 G with a

i

 b
j

(i, j = 1, 2), there exists c 2 G with a
i

 c  b
j

, (i, j = 1, 2).

We say that two dimension groups (G1, G
+
1 , u1) and (G2, G

+
2 , u2) are isomorphic whenever

there exists an order isomorphism � : G1 ! G2, i.e., � is a group isomorphism such that
�(G+

1 ) = G+
2 , and �(u1) = u2. An order ideal is a subgroup J such that J = J+�J+ (where

J+ = J \ G+) and 0  a  b 2 J implies a 2 J . A dimension group (G,G+, u) is simple if
it contains no non-trivial order ideals. It is easily seen that (G,G+) is a simple dimension
group if and only if every a 2 G+\{0} is an order unit. Moreover, an unperforated simple
ordered group is acyclic if and only if it satisfies the Riesz interpolation property (see [9]).
Thus, the dimension groups are all acyclic.

2.3.2. Traces. Let (G,G+, u) be a simple dimension group with distinguished order unit u.
We say that a homomorphism p : G ! R is a trace (also called a state) if p is non negative
(i.e., p(G+) � 0) and p(u) = 1. We denote the collection of all traces on (G,G+, u) by
S(G,G+, u). Now S(G,G+, u) is a convex compact subset of the locally convex space RG

endowed with the product topology. In fact, one can show that S(G,G+, u) is a Choquet
simplex. It is a fact (see [15]) that S(G,G+, u) determines the order on G. Actually,

G+ = {a 2 G; p(a) > 0, 8p 2 S(G,G+, u)} [ {0}.
As we will see later, the following group is fundamental in the study of continuous eigenvalues
of minimal Cantor systems.

Definition 2. Let (G,G+, u) be an ordered group with unit. We call image subgroup of
(G,G+, u) the subgroup of R given by

I(G,G+, u) =
\

⌧2S(G,G

+
,u)

⌧(G).

2.3.3. Infinitesimals. Let (G,G+) be a simple dimension group and let u 2 G+\{0}. We say
that an element a 2 G is infinitesimal if �✏u  a  ✏u for all 0 < ✏ 2 Q+ (for ✏ = p

q

, p, q 2 N,
then a  ✏u means that qa  pu).
It is easy to see that the definition does not depend upon the particular order unit u. An
equivalent definition is: a 2 G is infinitesimal if p(a) = 0 for all p 2 S(G,G+, u). The
collection of infinitesimal elements of G forms a subgroup, the infinitesimal subgroup of G,
which we denote by Inf(G).
Observe that the quotient group G/Inf(G) is also a simple dimension group for the induced
order, and the infinitesimal subgroup of G/Inf(G) is trivial (see [15]). Furthermore, an order
unit for G maps to an order unit for G/Inf(G). Moreover the traces space of G and G/Inf(G)
are isomorphic.
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When S(G,G+, u) consists of a unique trace, notice thatG/Inf(G) is isomorphic to (I(G,G+, u), I(G,G+, u)\
R+, 1), as ordered groups with unit.

2.3.4. Rational subgroups. By a rational group H we shall mean a subgroup of Q that contains
Z. We say that H is a cyclic rational group if H is isomorphic to Z. Clearly (H,H \Q+, 1)
is a simple dimension group with distinguished order unit 1. For a simple dimension group
with order unit (G,G+, u), we define the rational subgroup of G, denoted Q(G,G+, u) (or
Q(G, u) for short), by

Q(G, u) = {m/n; n 2 N⇤,m 2 Z, 9g 2 G, ng = mu}.

The notion of rational subgroup of a dimension group with distinguished order unit depends
heavily upon the choice of the order unit.
Notice that for n,m 2 Z and g 2 G such that ng = mu, one gets, for any trace ⌧ , ⌧(g) = m/n.
Consequently, Q(G, u) is a subgroup of I(G,G+, u).

2.4. Dynamical interpretation of dimension groups, traces, infinitesimals and ra-
tional subgroups. We consider here (X,T ) a minimal Cantor dynamical system.

2.4.1. “Dynamical” dimension groups. We denote by C(X,Z) the set of continuous maps
from X to Z. Consider the map � : C(X,Z) ! C(X,Z) defined by �f = f � T � f for all
f 2 C(X,Z). The images of � are called coboundaries. Let H(X,T ) be the quotient group
C(X,Z)/�C(X,Z). The class of a function f 2 C(X, ,Z) in this quotient is denoted by [f ].
We call order unit the class [1] of the constant function equal to 1.
The positive cone, H+(X,T,Z), is the set of classes of non-negative functions C(X,N). Fi-
nally, the triple

K0(X,T ) = (H(X,T,Z), H+(X,T,Z), [1]).
is an ordered group with order unit. It is moreover a dimension group and, which is less
immediate, a converse also holds.

Theorem 3. [15] If (X,T ) is a minimal Cantor system, then K0(X,T ) is a simple dimension
group. Furthermore, if (G,G+, u) is a simple dimension group then there is a minimal Cantor
system (X,T ) such that K0(X,T ) and (G,G+, u) are isomorphic.

2.4.2. Traces are invariant measures. Given any invariant probability measure µ of the sys-
tem (X,T ), we associate a trace ⌧

µ

on K0(X,T ) defined by ⌧
µ

([f ]) :=
R
fdµ for any

f 2 C(X,Z). It is shown in [15], that the map µ 7! ⌧
µ

is an a�ne isomorphism from
the space of T -invariant probability measures M(X,T ) to the traces space S(K0(X,T )).
We denote by I(X,T ) the image subgroup I(K0(X,T )). Rephrasing the definition of the
image subgroup in dynamical terms, it is clear that

I(X,T ) =
\

µ2M(X,T )

⇢Z
fdµ; f 2 C(X,Z)

�
.

2.4.3. Infinitesimals are functions with zero integral for all invariant measures. We have
seen that Inf(K0(X,T )) = {g 2 K0(X,T ); ⌧(g) = 0 for all traces ⌧}. Thus, due to the
identification described before, we also have

Inf(K0(X,T )) =

⇢
[f ] 2 K0(X,T );

Z
fdµ = 0 for all µ 2 M(X,T )

�
.

Observe that if (X,T ) is uniquely ergodic, then K0(X,T )/Inf(K0(X,T )) is isomorphic to
(I(X,T ), I(X,T ) \ R+, 1), as ordered groups with unit.
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2.4.4. The rational subgroup is the group of rational continuous eigenvalues. For any m/n 2
Q(K0(X,T )), there exists a class [f ] such that n[f ] = m[1

X

] and thus
R
fdµ = m/n for any

T -invariant measure µ. Thus, we have the inclusion

Q(K0(X,T )) ⇢ I(X,T ) \Q.

The following theorem gives a clear dynamical interpretation of such elements.

Theorem 4. [12, 22] Let (X,T ) be a minimal Cantor system and let µ be any T -invariant
measure. Then, a rational p

q

is an additive continuous eigenvalue of (X,T ), i.e., belongs to

E(X,T ), if and only if p

q

=
R
fdµ for some f 2 C(X,Z). Or, equivalently,

E(X,T ) \Q = Q(K0(X,T )).

As observe in [12] (see also [22]), this implies the following result.

Corollary 5. Let (X,T ) and (Y, S) be two strong orbit equivalent minimal Cantor systems
(i.e., K0(X,T ) is isomorphic to K0(Y, S)). Then, (X,T ) and (Y, S) share the same rational
continuous eigenvalues, that is

E(X,T ) \Q = E(Y, S) \Q.

3. Group of eigenvalues and image of traces

In this section (X,T ) stands for a given minimal Cantor system. We fix a sequence {P
n

}
n

of CKR partitions of (X,T ) satisfying (KR1)-(KR6) and (2.3). We recall such a partition
always exists. Once it is fixed, we freely use the notations of Section 2.2.

3.1. Some necessary conditions to be an eigenvalue. The following results are funda-
mental in our study of eigenvalues of minimal Cantor systems. We set also some notations.

Lemma 6. [4, Theorem 3, Theorem 5] Let (X,T ) be a minimal Cantor system and let
↵ 2 E(X,T ). Then, there exist an integer m > 1, a real vector v

m

and an integer vector w
m

such that

(1) ↵P
m

H1 = v
m

+ w
m

, and
(2)

P
n>m

kP
n,m

v
m

k1 < 1,

where k · k1 denotes the supremum norm.

For any given T -invariant probability measure µ of (X,T ) we set

µ
n

= (µ(B
n

(k))T1kCn

and we call it the measure vector of (X,T ). It is easy to check it fullfills, for all 1  m < n,
the following identities:

µT

1 H1 = 1 and µT

m

= µT

n

P
n,m

.(3.7)

Lemma 7. [4] With the conditions and the notations of Lemma 6, for any T -invariant
probability measure µ of (X,T ), for any integer n � m,

↵ = µT

m

w
m

and 0 = µT

n

P
n,m

v
m

.

Proof. For any integer n > m > 1, we set v
n

= P
n,m

v
m

and w
n

= P
n,m

w
m

. Observe that
Relation (3.7) and Lemma 6 imply for any integer n > m,

↵ = ↵µT

1 H1 = µT

m

P
m

H1↵ = µT

m

w
m

+ µT

m

v
m

= µT

m

w
m

+ µT

n

P
n,m

v
m

.

Since ↵ � µT

m

w
m

does not depend on n and lim
n!1 kµT

n

P
n,m

v
m

k1 = 0, we deduce that
µT

m

v
m

= µT

n

P
n,m

v
m

= 0, for every n > m. ⇤
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The following proposition and lemma will provide key arguments in the proof of our main
result Theorem 1. For its proof we need to introduce some crucial quantities as it can be
seen in the series of papers [5, 3, 4] and [7].
For any integer n 2 N, we define the entrance time r

n

(x) of a point x 2 X to the base B
n

by
r
n

(x) = min{j � 0;T jx 2 B
n

}. The su�x map of order n is the map s
n

: X ! NCn given by

(s
n

(x))
k

= ]{j 2 N; 0  j < r
n+1(x), T

jx 2 B
n

(k)}

for every k 2 {1, . . . , C
n

}. A classical computation gives1 (see for example [3])

r
n

(x) =
n�1X

k=1

hs
k

(x), P
k

H1i,(3.8)

where hv, v0i = vT v0 stands for the usual scalar product.

Proposition 8. [3] Let (X,T ) be a minimal Cantor system and let ↵ 2 R. The following
conditions are equivalent,

(1) ↵ belongs to E(X,T );
(2) the sequence of functions (exp(2i⇡↵r

n

(·)))
n

converges uniformly.

Proposition 9. With the conditions and the notations of Lemma 6, we have

max
x2X

|hs
n

(x), P
n,m

v
m

i| !
n!+1 0.

Proof. Let us denote by ||| · ||| the distance to the closest integer. The sequence (|||↵r
n

|||)
n

is a uniform Cauchy sequence (Proposition 8) and ↵(r
n+1 � r

n

) = hs
n

,↵P
n

H1i. Therefore
|||hs

n

,↵P
n

H1i||| converges to zero. We have ↵P
n

H1 = P
n,m

v
m

+ P
n,m

w
m

. Since P
n,m

w
m

is
an integer vector, we obtain |||hs

n

,↵P
n

H1i||| = |||hs
n

, P
n,m

v
m

i|||. Consequently Lemma 6 (2)
ensures for any ✏ 2 (0, 1/8), there exists n0 such that for all n � n0 and all x

||P
n,m

v
m

|| < ✏ < 1/8 and |||hs
n

(x), P
n,m

v
m

i||| < ✏.

We may write hs
n

(x), P
n,m

v
m

i = ✏
n

(x)+E
n

(x) with |✏
n

(x)| < ✏ and E
n

(x) an integer. Notice
that (✏

n

)
n

uniformly converges to 0.
Consider the set A = {x 2 X;E

n

(x) = 0}. Observe that
T

n

B
n

is contained in A so it is
non empty. It is not di�cult to check that A is closed. Let us check it is T -invariant. We fix
some x 2 A. It is straightforward to verify that there are only three distincts possible cases
for s

n

(x): s
n

(Tx) = s
n

(x); s
n

(x) = 0 and s
n

(Tx) 6= 0; or s
n

(x) 6= 0 with s
n

(Tx) = s
n

(x)� e
for some vector e from the canonical base. The first case is easy to handle. For the second
one, notice it implies x 2 B

n+1. So by the very definitions, there exist two vectors e1, e2 from
the canonical base such that s

n

(Tx) = M t

n+1e1 � e2. It follows that

|hs
n

(Tx), P
n,m

v
m

i| =|hM t

n+1e1, Pn,m

v
m

i � he2, Pn,m

v
m

i| = |he1, Pn+1,mv
m

i � he2, Pn,m

v
m

i|
||P

n+1,mv
m

||+ ||P
n,m

v
m

|| < 1/4,

so that E
n

(Tx) = 0 and Tx 2 A.
For the last case, consider

|E
n

(Tx)� E
n

(x)| =|✏
n

(x)� ✏
n

(Tx) + hs
n

(Tx), P
n,m

v
m

i � hs
n

(x), P
n,m

v
m

i|

1

4
+ |he, P

n,m

v
m

i|  1

4
+ ||P

n,m

v
m

||  1

2
.

1Observe that by the conventions on P0 and P1, we have s0(x) = 0 for any x 2 X.
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Therefore we have E
n

(Tx) = E
n

(x) = 0 and Tx 2 A. Finally, by minimality, we obtain that
A = X which implies that

|hs
n

(x), P
n,m

v
m

i| = |✏
n

(x)| = |||hs
n

(x), P
n,m

v
m

i||| < ✏.

This achieves the proof. ⇤

Lemma 10. Let (X,T ) be a minimal Cantor system. Then, for any k 2 Z⇤ and ↵ 2 R such
that k↵ belongs to E(X,T ) and ↵ does not, there exist an integer m > 1, a real vector v

m

and an integer vector w
m

such that

(1) k↵P
m

H1 = w
m

+ v
m

,
(2)

P
n>m

kP
n,m

v
m

k1 < 1,
(3) for every measure µ 2 M(X,T ) and integer n � m, hµ

n

, P
n,m

v
m

i = 0.
(4) the vector 1

k

P
n,m

w
m

is not an integer vector for infinitely many integers n > m.

Proof. From Lemma 6 and Lemma 7, there exist a positive integer m, a real vector v
m

and
an integer vector w

m

satisfying the items (1), (2) and (3). From Proposition 8, the sequence
(k↵r

n

)
n

converges uniformly ( mod Z). Moreover, the relation (3.8) gives us for any integer
n > m+ 1

↵r
n

(x) =
n�1X

i=1

↵hs
i

(x), P
i

H1i

=
mX

i=1

hs
i

(x),↵P
i

H1i+
n�1X

i=m+1

hs
i

(x), P
i,m

✓
1

k
v
m

+
1

k
w
m

◆
i.

Suppose that 1
k

P
i,m

w
m

is an integer vector for any large enough integer i. To obtain a
contradiction, by Proposition 8, it su�ces to show that (↵r

n

)
n

is a Cauchy sequence. As
(k↵r

n

)
n

converges uniformly ( mod Z), we deduce that (
P

n

i=m+1hsi(x), Pi,m

v
m

i)
n

converges

uniformly ( mod Z). Hence, given ✏ 2 (0, 12), there exists an integer n0 such that for any
integer n � n0, any integer p � 0 and x 2 X, there exists an integer E

p

(x) such that

|
n+pX

i=n

hs
i

(x), P
i,m

v
m

i � E
p

(x)| < ✏

4
.

By Proposition 9, we can assume that the integer n0 is su�ciently large to have

max
x2X

|hs
n

(x), P
n,m

v
m

i| < ✏

4
8n � n0.(3.9)

Now fix n � n0. Notice that

E
p+1(x)� E

p

(x) = E
p+1(x)�

P
n+p+1
i=n

hs
i

(x), P
i,m

v
m

i �
⇣
E

p

(x)�
P

n+p

i=n

hs
i

(x), P
i,m

v
m

i
⌘

+hs
n+p+1(x), Pn+p+1,mv

m

i.

We deduce that |E
p+1(x) � E

p

(x)| < ✏ < 1
2 and so E

p+1(x) = E
p

(x) for any x 2 X, and
p � 0.
The inequality (3.9) ensures that E0(x) = 0, and thus E

p

(x) = 0 for any p � 0. It follows that
(
P

n

i=m+1hsi(x), Pi,m

v
m

i)
n

is a uniform Cauchy type sequence in x, so the sequence (↵r
n

)
n

converges uniformly ( mod Z). This gives a contradiction. ⇤
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3.2. Group of eigenvalues versus image group of dimension group. A fundamental
fact for this work is the following proposition (Proposition 11). This has been previously
shown in [16], but has been also obtained in [5] (Proposition 11) without to be claimed.

Proposition 11. Let (X,T ) be a minimal Cantor system. Then the set of additive continuous
eigenvalues E(X,T ) is a subgroup of the image subgroup I(X,T ).

Proof. It su�ces to show that E(X,T ) is a subset of I(X,T ). From Lemma 7, there exist a
positive integer m and a vector w

m

2 ZCm such that for every invariant measure µ one gets

↵ = µT

m

w
m

=

Z
fdµ,

where f =
P

Cm
k=1wm

(k)1
Bm(k). This shows that ↵ is in I(X,T ). ⇤

For any ↵ 2 I(X,T ), by definition, for every invariant measure µ there exists f
µ

2 C(X,Z)
(thus depending on µ) such that ↵ =

R
f
µ

dµ. In the next lemma, we show this function can
be chosen independently of the invariant measures.

Lemma 12. Let (X,T ) be a minimal Cantor system. If ↵ belongs to the image subgroup
I(X,T ), then there exists a function g 2 C(X,Z) such that

R
gdµ = ↵, for any measure

µ 2 M(X,T ).

Proof. If M(X,T ) is a singleton then the result is obvious. From now, we will assume that
M(X,T ) contains at least two elements. For any g 2 C(X,Z), we define

M
g

=

⇢
µ 2 M(X,T );

Z
gdµ = ↵

�
.

Observe that M
g

is convex and closed with respect to the weak⇤ topology in M(X,T ). From
the definition of I(X,T ), it is clear we have

M(X,T ) =
[

g2C(X,Z)
M

g

.

Since C(X,Z) is countable, Baire’s theorem implies there exists a map g0 2 C(X,Z) such
that M

g0 has a non empty interior. It follows that I : µ 7!
R
g0dµ is an a�ne map which is

constant on an open set of M(X,T ).
We get the conclusion by showing this map is constant. To prove this, let µ0 be in the interior
of M

g0 , and let µ1 be another measure in M(X,T ). The map t 2 [0, 1] 7! I(tµ0+(1�t)µ1) 2
R is an a�ne map taking at least two times the same value ↵. So, it is a constant map and
I(µ0) = I(µ1) = ↵. Since the measure µ1 is arbitrary, this concludes the proof. ⇤
Remark 13. Observe that from [14, Lemma 2.4], Lemma 12 implies that for any ↵ 2
I(X,T )\(0, 1) there exists a clopen set U such that ↵ = µ(U) for any T -invariant probability
measure µ. In particular this is true when ↵ is in E(X,T ).

By Theorem 3, this lemma can of course be rephrased in terms of dimension group (G,G+, u).
Let G̃ denote the group {g 2 G; ⌧(g) = ⌧ 0(g) for every traces ⌧, ⌧ 0 2 S(G,G+, u)}. Notice
that the unit u and any infinitesimal in Inf(G) belong to G̃.

Corollary 14. Let (G,G+, u) be a simple dimension group. Then for any trace ⌧ 2 S(G,G+, u),
the morphism

⌧ : G̃ ! I(G,G+, u)

is a surjective order preserving morphism. In particular the dimensions groups (G̃/Inf(G), G̃\
G+/Inf(G), [u]), with [u] the class of the unit, and (I(G,G+, u), I(G,G+, u) \ R+, 1) are
isomorphic.
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We are now able to prove our main theorem (Theorem 1).

Proof of Theorem 1. Suppose I(X,T )/E(X,T ) is not torsion free. Then, there exist ↵ 2
I(X,T )\E(X,T ) and an integer k > 1 such that k↵ 2 E(X,T ). From Lemma 10, this implies
there exist a positive integer m, vectors w

m

2 ZCm and v
m

2 RCm such that k↵P
m

H1 =
v
m

+w
m

. We recall, we set v
n

= P
n,m

v
m

and w
n

= P
n,m

w
m

for every n � m, and the vector
v
n

is orthogonal to the vector of measures µ
n

.
Since ↵ is not a continuous eigenvalue, Lemma 10 implies there must be infinitely many n’s
such that the following set is not empty:

I
n

= {i 2 {1, · · · , C
n

} : w
n

(i) is not divisible by k}.

Telescoping the sequence of CKR partitions if needed, we can assume that I
n

6= ; for every
su�ciently large n. For 1  i  C

n

, we write

w
n

(i) = ka
n

(i) + b
n

(i),

where a
n

(i) 2 Z and b
n

(i) is some integer in {0, . . . , k � 1}. Thus, the index i is in I
n

if and
only if b

n

(i) 6= 0. Observe that for any n � m

(3.10) ↵ = ↵µT

1 H(1) = µT

n

P (n)H(1)↵ =
1

k
µT

n

(v
n

+ w
n

) =
1

k
µT

n

w
n

=
1

k
µT

n

b
n

+ µT

n

a
n

,

Since ↵ is in I(X,T ), Lemma 12 implies there exists a function f1 2 C(X,Z) such that for
every invariant probability measure µ,

↵ =

Z
f1dµ.

On the other hand,

µT

n

a
n

=

Z
f2dµ,

where f2 =
P

Cn
i=1 an(i)1Bn(i). Thus Equation (3.10) implies that for every invariant proba-

bility measure µ,

1

k
µT

n

b
n

=

Z
(f1 � f2)dµ =

Z
fdµ,

where f = f1 � f2. Thus we obtain,

Z
kfdµ = µT

n

b
n

=

Z
CnX

i=1

b
n

(i)1
Bn(i)dµ.

Hence the map

h = kf �
CnX

i=1

b
n

(i)1
Bn(i)

belongs to Inf(X,T ) that is assumed to be trivial. Consequently, there exists a map g 2
C(X,Z) such that h = g � g � T .
Choose p � n such that f is constant on any atom of the partition P

p

and such that the
function g is constant on the base B

p

. This is always possible as the sequence {P
j

}
j

satisfies
(KR1-KR6). Let x be an element in B

p

⇢ X and let 1  i  C
p

be such that x 2 B
p

(i).
We have then
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0 =g(x)� g(T hp(i)x) =

hp(i)�1X

j=0

h(T jx) =

hp(i)�1X

j=0

kf(T jx)�
hp(i)�1X

j=0

CnX

l=1

b
n

(l)1
Bn(l)(T

jx)

=

0

@k

hp(i)�1X

j=0

f(T jx)

1

A�
CnX

l=1

b
n

(l)

hp(i)�1X

j=0

1
Bn(l)(T

jx)

=

0

@k

hp(i)�1X

j=0

f(T jx)

1

A�
CnX

l=1

b
n

(l)P
p,n

(i, l)

=

0

@k

hp(i)�1X

j=0

f(T jx)

1

A� (P
p,n

b
n

)(i).

It follows that all the coordinates of P
p,n

b
n

are divisible by k. On the other hand, for every
i 2 I

p

we have

w
p

(i) = (P
p,n

w
n

)(i) = P
p,n

(ka
n

+ b
n

)(i) = k(P
p,n

a
n

)(i) + (P
p,n

b
n

)(i),

which contradicts that I
p

is non empty. ⇤

4. Examples

In the sequel we will construct various examples of minimal Cantor systems starting with an
“abstract” simple dimension group (G,G+, u) having some fixed properties, and then we will
make use of Theorem 3 to have the existence of a minimal Cantor system (X,T ) having this
prescribed simple dimension group. Thus, we will most of the times avoid to mention this
Theorem and we will identify K0(X,T ) to (G,G+, u).
In some examples we will need some classical definition we will not recall and that can be
found in any book on Ergodic Theory, we refer the reader to [25] and [13].

4.1. (Measurable) eigenvalues are not related with (strong) orbit equivalence. At
the di↵erence of continuous additive eigenvalues, irrational additive measurable eigenvalues
can not be interpreted in terms of dimension group. Counter examples mainly come from
the powerful result obtained by N. Ormes in [22] (Theorem 6.1), generalizing Jewett-Krieger
Theorem to strong orbit equivalence classes.

Theorem 15 ([22]). Let (X,T ) be a minimal Cantor systems and µ be an ergodic S-invariant
Borel probability measure. Let (Y, S, ⌫) be an ergodic measurable dynamical system of a non-
atomic Lebesgue probability space (Y, ⌫) such that exp(2i⇡/p) is an eigenvalue of (Y, S, ⌫) for
any element 1

p

2 Q(K0(X,T )). Then, there exists a minimal Cantor system (X,T 0) strongly

orbit equivalent to (X,T ) such that (X,S0, µ) is measurably conjugate to (Y, S, ⌫).

In the same paper Ormes obtained the following remarkable generalization of Dye’s theorem
[8].

Theorem 16 ([22]). Let (Y1, S1, ⌫1) and (Y2, S2, ⌫2) be ergodic dynamical systems of non-
atomic Lebesgue probability spaces. There are minimal Cantor systems (X,T1) and (X,T2)
and a Borel probability measure µ on X which is T1 and T2 invariant such that:

(1) (X,T
i

, µ) is measurably conjugate to (Y
i

, S
i

, ⌫
i

), for i = 1, 2,
(2) (X,T1) is strongly orbit equivalent to (X,T2) by the identity map.



EIGENVALUES AND STRONG ORBIT EQUIVALENCE. 13

For example, one can take (Y1, S1, ⌫1) and (Y2, S2, ⌫2) with any countable groups (eventually
trivial) G1 and G2 of measurable eigenvalues. The theorem asserts, there are strongly orbit
equivalent minimal Cantor systems (X,T1) and (X,T2) that are measurably conjugate to the
two previous dynamical systems, respectively. Of course the groups of measurable eigenvalues
of (X,T1) and (X,T2) are respectively G1 and G2.

4.2. Rational eigenvalues are not preserved under orbit equivalence. Let G = Z⇥Q,
u = (1, 1) and a 2 (0, 1) \ Q. We set G+ = {v 2 G : ⌧

a

(v) > 0} [ {0}, where ⌧
a

(v) =
av(1) + (1 � a)v(2), for every v = (v(1), v(2)) 2 G. It is straightforward to check that
(G,G+, u) is a simple dimension group verifying the following:

• Q(G,G+, u) = Z,
• I(G,G+, u) = Q,
• S(G,G+, u) = {⌧

a

} and
• G/Inf(G), I(G,G+, u) and Q are isomorphic.

From Theorem [15] there exists minimal Cantor systems having (G,G+, u) as a dimension
group (up to isomorphism).
Proposition 11 implies that E(X,T ) ⇢ I(X,T ) = I(G,G+, u) = Q. Using Theorem 4 one
obtains E(X,T ) = Q(G,G+, u) = Z. Thus, for every minimal Cantor system (X,T ) such
that K0(X,T ) is isomorphic to (G,G+, u), the group of eigenvalues E(X,T ) is equal to Z.
Nevertheless I(X,T ) = Q, so I(X,T )/E(X,T ) = Q/Z is a torsion group. It is not di�cult
to see that Inf(K0(X,T )) is not trivial.

Remark 17. Thus, Theorem 1 is not true when Inf(K0(X,T )) is not trivial.

As (X,T ) is uniquely ergodic, then, as observe in Section 2.4.3, K0(X,T )/Inf(K0(X,T )) is
isomorphic to (I(X,T ), I(X,T ) \ R+, 1) = (Q,Q+, 1).
On the other hand, since every minimal Cantor system (Y, S) whose simple dimension group
is isomorphic to (Q,Q+, 1) verifies E(Y, S) = Q (due to Proposition 11 and Theorem 4) and
is orbit equivalent to (X,T ) (by [12, Theorem 2.2]), we deduce that the continuous rational
eigenvalues are not invariant under orbit equivalence, unlike strong orbit equivalence.

Remark 18. This example also shows that the groups of eigenvalues which are realizable
among the class associated to G (i.e., a class of strong orbit equivalence) are not necessarily
realizable by systems in the class determined by G/Inf(G) (i.e., the corresponding class of
orbit equivalence) and viceversa.

4.3. I(X,T )/E(X,T ) can be a torsion group, even if the rational subgroup of I(X,T )
is cyclic. Let ↵ 2 (0, 1) be an irrational number such that ↵2 2 Z+ ↵Z, e.g. the inverse of
the golden mean. Let (X,T ) be the Sturmian subshift with angle 2↵ (we refer to [19] for the
definition). Let us recall that its dimension group is isomorphic to (Z+2↵Z,Z+2↵Z\R+, 1).
Let (Y, S) be any system such that its simple dimension group is isomorphic to (Z+↵Z,Z+
↵Z \ R+, 1). These groups having a unique trace, (Y, S) and (X,T ) are uniquely ergodic.
The rational subgroup of Z + ↵Z being Z, Theorem 16 ensures that we can choose (Y, S)
having no non trivial measurable eigenfunctions; i.e., (Y, S) is weakly mixing. We consider
the product system (X ⇥ Y, T ⇥ S) with the product action, i.e. T ⇥ S(x, y) = (Tx, Sy) for
any x 2 X, y 2 Y .
We will show that

(1) for the image subgroup, we have I(X ⇥ Y, T ⇥ S) = Z+ ↵Z,
(2) for the set of additive eigenvalues E(X ⇥ Y, T ⇥ S) = Z+ 2↵Z.

Thus the quotient group I(X ⇥ Y, T ⇥ S)/E(X ⇥ Y, T ⇥ S) will be isomorphic to Z/2Z.
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We call ⇡
X

and ⇡
Y

the projections of X ⇥ Y on X and Y respectively, and µ and ⌫ the
unique invariant probability measures of (X,T ) and (Y, S) respectively. Let � be the Lebesgue
measure in S1. We denote (S1, R2↵) the rotation by angle 2⇡2↵ on the circle S1.
Since (Y, S) is weakly mixing, it is disjoint from (S1, R2↵) (see Theorem 6.27 in [13]) and thus,
the product measure �⇥ ⌫ is the unique invariant probability measure of (S1 ⇥ Y,R2↵ ⇥ S).
Since (X,T ) and (S1, R2↵) are measure theoretically conjugate, clearly µ ⇥ ⌫ is the unique
invariant probability measure of (X ⇥ Y, T ⇥ S). Thus (X ⇥ Y, T ⇥ S) is uniquely ergodic.
Notice moreover that every open set has a positive measure. The Ergodic Theorem ensures
then that the system (X ⇥ Y, T ⇥ S) is minimal.
One can checks, for example using Lemma 2.6 in [14], that

{µ(A); A clopen subset of X} = (Z+ 2↵Z) \ [0, 1], and

{⌫(B); B clopen subset of Y } = (Z+ ↵Z) \ [0, 1].

Also notice that any clopen set C ✓ X ⇥Y is a finite union of clopen sets of the kind A⇥B,
where A and B are clopen subsets of X and Y respectively. Hence, by the very definition of
↵, we get

I(X ⇥ Y, T ⇥ S) = h{µ(A)⌫(B) : A ✓ X,B ✓ Y clopen subsets}i = Z+ ↵Z.

Remark 19. By Theorem 2, the system (X ⇥ Y, T ⇥ S) is orbit equivalent to the initial
Sturmian subshift (X,T ). Observe their automorphism groups are nevertheless distincts:
At the di↵erence of the Sturmian subshift [21], the product system (X ⇥ Y, T ⇥ S) admits
automorphisms, namely Id⇥ S and T ⇥ Id, that are not power of the action T ⇥ S.

Fundamental properties of Sturmian subshifts ensure there exists � : X ! S1 an almost 1-1
factor map from (X,T ) to (S1, R2↵). The function ��⇡

X

is then a factor map of the product
system. This shows that 2↵ 2 E(X ⇥ Y, T ⇥ S).
We will show that ↵ is not an additive eigenvalue of the system (X ⇥ Y, T ⇥ S).
Suppose there exists a continuous eigenfunction f : X⇥Y ! S1, such that f �T ⇥S = e2i⇡↵f .
Since the map Id⇥ S, product of the identity with the map S, commutes with the product
action, the map f � Id ⇥ S is also a continuous eigenfunction associated with the same
eigenvalue. So there is a constant � 2 S1 such that f � Id ⇥ S = �f . It follows for any
x 2 X, the map y 7! f(x, y) is a continuous eigenfunction of the system (Y, S) associated
to the eigenvalue �. The system (Y, S) being weakly mixing, we get � = 1 and f(x, y) does
not depend on y, we denote this last value f(x). So the map x 7! f(x) is a continuous
eigenfunction of the system (X,T ) associated with the eigenvalue e2i⇡↵. This is impossible
because this Sturmian subshift is an almost one-to-one extension of (S1, R2↵).

We conclude that E(X ⇥ Y, T ⇥ S) = Z+ 2↵Z.

According to Theorem 1, the infinitesimal subgroup of K0(X⇥Y, T ⇥S) must be non-trivial.
Let us give an example of a non-trivial infinitesimal element in the system (X ⇥ Y, T ⇥ S).

From Lemma 12, there exists a function g 2 C(Y,Z) such that
R
gd⌫ = 2↵.

Claim. For any function f 2 C(X,Z) such that
R
fdµ =

R
gd⌫, the function F : (x, y) 2

X ⇥ Y 7! f(x)� g(y) is a non trivial infinitesimal.

A standard computation show us that
R
X⇥Y

f(x)� g(y)dµ⇥ ⌫ = 0. Therefore it remains to
prove that it is not a coboundary of C(X ⇥ Y,Z).
Let us assume that the function f � g is such a coboundary. Then, there exists a function
H 2 C(X ⇥ Y ) such that

f(x)� g(y) = H(x, y)�H(Tx, Sy) 8x 2 X, y 2 Y.
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By taking the integral of the former equality for the measure µ, we obtain

g(y) =
R
fdµ�

R
H(x, y)dµ(x) +

R
H(Tx, Sy)dµ(x)

=
R
gd⌫ �

R
H(x, y)dµ(x) +

R
H(x, Sy)dµ(x).

By the Lebesgue’s dominated convergence Theorem, the function h : y 7!
R
H(x, y)dµ(x) is

continuous. So g �
R
gd⌫ = h � S � h is a real coboundary. Then, g taking integer values,

the function y 7! exp (2i⇡h(y)) defines a continuous eigenfunction associated to the additive
eigenvalue �

R
gd⌫ = �2↵ for the system (Y, S). This is impossible because this system is

weakly mixing. This proves our claim.

5. Some results about realization.

Definition 3. Let (G,G+, u) be a simple dimension group with distinguished order unit.
We define E(G,G+, u) as the collection of all the subgroups � of R for which there exists a
minimal Cantor system (X,T ) such that K0(X,T ) and E(X,T ) are isomorphic to (G,G+, u)
and � respectively.

In this section we are interested in a characterization of the family E(G,G+, u), for a given
simple dimension group. Most of our results are based in [31].

Remark 20. Proposition 11 implies that the elements in E(G,G+, u) are subgroups of
I(G,G+, u). If in addition inf(G) = {0}, from Theorem 1 we get the following:

E(G,G+, u) ✓ {� : subgroup of I(G,G+, u) such that I(G,G+, u)/� is torsion free }.

5.1. Basic example. Let ↵ be an irrational number. Consider G = Z+ ↵Z, G+ = G \ R+

and u = 1. Since the infinitesimal subgroup of (G,G+, u) is trivial, the collection E(G,G+, u)
is a subfamily of {Z,Z+↵Z}. It is known that the dimension group associated to the Sturmian
subshift with angle ↵ is isomorphic to (G,G+, u) (see [19] [6]). Moreover, it is an almost 1-1
extension of the rotation with angle ↵. Hence its subgroup of eigenvalues equals G. On the
other hand, Theorem 15 implies there exists a minimal Cantor system having no non trivial
eigenvalues whose dimension group is isomorphic to (G,G+, u). Thus we get

E(G,G+, u) = {Z,Z+ ↵Z}.

5.2. Eigenvalues and dimension subgroups. Let (G,G+, u) and (H,H+, w) be two sim-
ple dimension group with distinguished order unit. An order embedding is a monomorphism
i : H ! G such that i(h) 2 G+ if and only if h 2 H+ and i(w) = u. An order embedding
always induces an a�ne homomorphism i⇤ : S(G) ! S(H) by

i⇤(⌧)(h) = ⌧(i(h)), for every ⌧ 2 S(G) and h 2 H.

We use the next two lemmas to show that a minimal Cantor system and any of its almost
1-1 extensions share their maximal equicontinuous factor.
The second lemma is a converse of the first one. A proof of the next result, in a more general
context, can be found in [1, Chapter 9].

Lemma 21. Let ⇡ : (X,T ) ! (Y, S) be a proximal extension of minimal Cantor systems,
then (X,T ) and (Y, S) have the same maximal equicontinuous factor.

Lemma 22. Let ⇡ : (X,T ) ! (Y, S) be an almost 1-1 extension of compact systems, such
that (Y, S) is minimal. Then ⇡ is a proximal extension.
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Proof. Let y 2 Y be an element having only one pre-image by ⇡. If ⇡ is injective, then the
result is trivial. We can assume then there exist x0 6= x00 in X such that ⇡(x0) = ⇡(x00) = y0 2
Y . Suppose that x0 and x00 are not proximal. This means there exist " > 0 and n0 2 N, such
that for every n � n0,

(5.11) d(Tn(x0), Tn(x00)) > ".

Since (Y, S) is minimal, there exists a subsequence (Sni(y0))
i�0 of the orbit of y0 that converges

to y. By compactness, taking subsequences if needed, we can suppose (Tni(x0))
i�0 and

(Tni(x00))
i�0 converging to some z0 and z00 respectively. Inequality (5.11) ensures that z0 6= z00,

and since ⇡ is continuous, we have lim
i!1 ⇡(Tni(x0)) = ⇡(z0) and lim

i!1 ⇡(Tni(x00)) = ⇡(z00).
On the other hand, the choice of (n

i

)
i�0 implies that

⇡(z0) = lim
i!1

⇡(Tni(x0)) = lim
i!1

Sni(y0) = y,

⇡(z00) = lim
i!1

⇡(Tni(x00)) = lim
i!1

Sni(y00) = y,

which contradicts the fact that y has only one pre-image. ⇤
Let us recall a consequence of [31, Theorem 1.1] (see Corollary 1.2 in [31]).

Theorem 23. Suppose that (Y, S) is a uniquely ergodic minimal Cantor system and (G,G+, u)
is a simple dimension group with distinguished order unit satisfying the following assumptions:

(i) there is an order embedding i : K0(Y, S) ! (G,G+, u),
(ii) G/i(K0(Y, S)) is torsion free.

Then there exists a minimal Cantor system (X,T ) such that K0(X,T ) is isomorphic to
(G,G+, u) and such that there is an almost one-to-one factor map ⇡ : (X,T ) ! (Y, S).

The next result is a direct consequence of Lemma 21, Lemma 22 and Theorem 23, but stated
in terms of dimension groups.

Proposition 24. Let (G,G+, u) and (H,H+, w) be two simple dimension group with dis-
tinguished order unit, such that (H,H+, w) has a unique trace. Suppose there exists an
order embedding i : H ! G with G/i(H) torsion free. Then E(H,H+, w) is a subfamily of
E(G,G+, u).

Recall that for any countable dense subgroup � of R containing Z, the dimension group
(�,� \ R+, 1) has only one trace and no non trivial infinitesimal (see [10]).

Proposition 25. Let (G,G+, u) be a simple dimension group with distinguished order unit
and with a trivial infinitesimal subgroup. Then, for any subgroup � of I(G,G+, u) with Z ✓ �
and I(G,G+, u)/� torsion free, the family E(�,� \ R+, 1) is contained in E(G,G+, u).

Proof. Let ⌧ : G̃ ! I(G,G+.u) be the morphism given by Corollary 14. Since the infinitesimal
subgroup is trivial, it is an isomorphism. Let (H,H+, u) be the dimension group image of
(�,� \ R+, 1) by the inverse ⌧�1. It is easy to check the group G/G̃ is torsion free, so
by hypothesis, the quotient group G/H is also torsion free. Moreover, S(�,� \ R+, 1) has
only one element because S(H,H+, u) ' S(�,� \ R+, 1). The desired result follows from
Proposition 24. ⇤
As a consequence of these results, we obtain the following characterization.

Corollary 26. The following are equivalent:

(1) For any countable dense subgroup � of R containing Z, there is a Cantor minimal
system (X,T ) with E(X,T ) = �, and K0(X,T ) ' (�,� \ R+, 1), i.e.

� 2 E(�,� \ R+, 1).
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(2) For any simple dimension group with distinguished order unit (G,G+, u) and with no
non trivial infinitesimal,

E(G,G+, u) = {�;� is a subgroup of I(G,G+, u) such that I(G,G+, u)/� is torsion free}.

Proof. It is obvious that (1) is a consequence of (2). Proposition 25 and (1) imply (2). ⇤
Proposition 27. Let (G,G+, u) be a simple dimension group with distinguished order unit
and let � be a subgroup of I(G,G+, u) verifying the following:

• � is generated by a family of rationally independent numbers containing 1.
• I(G,G+, u)/� is torsion free.

Then E(�,� \ R+, 1) is contained in E(G,G+, u).

Remark that Proposition 27 includes the case where � is finitely generated. Example 4.2
shows that Proposition 27 becomes false whenever the group � is not generated by a rationally
independent family.

Proof. Let {↵
i

}
i�0 be a rationally independent family generating �. Without loss of general-

ity, we can assume that ↵0 = 1. From Lemma 12, for every i 2 N, there exists a g
i

2 G such
that ⌧(g

i

) = ↵
i

, for every ⌧ 2 S(G,G+, u). We choose g0 = u.
For any ↵ 2 �, there exists a unique sequence of integers (m

i

)
i�0 with m

i

= 0 except for
a finite number of i’s such that ↵ =

P
i�0mi

↵
i

. This implies that the function � : � ! G

given by �(↵) =
P

i�0mi

g
i

is a well defined one-to-one homomorphism. It is not di�cult to
see that this is an order embedding such that G/�(�) is torsion free. Since (�,�\R+, 1) has
only one trace, from Proposition 24 we obtain the desired property. ⇤

5.3. Necessary conditions for � 2 E(�,� \ R+, 1). Let (G,G+, u) be a simple dimension
group with distinguished order unit having no non trivial infinitesimal and with a unique
trace. So it is isomorphic to the dimension group (�,� \ R+, 1), where � = I(G,G+, u). We
suppose here, that � 2 E(�,� \ R+, 1). That is, there exists a uniquely ergodic minimal
Cantor system (X,T ) whose dimension group is isomorphic to (�,� \ R+, 1) and such that
E(X,T ) = �.
We use the notations of the sections 2.2 and 3.1. Recall that for every n � 1, µ

n

= (µ
n

(k))Cn
k=1

denotes the vector of measures of the bases of the partition P
n

, corresponding to the unique
invariant probability measure µ of (X,T ) (see Section 2.2 for definitions). Since (X,T ) is
uniquely ergodic, the group � is generated by {µ

n

(k) : 1  k  C
n

, n � 1}, which implies
that for every m � 1 and every 1  k  C

m

the number µ
m,k

is in E(X,T ). From Lemma 6
we get that for every n su�ciently large, there exist an integer vector w

n

and a real vector
v
n

such that

(5.12) P
n

H1µm

(k) = v
n

+ w
n

and
X

l�n

kP
l,n

v
n

k1 < 1.

Multiplying by µT

n

the first equation we get but the normalization conditions (see Equation
(3.7) and Lemma 7)

µ
m

(k) = µT

n

w
n

.

On the other hand, we have
µ
m

(k) = µT

n

P
n,m

(·, k).
Since the infinitesimal subgroup is trivial, the previous two equations implies that for n
su�ciently large

(5.13) w
n

= P
n,m

(·, k).
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Equations (5.12) and (5.13) imply

(5.14)
X

n�1

max
i

kh
n,i

µ
m

� P T

n,m

(·, i)k1 < 1.

On the other hand, the unique ergodicity of the system (X,T ) implies that the rows of the
matrix P

n,m

converges with n (after normalization) to µ
m

. That is

lim
n!1

max
i

����µm

� 1

h
n,i

P T

n,m

(·, i)
����
1

= 0.

Thus from (5.14), we deduce that if E(X,T ) = �, then the rate of convergence of the rows
of P

n,m

to the direction generated by µ
m

has to be extremely fast.
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Colóquio Brasileiro de Matemática. [27th Brazilian Mathematics Colloquium].

[27] N. Riedel. Classification of the C

⇤-algebras associated with minimal rotations. Pacific J. Math., 101:153–
161, 1982.

[28] S. Schwartzman. Asymptotic cycles. Ann. of Math. (2), 66:270–284, 1957.
[29] I. M. Singer. Automorphisms of finite factors. Amer. J. Math., 77:117–133, 1955.
[30] F. Sugisaki. The relationship between entropy and strong orbit equivalence for the minimal homeomor-

phisms. I. Internat. J. Math., 14:735–772, 2003.
[31] F. Sugisaki. Almost one-to-one extensions of Cantor minimal systems and order embeddings of simple

dimension groups. Münster J. Math., 4:141–169, 2011.
[32] J. Tomiyama. Invitation to C

⇤-algebras and topological dynamics, volume 3 of World Scientific Advanced
Series in Dynamical Systems. World Scientific Publishing Co., Singapore, 1987.
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G-ODOMETERS AND THEIR ALMOST 1-1 EXTENSIONS.

MARÍA ISABEL CORTEZ, SAMUEL PETITE

Abstract. In this paper we recall the concepts of G-odometer and G-subodometer for
G-actions, where G is a discrete finitely generated group, which generalize the notion of
odometer in the case G = Z. We characterize the G-regularly recurrent systems as the
minimal almost 1-1 extensions of subodometers, from which we deduce that the family
of the G-Toeplitz subshifts coincides with the family of the minimal symbolic almost 1-1
extensions of subodometers. We determine the continuous eigenvalues of these systems.
When G is amenable and residually finite, a characterization of the G-invariant measures of
these systems is given.

1. Introduction

It is known that an almost 1-1 extension of a minimal equicontinuous system always has
this system as the maximal equicontinuous factor. This justifies the study of these almost
1-1 extensions. The aim of this paper is to study the extensions of a particular type of
equicontinuous systems: the G-odometers, where G is a discrete finitely generated group,
like for example a non abelian free group. The notion of G-odometer generalizes the notion
of odometer, or adding-machine, in the case G = Z.
An example of extensions of Z-odometers are the Toeplitz flows, which were introduced by
Jacobs and Keane in [JK]. Toeplitz flows have been extensively studied in di↵erent contexts
and they have been used to provide series of examples with interesting dynamical properties
(see for example [Do], [GJ], [Wi]). Markley and Paul characterize them in [MP] as the
minimal almost 1-1 extensions of odometers and a proof of this theorem is given in [DL] by
Downarowicz and Lacroix (see also [Au]). Let us mention also an example of F. Krieger in
[Kr] where he constructs, for a residually finite and amenable group G, a G-Toeplitz sequence
with an arbitrary entropy.
Following the work developed in [Co] for G = Zd, we prove that for a discrete finitely
generated group G, the G-Toeplitz systems are the symbolic minimal almost 1-1 extensions
of G-odometers. The main di�culties lie in the fact that we consider non-abelian groups and
therefore the used techniques are not straight generalizations of the Z-case. Unlike in the
abelian case, there appear some degenerated systems that we call subodometers.
This paper is organized as follows: in Section 2, we give some basic definitions relevant for the
study of topological dynamical systems. We recall also the generalized notions of odometer
and subodometer and we identify the set of eigenvalues of these systems. In Section 3, we
introduce the notions of regularly recurrent systems and strongly regularly recurrent systems.
We characterize them as the minimal almost 1-1 extensions of subodometers and odometers
respectively. In the particular case where G is amenable and residually finite, we show in
Section 4 that the set of invariant probability measures of a G-regularly recurrent Cantor
system can be represented as an inverse limit. In Section 5, in the case when G is a residually
finite group, we introduce a notion of semicocycles and we show that an almost 1-1 extension
of a G-subodometer is conjugated to the action of G on some semicocycle. Finally in Section
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6, we consider a particular family for a discrete group G: the G-Toeplitz arrays, which is a
particular family of semicocycles when G is residually finite. We prove, by giving an explicit
construction, that this family coincides with the family of symbolic almost 1-1 extensions of
the G-subodometers.
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11060002 and Nucleus Millennium P04-069-F. The authors thank the anonymous referee for
its constructive remarks.

2. Basic definitions and background

In this article, by a topological dynamical system we mean a pair (X, G), where G is a
topological group which acts, by homeomorphism, on a compact metric space (X, d). Given
g 2 G and x 2 X we will identify g with the associated homeomorphism and we denote by g.x
the action of g on x. The dynamical system (X, G) is free if g.x = x for some x 2 X implies
g = e, where e is the neutral element in G. For a syndetic subgroup � of G, the �-orbit of
x 2 X is O�(x) = {�.x : � 2 �} and the �-system associated to x is (⌦�(x),�), where ⌦�(x)
is the closure of O�(x) and the action of � on ⌦�(x) is the restriction to � and ⌦�(x) of the
action of G on X. The set of return times of x 2 X to A ✓ X is TA(x) = {g 2 G : g.x 2 A}.
The topological dynamical system (X, G) is minimal if the orbit of any x 2 X is dense in X,
and it is said to be equicontinuous if for every " > 0 there exists � > 0 such that if x, y 2 X
satisfy d(x, y) < � then d(g.x, g.y) < " for all g 2 G. We say that (X, G) is an extension of
(Y, G), or that (Y, G) is a factor of (X, G), if there exists a continuous surjection ⇡ : X ! Y
such that ⇡ preserves the action. We call ⇡ a factor map. When the factor map is bijective,
we say that (X, G) and (Y, G) are conjugate. The factor map ⇡ is an almost 1-1 factor map

and (X, G) is an almost 1-1 extension of (Y, G) by ⇡ if the set of points having one pre-image
is residual (contains a dense G� set) in Y . In the minimal case it is equivalent to the existence
of a point with one pre-image.
The set MG(X) of invariant probability measures of X is the set of probability measures
µ defined on B(X), the Borel �-algebra of X, such that µ(g.B) = µ(B) for all g 2 G and
B 2 B(X).

2.1. G-odometers and G-subodometers. In all the following, we will denote by G a
discrete group generated by a finite family and by e its neutral element.

Definition 1. A discrete finitely generated group G is called residually finite if and only if

there exists a sequence �1 � �2 � . . . � �n � . . . of subgroups �n with finite index in G such

that: \

n

�n = {e}.

A trivial example of a residually finite subgroup is the group of integers Z, for example by
taking the groups �n = n!Z. Less trivial examples are given by the fundamental groups of
connected oriented compact graph. When ⇡ : S2 ! S1 is a finite covering of an oriented
compact connected graph S2 onto a compact graph S1, the application ⇡ induces an homo-
morphism ⇡⇤ from the fundamental group of S2 to the fundamental group of S1. The image
of the morphism ⇡⇤ is a subgroup of the fundamental group of S1. The index of this subgroup
is then the number of preimages of one point for the map ⇡. Let us denote by fS1 the universal
cover of S1. Consider a sequence (Sn,⇡n)n of finite coverings ⇡n : Sn+1 ! Sn of compact
connected and oriented graphs Sn such that for each n the injectivity radius of fS1 onto Sn
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goes to infinity when n goes to infinity. The sequence of fundamental groups of graphs Sn

satisfies then the condition of Definition 1. More generally, we have the following result of
Mal’cev [Ma]:

Theorem 1. [Ma] For any integer n and any field K with characteristic null, every finitely

generated subgroup of the group of invertible matrices GL(n, K) is a residually finite group.

In particular, the free groups Fn with n generators, the groups of surfaces and the braids
group Bn generated by n elements are residually finite groups.
Let us denote, for a subgroup H of G, by G/H the set of right classes of H in G. It is
important to note that G acts on G/H by left multiplication. Now we will prove the useful
following lemma:

Lemma 1. Let G be a group. If H is a subgroup of G with index in G equal to n (i.e.

the cardinal of the quotient space G/H is n) then there exists a normal subgroup K of G
contained in H such that the cardinality of G/K divides n!.

Proof. The group G acts on G/H by left multiplication. This action defines an homomor-
phism ⇢ from G to the permutation group of n elements. The kernel of this application is a
normal subgroup of G contained in H and its index in G divides the cardinal of permutations
of n elements. ⇤

As a corollary, G is a residually finite group if and only if there exists a sequence H1 � . . . �
Hn � . . . of normal subgroups of G with finite index in G such that

T
n Hn = {e}.

Let us consider a discrete group G generated by a finite family, and a decreasing sequence (for
the inclusion) (�i)i�0 ✓ G of subgroups with finite index in G (we do not ask

T
i�0 �i = {e})

and let ⇡i : G/�i+1 ! G/�i be the function induced by the inclusion �i+1 ⇢ �i, i � 0.
Consider the inverse limit

 �
G = lim

 i
(G/�i,⇡i).

More precisely,
 �
G is defined as the subset of the product ⇧i�0G/�i consisting of the elements

g = (gi)i�0 such that ⇡i(gi+1) = gi for all i � 0.
Every G/�i is endowed with the discrete topology and ⇧i�0G/�i with the product topology.
Thus

 �
G is a compact metrizable space whose topology is spanned by the cylinder sets

[i; a] = {g 2  �G : gi = a}, with a 2 G/�i and i � 0.

The space
 �
G is a totally disconnected, it is a Cantor set when G/ \i�0 �i is infinite and a

finite set when G/ \i�0 �i is finite.
The group G acts continuously on

 �
G by left multiplication, namely for g = (gi)i 2

 �
G and

h 2 G,
h.g = (h.igi)i,

where h.i denotes the action on G/�i given by h.ig�i = hg�i, for every h 2 G and g 2 G.
Since for all h 2 G and for all cylinders [i; a] we have

h.([i; a]) ✓ [i;h.iai],

the topological dynamical system (
 �
G, G) is equicontinuous. Moreover, every orbit for this

action is dense, then (
 �
G, G) is a minimal equicontinuous system.
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Definition 2. We call (
 �
G, G) a G-subodometer system

⇤
or simply a subodometer. If in addi-

tion, every �i is normal, we say that (
 �
G, G) is a G-odometer system or simply an odometer.

It is straightforward to show that for a point g = (gi)i of a subodometer
 �
G , its stabilizer

for the G-action is the group
T

i g̃i�ig̃
�1
i , where g̃i is a representing element of the class

gi 2 G/�i in G, for i � 0. Hence, when G is a residually finite group and
T

i�0 �i = {e},
for e = (ei)i 2

 �
G , where ei is the projection of the neutral element of G on G/�i, its

stabilizer is trivial. This does not mean necessarily that the action of G on
 �
G is free. If

furthermore, all the groups �i are normal subgroups of G, then the stabilizer of every point
of a G-odometer is trivial and the action of G is free. For this reason, when G is residually
finite and

T
i�0 �i = {e}, the G-odometer lim i(G/�i,⇡i) will be called a free G-odometer.

If (
 �
G, G) is an odometer then the set

 �
G is a group equipped with the multiplication defined

by
g.h = (gi.ihi)i�0,

where .i denotes the multiplication operation induced on G/�i by the multiplication on G.
notice that for a free odometer (

 �
G, G), the group G is then a dense subgroup of

 �
G .

Notice that for all g in a cylinder set [i; a] of an odometer
 �
G = lim i(G/Hi,⇡i), the set of

return times of g to [i; a] is Hi. Throughout this paper we will use this property and we will
identify

 �
G with (

 �
G, G).

Lemma 2. Let

 �
G j = lim i(G/Hj

i ,⇡i) be two subodometers (j = 1, 2). Let ej (j = 1, 2) be

the element (ej
i )i 2

 �
G j where ej

i denotes the class of the neutral element e 2 G in G/Hj
i .

There exists a factor map ⇡ : (
 �
G1, G) ! (

 �
G2, G) such that ⇡(e1) = e2 if and only if for

every H2
i there exists some H1

k such that H1
k ✓ H2

i .

Proof. If ⇡ :
 �
G1 !

 �
G2 is a factor map then by continuity, given i � 0 and e2

i in G/H2
i , there

exists k � 0 such that [k; e1
k] ✓ ⇡�1[i; e2

i ]. Let v 2 H1
k . We have that v.g 2 [k; e1

k] for all
g 2 [k; e1

k], which implies that

⇡(v.g) = v.⇡(g) 2 [i; e2
i ].

Since ⇡(g) 2 [i; e2
i ] and T[i;e2

i ](⇡(g)) = H2
i , we get v 2 H2

i .
Suppose that for every i � 0 there exists H1

ni
✓ H2

i . Since the sequences (Hj
i )i�0, j = 1, 2,

are decreasing, we can take ni  ni+1 for all i � 0. The function ⇡ :
 �
G1 !

 �
G2 defined

by ⇡((gi)i�0) = (jni(gni))i�0 where jni : G/H1
ni
! G/H2

i is the function induced by the
inclusion H1

ni
✓ H2

i , is a factor map. ⇤

By a straightforward application of the former lemma and Lemma 1, we get

Proposition 1. If (lim i(G/�i,⇡i), G) is a G-subodometer, then there exists a G-odometer

which is an extension of this subodometer.

Proposition 2. Let

 �
G be a G-odometer and (X, G) a dynamical system. If there exists

a factor map from

 �
G onto X, then there exists a closed subgroup H of

 �
G such that the

dynamical system (
 �
G/H, G) is conjugated to (X, G).

⇤Note that this definition is not a profinite completion of the group G because here, we consider only a
sequence of decreasing subgroups.
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In particular this proposition says that a subodometer is conjugate to the quotient of an
odometer by a closed subgroup.

Proof. Let us denote by p the factor map
 �
G ! X, and by e the neutral element of

 �
G . Let

H be the closed subset p�1(p(e)) of
 �
G . For g = (gi)i and h = (hi)i in H, we have:

p(hg) = lim
i

p(higi) = lim
i

hi.p(gi) = lim
i

hi.p(e) = lim
i

p(hi) = p(e).

With the same technique we get:

p((g)�1) = lim p(g�1
i e) = lim

i
g�1
i .p(e) = lim

i
g�1
i .p(gi) = p(e).

So gh and g�1 belong to H, and H is a group.
Now let us see that p�1(p(g)) = gH for any g 2  �G . Let h be in H, we have:

p(gh) = lim
i

p(gihi) = lim
i

gi.p(hi) = lim
i

gi.p(e) = p(g).

Then gH ⇢ p�1(p(g)).
Let h 2  �G be such that p(h) = p(g). Then limi p(gi) = limi p(hi) and p(e) = limi g

�1
i .hi.p(e) =

p(g�1h). So g�1h belongs to H and p�1(p(g)) = gH. Therefore, the map p factorizes onto
a homeomorphism from

 �
G/H to X. ⇤

2.2. Eigenvalues of odometers and subodometers. Let (X, µ, G) be a measure-theoretic
dynamical system with a left action of G. A character � is a homomorphism from G to the
group S1, the set of complex numbers with modulus 1. Since the group G is equipped with
the discrete topology, every character is a continuous map.
A character is an eigenvalue of X if there exists f 2 L2

µ(X)\{0} such that f(g.x) = �(g)f(x)
for all x 2 X and g 2 G. We call f an eigenfunction associated to �. We say that an
eigenvalue is a continuous eigenvalue if it has an associated continuous eigenfunction.

Since a G-odometer
 �
G is a compact group, the normalized left invariant Haar measure � of

 �
G

is the only probability measure of
 �
G invariant under the action of G. Thus the system (

 �
G, G)

is uniquely ergodic. Any G-subodometer, as a factor of some G-odometer, is alo uniquely
ergodic. Thus when we speak about a subodometer

 �
G as a measure-theoretic dynamical

system, we mean
 �
G equipped with the unique invariant probability measure � for the action

of G.

Proposition 3. Let

 �
G = lim n(G/�n,⇡n) be a subodometer. The set of eigenvalues of

 �
G

is given by EG =
S

n�0{character � : G ! S1, �(�) = 1 for all � 2 �n}. Moreover, every

eigenvalue of

 �
G is a continuous eigenvalue.

Proof. For n � 0 we call Cn = [n; e]. Since v, w 2 G satisfy v.Cn = w.Cn if and only if w and
v belong to the same class in G/�n, it makes sense to write v.Cn for v 2 G/�n. Notice that
the collection Pn = {v.Cn : v 2 G/�n} is a clopen partition of G.
Let � 2 EG and let n � 0 be such that �(�) = 1 for all � 2 �n. This means that � is
constant on each class of G/�n, which implies that f =

P
v2G/�n

�(v)1v.Cn is a well defined

continuous function that verifies f(h.g) = �(h)f(g) for all g 2  �G and h 2 G.
Let � be an eigenvalue of

 �
G and let f 2 L2

�(
 �
G) \ {0} be an associated eigenfunction. For

g 2 G we have that

�(g)
✓Z

Cn

fd�

◆
=

Z

g.Cn

fd�.
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Since Cn = �.Cn for all � 2 �n, it holds that

(1) �(g)
✓Z

Cn

fd�

◆
=

Z

Cn

fd� for all g 2 �n.

Observe that
E(f |Pn) =

X

g2Kn

�(g)
�(Cn)

✓Z

Cn

fd�

◆
1g.Cn ,

for a finite set Kn ⇢ G containing at least one element of each class of G/�n. Since B(Pn) "
B(
 �
G), by the increasing Martingale Theorem, we have that E(f |Pn) converges to f in L2

�(
 �
G).

Because f 6= 0, this implies there exists m � 0 such that
R
Cm

fd� 6= 0 and, by (1), we conclude
that �(�) = 1 for all � 2 �m, which means that � 2 EG. ⇤

3. Characterization of minimal almost 1-1 extensions of odometers

Let (X, G) and (Y, G) be two topological dynamical systems. (Y, G) is said to be the maximal

equicontinuos factor of (X, G) if it is an equicontinuos factor of (X, G) such that for any other
equicontinuous factor (Y 0, G) of (X, G) there exists a factor map ⇡ : Y ! Y 0 that satisfies
⇡ � f = f 0, with f : X ! Y and f 0 : X ! Y 0 factor maps.
It is well known that every topological dynamical system has a maximal equicontinuous factor
and if (X, G) is a minimal almost 1-1 extension of a minimal equicontinuous system (Y, G),
then (Y, G) is the maximal equicontinuous factor of (X, G) (for more details see [Au]).

3.1. Regularly recurrent systems. A subset S of G is said to be syndetic if there exists
a compact subset K of G such that G = K.S = {k.s : s 2 S, k 2 K}. Because we consider a
discrete group G, a subset S of G is syndetic if and only there exists a finite subset K of G
such that G = K.S. It is important to note that a subgroup � of G is syndetic if and only if
G/� is finite.
Let (X, G) be a topological dynamical system and let x 2 X. The point x is uniformly

recurrent if for every open neighborhood V of x the set TV (x) is syndetic. It is well known
that (⌦G(x), G) is minimal if and only if x is uniformly recurrent.
A point x 2 X is regularly recurrent if for every open neighborhood V of x there is a syndetic
subgroup � of G such that � ✓ TV (x). We say that a system is regularly recurrent if it is the
orbit closure of a regularly recurrent point.
Similarly, we say that a point x 2 X is strongly regularly recurrent if for every open neighbor-
hood V of x there is a closed neighborhood W ⇢ V of x such that TW (x) is a syndetic normal
subgroup of G. We say that a system is strongly regularly recurrent if it is the orbit closure
of a strongly regularly recurrent point. Obviously, a strongly regularly recurrent point is a
regularly recurrent point. Regularly recurrent systems are minimal.
The subodometers are examples of regularly recurrent systems, whose any point is regularly
recurrent. In the same way, the odometers are strongly regularly recurrent systems whose
any point is strongly regularly recurrent.
In this section, we will show that regularly recurrent systems are exactly the minimal almost
1-1 extensions of the subodometers and strongly regularly recurrent systems are the minimal
almost 1-1 extensions of the odometers. From that we will conclude that a group G admits
an action that is both strongly regularly recurrent and free if and only if G is residually finite.

Lemma 3. Let (X, G) be a minimal topological dynamical system and let x 2 X. If � ✓ G
is a syndetic subgroup of G then (⌦�(x),�) is minimal.

Proof. Let H be a syndetic normal subgroup of G contained in � (Lemma 1). The group G
acts by the natural product action on the compact space X ⇥ G/H. Pick a minimal set M
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in X ⇥G/H for this action. The canonical projection on the first coordinate is a factor map
that maps M onto a minimal subset of X hence onto X. Thus for every x 2 X there exists
a point (x, [a]) 2 M , where [a] denotes the H-class of an element a 2 G. By minimality of
M , this point is uniformly recurrent. The right multiplication by [a�1] on the second axis
is a conjugacy that sends the minimal set M onto a minimal set M 0 that contains (x, [e]).
The canonical projection G/H ! G/� induces a factor map from X ⇥G/H onto X ⇥G/�
for the product action of G. So it maps M 0 onto a minimal set of X ⇥ G/� that contains
the point (x, [e]�) where [e]� denotes the �-class of the neutral element e. This implies that
for any neighborhood V ✓ X of x, the set TV⇥{[e]�}(x, [e]�) = {g 2 G : g.x 2 V, g 2 �} is
syndetic. ⇤
Lemma 4. Let (X, G) be a topological dynamical system and let x 2 X be a regularly recurrent

point. For every closed neighborhood V of x there exists a syndetic subgroup � of G such that

� ✓ TV (x) and {w(⌦�(x))}w2G/� is a clopen partition of X.

Moreover, if x is strongly regularly recurrent, the former group � is normal.

Proof. Let V ✓ X be a closed neighborhood of a regularly recurrent point x and let �0 ✓ G
be a subgroup with finite index such that �0 ✓ TV (x). Let us consider the normal subgroup
H ⇢ �0 given by Lemma 1. By Lemma 3, the set ⌦H(x) is closed and minimal for the action
of H. Since H is normal, for any g 2 G, the set g.⌦H(x), which equals ⌦H(g.x), is also closed,
invariant and minimal for the H-action. Therefore if w.⌦H(x) \ u.⌦H(x) 6= ; for u, w 2 G,
we have w.⌦H(x) = u.⌦H(x).
Furthermore, if u and w 2 G are in the same H-class, then we have also w.⌦H(x) = u.⌦H(x).
Since H is syndetic and the G-orbit of x is dense, we have X =

F
u2K u.⌦H(x), for some

finite set K ⇢ G.
Let � be the group

� = {g 2 G : g.⌦H(x) = ⌦H(x)}.
We have H ⇢ �, so � is syndetic. Since ⌦�(x) = ⌦H(x), we have � ⇢ TV (x) and for any
g 2 G g.⌦�(x) and ⌦�(x) are disjoint or equal because they are minimal closed H-invariant
sets. Thus we get :

(1) g.⌦�(x) = g0.⌦�(x) if and only if g 2 g0�.
(2) Tg.⌦�(x)(y) = g�g�1 for every y 2 g.⌦�(x).

It holds that for w 2 G/�, w.⌦�(x) is well defined and {w.⌦�(x)}w2G/� is a clopen partition
of X.

When x is a strongly regularly recurrent point of X, we follow the same proof with H being
the normal subgroup TW (x) given by a clopen neighborhood W ⇢ V of x. Due to this strong
property, we have that the group � equals H and thus � is a normal subgroup of G. ⇤
Corollary 1. Let (X, G) be a topological dynamical system and let x 2 X. The point x is

regularly recurrent if and only if there exists a fundamental system (Ci)i�0 of clopen neigh-

borhoods of x (\iCi = {x}), such that for all y 2 Ci the set of return times of y to Ci is a

syndetic subgroup �i of G, for every i � 0.
Moreover, x is strongly regularly recurrent if and only if the groups �i are normal.

Proof. If x 2 X has a fundamental system of neighborhoods as written above, it is a (resp.
strongly) regularly recurrent point.

The sequences (Ci)i and (�i)i are defined by induction. If x is a (resp. strongly) regularly
recurrent point, let C1 be the space X and �1 be the group G.
So, given Ci and �i, we take an open neighborhood Vi+1 of x, whose the closure is strictly
contained in Ci. By Lemma 4, we obtain a syndetic (resp. normal) group �i+1 with �i+1 ✓
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TV i+1
(x) and {w(⌦�i+1(x))}w2G/�i+1

is a clopen partition of X. Clearly, we have �i+1 ⇢ �i.
We set Ci+1 = ⌦�i+1(x) which is a clopen set with TCi+1(y) = �i+1 for all y 2 �i+1.
Since limi!1 diam(Vi) = 0, we obtain that (Ci)i�0 is a fundamental system of clopen neigh-
borhoods of x. ⇤

Theorem 2. A minimal topological dynamical system (X, G) is an almost 1-1 extension of

a subodometer

 �
G by ⇡ if and only if (X, G) is a regularly recurrent system.

A minimal topological dynamical system (X, G) is an almost 1-1 extension of an odometer

 �
G by ⇡ if and only if (X, G) is a strongly regularly recurrent system.

Moreover, the set of regularly recurrent or strongly regularly recurrent points of X is exactly

the pre-image of the set of points in

 �
G which have only one pre-image by ⇡.

Proof. Let (X, G) be a minimal almost 1-1 extension of a subodometer
 �
G = lim i(G/�i,⇡i) .

Let ⇡ : X ! �G be the almost 1-1 factor map and let x 2 X be such that {x} = ⇡�1({⇡(x)}).
Since ⇡ is continuous, if ⇡(x) = (ai)i�0 2

 �
G then (⇡�1([i; ai]))i is a decreasing sequence of

clopen neighborhoods of x that satisfies
\

i�0

⇡�1([i; ai]) = {x}.

We know that for every g 2 [i; ai], the set T[i;ai](g) is a group conjugated to �i, therefore for
all y in ⇡�1([i; ai]), we have T⇡�1([i;ai])(y) is a group conjugated to �i. So, by Corollary 1 we
conclude that x is a regularly recurrent point of X. When

 �
G is an odometer, the groups �i

are normal and the point x is then a strongly regularly recurrent point of X.
Let (X, G) be a regularly recurrent system and let x 2 X be a regularly recurrent point. By
Corollary 1 there exists a decreasing sequence (Ci)i�0 of clopen neighborhoods of x such thatT

i�0 Ci = {x}, and there is a syndetic (resp. normal) subgroup �i such that TCi(y) = �i for
all y 2 Ci, i � 0. Since Ci+1 ✓ Ci, we have that �i+1 ✓ �i, i � 0. So, we can define the
subodometer

 �
G = lim i(G/�i,⇡i). We define ⇡ : X !  �G by ⇡ = (fi)i�0 where fi is the

continuous map fi : X ! G/�i given by fi(y) = [z], where [z] denotes the �i-class of z 2 G,
if and only if y 2 z.Ci for y 2 X, z 2 G and i � 0. The function ⇡ is a factor map, and,
since

T
i�0 Ci = {x}, we have that ⇡�1{e} = {x}. So, ⇡ is an almost 1-1 extension. When x

is strongly regularly recurrent, the groups �i are normal and
 �
G is an odometer.

If ⇡0 : X !
 �
G0 is another almost 1-1 factor map and

 �
G0 an subodometer or an odometer,

 �
G

and
 �
G0 are maximal equicontinuous factors of (X, G), therefore, they are conjugate. Thus

there exists a factor map ⇡00 :
 �
G0 !  �G such that ⇡00 � ⇡0 = ⇡, which implies that ⇡0�1{x} =

⇡�1{⇡00(x)} for any x of
 �
G0. We conclude that the set of regularly recurrent or strongly

regularly recurrent points is exactly the pre-image of the points in
 �
G which have only one

pre-image. ⇤
By a straightforward application of Theorem 2 we get the following corollaries.

Corollary 2. Every point of a system (X, G) is regularly recurrent if and only if (X, G) is

conjugate to a subodometer.

Similarly, every point of (X, G) is strongly regularly recurrent if and only if (X, G) is conjugate

to an odometer.

Corollary 3. A discrete finitely generated group G admits a strongly regularly recurrent free

action on a compact metric space if and only if G is residually finite.
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Corollary 4. Let (X, G) be a regularly recurrent system and let

 �
G be its maximal equicon-

tinuous factor. The set of continuous eigenvalues of X is EG.

Proof. It is clear that EG is contained in the set of continuous eigenvalues of X. Conversely,
if � is a continuous eigenvalue of X we can take f : X ! S1 an associated continuous
eigenfunction which is a factor map between (X, G) and the dynamical system (f(X), G),
where the action of g 2 G on exp(2i⇡x) 2 f(X) is given by g. exp(2i⇡x) = �(g) exp(2i⇡x),
which is an isometry. Thus the system (f(X), G) is equicontinuous and therefore there exists
a factor map ⇡ :

 �
G ! f(X). Since ⇡ is an eigenfunction associated to � we conclude that

� 2 EG. ⇤

4. Regularly recurrent Cantor systems with G amenable.

We say that a topological dynamical system (X, G) is a regularly recurrent Cantor system if
it is regularly recurrent and X is a Cantor set. In this section we suppose that (X, G) is a
regularly recurrent Cantor system.

Proposition 4. Let (X, G) be a regularly recurrent Cantor system. There exists a sequence

(Pn = {w.Cn,k : w 2 Dn, 1  k  kn})n�0,

of finite clopen partitions of X, where Dn ✓ G and Cn,k ✓ X is a clopen set, satisfying, for

every n � 0, the following:

(1) Cn+1 ✓ Cn =
Skn

k=1 Cn,k ⇢ X.

(2) There exists a syndetic subgroup �n of G such that Dn is a subset of G containing

exactly one representing element of each class in G/�n and such that TCn(x) = �n,

for all x 2 Cn.

(3) Pn+1 is finer than Pn.

(4) The family of sets {Pn, n � 0} spans the topology of X.

Proof. The idea of the proof (the same as used in [HPS] and [Pu]) is to show that any minimal
Cantor Z-system has a nested sequence of clopen Kakutani-Rohlin partitions.
We recall the algorithm introduced in [Pu] to generate a Kakutani-Rohlin partition finer than
a given one. Let R be a finite clopen partition of X. Suppose that

Q = {w.Cj : w 2 D, 1  j  k},
is another finite clopen partition of X, and that there exists a syndetic subgroup � of G such
that D = {w1, · · · , wl} is a subset of G containing exactly one representing element of each
class in G/�, and that the set of return times of any point in C =

Sk
j=1 Cj to C is equal to �.

The following algorithm produces a partition R ^Q = {w.Bj : w 2 D, 1  j  d} verifying
• R ^Q is finer than R and Q.
• C =

Sd
j=1 Bj

Step 1: let 1  j  k. Consider A1,j,i1 , · · · , A1,j,il1,j
, the sets in R such that

w�1
1 .A1,j,is \ Cj 6= ;, for every 1  s  l1,j .

We denote by B1,1, · · · , B1,k1 , with k1 =
Pk

j=1 l1,j , the elements of the collection

{w�1
1 .A1,j,is \ Cj : 1  s  l1,j , 1  j  k }.

We have that Q1 = {w.B1,j : w 2 D, 1  j  k1} is a clopen finite partition of X. In addition,
for every 1  i  k1 there exist 1  j  k and 1  s  l1,j such that w1.B1,i ✓ A1,j,is ,
w1.B1,i ✓ w1.Cj and

Slj
s=1 B1,i = Cj . In other words, we have obtained a clopen partition

Q1 = {w.B1,j : w 2 D, 1  j  k1}, satisfying
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• For every 1  j  k1, there exist A in R and B in Q such that w1.B1,j is contained
in A \B.

•
Sk1

j=1 B1,j = C.

Now, for 2  n  l, we suppose that the step n � 1 has produced a finite clopen partition
Qn�1 = {w.Bn�1,j : w 2 D, 1  j  kn�1} such that

• For every 1  j  kn�1 and every 1  i  n� 1, there exists A in R and B 2 Q such
that wi.Bn�1,j is contained in A \B.

•
Skn�1

j=1 Bn�1,j = C.
Step n: let 1  j  kn�1. Consider An,j,i1 , · · · , An,j,iln,j

, the sets in R such that

w�1
n .An,j,is \Bn�1,j 6= ;, for every 1  s  ln,j .

We denote by Bn,1, · · · , Bn,kn , with kn =
Pk

j=1 ln,j , the elements in the collection

{w�1
n .Aj,is \Bn�1,j : 1  s  ln,j , 1  j  kn�1 }.

We have Qn = {w.Bn,j : w 2 D, 1  j  kn} is a clopen finite partition of X. In addition,
for every 1  l  kn there exist 1  j  kn�1 and 1  s  ln,j such that Bn,l ✓ Bn�1,j

and Bn,l ✓ w�1
n .An,j,s. This implies that for every 1  i  n � 1, wi.Bn,l ✓ wi.Bn�1,j and

by hypothesis, wi.Bn,l is contained in a subset Ai in R. Since
Skn

l=1 Bn,l =
Skn�1

i=1 Bn�1,i, the
partition Qn satisfies

• For every 1  j  kn and 1  i  n, there exist A in R and B in Q such that wi.Bn,j

is contained in A \B.
•

Skn
j=1 Bn,j = C.

This implies that after the step l, we obtain a partition

R ^Q = Ql = {w.Bl,j : w 2 D, 1  j  kl},

which is finer than R and Q, and which satisfies
Skl

j=1 Bn,j = C.

Now we use this algorithm to prove the Proposition 4 . From Corollary 1, there exists a
decreasing sequence (Cn)n�0 of clopen subsets of X and a decreasing sequence (�n)n�0 of
syndetic subgroups of G such that |

T
n�0 Cn| = 1 and TCn(x) = �n for all x 2 Cn.

For every n � 0, we take a subset Dn of G containing exactly one representing element in
each class of G/�n, and we define

Qn = {w.Cn : w 2 Dn}.

The collection Qn is a finite clopen partition of X.
Since X is a Cantor set, it is always possible to take a sequence (Rn)n�0 of finite clopen
partitions of X which spans its topology.
We construct the desired sequence (Pn)n�0 as follows:

• We set P0 = R0 ^Q0.
• For n > 0. First, we set P 0

n = Rn ^Qn, and then Pn = Pn�1 ^ P 0
n.

From this construction we get

(Pn = {w.Cn,j : w 2 Dn, 1  j  kn})n�0,

a sequence of finite clopen partition of X satisfying, for every n � 0:
(i) Pn is finer than Pn�1 and Rn.
(ii)

Skn
j=1 Cn,j = Cn.
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The condition (i) implies (Pn)n�0 is a nested sequence and that it spans the topology of X.
The condition (ii) implies that this sequence verifies conditions 1. and 2. of Proposition
4. ⇤
Let us recall that a group G is amenable if and only if any continuous G-action on a compact
metric space admits an invariant probability measure. We have the following characterization:
The group G is amenable if and only if it has a Følner sequence, that is, a sequence (Fn)n�0

of finite subsets of G such that for every g 2 G

lim
n!1

|gFn 4 Fn|
|Fn|

= 0.

Let (X, G) be a regularly recurrent Cantor system with G amenable, so this action admits
an invariant probability measure. Consider the sequence of finite clopen partitions of X as
in Proposition 4:

(Pn = {w.Cn,k : w 2 Dn, 1  k  kn})n�0.

Let n � 0. The incidence matrix between Pn and Pn+1 is An 2Mkn⇥kn+1(Z+) defined by

An(i, j) = |{w 2 Dn+1 : w.Cn+1,j ✓ Cn,i}|.

Notice that
Pkn

i=1 An(i, j) = qn,j is the number of w 2 Dn+1 such that w.Cn+1,j ✓ Cn. Since
the set of return times of the points in Cn to Cn is equal to �n, the number qn,j does not
depend on j and it is equal to the number of w 2 Dn+1 which are in �n. So, qn,j = |Dn+1|

|Dn|
for every 1  j  kn+1. Consider the set

4n = {(x1, · · · , xkn) 2 (R+)kn :
knX

i=1

xi =
1

|Dn|
}.

Since, for every 1  j  kn+1,
Pkn

i=1 An(i, j) = |Dn+1|
|Dn| , the map An : 4n+1 ! 4n is well

defined by ordinary matrix multiplication.

Because (Pn)n�0 is a countable collection of clopen sets that spans the topology of X, any
invariant measure defined on this family of sets extends to a unique invariant measure on the
Borel �-algebra of X. So, any invariant measure µ on (Pn)n�0 must verify

µ(Cn,i) =
kn+1X

j=1

An(i, j)µ(Cn+1,j), for every 1  i  kn and n � 0 ,

and it is completely determined by this relation. In other words, we can identify an invariant
measure with an element in the inverse limit lim n(4n, An). In the next Proposition we
provide a su�cient condition for the reversed identification.

Remark 1. From [We], and more explicitely in [Kr], we have the following theorem.

Theorem 3 (Weiss). Let G be a numerable and amenable group and (�n)n2N a nested se-

quence of normal subgroups s.t.

T
n �n is trivial. Then there exist a Følner sequence (Dn)n2N

of G and a subsequence (�'(n))n of (�n)n s.t.:

• Each Dn contains exactly one representing element in each class of G/�'(n)

• Dn ⇢ Dn+1.
•

S
n Dn = G.

We deduce that in the case of an amenable group G with
T

n �n trivial, up to take a subse-
quence, it is possible to take the sequence (Dn)n�0, defined as in Proposition 4, as a Følner
sequence.
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Theorem 4. If G is amenable and the sequence (Dn)n�0 is Følner then MG(X) is a�nely-

homeomorphic to lim n(4n, An).

Proof. Let ((xn,1, · · · , xn,kn))n�0 be an element in lim n(4n, An). It defines a probability
measure on X by setting

µ(u.Cn,i) = xn,i, for every 1  i  kn, u 2 Dn and n � 0.

To show this measure is invariant it is su�cient to show that for every n � 0, 1  k  kn

and v 2 G, µ(v.Cn,k) = µ(Cn,k) = xn,k.

Fix v 2 G and m > n � 0. Consider the sets

J(m,n, k, l) = {w 2 Dm : w.Cm,l ✓ Cn,k},

J1(m,n, k, l) = {w 2 J(m,n, k, l) : vw 2 Dm} and J2(m,n, k, l) = J(m,n, k, l)\J1(m,n, k, l).
We have

v.Cn,k =
km[

l=1

[

w2J(m,n,k,l)

vw.Cm,l,

and then

µ(v.Cn,k) =
kmX

l=1

X

w2J(m,n,k,l)

µ(vw.Cm,l) =
kmX

l=1

X

w2J1(m,n,k,l)

µ(vw.Cm,l)+
kmX

l=1

X

w2J2(m,n,k,l)

µ(vw.Cm,l).

Since µ(u.Cm,l) = µ(Cm,l) for u 2 Dm, we get

µ(v.Cn,k) =
kmX

l=1

|J1(m,n, k, l)|µ(Cm,l) +
kmX

l=1

X

w2J2(m,n,k,l)

µ(vw.Cm,l)

= µ(Cn,k)�
kmX

l=1

X

w2J2(m,n,k,l)

µ(Cm,l) +
kmX

l=1

X

w2J2(m,n,k,l)

µ(vw.Cm,l).

Thus we have

|µ(v.Cn,k)� µ(Cn,k)| 
kmX

l=1

X

w2J2(m,n,k,l)

µ(Cm,l) +
kmX

l=1

X

w2J2(m,n,k,l)

µ(vw.Cm,l).

Because J2(m,n, k, l) ⇢ {w 2 Dm : vw /2 Dm}, we have

|µ(v.Cn,k)� µ(Cn,k)| 
X

{w2Dm: vw/2Dm}

kmX

l=1

µ(Cm,l) +
X

{w2Dm: vw/2Dm}

kmX

l=1

µ(vw.Cm,l)

=
X

{w2Dm: vw/2Dm}

µ

 
km[

l=1

Cm,l

!
+

X

{w2Dm: vw/2Dm}

µ

 
km[

l=1

vw.Cm,l

!
.

Since |{w 2 Dm : vw /2 Dm}|  |v.Dm4Dm| and µ
⇣Skm

l=1 Cm,l

⌘
= µ

⇣Skm
l=1 vw.Cm,l

⌘
= 1

|Dm| ,
we have

|µ(v.Cn,k)� µ(Cn,k)| 
2|v.Dm 4Dm|

|Dm|
.

So, because (Dn)n�0 is Følner, we get µ(v.Cn,k) = µ(Cn,k).
⇤
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5. Semicocycles

The notion of a semicocycle has been extensively used in the theory of one-dimensional
Toeplitz flows (see [Do]). In this section it is not used but we develop it for actions of a
residually finite discrete group G for further utility.
Recall that for a residually finite group G and a decreasing sequence (�i)i�0 of syndetic
subgroups of G with

T
i�0 �i = {e}, the stabilizer of e = (ei)i�0 in the free G-subodometer

 �
G = lim n(G/�n,⇡n) is trivial. This defines an immersion ⌧ of G into

 �
G .

Definition 3. Let

 �
G = lim n(G/�n,⇡n) be a G-subodometer with

T
i�0 �i = {e} and let K

be a compact metric space. A function f : G! K is a semicocycle on
 �
G if it is continuous

with respect ⇥ �
G

, where ⇥ �
G

is the topology on G inherited from

 �
G (we identify ⌧(G) with

G).

The functions f : G ! K may be seen as elements of the topological dynamical system
(KG, G), where KG is endowed with the metrizable product topology, and the left-action of
� 2 G on f = (f(g))g2G 2 KG is the shift action, defined by �.f 2 KG, where �.f(g) = f(g�)
for every g 2 G.
The proofs of Theorems 5 and 6 below follow the same ideas as used in [Do] for G = Z.

Theorem 5. If f 2 KG
is a semicocycle on some subodometer

 �
G then f is a regularly

recurrent point of (KG, G).

Proof. Fix ✏ > 0 and a finite set C in G. The pair (✏, C) determines a basic open set V in the
Tychonov topology. Since f is continuous on G for the topology induced by the odometer �
G , there exists � > 0 such that for every g 2 C and g0 2 G, dist(g, g0) < � (for the metric
inherited from

 �
G) implies d(f(g), f(g0)) < ✏ in K. By definition of a subodometer, there exist

a finite index subgroup � of G and a factor map ⇡ :
 �
G ! G/� such that for any element

w of G/�, ⇡�1(w) is a clopen subset of
 �
G with diameter smaller than �. Furthermore, for

any y 2 ⇡�1(w), T⇡�1(w)(y) is a group conjugated to �. Let us consider now the finite index
normal subgroup H = \g2Gg�g�1. Since � is of finite index in G, there is just a finite
number of groups conjugated to � and the former intersection is a finite intersection. The
group H is a subgroup of any group of the kind T⇡�1(w)(y) with w 2 G/�, y 2 ⇡�1(w). Thus,
dist(n0.g, n0) < � for any g 2 H, n0 2 G, by the normality of H. Hence d(f(n0.g), f(n0)) < ✏
for any g 2 H and n0 2 G. We have proved that the H-orbit of f is contained in V and then
f is a regularly recurrent point of KG. ⇤

Proposition 2 and Theorem 5 imply that (⌦G(f), G) is a minimal almost 1-1 extension of
some free subodometer, where ⌦G(f) represents the orbit closure of a semicocycle f in KG

with a trivial stabilizer under the action of G. Notice that
 �
G needs not to be the maximal

equicontinuous factor of (⌦G(f), G), as we will see later.

Let f 2 KG be a semicocycle on a G-subodometer
 �
G . Since we have identified the group

G with G embedded in
 �
G , it makes sense to define F to be the closure of the graph of f in �

G ⇥K endowed with the product topology, F = {(g, f(g)) : g 2 G} ✓  �G ⇥K. Let F (g) be
the set {k 2 K : (g, k) 2 F} for g 2  �G .
We call Cf the set of g 2  �G such that |F (g)| = 1 and Df =

 �
G \ Cf . Since f is continuous

we have that F (g) = {g} for all g 2 G. Thus Cf is the subset where f can be continuously
extended by f(g) = F (g).
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The semicocycle f is said to be invariant under no rotation if for every h1 6= h2 2
 �
G there

exists a g 2 G such that F (g.h1) 6= F (g.h2).

Theorem 6. Let (X, G) be a minimal topological dynamical system and

 �
G = lim n(G/�n,⇡n)

be a G-subodometer with

T
i�0 �i = {e}. There exists an almost 1-1 factor ⇡ of (X, G) onto

(
 �
G, G) with |⇡�1(e)| = 1 if and only if (X, G) is conjugated to (⌦G(f), G), where f is a

semicocycle on

 �
G , invariant under no rotation.

Proof. Consider the system (⌦G(f), G). By definition, for every x 2 ⌦G(f), there exists
a sequence (gi)i ⇢ G such that for each h 2 G, limi f(hgi) = x(h). Let j 2  �G be an
accumulation point of the sequence (gi)i. We have x(h) 2 F (h.j). By a straightforward
calculation, we check that for each such j, the set {(h.j, x(h))| h 2 G} is a dense subset of
F . Since f is invariant under no rotation, j is determined for any x in an unique way. So we
have proved that if gi.f ! x then gi ! j. The map ⇡ : x 2 ⌦G(f) 7! j 2  �G is a continuous
extension onto ⌦G(f) of the application g.f 7! g. It is straightforward to check that ⇡ is a
factor map that sends f to e. If ⇡(x) = e then x(h) 2 F (h) = {f(h)} and x(h) = f(h) for
any h 2 G. Since the system (⌦G(f), G) is minimal, ⇡ is an almost 1 to 1 factor map.
Conversely, consider a minimal almost 1-1 extension (X, G) of a G-subodometer and ⇡ : X !
 �
G the associated factor map. Consider x 2 X such that ⇡(x) has a singleton fiber by ⇡.
The same holds for all the elements of its G-orbit. The map f : g 2 G 7! ⇡�1(g.⇡(x)) =
g.⇡�1(x) 2 X is continuous for the induced topology on G, it is then a semicocycle. This is
straightforward to check that F (j) = ⇡�1(k) where k 2  �G is the limit point of the sequence
(gi.⇡(x))i with (gi) a sequence of G that converges to j. The set ⇡�1(k) does not depend of
the choice of the sequence (gi). It is then straightforward to show that f is invariant under
no rotation. The conjugating map from (⌦G(f), G) onto (X, G) is the projection onto the
neutral element coordinate: � 7! �(e). By a standard way, we check this application is a
homeomorphism which commutes with the G-action. ⇤
Corollary 5. A topological dynamical system (X, G) is a minimal almost 1-1 extension of a

free odometer (
 �
G, G) if and only if it is conjugated to (⌦G(f), G), where f is a semicocycle

on G, invariant under no rotation.

Proof. For a factor map p : X !  �G and any point x 2 X, by a right multiplication by
p(x)�1, we obtain again a factor map that sends the point x to e. The result follows from
Theorem 6. ⇤

6. G-Toeplitz Arrays

In this section we assume that G is a discrete finitely generated group. For a finite alphabet
⌃ equipped with the discrete topology, we consider the left action of G on ⌃G, continuous
with respect to the product topology, defined for x = (x(g))g2G 2 ⌃G and � 2 G by :

�.x(g) = x(g�) for any g 2 G.

Recall that we denote by ⌦G(x) the closure of the G-orbit of x for this action. In this section,
we consider regularly recurrent systems of the kind (!G(x), G).

For a syndetic group � ✓ G and x = (x(g))g2G 2 ⌃G we define:

Per(x,�,�) = {g 2 G : x(g�) = � for all � 2 �}, � 2 ⌃,

P er(x,�) =
[

�2⌃

Per(x,�,�).
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Clearly for two subgroups �1 and �2, �1 ⇢ �2, we have Per(x, �2,�) ⇢ Per(x,�1,�). When
Per(x,�) 6= ; we say that � is a group of periods of x. Furthermore, Per(x,�) is invariant
under the right multiplication by an element of �. We say that x is a G-Toeplitz array (or
simply a Toeplitz array) if for all g 2 G there exists a syndetic subgroup � ✓ G such that
g 2 Per(x,�).

Proposition 5. The following statements concerning x 2 ⌃G
are equivalent:

(1) x is a Toeplitz array.

(2) There exists a sequence of syndetic subgroups (�n)n�0, such that

�n+1 ⇢ �n for all n � 0 and G = [nPer(x,�n).
(3) x is regularly recurrent.

Proof. Let Dn be the ball of radius n in G centered at the neutral element.
Suppose that x is a Toeplitz array. Since for any two groups Z1, Z2 of periods of x we have
Per(x,Z1) ⇢ Per(x,Z1 \ Z2), for any n � 0, there exists a syndetic subgroup Zn such that
Dn ⇢ Per(x,Zn). Let �0 = Z0 and �n+1 = �n \ Zn. The sequence (�n)n satisfies the
statement (2).
Let (�n)n be a sequence as in statement (2). Let Cn be the set {y 2 ⌃G : y(Dn) = x(Dn)}
for all n � 0, (Cn)n�0 is a fundamental system of clopen neighborhoods of x. Since Dn is
contained in Per(x,�n), the set of return times of x to Cn contains �n which implies that x
is regularly recurrent.
Suppose that x is regularly recurrent. For n � 0 we take �n a syndetic subgroup of G such
that �n ✓ TCn(x). It holds that G is equal to

S
n�0 Per(x,�n), which means that x is a

Toeplitz array. ⇤

A subshift (X, G) is a G-Toeplitz system (or simply a Toeplitz system) if there exists a
Toeplitz array x such that X = ⌦G(x). From Theorem 2 and Proposition 5 we conclude that
the family of minimal subshifts which are almost 1-1 extensions of subodometers coincides
with the family of Toeplitz systems.
In order to know the maximal equicontinuous factor of a given Toeplitz system, we will
introduce the concepts of essential group of periods and period structure.

Definition 4. Let x 2 ⌃G
. A syndetic group � ⇢ G is called an essential group of periods

of x if Per(x,�,�) ✓ Per(g.x, �,�) for every � 2 ⌃ implies that g 2 �.

Lemma 5. If � is an essential group of periods of x then every group of periods �0 satisfying

Per(x,�) ✓ Per(x,�0) is contained in �.

Proof. Let � be an essential group of periods of x. Suppose that �0 is a group of periods such
that Per(x, �) ✓ Per(x,�0). For w 2 Per(x,�,�) and g 2 �0 we have w�g 2 Per(x, �0,�)
for every � 2 �. This implies that x(w�g) = g.x(w�) = � for every � 2 �, which means that
w 2 Per(g.x, �0,�). Because � is essential, we conclude that g 2 � and then �0 ✓ �. ⇤
Remark 2. From Lemma 5 we deduce that the family of the essential groups of periods is
contained in the family of the groups generated by essential periods introduced in [Co] for
the case G = Zd.
Notice that for any x 2 ⌃G, g 2 G and any group � ⇢ G, we have the relation Per(g.x, �,�) =
Per(x, g�1�g,�)g�1 for any � 2 ⌃. This relation will be useful in the following to characterize
the essential groups of periods.

In the following Lemma we show the existence of essential groups of periods.

Lemma 6. Let x 2 ⌃G
. If � ✓ G is a group of periods of x then there exists an essential

group K ✓ G of periods of x such that Per(x,�) ✓ Per(x,K).
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Proof. Let � ✓ G be a group of periods of x and �0 be a syndetic normal subgroup of �. We
denote by �̂0 the collection of shifted groups:
[

g2G

{Hg : H syndetic subgroup of G such that Per(x,�0,�) ✓ Per(x, g�1Hg, �)g�1,8� 2 ⌃}.

Let K be the group generated by the elements of the union of all sets in �̂0. Let w 2
Per(x,�0,�). For any � 2 �0 and any Hg 2 �̂0, w� belongs to Per(x,�0,�) ✓ Per(x, g�1Hg, �)g�1.
This implies that for every hg 2 Hg 2 �̂0 we have w�hg 2 Per(x, g�1Hg, �). Since �0 is a
normal subgroup, we get for any � 2 �0 and any hg 2 Hg 2 �̂0, x(whg�) = �, which means
that whg 2 Per(x, �0,�). Thus we obtain that for any h1g1, . . . , hngn with higi belonging to a
set in �̂0 and w 2 Per(x,�0,�), we have x(wh1g1 . . . hngn) = �. In other words, Per(x,�0,�)
is contained in Per(x,K, �). So, we have Per(x,�,�) ✓ Per(x,�0,�) ✓ Per(x, K, �). If
g 2 G is such that Per(x,K, �) ✓ Per(g.x, K,�) = Per(x, g�1Kg,�)g�1,8� 2 ⌃, then Kg
belongs to �̂0, which implies that g is in K. ⇤
Corollary 6. Let x 2 ⌃G

be a Toeplitz array. There exists a sequence (�n)n�0 of essential

group of periods of x such that �n+1 ✓ �n and

S
n�0 Per(x,�n) = G.

Proof. From Proposition 5 (2) we conclude there exists a decreasing sequence (�0n)n�0 of
syndetic groups of periods of x such that

S
n�0 Per(x,�0n) = G. We set �0 an essential group

of periods of x such that Per(x,�00) ✓ Per(x,�0). For n > 0 we set �00n = �0n\�n�1 which is a
syndetic subgroup of G, and since Per(x,�n�1) and Per(x,�0n) are contained in Per(x,�00n),
�00n is a group of periods of x. Thus, by Lemma 6, there exists an essential group of periods
�n, such that Per(x,�n�1) ✓ Per(x,�00n) ✓ Per(x,�n). Since �n�1 is an essential group
of periods, from Lemma 5 we get �n ✓ �n�1. Because

S
n�0 Per(x, �0n) = G, we deduceS

n�0 Per(x,�n) = G. ⇤
Definition 5. A sequence of groups as in Corollary 6 is called a period structure of x.

In the sequel, we will show that from a period structure (�n)n�0 of a G-Toeplitz array x
it is possible to construct a sequence of nested finite clopen partitions of ⌦G(x). From this
sequence of partitions it will be easy to define an almost 1-1 factor map between the Toeplitz
system (⌦G(x), G) and the odometer

 �
G = lim n(G/�n,⇡n).

Let x 2 ⌃G be a Toeplitz array, let y 2 ⌦G(x) and let � ✓ G be group of periods of y. We
define the set:

C�(y) = {x0 2 ⌦G(x) : Per(x0,�,�) = Per(y, �,�), 8 � 2 ⌃}.

Lemma 7. C�(y) = �.C�(y) for every � 2 �.

For every x0 2 C�(y), we have ⌦�(x0) ✓ C�(y).

Proof. Let x0 2 �.C�(y). There exists x00 2 C�(y) such that x0 = �.x00. If g 2 Per(x0,�,�)
then x0(g�0) = � for every �0 2 �. In particular, we have

� = x0(g�0��1) = ��1.x0(g�0) = x00(g�0), 8�0 2 �,

which implies Per(x0,�,�) ✓ Per(x00,�,�) = Per(y, �,�). On the other hand, if g 2
Per(x00,�,�) then

� = x00(g�0) = x00(g�0�) = �.x00(g�0) = x0(g�0), 8�0 2 �,

which implies that Per(y, �,�) ✓ Per(x0,�,�). Thus we obtain that �.C�(y) ✓ C�(y). Since
this is true also for ��1, we conclude that �.C�(y) = C�(y).
To show the second point, let us first consider x0 2 ⌦�(y). It is straightforward to show
that for any �, Per(y, �,�) ✓ Per(x,�,�). Since ⌦�(y) is a minimal �-invariant closed
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set (Lemma 3), y belongs to ⌦�(x0) and therefore Per(x0,�,�) = Per(y, �,�). So we have
⌦�(y) ✓ C�(y). To conclude, notice that C�(y) = C�(x0) for any x0 2 C�(y), so we get
⌦�(x0) ✓ C�(x0) for any x0 2 C�(y). ⇤
We will use the following convention: for a �-periodic subset C of ⌦G(x), i.e. such that
w.C = w0.C whenever w�1w0 2 �, we will write v.C instead of w.C, where v is the projection
of w to G/�.

Proposition 6. Let x 2 ⌃G
be a Toeplitz array and let y 2 ⌦G(x). If � ✓ G is an essential

group of periods of y then ⌦�(y) = C�(y) and {w.C�(y)}w2G/� is a clopen partition of ⌦G(x).

Proof. By Lemma 7, we have � ✓ TC�(x0) for every x0 2 C�(y). In the sequel, we will show
that for an essential group of periods �, we have TC�(y)(x0) = � for every x0 2 C�(y).
Suppose that g 2 G satisfies g.y 2 C�(y). This implies Per(g.y,�,�) = Per(y, �,�) for every
� 2 ⌃. Since � is an essential group of periods of y, we obtain g 2 � and TC�(y)(y) = �.
By Lemma 3, for any x0 2 ⌦G(x), the set ⌦�(x0) is a minimal �-invariant set, hence by
syndicity of � and by minimality of the G-action, ⌦G(x) is a finite and disjoint union of
minimal �-invariant sets. So the sets ⌦�(x0) are clopen sets and by Lemma 7, C�(y) is a
finite union of clopen sets. By minimality of the G-action, it is straightforward to check that
TC�(y)(x0) = � for every x0 2 C�(y). Thus we get that {w.C�(y)}w2G/� is a collection of
disjoint sets. Moreover, this collection is a partition of ⌦G(x) because w.⌦�(y) ✓ w.C�(y)
for every w 2 G/� and {w.⌦�(y)}w2G/� is a covering of ⌦G(x). This also implies that
⌦�(x) = C�(x). ⇤
Proposition 7. Let x 2 ⌃G

be a Toeplitz array. If (�n)n�0 is a period structure of x then

the subodometer

 �
G = lim n(G/�n,⇡n) is the maximal equicontinuous factor of (⌦G(x), G).

Proof. By Proposition 6, if (�n)�0 is period structure of the Toeplitz array x, then ({Cg.�n(x) :
g 2 G/�n})n�0 is a sequence of nested clopen partitions of ⌦G(x). This implies that the
function fn : ⌦G(x)! G/�n given by fn(y) = g if and only if y 2 g.C�n(x) is a well defined
continuous function, y 2 ⌦G(x), n � 0. The function ⇡ : ⌦G(x) !  �G given by ⇡ = (fn)n�0

is a factor map. Since, by definition
T

n�0 C�n(x) = {x}, we have that ⇡�1{e} = {x} and
then ⇡ is an almost 1-1 factor map. ⇤
Theorem 7. For every subodometer

 �
G there exists a Toeplitz array x 2 {0, 1}G

such that

 �
G is the maximal equicontinuous factor of (⌦G(x), G).

Proof. Let
 �
G = lim n(G/�n,⇡n) be a subodometer with �0 = G. We distinguish two cases:

Case 1. There exists m � 0 such that �n = �m for all n � m. In this case
 �
G is the finite group

G/�m and then every minimal almost 1-1 extension will be conjugate to
 �
G . For example,

x 2 {0, 1}G defined by x(v) = 0 for all v 2 �m and x(v) = 1 if not, provides a Toeplitz
sequence x such that

 �
G is the maximal equicontinuous factor of the system associated to x.

Case 2. For every m � 0 there exists n > m such that �n 6= �m. In this case we can take a
subsequence (�n)n�0 such that �n+1 6= �n and [�n : �n+1] � 2 for all n � 0. By Proposition
2,
 �
G is conjugate to the subodometer obtained from this sequence. In order to construct the

Toeplitz array x we will consider a sequence (Dn)n�0 of compact subsets of G such that:
• for each n, Dn is a fundamental domain of �n (i.e. Dn contains an unique element of

each class of G/�n). The set D0 is the singelton set {e}.
• For each n, Dn ⇢ Dn+1 and Dn+1 =

F
k2Kn

Dn.k for some finite set Kn ⇢ G con-
taining the neutral element e of G. By assumption, the cardinal of Kn is bigger than
2.
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•
S

g2\n�n

S
n�0 Dn.g = G.

We define now a sequence of subsets of G (Sn)n�0 by induction. Let S0 be the singleton {e}.
Let v1 be an element of D1 distinct from e and let S1 = {v1}. For n > 1, let Sn be the set
vn�1.�n�1 \ (Dn \ Dn�1) and let vn be a point in Sn. We define then x 2 {0, 1}G by :

(2) x(w) =
⇢

0 if w belongs to [n�0S2n.�2n+1,
1 else.

Notice that x(w) = 1 for the element w of [n�0S2n+1.�2n+2. Since
[

j2{j, 02j+1n}

S2j�2j+1

✓ Per(x,�n, 0) and (Dn�1 \
[

j2{j, 02j+1n}

S2j�2j+1) ✓ Per(x,�n, 1) for any n � 1, it holds that

Dn�1 ✓ Per(x,�n), and for any g 2
T

n �n, we have also Dn�1.g ✓ Per(x,�n). Thus, we
get G =

S
n�0 Per(x,�n) and x is a Toeplitz array. To conclude that

 �
G is the maximal

equicontinuous factor of the system associated to x, by Proposition 7, it is enough to show
that (�n)n�0 is a period structure of x.

Let us prove by induction on n that �n is an essential group of periods of x. For n = 0, �0 = G
and this is obviously true. Suppose now that n > 0 and that �n�1 is an essential group of
periods. Let g 2 G be such that Per(x, �n,�) ⇢ Per(g.x, �n,�), for all � of {0, 1}. Since �n ⇢
�n�1, we have Per(x,�n�1,�) ⇢ Per(x,�n,�). Let �n�1 in �n�1, there exist � 2 Dn and
�n 2 �n such that �n�1 = ��n. For w in Per(x, �n�1,�), we have w�n�1��1

n = w� belongs to
Per(x,�n�1,�) ⇢ Per(g.x, �n,�). So we have � = g.x(w�) = g.x(w�.�n) = g.x(w.�n�1) and
therefore w 2 Per(g.x, �n�1,�) for all w 2 Per(x,�n�1,�). By the hypothesis of induction
we get that g belongs to �n�1.
By the definition of x, the element vn�1 belongs to Per(x, �n,�) with � = x(vn�1), so
x(vn�1.g) = �. Since g 2 �n�1 and by the construction of x, g belongs to �n and so �n is an
essential group of periods of x. ⇤

Remark 3. It is interesting to note that when
 �
G is a free odometer, the action of G on

 �
G

is free and minimal. The G-Toeplitz array x, constructed as above, is such that (⌦G(x), G)
is an almost 1-1 extension of the system (

 �
G, G), so the action of G on ⌦G(x) is also free and

minimal. All the elements of ⌦G(x) are not stable for the G-action.
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INVARIANT MEASURES AND ORBIT EQUIVALENCE FOR

GENERALIZED TOEPLITZ SUBSHIFTS.

MARÍA ISABEL CORTEZ, SAMUEL PETITE

Abstract. We show that for every metrizable Choquet simplex K and for every
group G, which is infinite, countable, amenable and residually finite, there exists
a Toeplitz G-subshift whose set of shift-invariant probability measures is a�ne
homeomorphic to K. Furthermore, we get that for every integer d > 1 and every
Toeplitz flow (X, T ), there exists a Toeplitz Zd-subshift which is topologically
orbit equivalent to (X, T ).

1. Introduction

The Toeplitz subshifts are a rich class of symbolic systems introduced by Jacobs and
Keane in [21], in the context of Z-actions. Since then, they have been extensively studied
and used to provide series of examples with interesting dynamical properties (see for
example [7, 8, 17, 27]). Generalizations of Toeplitz subshifts and some of their properties
to more general group actions can be found in [3, 5, 9, 22, 23]. For instance, in [5] Toeplitz
subshifts are characterized as the minimal symbolic almost 1-1 extensions of odometers
(see [13] for this result in the context of Z-actions). In this paper, we give an explicit
construction that generalizes the result of Downarowicz in [7], to Toeplitz subshifts given
by actions of groups which are amenable, countable and residually finite. The following
is our main result.

Theorem A. Let G be an infinite, countable, amenable and residually finite group. For

every metrizable Choquet simplex K and any G-odometer O, there exists a Toeplitz G-

subshift whose set of invariant probability measures is a�ne homeomorphic to K and

such that it is an almost 1-1 extension of O.

Typical examples of the groups G involved in this theorem are the finitely generated
subgroups of upper triangular matrices in GL(n, C).
The strategy of Downarowicz in [7], is to construct an a�ne homeomorphism between an
arbitrary metrizable Choquet simplex K and a subset of the space of invariant probability
measures of the full shift {0, 1}Z. Then he shows it coincides with the space of invariant
probability measures of a Toeplitz subshift Y ✓ {0, 1}Z. To do this, he uses the structure
of metric space of the space of measures. In this paper we consider the representation of
K as an inverse limit of finite dimensional simplices with linear transition maps (M

n

)
n

.
Then we use this transition maps to construct Toeplitz G-subshifts having sequences of
Kakutani-Rokhlin partitions with (M

n

)
n

as the associated sequence of incidence matrices.
Our approach is closer to the strategy used in [17] by Gjerde and Johansen, and deals
with the combinatorics of Følner sequences.
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We obtain, furthermore some consequences in the orbit equivalence problem. Two mini-
mal Cantor systems are (topologically) orbit equivalent, if there exists an orbit-preserving
homeomorphism between their phase spaces. Giordano, Matui, Putnam and Skau show
in [15] that every minimal Zd-action on the Cantor set is orbit equivalent to a minimal
Z-action. It is still unknown if every minimal action of a countable amenable group on
the Cantor set is orbit equivalent to a Z-action. Nevertheless it is clear that the result
in [15] can not be extended to any countable group. For instance, by using the notion
of cost, Gaboriau [14] proves that if two free actions of free groups F

n

and F
p

are (even
measurably) orbit equivalent then their rank are the same i.e. n = p. Another problem
is to know which are the Z-orbit equivalence classes that the Zd-actions (or more general
group actions) realize. We give a partial answer for this question. As a consequence of
the proof of Theorem A we obtain the following result.

Theorem B. Let (X, �|
X

, Z) be a Toeplitz Z-subshift. Then for every d � 1 there exists

a Toeplitz Zd

-subshift which is orbit equivalent to (X, �|
X

, Z).

This paper is organized as follows. Section 2 is devoted to introduce the basic definitions.
For an amenable discrete group G and a decreasing sequence of finite index subgroups of
G with trivial intersection, we construct in Section 3 an associated sequence (F

n

)
n�0 of

fundamental domains, so that it is Følner and each F
n+1 is tilable by translated copies

of F
n

. In Section 4 we construct Kakutani-Rokhlin partitions for generalized Toeplitz
subshifts, and in Section 5 we use the fundamental domains introduced in Section 3
to construct Toeplitz subshifts having sequences of Kakutani-Rokhlin partitions with a
prescribed sequence of incidence matrices. This construction improves and generalizes
that one given in [4] for Zd-actions, and moreover, allows to characterize the associated
ordered group with unit. In Section 6 we give a characterization of any Choquet simplex
as an inverse limit defined by sequences of matrices that we use in Section 5 (they are
called ”managed” sequences). Finally, in Section 7 we use the previous results to prove
Theorems A and B.

2. Basic definitions and background

In this article, by a topological dynamical system we mean a triple (X, T, G), where T is
a continuous left action of a countable group G on the compact metric space (X, d). For
every g 2 G, we denote T g the homeomorphism that induces the action of g on X. The
unit element of G will be called e. The system (X, T, G) or the action T is minimal if
for every x 2 X the orbit o

T

(x) = {T g(x) : g 2 G} is dense in X. We say that (X, T, G)
is a minimal Cantor system or a minimal Cantor G-system if (X, T, G) is a minimal
topological dynamical system with X a Cantor set.
An invariant probability measure of the topological dynamical system (X, T, G) is a prob-
ability Borel measure µ such that µ(T g(A)) = µ(A), for every Borel set A. We denote
by M(X, T, G) the space of invariant probability measures of (X, T, G).

2.1. Subshifts. For every g 2 G, denote L
g

: G ! G the left multiplication by g 2 G.
That is, L

g

(h) = gh for every h 2 G. Let ⌃ be a finite alphabet. ⌃G denotes the set of all
the functions x : G ! ⌃. The (left) shift action � of G on ⌃G is given by �g(x) = x�L

g

�1 ,
for every g 2 G. Thus �g(x)(h) = x(g�1h). We consider ⌃ endowed with the discrete
topology and ⌃G with the product topology. Thus every �g is a homeomorphism of the
Cantor set ⌃G. The topological dynamical system (⌃G, �, G) is called the full G-shift on
⌃. For every finite subset D of G and x 2 ⌃G, we denote x|

D

2 ⌃D the restriction of x
to D. For F 2 ⌃D (F is a function from D to ⌃) we denote by [F ] the set of all x 2 ⌃D

such that x|
D

= F . The set [F ] is called the cylinder defined by F , and it is a clopen set
(both open and closed). The collection of all the sets [F ] is a base of the topology of ⌃G.
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Definition 1. A subshift or G-subshift of ⌃G

is a closed subset X of ⌃G

which is

invariant by the shift action.

The topological dynamical system (X, �|
X

, G) is also called subshift or G-subshift. See
[2] for details.

2.1.1. Toeplitz G-subshifts. An element x 2 ⌃G is a Toeplitz sequence, if for every g 2 G
there exists a finite index subgroup � of G such that ��(x)(g) = x(��1g) = x(g), for
every � 2 �.
A subshift X ✓ ⌃G is a Toeplitz subshift or Toeplitz G-subshift if there exists a Toeplitz
sequence x 2 ⌃G such that X = o

�

(x). It is shown in [5], [22] and [23] that a Toeplitz
sequence x is regularly recurrent, i.e. for every neighborhood V of x there exists a finite
index subgroup � of G such that ��(x) 2 V , for every � 2 �. This condition is stronger
than almost periodicity, which implies minimality of the closure of the orbit of x (see [1]
for details about almost periodicity).

2.2. Inverse and direct limit. Given a sequence of continuous maps f
n

: X
n+1 !

X
n

, n � 0 on topological spaces X
n

, we denote the associated inverse limit by

lim
 n

(X
n

, f
n

) = X0
oo

f0
X1

oo

f1
X2

oo

f2 · · ·

:= {(x
n

)
n

; x
n

2 X
n

, x
n

= f
n

(x
n+1) 8n � 0}.

Let us recall that this space is compact when all the spaces X
n

are compact and the
inverse limit spaces associated to any increasing subsequences (n

i

)
i

of indices are home-
omorphic.
In a similar way, we denote for a sequence of maps g

n

: X
n

! X
n+1, n � 0 the associated

direct limit by

lim
!n

(X
n

, g
n

) = X0
g0

// X1
g1

// X2
g2

// · · ·

:= {(x, n), x 2 X
n

, n � 0}/ ⇠,

where two elements are equivalent (x, n) ⇠ (y, m) if and only if there exists k � m, n
such that g

k

� . . . � g
n

(x) = g
k

� . . . � g
m

(x). We denote by [x, n] the equivalence class
of (x, n). When the maps g

n

are homomorphisms on groups X
n

, then the direct limit
inherits a group structure.

2.3. Odometers. A group G is said to be residually finite if there exists a nested se-
quence (�

n

)
n�0 of finite index normal subgroups such that

T
n�0 �

n

is trivial. For every
n � 0, there exists then a canonical projection ⇡

n

: G/�
n+1 ! G/�

n

. The G-odometer

or adding machine O associated to the sequence (�
n

)
n

is the inverse limit

O := lim
 n

(G/�
n

, ⇡
n

) = G/�0
oo

⇡0
G/�1

oo

⇡1
G/�2

oo

⇡2 · · · .

We refer to [5] for the basic properties of such a space. Let us recall that it inherits
a group structure through the quotient groups G/�

n

and it contains G as a subgroup
thanks the injection G 3 g 7! ([g]

n

) 2 O, where [g]
n

denotes the class of g in G/�
n

.
Thus the group G acts by left multiplication on O. When there is no confusion, we call
this action also odometer. It is equicontiuous, minimal and the left Haar measure is the
unique invariant probability measure. Notice that this action is free: the stabilizer of
any point is trivial. The Toeplitz G-subshifts are characterized as the subshifts that are
minimal almost 1-1 extensions of G-odometers [5].



4 MARÍA ISABEL CORTEZ, SAMUEL PETITE

2.4. Ordered groups. For more details about ordered groups and dimension groups we
refer to [12] and [18].
An ordered group is a pair (H, H+), such that H is a countable abelian group and H+ is
a subset of H verifying (H+) + (H+) ✓ H+, (H+) + (�H+) = H and (H+) \ (�H+) =
{0} (we use 0 as the unit of H when H is abelian). An ordered group (H, H+) is a
dimension group if for every n 2 Z+ there exist k

n

� 1 and a positive homomorphism
A

n

: Zkn ! Zkn+1 , such that (H, H+) is isomorphic to (J, J+), where J is the direct
limit

lim
�!n

(Zkn , A
n

) = Zk0
A0

// Zk1
A1

// Zk2
A2

// · · · ,

and J+ = {[v, n] : a 2 (Z+)kn , n 2 Z+}. The dimension group is simple if the matrices
A

n

can be chosen strictly positive.
An order unit in the ordered group (H, H+) is an element u 2 H+ such that for every
g 2 H there exists n 2 Z+ such that nu � g 2 H+. If (H, H+) is a simple dimension
group then each element in H+ \ {0} is an order unit. A unital ordered group is a triple
(H, H+, u) such that (H, H+) is an ordered group and u is an order unit. An isomorphism
between two unital ordered groups (H, H+, u) and (J, J+, v) is an isomorphism � : H ! J
such that �(H+) = J+ and �(u) = v. A state of the unital ordered group (H, H+, u)
is a homomorphism � : H ! R so that �(u) = 1 and �(H+) ✓ R+. The infinitesimal

subgroup of a simple dimension group with unit (H, H+, u) is

inf(H) = {a 2 H : �(a) = 0 for all state �}.

It is not di�cult to show that inf(H) does not depend on the order unit.
The quotient group H/inf(H) of a simple dimension group (H, H+) is also a simple
dimension group with positive cone

(H/inf(H))+ = {[a] : a 2 H+}.

The next result is well-known. The proof is left to the reader.

Lemma 1. Let (H, H+) be a simple dimension group equals to the direct limit

lim
!n

(Zkn , M
n

) = Zk0
M0

// Zk1
M1

// Zk2
M2

// · · · .

Then for every z = (z
n

)
n�0 in the inverse limit

lim
 n

((R+)kn , MT

n

) = (R+)k0 oo

M

T
0

(R+)k1 oo

M

T
1

(R+)k2 oo

M

T
2 · · · ,

the function �
z

: H ! R given by �([n, v]) =< v, z
n

>, for every [n, v] 2 H, is well

defined and is a homomorphism of groups such that �
z

(H+) ✓ R+
. Conversely, for

every group homomorphism � : H ! R such that �(H+) ✓ R+
, there exists a unique

z 2 lim n

((R+)kn , MT

n

) such that � = �
z

.

The following lemma is a preparatory lemma to prove Theorem A and B.

Lemma 2. Let (H, H+, u) be a simple dimension group with unit given by the following

direct limit

lim
!n

(Zkn , A
n

) = Z
A0

// Zk1
A1

// Zk2
A2

// · · · ,

with unit u = [1, 0]. Suppose that A
n

> 0 for every n � 0. Then (H, H+, u) is isomorphic

to

Z
Ã0

// Zk1+1
Ã1

// Zk2+1
Ã2

// · · · ,
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where Ã0 is the (k1 + 1)⇥ 1-dimensional matrix given by

Ã0 =

0

BBBBB@

A0(1, ·)
A0(1, ·)
A0(2, ·)

.

.

.

A0(k1, ·)

1

CCCCCA
,

and Ã
n

is the (k
n+1 + 1)⇥ (k

n

+ 1) dimensional matix given by

Ã
n

=

0

BBBBB@

1 A
n

(1, 1)� 1 A
n

(1, 2) · · · A
n

(1, k
n

)
1 A

n

(1, 1)� 1 A
n

(1, 2) · · · A
n

(1, k
n

)
1 A

n

(2, 1)� 1 A
n

(2, 2) · · · A
n

(2, k
n

)
.

.

.

.

.

.

.

.

.

.

.

.

1 A
n

(k
n+1, 1)� 1 A

n

(k
n+1, 2) · · · A

n

(k
n+1, kn

)

1

CCCCCA
, for every n � 0.

Proof. For n � 1, consider M
n

the (k
n

+ 1)⇥ k
n

-dimensional matrix given by

M
n

(·, k) =

⇢
~e

n,1 + ~e
n,2 if k = 1

~e
k+1 if 3  k  k

n

,

where ~e
n,1, · · · ,~e

n,kn+1 are the canonical vectors in Rkn+1. Let B
n

be the k
n+1⇥(k

n

+1)-
dimensional matrix defined by

B
n

(i, j) =

8
<

:

1 if j = 1
A

n

(i, 1)� 1 if j = 2
A

n

(i, j � 1) if 3  j  k
n

+ 1

We have A
n

= B
n

M
n

and Ã
n

= M
n+1Bn

for every n � 1, and Ã0 = M1A0.
Thus the Bratteli diagrams defined by the sequences of matrices (A

n

)
n�0 and (Ã

n

)
n�0

are contractions of the same diagram. This shows that the respective dimension groups
with unit are isomorphic (see [16] or [10]). ⇤

2.5. Associated ordered group and orbit equivalence. Let (X, T, G) be a topolog-
ical dynamical system such that X is a Cantor set and T is minimal. The ordered group
associated to (X, T, G) is the unital ordered group

G(X, T, G) = (D
m

(X, T, G), D
m

(X, T, G)+, [1]),

where

D
m

(X, T, G) = C(X, Z)/{f 2 C(X, Z) :

Z
fdµ = 0, 8µ 2M(X, T, G)},

D
m

(X, T, G)+ = {[f ] : f � 0},
and [1] 2 D

m

(X, T, G) is the class of the constant function 1.

Two topological dynamical systems (X1, T1, G1) and (X2, T2, G2) are (topologically) or-

bit equivalent if there exists a homeomorphism F : X1 ! X2 such that F (o
T1(x)) =

o
T2(F (x)) for every x 2 X1.

In [15] the authors show the following algebraic caracterization of orbit equivalence.

Theorem 1 ([15], Theorem 2.5). Let (X, T, Zd) and (X 0, T 0, Zm) be two minimal actions

on the Cantor set. Then they are orbit equivalent if and only if

G(X, T, Zd) ' G(X 0, T 0, Zm)

as isomorphism of unital ordered group.
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3. Suitable Følner sequences.

Let G be a residually finite group, and let (�
n

)
n�0 be a nested sequence of finite index

normal subgroup of G such that
T

n�0 �
n

= {e}.
For technical reasons it is important to notice that since the groups �

n

are normal, we
have g�

n

= �
n

g, for every g 2 G.
To construct a Toeplitz G-subshift that is an almost 1-1 extension of the odometer defined
by the sequence (�

n

)
n

, we need a “suitable” sequence (F
n

)
n

of fundamental domains of
G/�

n

. More precisely, each F
n+1 has to be tileable by translated copies of F

n

. To control
the simplex of invariant measures of the subshift, we need in addition the sequence (F

n

)
n

to be Følner. We did not find in the specialized litterature a result ensuring these
conditions.

3.1. Suitable sequence of fundamental domains. Let � be a normal subgroup of
G. By a fundamental domain of G/�, we mean a subset D ✓ G containing exactly one
representative element of each equivalence class in G/�.

Lemma 3. Let (D
n

)
n�0 be an increasing sequence of finite subsets of G such that for

every n � 0, e 2 D
n

and D
n

is a fundamental domain of G/�
n

. Let (n
i

)
i�0 ✓ Z+

be an

increasing sequence. Consider (F
i

)
i�0 defined by F0 = D

n0 and

F
i

=
[

v2Dni\�ni�1

vF
i�1 for every i � 1.

Then for every i � 0 we have the following:

(1) F
i

✓ F
i+1 and F

i

is a fundamental domain of G/�
ni .

(2) F
i+1 =

S
v2Fi+1\�ni

vF
i

.

Proof. Since e 2 D
ni , the sequence (F

i

)
i�0 is increasing.

F0 = D
n0 is a fundamental domain of G/�

n0 . We will prove by induction on i that F
i

is a fundamental domain of G/�
ni . Let i > 0 and suppose that F

i�1 is a fundamental
domain of G/�

ni�1 .
Let v 2 D

ni . There exist then u 2 F
i�1 and w 2 �

ni�1 such that v = wu. Let z 2 D
ni

and � 2 �
ni be such that w = �z. Since z 2 �

ni�1 \D
ni and v = �zu, we conclude that

F
i

contains one representing element of each class in G/�
ni .

Let w1, w2 2 F
i

be such that there exists � 2 �
ni verifying w1 = �w2. By definition,

w1 = v1u1 and w2 = v2u2, for some u1, u2 2 F
i�1 and v1, v2 2 D

ni \�
ni�1 . This implies

that u1 and u2 are in the same class of G/�
ni�1 . Since F

i�1 is a fundamental domain,
we have u1 = u2. From this we get v1 = �v2, which implies that v1 = v2. Thus we
deduce that F

i

contains at most one representing element of each class in G/�
ni . This

shows that F
i

is a fundamental domain of G/�
ni .

To show that D
ni \ �

ni�1 ✓ F
i

\ �
ni�1 , observe that the definition of F

i

implies that
for every v 2 D

ni \ �
ni�1 and u 2 F

i�1, vu 2 F
i

. Then for u = e 2 F
i�1 we get

v = ve 2 F
i

. Now suppose that v 2 F
i

\ �
ni�1 ✓ F

i

. The definition of F
i

implies there
exist u 2 F

i�1 and � 2 D
ni \ �

ni�1 such that v = �u. Since v and � are in �
ni�1 , we

get that u 2 �
ni�1 \ F

i�1. This implies that u = e because �
ni�1 \ F

i�1 = {e}. ⇤
In this paper, by Følner sequences we mean right Følner sequences. That is, a sequence
(F

n

)
n�0 of nonempty finite sets of G is a Følner sequence if for every g 2 G

lim
n!1

|F
n

g4F
n

|
|F

n

| = 0.

Observe that (F
n

)
n�0 is a right Følner sequence if and only if (F�1

n

)
n�0 is a left Følner

sequence.
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Lemma 4. Suppose that G is amenable. There exists an increasing sequence (n
i

)
i�0 ✓

Z+
and a Følner sequence (F

i

)
i2Z+ , such that

i) F
i

✓ F
i+1 and F

i

is a fundamental domain of G/�
ni , for every i � 0.

ii) G =
S

i�0 F
i

.
iii) F

i+1 =
S

v2Fi+1\�ni
vF

i

, for every i � 0.

Proof. From [26, Theorem 1] (see [22, Proposition 4.1] for a proof in our context), there
exists an increasing sequence (m

i

)
i�0 ✓ Z+ and a Følner sequence (D

i

)
i2Z+ such that

for every i � 0, D
i

✓ D
i+1, D

i

is a fundamental domain of G/�
mi , and G =

S
i�0 D

i

.
Up to take subsequences, we can assume that D

i

is a fundamental domain of G/�
i

, for
every i � 0, and that e 2 D0.
We will construct the sequences (n

i

)
i�0 and (F

n

)
n�0 as follows:

Step 0: We set n0 = 0 and F0 = D0.

Step i: Let i > 0. We assume that we have chosen n
j

and F
j

for every 0  j < i. We
take n

i

> n
i�1 in order that the following two conditions are verified:

(1)
|D

nig M D
ni |

|D
ni |

<
1

i|F
i�1|

, for every g 2 F
i�1.

(2) D
ni�1 ✓

[

v2Dni\�ni�1

vF
i�1.

Such integer n
i

exists because (D
n

)
n�0 is a Følner sequence and F

i�1 is a fundamental
domain of G/�

ni�1 (then G =
S

v2�ni�1
vF

i�1).

We define

F
i

=
[

v2Dni\�ni�1

vF
i�1.

Lemma 3 ensures that (F
i

)
i�0 verifies i) and iii) of the lemma. The equation (2) implies

that (F
i

)
i�0 verifies ii) of the lemma.

It remains to show that (F
i

)
i�0 is a Følner sequence.

By definition of F
i

we have

(F
i

\ D
ni) ✓

[

g2Fi�1

(D
nig \ D

ni) .

Then by equation (1) we get

|F
i

\ D
ni |

|D
ni |


X

g2Fi�1

„
|D

nig \ D
ni |

|D
ni |

«


„
|F

i�1|
1

i|F
i�1|

«
=

1
i
.

Since

(|F
i

\D
ni | + |D

ni \ F
i

|) = |D
ni | = |F

i

| = |F
i

\D
ni | + |F

i

\ D
ni |,

we obtain
|D

ni \ F
i

|
|D

ni |
 1

i
.
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Let g 2 G. Since

F
i

g \ F
i

= [(F
i

\D
ni)g \ F

i

]
[

[(F
i

\ D
ni)g \ F

i

]

✓ [(F
i

\D
ni)g \ F

i

]
[

(F
i

\ D
ni)g

✓ [D
nig \ (F

i

\D
ni)]

[
(F

i

\ D
ni)g,

we have

(3)
|F

i

g \ F
i

|
|F

i

|  |D
nig \ (F

i

\D
ni)|

|D
ni |

+
|(F

i

\ D
ni)g|

|D
ni |

 |D
nig \ (F

i

\D
ni)|

|D
ni |

+
1
i
.

On the other hand, the relation

D
nig \ D

ni = D
nig \ [(D

ni \ F
i

) [ (D
ni \ F

i

)] = [D
nig \ (D

ni \ F
i

)] \ (D
ni \ F

i

),

implies that

D
nig \ (F

i

\D
ni) = [(D

nig \ (F
i

\D
ni)) \ (D

ni \ F
i

)]
[

[(D
nig \ (F

i

\D
ni)) \ (D

ni \ F
i

)]

= [(D
nig \ (F

i

\D
ni)) \ (D

ni \ F
i

)]
[

[D
nig \ D

ni ]

✓ (D
ni \ F

i

)
[

(D
nig \ D

ni),

which ensures that

(4)
|D

nig \ (F
i

\D
ni)|

|D
ni |

 |D
ni \ F

i

|
|D

ni |
+

|D
nig \ D

ni |
|D

ni |
.

From equations (3) and (4), we obtain

|F
i

g \ F
i

|
|F

i

|  2
i

+
|D

nig \ D
ni |

|D
ni |

,

which implies

(5) lim
i!1

|F
i

g \ F
i

|
|F

i

| = 0.

In a similar way we deduce that

F
i

\ F
i

g ✓ [D
ni \ (F

i

\D
ni)g]

[
(F

i

\ D
ni),

D
ni \ D

nig = [D
ni \ (D

ni \ F
i

)g] \ (D
ni \ F

i

),

and
D

ni \ (F
i

\D
ni)g ✓ (D

ni \ F
i

)
[

(D
ni \ D

nig).

Combining the last three equations we get

|F
i

\ F
i

g|
|F

i

|  2
i

+
|D

ni \ D
nig|

|D
ni |

,

which implies

(6) lim
i!1

|F
i

\ F
i

g|
|F

i

| = 0.

Equations (5) and (6) imply that (F
i

)
i�0 is Følner. ⇤

The following result is a direct consequence of Lemma 4.

Lemma 5. Let G be an amenable residually finite group and let (�
n

)
n�0 be a decreasing

sequence of finite index normal subgroups of G such that

T
n�0 �

n

= {e}. There exists

an increasing sequence (n
i

)
i�0 ✓ Z+

and a Følner sequence (F
i

)
i�0 of G such that
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(1) {e} ✓ F
i

✓ F
i+1 and F

i

is a fundamental domain of G/�
ni , for every i � 0.

(2) G =
S

i�0 F
i

.
(3) F

j

=
S

v2Fj\�ni
vF

i

, for every j > i � 0.

Proof. The existence of the sequence of subgroups of G and the Følner sequence verifying
(1), (2) and (3) for j = i+1 is direct from Lemma 4. Using induction, it is straightforward
to show (3) for every j > i � 0. ⇤

4. Kakutani-Rokhlin partitions for generalized Toeplitz subshifts

In this section G is an amenable, countable, and residually finite group.
Let ⌃ be a finite alphabet and let (⌃G, �, G) be the respective full G-shift.
For a finite index subgroup � of G, x 2 ⌃G and a 2 ⌃, we define

Per(x, �, a) = {g 2 G : ��(x)(g) = x(��1g) = a, 8� 2 �},

and Per(x, �) =
S

a2⌃ Per(x, �, a).

It is straightforward to show that x 2 ⌃G is a Toeplitz sequence if and only if there
exists an increasing sequence (�

n

)
n�0 of finite index subgroups of G such that G =S

n�0 Per(x, �
n

) (see [5, Proposition 5]).

A period structure of x 2 ⌃G is an increasing sequence of finite index subgroups (�
n

)
n�0

of G such that G =
S

n�0 Per(x, �
n

) and such that for every n � 0, �
n

is an essential

group of periods: This means that if g 2 G is such that Per(x, �
n

, a) ✓ Per(�g(x), �
n

, a)
for every a 2 ⌃, then g 2 �

n

.
It is known that every Toeplitz sequence has a period structure (see for example [5,
Corollary 6]). We construct in this section, thanks the period structure, a Kakutani-
Rokhlin partition and we deduce a characterization of its ordered group.

4.1. Existence of Kakutani-Rokhlin partitions. In this subsection we suppose that
x0 2 ⌃G is a non-periodic Toeplitz sequence (�g(x0) = x0 implies g = e) having a period
structure (�

n

)
n�0 such that for every n � 0,

(i) �
n+1 is a proper subset of �

n

,
(ii) �

n

is a normal subgroup of G.

Every non-periodic Toeplitz sequence has a period structure verifying (i) [5, Corollary
6]. Condition (ii) is satisfied for every Toeplitz sequence whose Toeplitz subshift is an
almost 1-1 extension of an odometer (in the general case these systems are almost 1-1
extensions of subodometers. See [5] for the details).
By Lemma 5 we can assume there exists a Følner sequence (F

n

)
n�0 of G such that

(F1) {e} ✓ F
n

✓ F
n+1 and F

n

is a fundamental domain of G/�
n

, for every n � 0.
(F2) G =

S
n�0 F

n

.
(F3) F

n

=
S

v2Fn\�i
vF

i

, for every n > i � 0.

We denote by X the closure of the orbit of x0. Thus (X, �|
X

, G) is a Toeplitz subshift.

Definition 2. We say that a finite clopen partition P of X is a regular Kakutani-

Rokhlin partition (r-K-R partition), if there exists a finite index subgroup � of G with a

fundamental domain F containing e and a clopen C
k

, such that

P = {�u

�1
(C

k

) : u 2 F, 1  k  N}

and

��(
N[

k=1

C
k

) =
N[

k=1

C
k

for every � 2 �.
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To construct a regular Kakutani-Rokhlin partition of X, we need the following technical
lemma.

Lemma 6. Let P 0 = {�u

�1
(D

k

) : u 2 F, 1  k  N} be a r-K-R partition of X
and Q any other finite clopen partition of X. Then there exists a r-K-R partition P =

{�u

�1
(C

k

) : u 2 F, 1  k  M} of X such that

(1) P is finer than P 0
and Q,

(2)

S
M

k=1 C
k

=
S

N

k=1 D
k

.

Proof. Let F = {u0, u1, · · · , u|F |�1}, with u0 = e.
We refine every set D

k

with respect to the partition Q. Thus we get a collection of
disjoint sets

D1,1, · · · , D1,l1 ; · · · ; D
N,1, · · · , D

N,lN ,

such that each of these sets is in an atom of Q and D
k

=
S

lk
j=1 D

k,j

for every 1  k  N .

Thus P0 = {�u

�1
(D

k,j

) : u 2 F, 1  j  l
k

, 1  k  N} is a r-K-R partition of X. For
simplicity we write

P0 = {�u

�1
(D(0)

k

) : u 2 F, 1  k  N0}.

We have that P0 verifies (2) and every D(0)
k

is contained in atoms of P 0 and Q.
Let 0  n < |F |� 1. Suppose that we have defined a r-K-R partition of X

P
n

= {�u

�1
(D(n)

k

) : u 2 F, 1  k  N
n

},

such that P
n

verifies (2) and such that for every 0  j  n and 1  k  N
n

there exist
A 2 P 0 and B 2 Q such that

�u

�1
j (D(n)

k

) ✓ A, B.

Now we refine every set �u

�1
n+1(D(n)

k

) with respect to Q. Thus we get a collection of
disjoint sets

D1,1, · · · , D1,s1 ; · · · ; D
Nn,1, · · · , D

Nn,sNn

such that each of these sets is in an atom of Q and �u

�1
n+1(D(n)

k

) =
S

sk
j=1 D

k,j

, for every
1  k  N

n

.
For every 1  k  N

n

and 1  j  s
k

, let C
k,j

= �un+1(D
k,j

) ✓ D(n)
k

. We have that

P
n+1 = {�u

�1
(C

k,j

) : u 2 F, 1  j  s
k

, 1  k  N
n

}

is a r-K-R partition of X verifying (2) and such that for every 0  i  n + 1, 1  j  s
k

and 1  k  N
n

there exist A 2 P 0 and B 2 Q such that

�u

�1
j (C

k,j

) ✓ A, B.

At the step n = |F |� 1 we get P = P|F |�1 verifying (1) and (2). ⇤

Proposition 1. There exists a sequence (P
n

= {�u

�1
(C

n,k

) : u 2 F
n

, 1  k  k
n

})
n�0

of r-K-R partitions of X such that for every n � 0,

(1) P
n+1 is finer than P

n

,

(2) C
n+1 ✓ C

n

=
S

kn
k=1 C

n,k

,

(3)

T
n�1 C

n

= {x0},
(4) The sequence (P

n

)
n�0 spans the topology of X.
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Proof. For every n � 0, let define

C
n

= {x 2 X : Per(x, �
n

, a) = Per(x0, �n

, a)8a 2 ⌃}.

From [5, Proposition 6] we get

C
n

= {��(x0) : � 2 �
n

},

and that P 0
n

= {�u

�1
(C

n

) : u 2 F
n

} is a clopen partition of X such that ��(C
n

) = C
n

for every � 2 �
n

. Thus P 0
n

is a r-K-R partition of X. Furthermore, the sequence (P 0
n

)
n�0

verifies (1), (2) and (3).
For every n � 0, let Q

n

= {[B] \ X : B 2 ⌃Fn , [B] \ X 6= ;}. This is a finite clopen
partition of X and (Q

n

)
n�0 spans the topology of X.

We define P0 = {�u

�1
(C0,k

) : u 2 F0, 1  k  k0}) the r-K-R partition finer than P 00
and Q0 given by Lemma 6. Now we take P 00

n

the r-K-R partition finer that P
n�1 and Q

n

given by Lemma 6, and we define

P
n

= {�u

�1
(C

n,k

) : u 2 F
n

, 1  k  k
n

},

the r-K-R partition finer than P 0 = P 0
n

and Q = P 00
n

given by Lemma 6. Thus P
n

is finer
than P

n�1 and Q
n

. This implies that the sequence (P
n

)
n�0 verifies (1) and (4). SinceS

kn
k=1 C

n,k

= C
n

, we deduce that (P
n

)
n�0 verifies (2) and (3). ⇤

Remark 1. The sequence of partitions of Proposition 1 is a generalization to Toeplitz
G-subshifts of the sequences of Kakutani-Rokhlin partitions for Toeplitz Z-subshifts in-
troduced in [17]. See [19] for more details about Kakutani-Rokhlin partitions for minimal
Z-actions on the Cantor set

Definition 3. We say that a sequence (P
n

)
n�0 of r-K-R partitions as in Proposition 1

is a nested sequence of r-K-R partitions of X.

Let (P
n

= {�u

�1
(C

n,k

) : u 2 F
n

, 1  k  k
n

})
n�0 be a sequence of nested r-K-R

partitions of X.
For every n � 0 we define the matrix M

n

2M
kn⇥kn+1(Z+) as

M
n

(i, k) = |{� 2 F
n+1 \ �

n

: ��

�1
(C

n+1,k

) ✓ C
n,i

}|,

We call M
n

the incidence matrix of the partitions P
n+1 and P

n

.
Let p be a positive integer. For every n � 1 we denote by 4(n, p) the closed convex hull

generated by the vectors 1
p

e(n)
1 , · · · , 1

p

e(n)
n

, where e(n)
1 , · · · , e(n)

n

is the canonical base in

Rn. Thus 4(n, 1) is the unitary simplex in Rn.
Observe that for every n � 0 and 1  k  k

n+1,

knX

i=1

M
n

(i, k) =
|F

n+1|
|F

n

| .

This implies that M
n

(4(k
n+1, |Fn+1|)) ✓ 4(k

n

, |F
n

|).
The next result characterizes the maximal equicontinuous factor, the space of invariant
probability measures and the associated ordered group of (X, �|

X

, G) in terms of the
sequence of incidence matrices of a nested sequence of r-K-R partitions.

Proposition 2. Let (P
n

= {�u

�1
(C

n,k

) : u 2 F
n

, 1  k  k
n

})
n�0 be a nested sequence

of r-K-R partitions of X with an associated sequence of incidence matrices (M
n

)
n�0.

Then

(1) (X, �|
X

, G) is an almost 1-1 extension of the odometer O = lim �n

(G/�
n

, ⇡
n

),



12 MARÍA ISABEL CORTEZ, SAMUEL PETITE

(2) there is an a�ne homeomorphism between the set of invariant probability mea-

sures of (X, �|
X

, G) and the inverse limit lim �n

(4(k
n

, |F
n

|), M
n

),

(3) the ordered group G(X, �|
X

, G) is isomorphic to (H/inf(H), (H/inf(H))+, u +
inf(H)), where (H, H+) is given by

Z M

T
// Zk0

M

T
0

// Zk1
M

T
1

// Zk2
M

T
2

// · · · ,

where M = |F0|(1, · · · , 1) and u = [MT , 0].

Proof. 1. For every x 2 X and n � 0, let v
n

(x) 2 F
n

be such that x 2 �vn(x)�1
(C

n

).
The map ⇡ : X ! O given by ⇡(x) = (v

n

(x)�1�
n

)
n�1 is well defined, is a factor map

and verifies ⇡�1(⇡(x0)) = {x0}. This shows that (X, �|
X

, G) is an almost 1-1 extension
of O.

2. It is clear that for any invariant probability measure µ of (X, �|
X

, G), the se-
quence (µ

n

)
n�0, with µ

n

= (µ(C
n,k

) : 1  k  k
n

), is an element of the inverse limit
lim �n

(4(k
n

, |F
n

|), M
n

). Conversely, any element (µ
n,k

: 1  k  k
n

)
m�0 of such inverse

limit, defines a probability measure µ on the �-algebra generated by (P
n

)
n�0, which

is equal to the Borel �-algebra of X because (P
n

)
n�0 spans the topology of X and is

countable. Since the sequence (F
n

) is Følner, it is standard to check that the measure µ
is invariant by the G-action.
The function µ 7! (µ

n

)
n�0 is thus an a�ne bijection between M(X, �|

X

, G) and the
inverse limit lim �n

(4(k
n

, |F
n

|), M
n

). Observe that this function is a homeomorphism

with respect to the weak topology in M(X, �|
X

, G) and the product topology in the
inverse limit.

3. We denote by [k,�1] the class of the element (k,�1) 2 Z⇥ {�1} in H.
Let � : H ! D

m

(X, �|
X

, G) be the function given by �([v, n]) =
P

kn
k=1 v

i

[1
Cn,k ], for

every v = (v1, · · · , v
kn) 2 Zkn and n � 0, and �([k,�1]) = k1

X

for every k 2 Z. It is
easy to check that � is a well defined homomorphism of groups that verifies �(H+) ✓
D

m

(X, �|
X

, G)+. Since (P
n

)
n�0 spans the topology of X, every function f 2 C(X, Z) is

constant on every atom of P
n

, for some n � 0. This implies that � is surjective. Lemma 1
and (2) of Proposition 2, imply that Ker(�) = inf(H). Finally, � induces a isomorphism
b� : H/inf(H) ! D

m

(X, �|
X

, G) such that b�((H/inf(H))+) = D
m

(X, �|
X

, G)+. Since
[1,�1] = [MT , 0], we get �([MT , 0]) = [1

X

]. ⇤

5. Kakutani-Rokhlin partitions with prescribed incidence matrices.

We say that a sequence of positive integer matrices (M
n

)
n�0 is managed by the increasing

sequence of positive integers (p
n

)
n�0, if for every n � 0 the integer p

n

divides p
n+1, and

if the matrix M
n

verifies the following properties:

(1) M
n

has k
n

� 2 rows and k
n+1 � 2 columns;

(2)
P

kn
i=1 M

n

(i, k) =
pn+1

pn
, for every 1  k  k

n+1.

If (M
n

)
n�0 is a sequence of matrices managed by (p

n

)
n�0, then for each n � 0,

M
n

(4(k
n+1, pn+1)) ✓ 4(k

n

, p
n

).
Observe that the sequences of incidence matrices associated to the nested sequences of
r-K-R partitions defined in Section 4 are managed by (|F

n

|)
n�0.

In this Section we construct Toeplitz subshifts with nested sequences of r-K-R partitions
whose sequences of incidence matrices are managed.
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5.1. Construction of the partitions. In the rest of this Section G is an amenable
and residually finite group. Let (�

n

)
n�0 be a decreasing sequence of finite index normal

subgroup of G such that
T

n�0 �
n

= {e}, and let (F
n

)
n�0 be a Følner sequence of G such

that

(F1) {e} ✓ F
n

✓ F
n+1 and F

n

is a fundamental domain of G/�
n

, for every n � 0.
(F2) G =

S
n�0 F

n

.
(F3) F

n

=
S

v2Fn\�i
vF

i

, for every n > i � 0.

Lemma 5 ensures the existence of a Følner sequence verifying conditions (F1), (F2) and
(F3).
For every n � 0, we call R

n

the set F
n

· F�1
n

[ F�1
n

· F
n

. This will enable us to define a
“border” of each domain F

n+1.
Let ⌃ be a finite alphabet. For every n � 0, let k

n

� 3 be an integer. We say that the
sequence of sets ({B

n,1, · · · , B
n,kn})n�0 where for any n � 0, {B

n,1, · · · , B
n,kn} ✓ ⌃Fn is

a collection of di↵erent functions, verifies conditions (C1)-(C4) if it verifies the following
four conditions for any n � 0:

(C1) ��

�1
(B

n+1,k

)|
Fn 2 {B

n,i

: 1  i  k
n

}, for every � 2 F
n+1 \ �

n

, 1  k  k
n+1.

(C2) B
n+1,k

|
Fn = B

n,1, for every 1  k  k
n+1.

(C3) For any g 2 F
n

such that for some 1  k, k0  k
n

, B
n,k

(gv) = B
n,k

0(v) for all
v 2 F

n

\ g�1F
n

, then g = e.

(C4) ��

�1
(B

n+1,k

)|
Fn = B

n,kn for every � 2 (F
n+1 \ �

n

) \
ˆ
F

n+1 \ F
n+1g

�1
˜
, for

some g 2 R
n

.

Example 1. To illustrate these conditions, let us consider the case G = Z, ⌃ = {1, 2, 3, 4}
and �

n

= 32(n+1)Z for every n � 0. The set

F
n

=

⇢
�

„
32(n+1) � 1

2

«
,�

„
32(n+1) � 1

2

«
+ 1, · · · ,

„
32(n+1) � 1

2

«�

is a fundamental domain of Z/�
n

. Furthermore we have

F
n

=
[

v2{k32n:�4k4}

(F
n�1 + v),

for every n � 1. This shows that sequence (F
n

)
n�0 satisfies (F1), (F2) and (F3).

Now let us consider the case where k
n

= 4 for every n � 0. We define B0,k

(j) = k for
every j 2 F0 and 1  k  4, and for n � 1,

B
n,k

|
Fn�1 = B

n�1,1, B
n,k

|
Fn�1+v

= B
n�1,4 for v 2 {�l · 32n, l · 32n : l = 3, 4}.

Thus they verify the conditions (C1) and (C4). We fill the rest of the B
n,k

|
Fn�1+v

with
B

n�1,3 and B
n�1,2 in order that B

n,1, · · · , B
n,4 are di↵erent. They satisfy conditions

(C2) and (C4). The limit in ⌃Z of the functions B
n,1 is a Z-Toeplitz sequence x. If X

denotes the closure of the orbit of x, then we prove in the next lemma (in a more general
setting) that

(P
n

= {�j([B
n,k

] \X) : j 2 F
n

, 1  k  4})
n�0

is a sequence of nested Kakutani-Rokhlin partitions of the subshift X.

In the next lemma, we show that conditions (C1) and (C2) are su�cient to construct a
Toeplitz sequence. The technical conditions (C3) (aperiodicity) and (C4) (also known as
“forcing the border”) will allow to construct a nested sequence of r-K-R partitions of X.

Lemma 7. Let ({B
n,1, · · · , B

n,kn})n�0 be a sequence that verifies conditions (C1)-(C4).

Then:

(1) The set

T
n�0[Bn,1] contains only one element x0 which is a Toeplitz sequence.
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(2) Let X be the orbit closure of x0 with respect to the shift action. For every n � 0,
let

P
n

= {�u

�1
([B

n,k

] \X) : 1  k  k
n

, u 2 F
n

}.
Then (P

n

)
n�0 is a sequence of nested r-K-R partitions of X.

Let (M
n

)
n�0 be the sequence of incidence matrices of (P

n

)
n�0. Thus we have

(3) The Toeplitz subshift (X, �|
X

, G) is an almost 1-1 extension of the odometer

O = lim �n

(G/�
n

, ⇡
n

).

(4) There is an a�ne homeomorphism between the set of invariant probability mea-

sures of (X, �|
X

, G) and the inverse limit lim �n

(4(k
n

, |F
n

|), M
n

).

(5) The ordered group G(X, �|
X

, G) is isomorphic to (H/inf(H), (H/inf(H))+, u +
inf(H)), where (H, H+) is given by

Z M

T
// Zk0

M

T
0

// Zk1
M

T
1

// Zk2
M

T
2

// · · · ,

with M = |F0|(1, · · · , 1) and u = [MT , 0].

Proof. Condition (C2) implies that
T

n�0[Bn,1] is non empty, and since G =
S

n�0 F
n

,
there is only one element x0 in this intersection. Let X be the orbit closure of x0. For
every n � 0 and 1  k  k

n

, we denote C
n,k

= [B
n,k

] \X.

Claim: For every m > n � 0, 1  k  k
m

and � 2 F
m

\ �
n

,

(7) ��

�1
(B

m,k

)|
Fn 2 {B

n,i

: 1  i  k
n

}.

Condition (C1) implies that (7) holds when n = m � 1. We will show the claim by
induction on n.
Suppose that for every 1  k  k

m

and � 2 F
m

\ �
n+1,

��

�1
(B

m,k

)|
Fn+1 2 {B

n+1,i

: 1  i  k
n+1}.

Let g 2 �
n

\ F
m

. Condition (F3) implies there exist v 2 �
n+1 \ F

m

and u 2 F
n+1 such

that g = vu. Thus we get

�g

�1
(B

m,k

)|
Fn = �u

�1
v

�1
(B

m,k

) = �v

�1
(B

m,k

)|
uFn .

Since u 2 �
n

\F
n+1, condition (F3) implies that uF

n

✓ F
n+1. Then by hypothesis, there

exists 1  l  k
n+1 such that

�v

�1
(B

m,k

)|
uFn = B

n+1,l

|
uFn ,

which is equal to some B
n,s

, by (C1). This shows the claim.

From (7) we deduce that ��

�1
(x0)|Fn 2 {B

n,i

: 1  i  k
n

}, for every � 2 �
n

. Thus if g
is any element in G, and u 2 F

n

and � 2 �
n

are such that g = �u, then

�g

�1
(x0) = �u

�1
(��

�1
(x0)) 2 �u

�1
(C

n,k

), for some 1  k  k
n

. It follows that

P
n

= {�u

�1
(C

n,k

) : 1  k  k
n

, u 2 F
n

}
is a clopen covering of X.

From condition (C2) and (7) we get that ��

�1
(x0)|Fn�1 = B

n�1,1 for any � 2 �
n

, which
implies that F

n�1 ✓ Per(x0, �n

). This shows that x0 is Toeplitz.
Now we will show that P

n

is a partition. Suppose that 1  k, l  k
n

and u 2 F
n

are such that �u

�1
(C

n,k

) \ C
n,l

6= ;. Then there exist x 2 C
n,k

and y 2 C
n,l

such

that �u

�1
(x) = y. From this we have x(uv) = y(v) for every v 2 G. In particular,

x(uv) = y(v) for every v 2 F
n

\ u�1F
n

, which implies B
n,k

(uv) = B
n,l

(v) for every
v 2 F

n

\ u�1F
n

. From condition (C3) we get u = e and k = l. This ensures that the
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set of return times of x0 to
S

kn
k=1 C

n,k

, i.e. the set {g 2 G : �g

�1
(x0) 2

S
kn
k=1 C

n,k

}, is
�

n

. From this it follows that P
n

is a r-K-R partition. From (C1) we have that P
n+1 is

finer than P
n

and that C
n+1 ✓

S
kn
k=1 C

n,k

= C
n

. By the definition of x0 we have that
{x0} =

T
n�0 C

n

.
Now we will show that (P

n

)
n�0 spans the topology of X. Since every P

n

is a partition,
for every n � 0 and every x 2 X there are unique v

n

(x) 2 F
n

and 1  k
n

(x)  k
n

such
that

x 2 �vn(x)�1
(C

n,kn(x)).

The collection (P
n

)
n�0 spans the topology of X if and only if (v

n

(x))
n�0 = (v

n

(y))
n�0

and (k
n

(x))
n�0 = (k

n

(y))
n�0 imply x = y.

Let x, y 2 X be two sequences such that v
n

(x) = v
n

(y) = v
n

and k
n

(x) = k
n

(y) for every
n � 0. Let g 2 G be such that x(g) 6= y(g).
We have then for any n � 0

�vn(x)|
Fn = �vn(y)|

Fn 2 {B
n,i

: 1  i  k
n

},

and then

x|
v

�1
n Fn

= y|
v

�1
n Fn

.

Thus by definition, we get g 62 v�1
n

F
n

for any n. We can take n su�ciently large in order
that g 2 F

n�1.
Let � 2 �

n

and u 2 F
n

such that v
n

(x)g = �u. Observe that ug�1 /2 F
n

. Indeed, if
ug�1 2 F

n

, then the relation v
n

(x) = �ug�1 implies � = e, but in that case we get
v

n

(x)g = u 2 F
n

which is not possible by hypothesis. By the condition (C1), there exists

an index 1  i  k
n

such that ��

�1
(�vn(x))|

Fn = B
n,i

and then

x(g) = ��

�1
�vn(x)(��1v

n

g) = B
n,i

(u).

Let �0 2 �
n�1 \ F

n

and u0 2 F
n�1 such that u = �0u0. Since �0u0g�1 = ug�1 /2 F

n

, we
get �0 2 F

n

\ F
n

gu0�1. This implies that �0 2 F
n

\ F
n

w, for w = gu0�1 2 R
n�1 and

B
n,i

(u) = B
n�1,kn�1(u

0) by the condition (C4). Thus x(g) = B
n�1,kn�1(u

0). The same
argument implies that y(g) = B

n�1,kn�1(u
0) = x(g) and we obtain a contradiction.

This shows that (P
n

)
n�0 is a sequence of nested r-K-R partitions of X.

The point (3), (4) and (5) follows from Propositions 2. ⇤

The next result shows that, up to telescope a managed sequence of matrices, it is possible
to obtain a managed sequence of matrices with su�ciently large coe�cient to satisfy the
conditions of Lemma 7.

Lemma 8. Let (M
n

)
n�0 be a sequence of matrices managed by (|F

n

|)
n�0. Let k

n

be the

number of rows of M
n

, for every n � 0.
Then there exists an increasing sequence (n

i

)
i�0 ✓ Z+

such that for every i � 0 and

every 1  k  k
ni+1 ,

(i) R
ni ✓ F

ni+1 ,

(ii) For every 1  l  k
ni ,

M
niMni+1 · · ·Mni+1�1(l, k) > 1 + |

[

g2Rni

F
ni+1 \ F

ni+1g�1|

If in addition there exists a constant K > 0 such that k
n+1  K

|Fn+1|
|Fn| for every n � 0,

then the sequence (n
i

)
i�0 can be chosen in order that

(iii) k
ni+1 < M

ni · · ·Mni+1�1(i, k), for every 1  i  k
ni .
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Proof. We define n0 = 0. Let i � 0 and suppose that we have defined n
j

for every
0  j  i. Let m0 > n

i

be such that for every m � m0,

R
ni ✓ F

m

.

Let 0 < " < 1 be such that "|R
ni | < 1. Since (F

n

)
n�0 is a Følner sequence, there exists

m1 > m0 such that for every m � m1,

(8)
|F

m

\ F
m

g�1|
|F

m

| <
"

|F
ni+1|

, for every g 2 R
ni .

Since "|R
ni | < 1, there exists m2 > m1 such that for every m � m2,

1� |F
ni+1|
|F

m

| > "|R
ni |.

Then
|F

m

|
|F

ni+1|
� 1 > "|R

ni |
|F

m

|
|F

ni+1|
.

Since the matrices M
n

are positive, using induction on m and condition (2) for managed
sequences, we get

M
ni · · ·M

m�1(l, j) �
|F

m

|
|F

ni+1|
, for every 1  l  k

ni , 1  j  k
m

.

Combining the last two equations we get

M
ni · · ·M

m�1(l, j)� 1 > "|R
ni |

|F
m

|
|F

ni+1|
,

and from equation (8), we obtain

M
ni · · ·M

m�1(l, j)� 1 > |F
m

\ F
m

g�1||R
ni |, for every g 2 R

ni ,

which finally implies that

M
ni · · ·M

m�1(l, j) > |
[

g2Rni

F
m

\ F
m

g�1| + 1, for every 1  l  k
ni , 1  j  k

m

.

Now, suppose there exists K > 0 such that k
m+1  K

|Fm+1|
|Fm| for every m � 0. The

property (2) for managed sequences of matrices implies

M
ni · · ·M

m

(l, j) � |F
m+1|

|F
ni+1|

for every m > n
i

.

Let m3 > m2 be such that K < |Fm|
|Fni+1| for every m � m3. Then for every m � m3 we

have

k
m+1  K

|F
m+1|

|F
ni |

 M
ni · · ·M

m

(l, j) for every 1  l  k
ni and 1  j  k

m+1.

By taking n
i+1 � m3 we get the desired subsequence (n

i

)
i�0 ✓ Z+. ⇤

The following proposition shows that given a managed sequence, there exists a sequence of
decorations verifying conditions (C1)-(C4). The aperiodicity condition (C3) is obtained
by decorating the center of F

n

in a unique way with respect to other places in F
n

. A
restriction on the number of columns of the matrices gives enough choices of coloring to
ensure conditions (C3) and (C4).

Proposition 3. Let (M
n

)
n�0 be a sequence of matrices which is managed by (|F

n

|)
n�0.

For every n � 0, we denote by k
n

the number of rows of M
n

. Suppose in addition there

exists K > 0 such that k
n+1  K

|Fn+1|
|Fn| , for every n � 0. Then there exists a Toeplitz

subshift (X, �|
X

, G) verifying the following three conditions:
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(1) The set of invariant probability measures of (X, �|
X

, G) is a�ne homeomorphic

to lim �n

(4(k
n

, |F
n

|), M
n

).

(2) The ordered group G(X, �|
X

, G) is isomorphic to (H/inf(H), (H/inf(H))+, u +
inf(H)), where (H, H+) is given by

Z M

T
// Zk0

M

T
0

// Zk1
M

T
1

// Zk2
M

T
2

// · · · ,

with M = |F0|(1, · · · , 1) and u = [MT , 0].
(3) (X, �|

X

, G) is an almost 1-1 extension of the odometer O = lim �n

(G/�
n

, ⇡
n

).

Proof. Let (n
i

)
i�0 ✓ Z+ be a sequence as in Lemma 8. Since (M

n

)
n�0 and the sequence

(M
ni · · ·Mni+1�1)

i�0 define the same inverse and direct limits, without loss of generality
we can assume that for every n � 0 we have:

R
n

✓ F
n+1,

M
n

(i, k) > 1 + |
[

g2Rn

F
n+1 \ F

n+1g
�1| for every 1  i  k

n

, 1  k  k
n+1,

and
k

n+1 < min{M
n

(i, j) : 1  i  k
n

, 1  j  k
n+1}.

Let M̃ be the 1⇥ (k0 + 1)-dimensional matrix given by

M̃(·, 1) = M̃(·, 2) = M(·, 1),

and M̃(·, k + 1) = M(·, k) for every 2  k  k0. For every n � 0, consider the (k
n

+ 1)⇥
(k

n+1 + 1)-dimensional matrix given by

M̃
n

(·, 1) = M̃
n

(·, 2) =

0

BBBBB@

1
M

n

(1, 1)� 1
M

n

(2, 1)
...

M
n

(k
n

, 1)

1

CCCCCA

and

M̃
n

(·, k + 1) =

0

BBBBB@

1
M

n

(1, k)� 1
M

n

(2, k)
...

M
n

(k
n

, k)

1

CCCCCA
for every 2  k  k

n+1.

Lemma 2 implies that the dimension groups with unit given by

Z M

T
// Zk0

M

T
0

// Zk1
M

T
1

// Zk2
M

T
2

// · · · ,

and

Z M̃

T
// Zk0+1

M̃

T
0

// Zk1+1
M̃

T
1

// Zk2+1
M̃

T
2

// · · · ,

are isomorphic.
Thus from Lemma 1 we get that lim �n

(4(k
n

, |F
n

|), M
n

) and lim �n

(4(k
n

+ 1, |F
n

|), M̃
n

)

are a�ne homeomorphic. Observe that (M̃
n

)�0 is managed by (|F
n

|)
n�0 and verifies for

every n � 0:

M̃
n

(i, k) � 1 + |
[

g2Rn

F
n+1 \ F

n+1g
�1| for every 2  i  k

n

+ 1, 1  k  k
n+1 + 1,
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and

3  k
n+1 + 1  min{M

n

(i, j) : 2  i  k
n

+ 1, 1  j  k
n+1 + 1}.

Thus, by Lemma 7, to prove the proposition it is enough to find a Toeplitz subshift
having a sequence of r-K-R-partitions whose sequence of incidence matrices is (M̃

n

)
n�0.

For every n � 0, we call l
n

and l
n+1 the number of rows and columns of M̃

n

respectively.

For every n � 0, we will construct a collection of functions B
n,1, · · · , B

n,ln 2 ⌃Fn as in
Lemma 7, where ⌃ = {1, · · · , l0}.
For every 1  k  l0 we define B0,k

2 ⌃F0 by B0,k

(g) = k, for every g 2 F0. Observe
that the collection {B0,1, · · · , B0,l0} verifies condition (C3).

Let n � 0. Suppose that we have defined B
n,1, · · · , B

n,ln 2 ⌃Fn verifying condition (C3).
For 1  k  l

n+1, we define

B
n+1,k

|
Fn = B

n,1,

and

�s

�1
(B

n+1,k

)|
Fn = B

n,ln for every s 2
[

g2Rn

F
n+1 \ F

n+1g
�1 \ �

n

.

We fill the rest of the coordinates v 2 F
n+1 \ �

n

in order that �v

�1
(B

n+1,k

)|
Fn 2

{B
n,1, · · · , B

n,ln} and such that

|{v 2 F
n+1 \ �

n

: �v

�1
(B

n+1,k

)|
Fn = B

n,i

}| = M̃
n

(i, k),

for every 2  i  l
n

.

Since M̃
n

(1, k) = 1, if �v

�1
(B

n+1,k

)|
Fn = B

n,1 then v = e.
Notice that the number of such v is at least M̃

n

(2, k) + 1, because there are at least
M̃

n

(2, k) coordinates to be filled with B
n,2 and at least 1 coordinate to be filled with

B
n,ln . Thus we have at least M̃

n

(2, k)+1 � l
n+1 di↵erent ways to fill the coordinates such

that the functions B
n+1,1, · · · , B

n+1,ln+1 are pairwise di↵erent (the number of columns

of M̃
n

which are equal to the k-column is at most the number of di↵erent functions that
”respect the rules” of the k-column).
By construction, every function B

n+1,k

verifies (C1), (C2) and (C4). Let us assume there
are g 2 F

n+1 and 1  k, k0  k
n+1 such that B

n+1,k

(gv) = B
n+1,k

0(v) for any v where

it is defined, then by the induction hypothesis, g 2 �
n

. This implies �g

�1
(B

n+1,k

)|
Fn =

B
n+1,k

0 |
Fn = B

n,1 and then g = e. This shows that the collection B
n+1,1, · · · , B

n+1,ln+1

verifies (C3). We conclude applying Lemma 7. ⇤

For positive integers n1, · · · , n
k

, we denote by (n1, · · · , n
k

)! the corresponding multino-
mial coe�cient. That is,

(n1, · · · , n
k

)! =
(n1 + · · · + n

k

)!
n1! · · ·nk

!
.

Remark 2. In Proposition 3, to construct the collection of functions (B
n,1 · · · , B

n,ln)
n�0

we just need that the number of columns of M̃
n

which are equal to M̃
n

(·, k) does not
exceed the number of possible ways to construct di↵erent functions B 2 ⌃Fn verifying
B|

Fn�1 = B
n�1,1 and B|

vFn�1 = B
n�1,ln�1 for every v 2

S
g2Rn�1

F
n

\ F
n

g�1 \ �
n�1.

In other words, it is possible to make this construction with M̃
n

verifying the following
property: for every 1  k  l

n+1 the number of 1  l  l
n+1 such that M̃

n

(·, l) = M̃
n

(·, k)
is not grater than

(M̃
n

(2, k), · · · , M̃
n

(l
n

� 1, k), M̃
n

(l
n

, k)� |
[

g2Rn�1

F
n

\ F
n

g�1 \ �
n�1|)!
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Among the hypothesis of Proposition 3, we ask a stronger condition on the number of
columns of M

n

which is stable under multiplication of matrices, unlike the condition that
we mention in this remark.

6. Characterization of Choquet simplices

A compact, convex, and metrizable subset K of a locally convex real vector space is said
to be a (metrizable) Choquet simplex, if for each v 2 K there is a unique probability
measure µ supported on the set of extreme points of K such that

R
xdµ(x) = v.

In this section we show that any metrizable Choquet simplex is a�ne homeomorphic
to the inverse limit defined by a managed sequence of matrices satisfying the additional
restriction on the number of columns.

6.1. Finite dimensional Choquet simplices. For technical reasons, we have to sep-
arate the finite and the infinite dimensional cases.

Lemma 9. Let K be a finite dimensional metrizable Choquet simplex with exactly d � 1
extreme points. Let (p

n

)
n�0 be an increasing sequence of positive integers such that

for every n � 0 the integer p
n

divides p
n+1, and let k � max{2, d}. Then there ex-

ist an increasing subsequence (n
i

)
i�0 of indices and a sequence (M

i

)
i�0 of square k-

dimensional matrices which is managed by (p
ni)i�0 such that K is a�ne homeomorphic

to lim �n

(4(k, p
ni), Mi

).

Proof. Let k � max{3, d}, we will define the subsequence (n
i

)
i�0 by induction on i

through a condition explained later. For every i � 0, we define M
i

the k-dimensional
matrix by

M
i

(l, j) =

8
><

>:

pni+1
pni

� k(k � 1) if 1  l = j  d

k if l 6= j, 1  l  k and 1  j  d
M

i

(l, d) if d < j  k.

We always suppose that n
i+1 is su�ciently large in order to have

pni+1
pni

� k(k � 1) > 0.

By the very definition, M
i

is a positive matrix having k � 3 rows and columns;
P

k

l=1 M
i

(l, j) =
pni+1

pni
for every 1  j  k and the range of M

i

is at most d. Thus the convex set

lim �n

(4(k, p
ni), Mi

) has at most d extreme points.
If it has exactly d extreme points, it is a�ne homeomorphic to K. We will choose the
sequence (p

ni)i�0 in order that P =
T

i�0 M0 · · ·M
i

(4(k, p
ni+1)) has d extreme points,

which implies that lim �n

(4(k, p
ni), Mi

) has exactly d extreme points.

For every i � 0, the set P
i

= M0 · · ·M
i

(4(k, p
ni+1)) is the closed convex set generated

by the vectors v
i,1, · · · , v

i,d

, where

v
i,l

=
1

p
ni+1

M0 · · ·M
i

(·, l), for every 1  l  d.

Since every v
i,l

is in 4(k, p
n0), there exists a sequence (i

j

)
j�0 such that for every 1 

l  d, the sequence (v
ij ,l

)
j�0 converges to an element v

l

in 4(k, p
n0). Observe that P is

the closed convex set generated by v1, · · · , v
d

. Thus if v1, · · · , v
d

are linearly independent
then P has d extreme points.
Since for every 1  l  d we have

P
k

j=1
1

pni+1
M0 · · ·M

i

(j, l) = 1
pn0

, there exists a positive

vector �(i)
l

= (�(i)
1,l

, · · · , �(i)
k,l

)T such that
P

k

j=1 �(i)
j,l

= 1 and such that for each 1  j  k

1
p

ni+1

M0 · · ·M
i

(j, l) = �(i)
j,l

1
p

n0

.
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Thus if B
i

is the matrix given by

B
i

(·, l) =

(
v

i,l

if 1  l  d
1

pn0
e(k)

l

if d + 1  l  k.
,

then B
i

= DA
i

, where D is the k-dimensional diagonal matrix given by

D
i

(l, l) =
1

p
n0

, for every 1  l  k,

and A
i

is the k-dimensional matrix defined by

A
i

(·, l) =

(
�(i)

l

if 1  l  d

e(k)
l

if d + 1  l  k.
.

If lim
j!1Aj = A is invertible (A is the k-dimensional matrix whose columns are the

vectors lim
j!1 �

(ij)
l

and the canonical vectors e(k)
d+1, · · · , e(k)

k

), then v1, · · · , v
l

are linearly
independent. For this it is enough to show that A is strictly diagonally dominant (see
the Levy-Desplanques Theorem in [20]).
Now we will define (n

i

)
i�0 in order that A is strictly diagonally dominant.

Let " 2 (0, 1
4 ). Let n0 = 0 and n1 > n0 such that for every 1  l  d,

�(0)
l,l

= 1� p
n0

p
n1

kX

j=1,j 6=l

M0(j, l) = 1� p
n0

p
n1

k(k � 1) � 3
4

+ ".

For i � 1 we choose n
i+1 > n

i

in order that

1
p

ni+1

M0 · · ·M
i�1(l, l) < "

1
p

n0k(k � 1)2i

, for every 1  l  d.

After a standart computation, for every i � 1 and 1  l  d we get

�(i)
l,l

� �(i�1)
l,l

� p
n0

p
ni+1

k(k � 1)M0 · · ·M
i�1(l, l),

which implies that

�(i)
l,l

� �(0)
l,l

� "
X

j�1

1
2j

� 3
4
.

It follows that A(l, l) � 3
4 for every 1  l  k, and since the sum of the elements in a

column of A is equal to 1, we deduce that A is strictly diagonally dominant. ⇤
6.2. Infinite dimensional Choquet simplices. We use the following characterization
of infinite dimensional metrizable Choquet simplex.

Lemma 10 ([24], Corollary p.186). For every infinite dimensional metrizable Choquet

simplex K, there exists a sequence of matrices (A
n

)
n�1 such that for every n � 1

(1) A
n

(4(n + 1, 1)) = 4(n, 1),
(2) K is a�ne homeomorphic to lim �n

(4(n, 1), A
n

).

Our strategy is to approximate the sequence of matrices (A
n

)
n

by a managed sequence.
Then we show that the associated inverse limits are a�ne homeomorphic. For this, we
need the following classical density result, whose proof follows from the fact that every
non cyclic subgroup of R is dense.

Lemma 11. Let r = (r
n

)
n�0 be a sequence of integers such that r

n

� 2 for every n � 0.
Let Cr be the subgroup of (R, +) generated by {(r0 · · · r

n

)�1 : n � 0}. Then

(Cr)
p \4(p, 1) \ {v 2 Rp : v > 0}

is dense in 4(p, 1), for every p � 2, where (Cr)
p

is the Cartesian product

Q
p

i=1 Cr.
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Lemma 12. Let K be an infinite dimensional metrizable Choquet simplex, and let

(p
n

)
n�0 be an increasing sequence of positive integers such that for every n � 0 the

integer p
n

divides p
n+1. Then there exist an increasing subsequence (n

i

)
i�1 of indices

and a sequence of matrices (M
i

)
i�1 managed by (p

ni)i�0 such that for every i � 0,

k
i+1  min{M

i

(l, k) : 1  l  k
i

, 1  k  k
i+1},

and such that K is a�ne homeomorphic to the inverse limit lim �n

(4(k
i

, p
ni), Mi

), where

k
i

is the number of rows of M
i

, for every i � 0.

Proof. For every n � 0, let r
n

� 2 be the integer such that p
n+1 = p

n

r
n

.
Let (A

n

)
n�1 be the sequence of matrices given in Lemma 10. We can assume that

A
n

: 4(n + 3, 1) �! 4(n + 2, 1), for every n � 1. Now we define the subsequence (n
i

)
i

by induction.

We set n1 = 0.

Let i � 1 and suppose that we have defined n
i

� 0. We set r(i) = (r
n

)
n�ni . For every

1  j  i + 3, Lemma 11 ensures the existence of v(i,j) 2 (Cr(i))
i+2 \4(i + 2, 1) \ {v 2

Ri+2 : v > 0} such that

(9) kv(i,j) �A
i

(·, j)k1 <
1
2i

.

Let B
i

be the matrix given by

B
i

(·, j) = v(i,j), for every 1  j  i + 3.

Observe that (9) implies that

X

n�1

sup{kA
n

v �B
n

vk1 : v 2 4
n+3} <1.

It follows from [6, Lemma 9] that K is a�ne homeomorphic lim �n

(4(i + 2, 1), B
i

).

Let n
i+1 > n

i

be such that r
ni · · · rni+1�1v

(i,j) is an integer vector and such that

r
ni · · · rni+1�1v

(i,j) > i + 3, for every 1  j  i + 3.
We define

M
i

=
p

ni+1

p
ni

B
i

.

Thus M
i

= P�1
i

B
i

P
i+1, where P

i

is the diagonal matrix given by P
i

(j, j) = p
ni for every

1  j  i + 2 and i � 1. This shows that lim �n

(4(i + 2, 1), B
i

) is a�ne homeomorphic to

lim �n

(4(i + 2, p
ni), Mi

).

The proof conclude verifying that (M
i

)
i�0 is managed by (p

ni)i�0. ⇤

7. Proof of the main theorems.

7.1. Proof of Theorem A. The proof of Theorem A is a corollary of previous results.

Proof of Theorem A. Let ext(K) be the set of extreme points of K. If ext(K) is finite,
then the proof is direct from Proposition 3 and Lemma 9. If ext(K) is infinite, the proof
follows from Proposition 3 and Lemma 12. ⇤
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7.2. Proof of Theorem B. We refer to [8] for definitions and properties about Toeplitz
Z-subshifts or Toeplitz flows. See [11] and [19] for details about ordered Bratteli diagram,
Kakutani-Rokhlin partitions and dimension groups associated to minimal Z-actions on
the Cantor set.
We denote by ⌃ a finite alphabet with at least two elements. For x = (x

n

)
n2Z 2 ⌃Z and

n  m 2 Z, we set x[n, m] = x
n

· · ·x
m

. In a similar way, if w = w0 · · ·wn�1 is a word in
⌃n, we set w[k, l] = w

k

· · ·w
l

for every 0  k  l < n.
The next result follows from the proof of [17, Theorem 8].

Lemma 13. Let x0 2 ⌃Z
be a Toeplitz sequence and let (X, �|

X

, Z) be the associated

Toeplitz Z-subshift. There exist a period structure (p
n

)
n�0 of x0 and a sequence of matri-

ces (A
n

)
n�0 managed by (p

n

)
n�0 such that the dimension group associated to (X, �|

X

, Z)
is isomorphic to

Z
A

T
0

// Zk1
A

T
1

// Zk2
A

T
2

// · · · .

Furthermore, if k
n

is the number of rows of A
n

and r
n

=
pn+1

pn
, then for every m > n > 0

and 1  k  k
m

,

|{1  l  k
m

: A
n,m�1(·, l) = A

n,m�1(·, k)}|
 (A

n,m�1(1, k)� r
n+2 · · · rm�1, · · · , A

n,m�1(kn

, k)� r
n+2 · · · rm�1)!,

where A
n,m�1 = A

n

· · ·A
m�1.

Proof. In the proof of Theorem 8 in [17] the authors show there exist a period struc-
ture (p

n

)
n�1 of x0 and a sequence (P

n

)
n�0 of nested Kakutani-Rokhlin partitions of

(X, �|
X

, Z) such that P0 = {X} and P
n

= {T j(C
n,k

) : 0  j < p
n

, 1  k  k
n

}, where

C
n,k

= {x 2 X : x[0, p
n

� 1] = w
n,k

} for every 1  k  k
n

,

with W
n

= {w
n,1, · · · , w

n,kn} the set of the words w of x0 of length p
n

verifying
w[0, p

n�1 � 1] = x0[0, p
n�1 � 1], for every n � 1 (with p0 = 1).

Thus the dimension group with unit associated to (X, �|
X

, Z) is isomorphic to

lim
!n

(Zkn , AT

n

) = Z
A

T
0

// Zk1
A

T
1

// Zk2
A

T
2

// · · · ,

where A
n

(i, j) is the number of times that the word w
n,i

appears in the word w
n+1,j

, for
every 1  i  k

n

, 1  j  k
n+1 and n � 1, and the matrix AT

0 is the vector in Zk1 whose
coordinates are equal to p1.
Since w

n+1,i

6= w
n+1,j

for i 6= j, equal columns of the matrix A
n

produce di↵erent
concatenations of words in W

n

. This implies that for every 1  k  k
n+1, the number

of columns of A
n

which are equal to A
n

(·, k) can not exceed the number of di↵erent
concatenations of r

n

words in W
n

using exactly A
n

(j, k) copies of w
n,j

, for every 1 
j  k

n

. This means that the number of columns which are equal to A
n

(·, k) is smaller
or equal to (A

n

(1, k), · · · , A
n

(k
n

, k))!.
Now fix n > 0 and take m > n. The coordinate (i, j) of the matrix A

n,m�1 contains
the number of times that the word w

n,i

2 W
n

appears in w
m,j

2 W
m

. Observe that
every word u in W

m

is a concatenation of r
n+2 · · · rm�1 words in W

n+2. In addition,
each word in W

n+2 starts with x0[0, p
n+1 � 1] 2 W

n+1, which is a word containing every
word in W

n

(we can always assume that the matrices A
n

are positive). Thus there exist
0  l1 < · · · < l

rn+1···rm�1 < p
m

such that u[l
s

, l
s

+ p
n

� 1] = w[l
s

, l
s

+ p
n

� 1] 2 W
n

, for
every 1  s  r

n+2 · · · rm�1 and u, w 2 W
m

.
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This implies that the number of all possible concatenations of words in W
n

producing a
word in W

m

according to the column k of the matrix A
n,m�1 is smaller or equal to

(A
n,m�1(1, k)� r

n+2 · · · r
m�1, · · · , A

n,m�1(kn

, k)� r
n+2 · · · r

m�1)!.

⇤

Proof of Theorem B. Let x0 2 X be a Toeplitz sequence. Let (p
n

)
n�1 and (A

n

)
n�0 be

the period structure of x0 and the sequence of matrices given by Lemma 13 respectively.
It is straightforward to check that Lemma 13 is also true if we take a subsequence of
(p

n

)
n�0. Thus we can assume that for every n � 1, the matrix A

n

has its coordinates
strictly grater than 1 and that there exist positive integers r

n,1, · · · , r
n,d

> 1 such that
p

n+1

p
n

= r
n

= r
n,1 · · · r

n,d

.

Le define q
n+1,i

= r0,i

· · · r
n,i

for every 1  i  d, and �
n+1 =

Q
d

i=1 q
n+1,i

Z, for every
n � 0. We have �

n+1 ✓ �
n

,
T

n�1 �
n

= {0} and |Zd/�
n

| = p
n

. Let (F
n

)
n�0 be a Følner

sequence associated to (�
n

)
n�1 as in Lemma 5. We denote R

n

as in Section 5 (the set
that defines ”border”).
Now, we define an increasing sequence (n

i

)
i�1 of integers as follows:

We set n1 = 1. For i � 1, given n
i

we chose n
i+1 > n

i

+ 1 such that

X

g2Rni

|F
ni+1 \ F

ni+1 � g|
|F

ni+1 |
<

1
|F

ni |rnirni+1
.

Thus we have

|F
ni+1 |

|F
ni |

�
X

g2Rni

|F
ni+1 \ F

ni+1 � g| >
|F

ni+1 |
|F

ni |
�

|F
ni+1 |

|F
ni |rnirni+1

= r
ni · · · r

ni+1�1 � r
ni+2 · · · r

ni+1�1

> r
ni · · · r

ni+1�1 � k
nirni+2 · · · r

ni+1�1

Let M0 = A0 and M
i

= A
ni · · ·A

ni+1�1 be for every i � 1. For every 1  k  k
ni+1 we

get

M
i

(k
ni , k)�

X

g2Rni

|F
ni+1 \ F

ni+1 � g| > M
i

(k
ni , k)� r

ni+2 · · · r
ni+1�1,

which implies that

(M
i

(1, k), · · · , M
i

(k
ni � 1, k), M

i

(k
ni , k)�

X

g2Rni

|F
ni+1 \ F

ni+1 � g|)!

is grater than

(M
i

(1, k)� r
ni+2 · · · r

ni+1�1, · · · , M
i

(k
ni , k)� r

ni+2 · · · r
ni+1�1)!

Then from the previous inequality and Lemma 13 we get that the number of columns of
M

i

which are equal to M
i

(·, k) is smaller than

(M
i

(1, k), · · · , M
i

(k
ni � 1, k), M

i

(k
ni , k)�

X

g2Rni

|F
ni+1 \ F

ni+1 � g|)!

As in the proof of Proposition 3, we define M̃
i

and we call l
i

and l
i+1 the number of

rows and columns of M̃
i

respectively, for every i � 0. According to the notations of the
proof of Proposition 3, in our case M0 corresponds to the matrix M and M̃0 corresponds
to the matrix M̃ . Observe that the bound on the number of columns which are equal
to M

i

(·, k) (and then to M̃
i

(·, k)) ensures the existence of enough possibilities to fill the
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coordinates of F
ni in order to obtain di↵erent function B

i,1 · · · , B
i,li 2 {1, · · · , l1}Fni as

in the proof of Proposition 3, for every i � 1 (see Remark 2).
Lemma 7 implies that the Toeplitz Zd-subshift (Y, �|

Y

, Zd) defined from (B
i,1, · · · , B

i,li)i�1

has an ordered group G(Y, �|
Y

, Zd) isomorphic to (H/inf(H), (H/inf(H))+, u+inf(H)),
where (H, H+) is given by

Z
M̃

T
0

// Zl0
M̃

T
1

// Zl2
M̃

T
2

// Zl3
M̃

T
3

// · · · ,

with M̃0 = |F1|(1, · · · , 1) and u = [1, 0].
Lemma 2 implies that (H, H+, u) is isomorphic to the dimension group with unit (J, J+, w)
associated to (X, �|

X

, Z). Thus (J/inf(J), (J/inf(J))+, w + inf(J)), the ordered group
associated to (X, �|

X

, Z), is isomorphic to G(Y, �|
Y

, Zd). We conclude the proof applying
Theorem 1. ⇤

In [25], the author shows that every minimal Cantor system (Y, T, Z) having an associated
Bratteli diagram which satisfies the equal path number property, is strong orbit equivalent
to a Toeplitz subshift (X, �|

X

, Z). Thus the next result is inmediat.

Corollary 1. Let (X, T, Z) be a minimal Cantor having an associated Bratteli diagram

which satisfies the equal path number property. Then for every d � 1 there exists a

Toeplitz subshift (Y, �|
Y

, Zd) which is orbit equivalent to (X, T, Z).

Acknowledgments. We would like to thank the referee for many valuable comments
which served to improve the article.
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ON AUTOMORPHISM GROUPS OF LOW COMPLEXITY

SUBSHIFTS

SEBASTIÁN DONOSO, FABIEN DURAND, ALEJANDRO MAASS, AND SAMUEL PETITE

Abstract. In this article we study the automorphism group Aut(X,�) of sub-
shifts (X,�) of low word complexity. In particular, we prove that Aut(X,�) is
virtually Z for aperiodic minimal subshifts and certain transitive subshifts with
non-superlinear complexity. More precisely, the quotient of this group relative
to the one generated by the shift map is a finite group. In addition, we show
that any finite group can be obtained in this way. The class considered in-
cludes minimal subshifts induced by substitutions, linearly recurrent subshifts
and even some subshifts which simultaneously exhibit non-superlinear and su-
perpolynomial complexity along di↵erent subsequences. The main technique
in this article relies on the study of classical relations among points used in
topological dynamics, in particular, asymptotic pairs. Various examples that
illustrate the technique developed in this article are provided. In particular,
we prove that the group of automorphisms of a d-step nilsystem is nilpotent
of order d and from there we produce minimal subshifts of arbitrarily large
polynomial complexity whose automorphism groups are also virtually Z.

1. Introduction

An automorphism of a topological dynamical system (X,T ), where T : X ! X
is a homeomorphism of the compact metric space X, is a homeomorphism from X
to itself which commutes with T . We call Aut(X,T ) the group of automorphisms of
(X,T ). There is an analogous definition of measurable automorphism for measure-
preserving systems (X,B, µ, T ), where (X,B, µ) is a standard probability space
and T : X ! X a measure-preserving transformation of this space. The group of
measurable automorphisms is historically denoted by C(T ). This notation stands
for the centralizer group of (X,B, µ, T ).

The study of automorphism groups is a classical and widely considered subject in
ergodic theory. The group C(T ) has been intensively studied for mixing measure-
preserving systems of finite rank. The reader is referred to [18] for a complete survey.
Let us mention some key theorems. D. Ornstein [34] proved that a mixing measure-
preserving system of rank one has a trivial group of measurable automorphisms
which consists of powers of T . Later, A. del Junco [14] showed that the well studied
weakly mixing (but not mixing) rank one Chacon subshift also has this property.
Finally, for mixing measure-preserving systems of finite rank, J. King and J.-P.
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Thouvenot (see [27]) proved that C(T ) is virtually Z, that is, its quotient relative
to the subgroup hT i generated by T is a finite group.

In the non-weakly mixing case, B. Host and F. Parreau [25] proved that C(T )
is also virtually Z for a family of uniquely ergodic subshifts arising from constant-
length substitutions and equals Aut(X,T ). Concomitantly, M. Lemańczyk and M.
Mentzen [30] proved that any finite group can be obtained as a quotient C(T )/hT i
using substitution subshifts satisfying Host-Parreau’s result.

In the topological setting, since the seminal work of G.A. Hedlund [20], several
results have shown that the group of automorphisms for classes of subshifts in which
the complexity grows quickly with word length might possess a very rich collection
of subgroups. Here, by complexity we mean the increasing function p

X

: N ! N
which counts the number of words of length n 2 N appearing in points of the sub-
shift (X,�), where � is the shift map. In particular, the automorphism group of
the fullshift on two symbols contains isomorphic copies of any finite group [20] and
the automorphism group of a mixing shift of finite type contains the free group on
two generators, the direct sum of countably many copies of Z and the direct sum
of every countable collection of finite groups [7, 26]. Similar richness in automor-
phism groups has been found in synchronized systems [19] and in multidimensional
subshifts [22, 43].

In contrast, there is much evidence in the measurable and topological setting
to suggest that low complexity systems ought to have a “small” automorphism
group ([25, 30, 10, 33, 39]). Recently V. Salo and I. Törmä in [39] considered this
problem in the context of subshifts generated by constant-length or primitive Pisot
substitutions and proved that the group of automorphisms is virtually Z. This
generalizes the seminal result of E. Coven concerning constant-length substitutions
on two letters [10]. In [39], the authors also asked whether or not the same result
holds for subshifts constructed from primitive substitutions or, even more generally,
for linearly recurrent subshifts [17].

In Theorem 3.1 of Section 3, we give a positive answer to the latter question,
proving that the group of automorphisms of a transitive subshift is virtually Z
if the subshift satisfies lim inf

n!+1
p

X

(n)
n

< 1 together with a technical condi-
tion on the asymptotic pairs (which happens to be satisfied by aperiodic minimal
subshifts). The class of systems satisfying this condition includes primitive substi-
tutions, linearly recurrent subshifts and, more generally, any minimal subshift with
linear complexity. Moreover, since the condition of the theorem involves a lim inf,
Theorem 3.1 also applies to subshifts which simultaneously present non-superlinear
and superpolynomial complexity along di↵erent subsequences. Explicit examples
are given in Section 4. Our main tool for proving Theorem 3.1 is a detailed study
of the structure of asymptotic pairs in the subshifts under consideration. These
points always exist in an aperiodic subshift [3, Chapter 1]. This strategy is related
to the study of asymptotic composants introduced by M. Barge and B. Diamond in
[5]. This last notion proved to be a powerful invariant for studying one-dimensional
substitution tiling spaces.

It is natural to ask which finite groups can arise as a quotient Aut(X,�)/h�i for
subshifts satisfying the conditions of Theorem 3.1. As discussed above, a byproduct
of the results in [25] and [30] shows that any finite group G is isomorphic to the
quotient group Aut(X,�)/h�i of a constant-length substitutive minimal subshift
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(X,�). Here we provide a direct proof of this result by giving an explicit constant-
length substitutive minimal subshift such that Aut(X,�) is isomorphic to Z � G
(Theorem 3.6).

In the process of submitting this article, we became aware of a new article by V.
Cyr and B. Kra [13]. While our Theorem 3.1 and Theorem 1.4 in [13] seem very
close to each other, the methods and directions pursued in both articles are quite
di↵erent. Our technique consists of looking at the action of automorphisms on the
asymptotic pairs of a subshift. Together with studying the action of automorphisms
on other interesting equivalence relations associated to special topological factors
(mainly maximal equicontinuous factors and d-step nilfactors), this has enabled us
to shed light on the properties of the automorphism groups of several classes of
transitive subshifts which exhibit complexities with polynomial or higher growth.
In comparison, the authors of [13] explore the world of systems whose complexity
grows at most linearly and that are not necessarily transitive.

The automorphism group of subshifts with superlinear complexity (lim
n!+1

p
X

(n)/n) = 1) seems more complicated to manage than the non-superlinear case.
In [12], it was proved that the quotient of the automorphism group relative to the
group generated by the shift is periodic for transitive subshifts with subquadratic
complexity, meaning that any element in this group has finite order. The proof of
this result was achieved by means of studying a Z2 coloring problem and uses a
deep combinatorial result of A. Quas and L. Zamboni [37].

In this article, we also explore zero entropy subshifts with superlinear complexity
in several directions. We mainly discover classes of examples where the groups of
automorphisms still show a small growth rate or are abelian. Our first class of
examples arises from the study of symbolic extensions of nilsystems. In Section 5,
we prove that, for every integer d � 1, the groups of automorphisms of proximal
extensions of d-step nilsystems are d-step nilpotent groups. This result is then used
to construct subshifts with arbitrary polynomial complexity and automorphism
groups virtually isomorphic to Z (Theorem 5.12). The main tool used to prove
this result is a detailed study of the regionally proximal relation of order d for such
subshifts ([24],[41]). Then, in Section 6.1 we provide a subshift with superlinear
complexity whose automorphism group is isomorphic to Zd for some d 2 N.

We conclude the article by asking several questions and by proposing directions
for future research. In particular, we explore the visiting time map associated to
a subshift (X,�) as an alternative to word complexity. We propose studying the
increasing function R00

X

: N ! N which, for every n 2 N, gives the minimum possible
length of words having as subwords all words of length n that appear in points in
the subshift [9]. In Proposition 6.4, we prove that any finitely generated subgroup of
the automorphism group of a subshift with visiting time map of polynomial growth
is virtually nilpotent. This result is somehow parallel to Theorem 1.1 in [13], but
applies to subshifts with visiting time map of at most polynomial growth rather
than those of linear word complexity.

2. Preliminaries, notation and background

2.1. Topological dynamical systems. A topological dynamical system (or just a
system) is a homeomorphism T : X ! X, where X is a compact metric space. It is
classically denoted by (X,T ). Let dist be a distance in X and denote by Orb

T

(x)
the orbit {Tnx;n 2 Z} of x 2 X. A topological dynamical system is minimal if the
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orbit of every point is dense in X and is transitive if at least one orbit is dense in
X. In a transitive system, points with dense orbits are called transitive points. The
!-limit set !(x) of a point x 2 X is the set of accumulation points of the positive
orbit of x, or formally !(x) =

T
n�0 {T kx; k � n}.

Let (X,T ) be a topological dynamical system. We say that x, y 2 X are proximal

if there exists a sequence (n
i

)
i2N in Z such that lim

i!+1 dist(Tn

ix, Tn

iy) = 0. A
stronger condition than proximality is asymptoticity. Two points x, y 2 X are said
to be asymptotic if lim

n!+1 dist(Tnx, Tny) = 0. Nontrivial asymptotic pairs may
not exist in an arbitrary topological dynamical system but it is well known that a
nonempty aperiodic subshift always admits at least one [3, Chapter 1].

A factor map between the topological dynamical systems (X,T ) and (Y, S) is a
continuous onto map ⇡ : X ! Y such that ⇡ � T = S � ⇡ (T and S commute). We
say that (Y, S) is a factor of (X,T ) and that (X,T ) is an extension of (Y, S). We
use the notation ⇡ : (X,T ) ! (Y, S) to indicate the factor map. If in addition ⇡ is
a bijective map we say that (X,T ) and (Y, S) are topologically conjugate.

We say that (X,T ) is a proximal extension of (Y, S) via the factor map ⇡ : (X,T ) !
(Y, S) (or that the factor map itself is a proximal extension) if for every x, x0 2 X the
condition ⇡(x) = ⇡(x0) implies that x, x0 are proximal. For minimal systems, (X,T )
is an almost one-to-one extension of (Y, S) via the factor map ⇡ : (X,T ) ! (Y, S)
(or the factor map itself is an almost one-to-one extension) if there exists y 2 Y
with a unique preimage for the map ⇡. The relation between these two notions is
given by the following folklore lemma. We provide a proof for completeness.

Lemma 2.1. If the factor map ⇡ : (X,T ) ! (Y, S) between minimal systems is an

almost one-to-one extension then it is also a proximal extension.

Proof. Let y0 2 Y be a point with a unique preimage under ⇡ and consider points
x, x0 2 X such that ⇡(x) = ⇡(x0). By the minimality of (Y, S), there exists a
sequence (n

i

)
i2N in Z such that Sn

i(⇡(x)) (= Sn

i(⇡(x0))) converges to y0 as i
goes to infinity. By continuity of ⇡ and since T commutes with S, the sequences
(Tn

ix)
i2N and (Tn

ix0)
i2N converge to the same unique point in the preimage of y0

for ⇡. This shows that points x and x0 are proximal. ⇤
2.2. Automorphism group. An automorphism of the topological dynamical sys-
tem (X,T ) is a homeomorphism � of the space X such that ��T = T ��. We denote
by Aut(X,T ) the group of automorphisms of (X,T ). The subgroup of Aut(X,T )
generated by T is denoted by hT i.

We will need the following two simple facts.

Lemma 2.2. Let (X,T ) be a minimal topological dynamical system. Then the

action of Aut(X,T ) on X is free. That is, every nontrivial element in Aut(X,T )
has no fixed points.

Proof. Take � 2 Aut(X,T ) and x 2 X such that �(x) = x. Since � commutes with
T and is continuous, by minimality we deduce that �(y) = y for all y 2 X. Thus �
is the identity map. ⇤
Lemma 2.3. Let (X,T ) be a topological dynamical system. For x 2 X and � 2
Aut(X,T ) we have,

• if x and �(x) are asymptotic then � restricted to !(x) is the identity map;

• if (X,T ) is minimal then x and �(x) are proximal if and only if � is the

identity map.
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Proof. In the first part, we assume lim
n!+1 dist(Tnx, Tn�(x)) = 0. For any y 2

!(x) consider a sequence (n
i

)
i2N in N such that Tn

ix converges to y. We get that
�(y) = y, which proves the desired result.

The proof of the nontrivial direction of the second part is similar. By definition,
there exists a sequence (n

i

)
i2N in Z such that lim

i!+1 dist(Tn

ix, Tn

i�(x)) = 0.
We can assume that Tn

ix converges to some y 2 X. Therefore �(y) = y. By
Lemma 2.2 � is the identity map. ⇤

Let ⇡ : (X,T ) ! (Y, S) be a factor map between the minimal systems (X,T )
and (Y, S), and let � be an automorphism of (X,T ). We say that ⇡ is compatible

with � if ⇡(x) = ⇡(x0) implies ⇡(�(x)) = ⇡(�(x0)) for every x, x0 2 X. We say that
⇡ is compatible with Aut(X,T ) if ⇡ is compatible with every � 2 Aut(X,T ).

If the factor map ⇡ : (X,T ) ! (Y, S) is compatible with Aut(X,T ) we can
define the projection b⇡(�) 2 Aut(Y, S) by the equation b⇡(�)(⇡(x)) = ⇡(�(x)) for
all x 2 X. We have that b⇡ : Aut(X,T ) ! Aut(Y, S) is a group morphism.

Note that b⇡ might not be onto or injective. Indeed, for an irrational rotation
of the circle, the group of automorphisms is the whole circle but the group of
automorphisms of its Sturmian extension is Z [33]. We will show in Lemma 5.7
that this factor map is compatible, hence b⇡ is well defined but is not onto. On the
other hand, the map b⇡ associated to the projection onto the trivial system cannot
be injective.

In the case of a compatible proximal extension between minimal systems we
have:

Lemma 2.4. Let ⇡ : (X,T ) ! (Y, S) be a proximal extension between minimal

systems and suppose that ⇡ is compatible with Aut(X,T ). Then b⇡ : Aut(X,T ) !
Aut(Y, S) is injective.

Proof. Let � 2 Aut(X,T ) be an automorphism such that b⇡(�) is the identity map
of Y . It su�ces to prove that � is the identity map of X. For x 2 X we have that
⇡(�(x)) = b⇡(�)(⇡(x)) = ⇡(x). Since ⇡ is proximal, then x and �(x) are proximal
points. From Lemma 2.3 we conclude that � is the identity map. ⇤

2.3. Subshifts. Let A be a finite set that we will call alphabet. Elements in A are
called letters or symbols. The set of finite sequences or words of length ` 2 N with
letters in A is denoted by A`, the set of onesided sequences (x

n

)
n2N in A is denoted

by AN and the set of twosided sequences (x
n

)
n2Z in A is denoted by AZ. Also, a

word w = w1 . . . w`

2 A` can be seen as an element of the free monoid A⇤ endowed
with the operation of concatenation. The length of w is denoted by |w| = `.

The shift map � : AZ ! AZ is defined by �((x
n

)
n2Z) = (x

n+1)n2Z. To simplify
notations we denote the shift map by � independently of the alphabet, the alphabet
will be clear from the context.

A subshift is a topological dynamical system (X,�) where X is a closed �-
invariant subset of AZ (we consider the product topology in AZ). For convenience,
when we state general results about topological dynamical systems we use the no-
tation (X,T ) and to state specific results about subshifts we use (X,�).

Let (X,�) be a subshift. The language of (X,�) is the set L(X) containing all
words w 2 A⇤ such that w = x

m

. . . x
m+`�1 for some (x

n

)
n2Z 2 X, m 2 Z and

` 2 N. We say that w appears or occurs in the sequence (x
n

)
n2Z 2 X. We denote

by L
`

(X) the set of words of length ` in L(X).
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The map p
X

: N ! N defined by p
X

(`) = ]L
`

(X) is called the complexity function

of (X,�).
We recall some notations from complexity theory. Given two functions f, g : N !

N\{0} we write f(`) = O(g(`)) if there exists a positive constantK such that f(`) 
Kg(`) for every large enough `. We also write f(`) = ⇥(g(`)) if f(`) = O(g(`)) and
g(`) = O(f(`)). Finally, f(`) = ⌦+(g(`)) if lim sup

`!+1 f(`)/g(`) > 0.
We adopt the following terminology. We say that the complexity of the subshift:

• is polynomial if there exists an integer d � 1 such that p
X

(`) = ⇥(`d);
when d = 1 we say the complexity is linear and when d = 2 the subshift
has quadratic complexity;

• has at most polynomial growth rate if there exists an integer d � 1 such
that p

X

(`) = O(`d);
• is superlinear if lim

`!+1
p
X

(`)/` = +1;

• is non-superlinear if lim inf
`!+1

p
X

(`)/` < +1;

• is subquadratic if lim
`!+1

p
X

(`)/`2 = 0;

• is superpolynomial along a subsequence if lim sup
`!+1

p
X

(`)/q(`) = ±1 for every

polynomial q;
• is subexponential if lim

`!+1
p
X

(`)/↵` = 0 for all ↵ > 1.

In the proof of Theorem 3.1 we will need the following well known notion that is
intimately related to the concept of asymptotic pairs. A word w 2 L(X) is said to
be left special if there exist at least two distinct letters a and b such that aw and
bw belong to L(X). In the same way we define right special words.

Let � : (X,�) ! (Y,�) be a factor map between subshifts. By the Curtis-
Hedlund-Lyndon Theorem, � is determined by a local map �̂ : A2r+1 ! A in such
a way that �(x)

n

= �̂(x
n�r . . . xn

. . . x
n+r) for all n 2 Z and x 2 X, where r 2 N

is called a radius of �. The local map �̂ naturally extends to the set of words of
length at least 2r+ 1, and we also denote this map by �̂.

2.4. Substitutions and substitutive subshifts. We recall some basic definitions
about substitutions and the induced subshifts. For more details see [38].

Let A be a finite alphabet. A substitution is a map ⌧ : A ! A⇤ which associates
to each letter a 2 A a word ⌧(a) of some length in A⇤. The substitution ⌧ can
be applied to a word in A⇤ and onesided or twosided infinite sequences in A in
the obvious way by concatenating (in the case of a twosided sequence we apply ⌧
to positive and negative coordinates separately and we concatenate at coordinate
zero the results). Then substitutions can be iterated or composed n times for any
integer n � 1. Denote this composition by ⌧n. To avoid trivial cases we will always
assume in the definition of a substitution that the length of ⌧n(a) grows to infinity
for every letter a 2 A.

The substitution ⌧ : A ! A⇤ is primitive if for some integer p � 1 and every
letter a 2 A the word ⌧p(a) contains all the letters of the alphabet.

The substitution ⌧ : A ! A⇤ is said to be of constant length ` > 0 if |⌧(a)| = `
for each a 2 A. The length of a substitution is also denoted by |⌧ |. The constant-
length substitution ⌧ is bijective if ⌧(a)

i

6= ⌧(b)
i

for all a, b 2 A with a 6= b and all
coordinates 1  i  |⌧ |.
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The subshift induced by a substitution ⌧ : A ! A⇤ is denoted by (X
⌧

,�), where
X

⌧

is the set

{x 2 AZ; each finite word of x is a subword of ⌧n(a) for some n � 1 and a 2 A}.

We also say that (X
⌧

,�) is a substitutive subshift. For constant-length substitutions
it is well known that (X

⌧

,�) is minimal if and only if the substitution ⌧ is primitive.
The substitution ⌧ is said to be aperiodic if X

⌧

is an infinite set.

2.5. Equicontinuous systems. A topological dynamical system (X,T ) is equicon-
tinuous if the family of transformations {Tn;n 2 Z} is equicontinuous. Let (X,T )
be an equicontinuous minimal system. It is well known that the closure of the
group hT i in the set of homeomorphisms of X for the uniform topology is a com-
pact abelian group acting transitively on X [3]. When X is a Cantor set the
dynamical system (X,T ) is called an odometer.

2.6. Nilsystems. The following well known class of systems will allow us to com-
pute the automorphism group of some interesting subshifts of polynomial complex-
ity.

Let G be a group. The commutator of g, h 2 G is defined to be [g, h] = ghg�1h�1

and for E,F ⇢ G, we let [E,F ] denote the group spanned by {[e, f ] : e 2 E, f 2 F}.
The commutator subgroups G

j

of G are defined inductively, with G1 = G and for
integers j � 1, we have G

j+1 = [G,G
j

]. For an integer d � 1, if G
d+1 is the trivial

subgroup then G is said to be d-step nilpotent. Notice that a subgroup of a d-step
nilpotent group is also d-step nilpotent and any abelian group is 1-step nilpotent.

Let d � 1 be an integer, G be a d-step nilpotent Lie group and � be a discrete
cocompact subgroup of G. Then the compact nilmanifold X = G/� is a d-step
nilmanifold. The group G acts on X by left translations and we write this action
by (g, x) 7! gx. Let T : X ! X be the transformation x 7! ⌧x for some fixed ele-
ment ⌧ 2 G. Then (X,T ) is a d-step nilsystem. Thus a 1-step nilsystem is exactly
a translation on a compact abelian group. Nilsystems are distal systems, mean-
ing that there are no proximal pairs. Moreover, minimal nilsystems are uniquely
ergodic. See [4] and [29] for general references.

An important subclass of nilsystems are a�ne nilsystems. Let d � 1 be an integer
and consider a d ⇥ d integer matrix A such that (A � Id)d = 0 (such a matrix is
called unipotent) and a vector ~↵ 2 Td. Define the transformation T : Td ! Td by
x 7! Ax + ~↵ (operations are considered mod Zd). Since A is unipotent, one can
prove that the group G spanned by A and all the translations of Td is a d-step
nilpotent Lie group. The stabilizer of 0 is the subgroup � spanned by A. Thus we
can identify Td with G/�. The topological dynamical system (Td, T ) = (G/�, T ) is
called a d-step a�ne nilsystem. This system is minimal if and only if the projection
of ~↵ onto Td/ker(A� Id) defines a minimal rotation [35].

3. Automorphism groups of subshifts with non-superlinear

complexity

Now we shall give a positive answer to the question raised in [39]: is it true that
the group of automorphisms of a linearly recurrent system is virtually isomorphic
to Z ? We recall that a group G virtually satisfies a property P (e.g., nilpotent,
solvable, isomorphic to a given group) if there is a finite index subgroup H ✓ G
satisfying property P.
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It is known that the complexity functions of linearly recurrent subshifts have
at most a linear growth rate [17]. We answer the former question by considering
the much larger class of minimal subshifts with non-superlinear complexity. The
main tool for answering this question is a detailed study of the asymptotic relation.
More precisely the so-called asymptotic components introduced below. This notion
is related to the asymptotic composants introduced by M. Barge and B. Diamond in
[5]. The chief result from this work that we also need here is that there are finitely
many asymptotic composants. Notice that in the substitutive case the asymptotic
composants can be described combinatorially [5].

Let (X,T ) be a topological dynamical system. Given x, y 2 X we say that
orbits Orb

T

(x) and Orb
T

(y) are asymptotic if there exist points x0 2 Orb
T

(x) and
y0 2 Orb

T

(y) that are asymptotic. This condition is equivalent to saying that y is
asymptotic to some Tnx or vice versa. Then for each x0 2 Orb

T

(x), there is a point
y0 2 Orb

T

(y) asymptotic to x0. We denote this relation by Orb
T

(x) AS Orb
T

(y).
It follows that AS defines an equivalence relation on the collection of orbits. When
an AS-equivalence class is not reduced to a single element we call it an asymptotic

component. The equivalence class for AS of the orbit of x 2 X is denoted by AS [x]

and the set of all asymptotic components by AS.
It is clear from the definition that the asymptotic relation is preserved by auto-

morphisms of (X,T ): if x, y 2 X are asymptotic then �(x),�(y) are asymptotic for
every � 2 Aut(X,T ). It is also not di�cult to check that the orbits Orb

T

(�(x))
and Orb

T

(�(y)) are asymptotic whenever Orb
T

(x) and Orb
T

(y) are asymptotic.
Then, the image of an asymptotic component under � 2 Aut(X,T ) is an asymp-
totic component. These properties prove that every automorphism � 2 Aut(X,T )
induces a permutation j(�) of the set of asymptotic components AS. Therefore,
the following group morphism is well defined:

j : Aut(X,T ) ! PerAS(1)

� 7!
�
AS [x] 7! AS [�(x)]

�
,

where PerAS denotes the set of permutations of AS.
Now we can state the main result of this section.

Theorem 3.1. Let (X,�) be a subshift such that lim inf
n!+1

p
X

(n)

n
< +1. Assume

there exists a point x0 2 X with !(x0) = X that is asymptotic to a di↵erent point.

Then,

(1) Aut(X,�)/h�i is finite.

(2) If (X,�) is minimal, the quotient group Aut(X,�)/h�i is isomorphic to a

finite subgroup of permutations without fixed points and ](Aut(X,�)/h�i)
divides the number of asymptotic components of (X,�).

Notice that the condition on the point x0 is automatically satisfied when the
dynamical system (X,�) is minimal. In this case we obtain Theorem 1.4 in [13].

The condition on the growth rate of the complexity function is satisfied by prim-
itive substitutive subshifts, by linearly recurrent systems and many other subshifts.
Interestingly, this condition is compatible with lim sup

n!+1 p
X

(n)/n = +1. In
Section 4, we construct a minimal subshift which exhibits superpolynomial com-
plexity along a subsequence even though it satisfies the complexity hypothesis of
Theorem 3.1.
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We remark that Statement (2) of Theorem 3.1 does not impose any restriction
on the finite groups obtained as quotients Aut(X,�)/h�i. Indeed, given a finite
group G, it acts on itself by left multiplication: L

g

(h) = gh for g, h 2 G. Then the
map L

g

defines a permutation of the finite set G without any fixed points. So G
can be seen as a subgroup of the permutation group of ]G elements, which satisfies
Statement (2) of the theorem. In Section 3.2, we show that for every finite group G
there exists a subshift (X,�) such that Aut(X,�)/h�i is isomorphic to G by giving
a characterization of the automorphisms of a specific family of subshifts induced
by substitutions. As mentioned in the introduction, we shall give a direct proof of
this result here, but it can also be deduced by combining results in [25] and [30].

Finally, we note that Statement (2) of Theorem 3.1 enables us to perform explicit
computations of automorphism groups in some easy cases. The first example of this
comes from Sturmian subshifts (see [28] for a detailed exposition of these systems).
It is well known that these systems have unique asymptotic components, so each
automorphism is a power of the shift map. A slightly more general case is when
the number of asymptotic components is a prime number p (e.g., p = 2 for the
Thue-Morse subshift). In this case the group Aut(X,�)/h�i is a subgroup of Z/pZ,
either the trivial one or Z/pZ itself. In particular, since the Thue-Morse subshift
admits an automorphism which is not the power of the shift map (the one that
flips the two letters of the alphabet), then in this case the quotient is isomorphic
to Z/2Z.

We point out that the hypothesis on the complexity in Theorem 3.1 is only
used to prove that there are finitely many asymptotic components. So any subshift
where this last property holds is a good candidate for having an automorphism
group that is virtually Z. This is the case of minimal systems, but in general this
is not a theorem, and we need to check the structure of asymptotic components
in greater detail. In fact, the structure of asymptotic components plays a crucial
role in the computation of the automorphism groups. This motivates the second
example presented in Section 4.

3.1. Proof of Theorem 3.1. The following lemma is a key observation that al-
lows the growth rate of the complexity function of a subshift to be related to its
asymptotic components. The proof follows some classical ideas from [38].

Lemma 3.2. Let (X,�) be a subshift. If lim inf
n!+1

p

X

(n)
n

< +1, then the

number of asymptotic components is finite. In particular, any subshift of linear

complexity has a finite number of asymptotic components.

Proof. We observe that the last statement follows from Lemma V.22 in [38]. Here
we extend this result to subshifts whose complexity functions are non-superlinear.

We claim that there exists a constant  and an increasing sequence (n
i

)
i2N in

N such that p
X

(n
i

+ 1) � p
X

(n
i

)  . If not, for every A > 0 and for every large
enough integer n we have p

X

(n + 1) � p
X

(n) � A. It follows that for all large
enough integers m < n, p

X

(n) � p
X

(m) =
P

n�1
i=m

p
X

(i + 1) � p
X

(i) � (n � m)A.

From here we get that lim inf
n!+1

p

X

(n)
n

� A. This contradicts our hypothesis
since A is arbitrary and the claim follows.

Fix  and an increasing sequence (n
i

)
i2N in N as above. Hence, the number of

left special words of length n
i

of the subshift is bounded by  (see Section 2.3 to
recall the definition).
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Let {x0, y0}, . . . , {x

, y


} denote nontrivial asymptotic pairs. Clearly, each pair
induces a pair of asymptotic orbits. Since X is a subshift, for each j 2 {0, . . . ,}
there exists `

j

2 Z such that all coordinates of x
j

and y
j

larger than or equal to
`
j

coincide whereas the (`
j

� 1)th coordinates are di↵erent. Then, for each i 2 N,
the word of length n

i

starting at coordinate `
j

in both points x
j

and y
j

is a left
special word. Since we have proved that the number of left special words of length
n
i

is bounded by , we have that the special words associated to two di↵erent
asymptotic pairs in our list coincide. But this fact holds for every i 2 N and hence
the pigeonhole principle implies that two asymptotic pairs in the list must share
infinitely many of their left special words. Thus, the associated pairs of asymptotic
orbits are equivalent. This proves that there are at most  asymptotic components
and the result follows. ⇤

A second ingredient needed for proving Theorem 3.1 is the following corollary of
Lemma 2.3.

Corollary 3.3. Let (X,T ) be a topological dynamical system. Assume there exists

a point x0 2 X with !(x0) = X that is asymptotic to a di↵erent point. We have

the following exact sequence,

{1} // hT i Id // Aut(X,T )
j // PerAS,

where j was defined in (1). More precisely, for every automorphism � 2 Aut(X,T ),
the permutation j(�) fixes the asymptotic component AS[x0] if and only if � is a

power of T .

Proof. Let � be an automorphism in Aut(X,T ) and suppose that AS[�(x0)] =
AS[x0]. This means that there exists an integer n 2 Z such that x0 and Tn � �(x0)
are asymptotic. By Lemma 2.3, Tn � � is the identity map and thus � 2 hT i as
desired. ⇤

Proof of Theorem 3.1. We concentrate on the second part of Statement (2), as this
is the only facet of the theorem that does not follow directly from Lemma 3.2
and Corollary 3.3. From Corollary 3.3, no asymptotic component is fixed by a
nontrivial automorphism. So, the group Aut(X,�)/h�i acts freely on the finite set
of asymptotic components AS: the stabilizer of any point is trivial. Thus, AS is
decomposed into disjoint Aut(X,�)/h�i-orbits, and each such orbit has the same
cardinality as Aut(X,�)/h�i. ⇤

3.2. Realization of any finite group as Aut(X,�)/h�i. In this section we pro-
vide a constructive proof that any finite group can be obtained as a quotient
Aut(X,�)/h�i, where (X,�) is a subshift satisfying the hypothesis of Theorem
3.1. As mentioned earlier, this result can be deduced from results in [25] and [30]
concerning the automorphism groups of subshifts induced by constant-length sub-
stitutions. However, we prefer to give a direct proof in order to highlight the notion
of asymptotic components. We also provide a new proof of the characterization of
the automorphism groups of subshifts induced by the bijective constant-length sub-
stitutions of Host and Parreau [25].

3.2.1. Properties of asymptotic pairs of subshifts induced by constant-length substi-

tutions.
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Lemma 3.4. Let ⌧ : A ! A⇤
be a primitive aperiodic bijective constant-length

substitution. Let x = (x
n

)
n2Z and y = (y

n

)
n2Z be an asymptotic pair for (X

⌧

,�)
such that x

n

= y
n

for each n � 0 and x�1 6= y�1. Then, there exist asymptotic

points x0 = (x0
n

)
n2Z and y0 = (y0

n

)
n2Z for (X

⌧

,�) with x0
n

= y0
n

for each n � 0 and

x0
�1 6= y0�1 such that ⌧(x0) = x and ⌧(y0) = y.

Proof. Let ` be the length of the substitution ⌧ . By the classical result of B. Mossé
[31, 32] on recognizability, the map induced by ⌧ on X

⌧

, ⌧ : X
⌧

! ⌧(X
⌧

), is one-
to-one. Moreover, the collection {�k⌧(X

⌧

); k = 0, . . . , ` � 1} is a clopen partition
(formed by subsets that are simultaneously closed and open) of X

⌧

. Then, there
exist x0 = (x0

n

)
n2Z, y0 = (y0

n

)
n2Z 2 X

⌧

and 0  k
x

, k
y

< ` such that �k

x⌧(x0) = x
and �k

y⌧(y0) = y.
We claim that k

x

= k
y

= 0. Since the sequences x and y are asymptotic, there

are integers n � 0 and k0 2 {0, . . . , `�1} such that �n(x),�n(y) 2 �k

0
(⌧(X

⌧

)). The
substitution ⌧ is of constant-length `, so we have �` � ⌧ = ⌧ ��. Therefore, x and y
are in the same clopen set �k(⌧(X

⌧

)) for some k 2 {0, . . . , `� 1}. This shows that
k = k

x

= k
y

.
Next, let us assume that k � 1. The words x�k

. . . x0, y�k

. . . y0 are then prefixes
of the words ⌧(x0

0) and ⌧(y00) respectively. Since the substitution ⌧ is bijective and
x0 = y0, we have that x0

0 = y00. In particular, we get that x�1 = y�1, which is a
contradiction.

To complete the proof recall that the substitution ⌧ is bijective, so for all n � 0
we have x0

n

= y0
n

and x0
�1 6= y0�1. ⇤

Lemma 3.5. Let ⌧ : A ! A⇤
be a primitive aperiodic bijective constant-length

substitution. Then, there exists an integer p � 0 such that for all asymptotic points

x = (x
n

)
n2Z and y = (y

n

)
n2Z for (X

⌧

,�), the onesided infinite sequences (x
n

)
n�n0

and (y
n

)
n�n0 coincide for some n0 2 Z and are fixed by ⌧p.

Proof. Since x and y are asymptotic, shifting them by the same power of the shift
we can assume that x

n

= y
n

for every integer n � 0 and x�1 6= y�1. Since ⌧ is
bijective, the map a 7! ⌧(a)1 is a permutation of the alphabet. Thus, there exists an
integer p � 1 such that for each letter a 2 A every word in the sequence (⌧pn(a))

n�1

starts with the same letter. Hence, the sequence (⌧pn(aa . . .))
n�1 converges to a

onesided infinite sequence z(a) such that ⌧p(z(a)) = z(a) (z(a) is fixed by ⌧p).
Now we inductively apply Lemma 3.4 to the substitution ⌧p. For each integer

i � 0 we get asymptotic pairs x(i), y(i) 2 AZ satisfying the conclusions of the lemma
and such that ⌧p(x(i+1)) = x(i), ⌧p(y(i+1)) = y(i), with x(0) = x and y(0) = y. By
the choice of p, the 0 coordinate of all points x(i) and y(i) coincide at some letter
a 2 A. Then ⌧pn(a) is a prefix of the sequence (x

j

)
j�0 (that is equal to (y

j

)
j�0) for

every n 2 N. Therefore, (x
j

)
j�0 = (y

j

)
j�0 = z(a) which is fixed by ⌧p as desired.

This concludes the proof of the lemma. ⇤
3.2.2. Realization of a finite group as Aut(X,�)/h�i. A first consequence of Lemma
3.5 is the realization of any finite group as the quotient group Aut(X,�)/h�i of a
subshift induced by a constant-length substitution.

Theorem 3.6. Given a finite group G, there exists a minimal substitutive subshift

(X,�) such that Aut(X,�) is isomorphic to Z�G.

Proof. If G is the trivial group then we can consider (X,�) to be the Fibonacci
subshift, which is also an Sturmian subshift (see also [33]). This result also follows
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from Theorem 3.1 since one can easily prove in this case that there exists a unique
asymptotic component.

Now, we assume that the finite group G is not trivial. We choose an enumeration
of its elements G = {g0, g1, . . . , gq�1} with q � 2 and we set g0 to be the identity
element.

For an element g 2 G, let L
g

: G ! G denote the bijection h 7! gh. We see G as
a finite alphabet and define the substitution of constant length ⌧ : G ! G⇤ by

⌧ : g 7! L
g

(g0)Lg

(g1) · · ·Lg

(g
q�1).

Since the map L
g

is a bijection on G, then the substitution ⌧ is primitive and
bijective.

We claim that the subshift (X
⌧

,�) is not periodic, i.e., it does not reduce to
a periodic orbit. To show this fact, it su�ces to give an example of a nontriv-
ial asymptotic pair. By the definition of ⌧ the word g0g1 2 L(X

⌧

). Hence the
words ⌧(g0)⌧(g1) and its subword g

q�1g1 (which is di↵erent from the word g0g1)
also belong to L(X

⌧

). It follows that ⌧n(g0)⌧n(g1), ⌧n(gq�1)⌧n(g1) 2 L(X
⌧

) for
every integer n � 0. Taking a subsequence if necessary, these words converge as
n goes to infinity to two di↵erent sequences x and y 2 X

⌧

that are asymptotic by
construction.

Given an element g 2 G we extend the definition of the map L
g

to words in G⇤

or infinite onesided or twosided infinite sequences by: L
g

((h
i

)
i2I

) = (gh
i

)
i2I

, where
I is a finite or infinite set of indexes. In particular, this defines a left continuous
G-action on GZ. Moreover, each map L

g

preserves the subshift X
⌧

. Indeed, if
x = (x

n

)
n2Z 2 X

⌧

then for all integers j 2 Z and m � 1 the word x
j

. . . x
j+m�1

is a subword of ⌧N (h) for some N 2 N and h 2 G. Then, L
g

(x
j

. . . x
j+m�1) =

gx
j

. . . gx
j+m�1 is a subword of L

g

(⌧N (h)). But we have the relation

L
g

(⌧(h)) = ⌧(L
g

(h)) for every g, h 2 G,(2)

so L
g

(x
j

. . . x
j+m�1) is a subword of ⌧N (L

g

(h)). This implies that L
g

(x) 2 X
⌧

as desired. Thus we have a left continuous action of G on X
⌧

. It is clear that
L : g 7! L

g

defines an injection of G into Aut(X
⌧

,�).

To finish the proof we need the following claim:

Claim: The map ' : Z⇥G ! Aut(X
⌧

,�), (n, g) 7! �n�L
g

is a group isomorphism.

To show the injectivity of the map ', let us assume there exists n 2 Z and g 2 G
such that L

g

= �n. We can assume that n � 0, the other case is analogous. Then,
for every x 2 X

⌧

we have that x
kn+m

= gk�1x
m

for all k 2 Z andm 2 {0, . . . , n�1}.
But the sequence (gk�1)

k2Z is periodic, so x is periodic. This is a contradiction
since ⌧ is aperiodic.

To show ' is surjective it is enough to prove that each automorphism � 2
Aut(X

⌧

,�) can be written as a power of the shift composed with a map of kind
L
g

. Assume x, y is an asymptotic pair in X
⌧

. By Lemma 3.5, since �(x) and �(y)
are also asymptotic points, there exist integers p > 0 and n0, n1 2 Z such that
z1 = (x

n

)
n�n0 = (y

n

)
n�n0 , z2 = (�(x)

n

)
n�n1 = (�(y)

n

)
n�n1 and both sequences

are fixed by ⌧p (observe that from Lemma 3.5 we can use the same power p for
every couple of asymptotic pairs). Taking �1 = �n0�n1 � � instead of � we can
assume that n1 = n0.

Set g1 = x
n0 and g2 = �1(x)n0 . Since z1 and z2 are fixed by ⌧p we have that

z1 = lim
n!+1 ⌧pn(g1g1 . . .) and z2 = lim

n!+1 ⌧pn(g2g2 . . .). Now, by (2), for
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all n 2 N we have that L
g1(g

�1
2 )(⌧

pn(g2)) = ⌧pn(L
g1(g

�1
2 )(g2)) = ⌧pn(g1). Then,

L
g1(g

�1
2 )(z2) = z1. This proves that x and L

g1(g
�1
2 ) � �1(x) are asymptotic points.

Therefore, by Lemma 2.3, we get �1 = (L
g1(g

�1
2 ))

�1 = L
g2(g

�1
1 ). So the original �

is a power of the shift composed with some translation L
g

. This proves the claim
and thus completes the proof of Theorem 3.6. ⇤

3.2.3. Characterization of Aut(X
⌧

,�) for bijective constant-length substitutions sub-

shifts. Thanks to Lemma 3.5 we can o↵er a di↵erent proof of the following result
due to B. Host and F. Parreau.

Theorem 3.7. [25] Let ⌧ : A ! A⇤
be a primitive bijective constant-length substi-

tution. Then, each automorphism of the subshift (X
⌧

,�) is the composition of some

power of the shift with an automorphism � 2 Aut(X
⌧

,�) of radius 0. Moreover, its

local rule �̂ : A ! A satisfies

⌧ � �̂ = �̂ � ⌧.(3)

Observe that a local map satisfying (3) defines an automorphism of the subshift.
Hence, since there is a finite number of local rules of radius 0, we have an algorithm
to determine the group of automorphisms for these kinds of subshifts.

Proof. First we notice that if X
⌧

is finite then it is reduced to a finite orbit. Hence
an automorphism is a power of the shift map. From now on, we assume ⌧ is
aperiodic.

Let x = (x
n

)
n2Z, y = (y

n

)
n2Z 2 X

⌧

be two asymptotic sequences and consider
� 2 Aut(X

⌧

,�). As discussed before, �(x) and �(y) are also asymptotic pairs.
By Lemma 3.5, there exist integers p � 0 and n0, n1 2 Z such that (x

n

)
n�n0 =

(y
n

)
n�n0 , (�(x)n)n�n1 = (�(y)

n

)
n�n1 and all sequences are fixed by ⌧p (observe

that from Lemma 3.5 we can use the same power p for every couple of asymptotic
pairs).

After shifting we can assume that n0 = 0. Also, in what follows we will consider
the automorphism �0 = �n1 � �. Thus the sequence (�0(x)

n

)
n�0 = (�(x)

n

)
n�n1 is

fixed by ⌧p.
Let r and �̂0 denote the radius and the local map of �0 respectively. Taking

a power of ⌧p if needed, we can assume that the length ` of substitution ⌧p is
greater than 2r + 1. Consider di↵erent integers m,n � 0 such that x

n

= x
m

.
We have �0(x)

m`+r = �̂0(x
m`

. . . x
m`+2r) = �̂0(⌧p(x

m

)[0,2r]) = �̂0(⌧p(x
n

)[0,2r]) =
�0(x)

n`+r, where for a word u = u0 . . . u`�1, u[0,2r] stands for the prefix u0 . . . u2r.
Since �0(x)

n`+r and �0(x)
m`+r are the (r + 1)th letters of the words ⌧p(�0(x)

n

)
and ⌧p(�0(x)

m

) respectively, and the substitution ⌧ is bijective, we obtain that
�0(x)

n

= �0(x)
m

. Then the map  ̂ : A ! A given by  ̂(x
n

) = �0(x)
n

for all n � 0
is well defined.

Let  : AZ ! AZ be the shift commuting map with local map  ̂. By construction,
for each word w 2 L(X

⌧

) we have that  ̂(⌧p(w)) = ⌧p( ̂(w)), then  (X
⌧

) ✓ X
⌧

.
Since ⌧ is bijective we also get relation (3) for  ̂.

In the same way, using �0�1 instead of �0, we obtain that  is invertible. By
construction, we have that  �1�0(x) is asymptotic to x, so by Lemma 2.3,  =
�0 = �n1 � �. This completes the proof of Theorem 3.7.

⇤
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4. Examples illustrating Theorem 3.1

In this section we present two examples to illustrate Theorem 3.1 and the tech-
nique behind it. We start with a minimal subshift which shows non-super linear
and superpolynomial complexity along subsequences. Since it is minimal, Part (2)
of Theorem 3.1 is satisfied. The second example is a transitive non-minimal substi-
tutive subshift with superlinear complexity. It does not satisfy all the hypotheses
of Theorem 3.1 but the technique of the proof applies. In fact, it has a unique
asymptotic component that we are able to characterize in order to prove that its
automorphism group is isomorphic to Z.

4.1. A minimal subshift with lim inf
n!+1 p

X

(n)/n < +1 and lim sup
n!+1

p
X

(n)/n = +1. Now we present an example of a minimal subshift (X,�) induced
by a point x 2 {0, 1}N in the following way:

X = {y 2 {0, 1}Z; all words appearing in y also appear in x}.

The point x is chosen in order to have the following properties:
(i) x is uniformly recurrent: for any n 2 N there exists N 2 N such that every word
of length N that appears in x contains all words of length n in x;
(ii) the complexity of (X,�) is non-superlinear, that is, there exists a positive
constant C such that for infinitely many values of n 2 N we have p

X

(n)  Cn;
(iii) for a fixed subexponential function ' (meaning that lim

n!+1 '(n)/↵n = 0 for
every ↵ > 1), the complexity p

X

(n) is ⌦+('(n)).
It is clear from (i) that (X,�) is minimal. This property and (ii) says that (X,�)

satisfies the hypotheses of Theorem 3.1. Then its automorphism group is virtually
Z. Property (iii) illustrates that the hypothesis of Theorem 3.1 is compatible with
high complexities along subsequences, in particular any polynomial complexity.

We will need the following lemmas whose simple proofs are left to the reader.
Also, we will denote by p

z

(n) the number of words of length n 2 N occurring in a
onesided or twosided sequence z on the alphabet {0, 1}.

Lemma 4.1. Let ⇠ : {0, 1} ! {0, 1}⇤ be a substitution of constant length L and

⌧ : {0, 1} ! {0, 1}⇤ be a substitution such that all the words of length two in the

alphabet {0, 1} appear as subwords of ⌧(0) and ⌧(1). Then for every x 2 {0, 1}N
having occurrences of all words of length two in the alphabet {0, 1}, y 2 {0, 1}N and

0 < l  L we have p
⇠(x)(l) = p

⇠�⌧(y)(l).

In what follows ⇢ : {0, 1} ! {0, 1}⇤ is the Morse substitution: ⇢(0) = 01 and
⇢(1) = 10. Notice that it is a bijective constant-length substitution and the words
⇢3(0) and ⇢3(1) contain all the words of length 2.

Lemma 4.2. Let ⇠ : {0, 1} ! {0, 1}⇤ be a substitution of constant length L and

consider a point x 2 {0, 1}N. We have p
⇠�⇢3(x)(2L)  6L.

Fix a subexponential function '. The sequence x is built recursively. We are
going to construct two increasing sequences of integers (`

i

)
i�1 and (m

i

)
i�1 and a

sequence of substitutions (⌧
i

: {0, 1} ! {0, 1}⇤)
i�1 such that:

(1) x = lim
i!+1 ⇢3⌧1 . . . ⇢3⌧i(01101), where 01 = 00 . . .;

(2) `1 < m1 < `2 < m2 < . . .;
(3) p

x

(`
i

)  3`
i

for every integer i � 1;
(4) p

x

(m
i

) � '(m
i

) for every integer i � 1.
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We separate the construction into di↵erent steps. Since there are many technical
issues, we describe steps 1 and 2 before stating the recursive step in order to simplify
understanding the construction.

Step 1: Set `1 = 2 and x(1) = ⇢3(01101). Then, p
x

(1)(`1) = 4  3`1.
Let k1 be a positive integer such that 2k1 � '(k1|⇢3|) (this choice is always

possible since ' has subexponential growth). Let ⌧1 : {0, 1} ! {0, 1}⇤ be a bijective
substitution of constant length such that ⌧1(0) and ⌧1(1) start with 0 and the
number of words of length k1 in ⌧1(0) and ⌧1(1) is 2k1 . The existence of such a
substitution can be seen from the fact that De Bruijn graphs are Eulerian.

Now define m1 = k1|⇢3| and y(1) = ⇢3⌧1(01101). Since ⌧1(0) contains 2k1 dif-
ferent subwords of length k1 and ⇢3 is bijective, then p

y

(1)(m1) � 2k1 � '(m1).
Moreover, from Lemma 4.1 we have that p

x

(1)(l) = p
y

(1)(l) for all 0 < l  |⇢3|. So,
p
y

(1)(`1)  3`1 and p
y

(1)(m1) � '(m1).

Step 2: Set x(2) = ⇢3⌧1⇢3(01101). By Lemma 4.2 we have that p
x

(2)(2|⇢3⌧1|) 
6|⇢3⌧1|. Setting `2 = 2|⇢3⌧1| one gets that p

x

(2)(`2)  3`2.
Let k2 � k1 be an integer such that 2k2 � '(k2|⇢3⌧1⇢3|) and ⌧2 : {0, 1} ! {0, 1}⇤

be a bijective substitution of constant length such that ⌧2(0) and ⌧2(1) start with
0 and the number of words of length k2 in ⌧2(0) and ⌧2(1) is 2k2 .

We set m2 = k2|⇢3⌧1⇢3| and y(2) = ⇢3⌧1⇢3⌧2(01101). As in step 1, we deduce
that p

y

(2)(m2) � 2k2 � '(m2). Moreover, by using Lemma 4.1 in two di↵erent
ways together with the results of step 1, we have that

p
y

(2)(l) = p
x

(2)(l) for all 0 < l  |⇢3⌧1⇢3|,
p
x

(2)(l) = p
y

(1)(l) for all 0 < l  |⇢3⌧1|,
p
y

(1)(l) = p
x

(1)(l) for all 0 < l  |⇢3|.

Thus, if the length of ⌧1 is taken large enough, we can deduce that p
y

(2)(`1)  3`1,
p
y

(2)(m1) � '(m1), p
y

(2)(`2)  3`2 and p
y

(2)(m2) � '(m2).

General step: going from n to n+1. The general procedure follows what we did in
step 2 almost identically. The situation after finishing step n � 2 is as follows:

(1) we have an increasing sequence of integers k1  . . .  k
n

and for every
1  i  n, we have constructed a bijective substitution ⌧

i

: {0, 1} ! {0, 1}⇤
of constant length such that ⌧

i

(0) and ⌧
i

(1) start with 0 and the number of
words of length k

i

in ⌧
i

(0) and ⌧
i

(1) is 2ki ;
(2) for every 1  i  n we have that 2ki � '(k

i

|⇢3⌧1 . . . ⇢3⌧i�1⇢3|);
(3) for every 1  i  n we have defined points x(i) = ⇢3⌧1 . . . ⇢3⌧i�1⇢3(01101)

and y(i) = ⇢3⌧1 . . . ⇢3⌧i(01101);
(4) p

x

(i)(l) = p
y

(i)(l) for all 0 < l  |⇢3⌧1 . . . ⇢3⌧i�1⇢3| and 1  i  n;
(5) p

y

(i)(l) = p
x

(i+1)(l) for all 0 < l  |⇢3⌧1 . . . ⇢3⌧i| and 1  i  n� 1;
(6) we produced a sequence of integers `1 < m1 < `2 < . . . < `

n

< m
n

such
that for every 1  i  n: `

i

= 2|⇢3⌧1 . . . ⇢3⌧i�1|, mi

= k
i

|⇢3⌧1 . . . ⇢3⌧i�1⇢3|,
p
y

(n)(`
i

)  3`
i

and p
y

(n)(m
i

) � '(m
i

).

Repeating what we did in step 2, to pass to step n + 1 first we set x(n+1) =
⇢3⌧1 . . . ⇢3⌧n⇢3(01101). Then from Lemma 4.2 we get that

p
x

(n+1)(2|⇢3⌧1 . . . ⇢3⌧n|)  6|⇢3⌧1 . . . ⇢3⌧n|.

Putting `
n+1 = 2|⇢3⌧1 . . . ⇢3⌧n| one deduces that p

x

(n+1)(`
n+1)  3`

n+1.
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Let k
n+1 � k

n

be an integer such that 2kn+1 � '(k
n+1|⇢3⌧1 . . . ⇢3⌧n⇢3|) and

⌧
n+1 : {0, 1} ! {0, 1}⇤ be a bijective substitution of constant length such that
⌧
n+1(0) and ⌧

n+1(1) start with 0 and the number of words of length k
n+1 in

⌧
n+1(0) and ⌧

n+1(1) is 2kn+1 . We set m
n+1 = k

n+1|⇢3⌧1 . . . ⇢3⌧n⇢3| and y(n+1) =
⇢3⌧1 . . . ⇢3⌧n⇢3⌧n+1(01101). Then p

y

(n+1)(m
n+1) � 2kn+1 � '(b

n+1). Moreover, up
to a modification in the length of ⌧

n+1, by Lemma 4.1 and the recurrence procedure,
we have that

p
x

(i)(l) = p
y

(i)(l) for all 0 < l  |⇢3⌧1 . . . ⇢3⌧i�1⇢
3| and 1  i  n+ 1;

p
y

(i)(l) = p
x

(i+1)(l) for all 0 < l  |⇢3⌧1 . . . ⇢3⌧i| and 1  i  n.

Thus, an appropriate choice of parameters and the recurrence allow us to deduce
that p

y

(n+1)(`
i

)  3`
i

for every 1  i  n + 1 and p
y

(n+1)(m
i

) � '(m
i

) for every
1  i  n + 1. We have proved that properties (1) to (6) hold at the end of step
n+ 1. This finishes the recurrence procedure.

To conclude, observe that (y(n))
n�1 converges to the desired point x. Indeed,

convergence follows from the fact that ⇢3⌧1 . . . ⇢3⌧n(0) is a prefix of y(n) and y(n+1)

for all n � 1. In addition, since lim
n!+1 y(n) = x, then given i 2 N there exists

n 2 N such that p
x

(`
i

) = p
y

(n)(`
i

) and p
x

(m
i

) = p
y

(n)(m
i

). This proves that
p
x

(`
i

)  3`
i

and p
x

(m
i

) � '(m
i

) for all i 2 N.
We are left to prove that x is a uniformly recurrent point. This follows from the

fact that all words of a given length appearing in x are contained in ⇢3⌧1 . . . ⇢3⌧N (01)
for some N 2 N.

4.2. A substitutive subshift with superlinear complexity. It is known that
p
X

⌧

(n) = ⇥('(n)) with '(n) 2 {n, n log log n, n log n, n2} for any substitution
⌧ : A ! A⇤ (see [36]). Clearly, if '(n) 6= n, i.e., the subshift has superlinear
complexity, then the hypothesis on the complexity of Theorem 3.1 is not satisfied.
However, the structure of the asymptotic components might be quite simple, allow-
ing its automorphism group to be computed using the same technique developed
to prove Theorem 3.1.

The next example is a transitive non-minimal substitutive subshift with p
X

⌧

(n) =
⇥(n log log n). Moreover, it has a unique asymptotic component. This, in addition
to the particular form of the unique asymptotic component, will su�ce to conclude
that the automorphism group is isomorphic to Z. We remark that it is also possible
to construct examples of the same kind with p

X

⌧

(n) = ⇥(n2) [36].
Let A = {0, 1} and consider the substitution ⌧ : A ! A⇤ defined by

⌧(0) = 010 and ⌧(1) = 11.

It is not di�cult to check that (X
⌧

,�) is a non-minimal transitive subshift. More-
over, p

X

⌧

(n) = ⇥(n log log n) (see Section 4.4 in [8] for details).

4.2.1. Basic properties of ⌧ and some notation. We will need some specific notation.
For a sequence x 2 {0, 1}Z we write x = x�.x+ where x� = . . . x�2x�1 and
x+ = x0x1 . . .. For any a 2 {0, 1} we set a+1 = aaa · · · and a�1 = · · · aaa. Thus
the sequence · · · aaa.aaa · · · 2 {0, 1}Z can be written as a�1.a+1. We also write
⌧+1(a) = lim

n!+1 ⌧n(a+1) and ⌧�1(a) = lim
n!+1 ⌧n(a�1) when the limits

exist.
We list some easy properties that the subshift (X

⌧

,�) satisfies. Being simple,
the proofs are left to the reader.
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Recall that w 2 L(X
⌧

) if and only if there exists a 2 {0, 1} and N 2 N such that
w is a subword of ⌧N (a). Then, by definition of ⌧ , any word w 2 L(X

⌧

) containing
the symbol 0 must be a subword of some ⌧N (0). From here we easily deduce that:
(i) 00, 1010, 11011 62 L(X

⌧

), (ii) 010 is always preceded and followed by 11 in a word
of L(X

⌧

) and (iii) two consecutive occurrences of 010 in w 2 L(X
⌧

) are separated
by an even number of 1’s.

These properties allow a recognizability property for ⌧ to be proved.

Lemma 4.3. For any x 2 X
⌧

there exists a unique x0 2 X
⌧

such that ⌧(x0) = �`(x)
for some ` 2 {0, 1, 2}.

Proof. First we prove that any point x 2 X
⌧

\ {1�1.1+1} can be decomposed
in a unique way as a concatenation of words 010 and 11. By (i), every 0 in x
appears in the word 101 and, by (i) and (ii), this word is contained in 1101011.
We therefore have a unique way of determining 010. This property and (iii) enable
11 to be uniquely localised and the desired decomposition follows. Then there
exists a unique point x0 2 {0, 1}Z such that ⌧(x0) = �`(x) for some ` 2 {0, 1, 2}.
It is constructed by replacing the 010’s by 0’s and the 11’s by 1’s in the previous
decomposition and then shifting to recenter on coordinate 0. It is clear that x0 2 X

⌧

.
To finish we just remark that ⌧(1�1.1+1) = 1�1.1+1. ⇤

4.2.2. Automorphism group of ⌧ . We will prove that (X
⌧

,�) has a unique asymp-
totic component. Then we will describe it explicitly in order to compute the auto-
morphism group. For this, first we show that asymptotic points should end with
1+1.

Let x, y 2 X
⌧

be two asymptotic points. After shifting we can assume that
x�1 = 0, y�1 = 1 and x+ = y+. Since 00 62 L(X

⌧

), then x0 = y0 = 1. Also,
x1 = y1 = 1. If not, by (ii) x2x3 = 11 and thus y�1y0y1y2y3 = 11011 which is not
in L(X

⌧

) by (i).
Now suppose that x+ starts with 12n+10 for some n � 1. Then, property (i)

implies that x�3 . . . x2n+3 = 01012n+1010 which contradicts (iii). Thus, x+ either
starts with 12n0 for some integer n � 1 or it is equal to 1+1.

To finish we need to discard the first case. We prove this fact by contradiction,
so assume x+ (and thus y+) starts with 12n10 for some integer n1 � 1.

By Lemma 4.3 together with a detailed analysis of the decomposition given
by this lemma, there exist unique sequences x(1) = · · · 0.1n1010 · · · and y(1) =
· · · 1.1n1010 · · · in X

⌧

such that x = ⌧(x(1)) and y = ⌧(y(1)) (the dot indicates the
position just before coordinate 0). Clearly x(1) and y(1) are asymptotic. By the
same argument developed earlier, if n1 is odd then points x(1), y(1) 62 X

⌧

which
is a contradiction. If n1 is even we can proceed as before to get another pair
of asymptotic points x(2) = · · · 0.1n2010 · · · and y(2) = · · · 1.1n2010 · · · , for some
integer n2 � 1. As before, either n2 is odd, and we get a contradiction, or n2 is even,
and we can continue recursively producing asymptotic points x(i) = · · · 0.1ni010 · · ·
and y(i) = · · · 1.1ni010 · · · in X

⌧

for all 1  i  m, where n1 = 2n2 = 22n3 = . . . =
2m�1n

m

and m  log2(n1), until we get a contradiction as before or we stop with
n
m

= 1. In this last case x(m) = · · · 0.1010 · · · and y(m) = · · · 1.1010 · · · . But (i)
tells us that 01010 62 L(X

⌧

), so we also get a contradiction.
We have proved that x+ = 1+1 and then (X

⌧

,�) has a unique asymptotic
component.
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Furthermore, it can be proved using the same kind of arguments as above that
x = x�.1+1 2 X

⌧

\ {1�1.1+1} if and only if x� = ⌧�1(0)1n for some integer
n � 1. Hence, if x, y 2 X

⌧

are asymptotic then they belong to

{1�1.1+1,�n(⌧�1(0).1+1);n 2 Z}.
We finish this section by proving that the automorphism group of (X

⌧

,�) is
isomorphic to Z. Observe that (X

⌧

,�) is a subshift of subquadratic growth, then
the main result of [12] gives that Aut(X

⌧

,�)/h�i is a periodic group.

Lemma 4.4. Aut(X
⌧

,�) = h�i.

Proof. Let x̄ = ⌧�1(0).1+1. As discussed above, if x, y 2 X
⌧

are asymptotic then
they belong to {1�1.1+1,�n(x̄) ; n 2 Z}.

Consider � 2 Aut(X
⌧

,�). Since 1�1.1+1 is the unique fixed point for � in X
⌧

,
then �(1�1.1+1) = 1�1.1+1. Also, since �maps asymptotic points to asymptotic
points, then x̄ should be mapped to �n(x̄) for some n 2 Z. But the orbit of x̄ is
dense in X

⌧

, hence � = �n. This finishes the proof. ⇤

5. The group of automorphisms of nilsystems and some associated

subshifts

The purpose of this section is two fold. First we prove that the group of automor-
phisms of a proximal extension of an inverse limit of a minimal d-step nilsystem
(and thus of a minimal d-step nilsystem) is d-step nilpotent. Then, we use this
result to construct subshifts of arbitrary polynomial complexity whose group of
automorphism is virtually Z. Another important motivation of this section is to
illustrate how the understanding of special topological factors of a subshift allows
the computation of its automorphism group.

We will need some preliminary results to enable dealing with d-step nilsystems
and their inverse limits.

5.1. Dynamical cubes, regionally proximal relation of order d and nilfac-
tors. We recall the machinery and terminology introduced in [24] to study nilsys-
tems in topological dynamics.

Let (X,T ) be a topological dynamical system and consider an integer d � 1.

Let X [d] denote the set X2d . We index the coordinates of a point in X [d] using the
natural correspondence with points in {0, 1}d and we usually denote these points
in bold letters. For example, a point x in X [2] is written as (x00,x10,x01,x11).
We denote by x[d] the special point (x, x, . . . , x) (2d times), where x 2 X. The
space of cubes of order d, denoted by Q[d](X), is the closure in X [d] of the set
{(T ~n·✏x)

✏=(✏1,...,✏d)2{0,1}d 2 X [d];x 2 X,~n = (n1, . . . , nd

) 2 Zd}, where ~n · ✏ =
P

d

i=1 ni

· ✏
i

. As an example, Q[3](X) is the closure in X8 of the set of points

(x, Tn1x, Tn2x, Tn1+n2x, Tn3x, Tn1+n3x, Tn2+n3x, Tn1+n2+n3x),

where x 2 X and (n1, n2, n3) 2 Z3 (see Section 3 of [24] for further details).
We say that points x, y 2 X are regionally proximal of order d if for any � > 0
there exist x0, y0 2 X and ~n 2 Zd such that dist(x, x0) < �, dist(y, y0) < � and
dist(T ~n·✏x0, T ~n·✏y0) < � for every ✏ 2 {0, 1}d \ {(0, . . . , 0)}. The set of regionally
proximal pairs of order d of (X,T ) is denoted by RP[d](X). In [24] for distal
systems and then in [41] for general minimal systems, it was proved that RP[d](X)
is an equivalence relation. Clearly RP[d+1](X) ✓ RP[d](X).
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The following theorem relates the regionally proximal relation of order d with
the space of cubes of order d+ 1.

Theorem 5.1 ([24],[41]). Let (X,T ) be a minimal topological dynamical system.

For every integer d � 1, the following statements are equivalent:

(1) (x, y) 2 RP[d](X);
(2) (x, y, . . . , y) 2 Q[d+1](X)
(3) (x, x, . . . , x, y) 2 Q[d+1](X);
(4) There exists a sequence (~n

i

)
i2N in Zd+1

such that T ~n

i

·✏x converges to y as

i goes to infinity for every ✏ 2 {0, 1}d+1 \ {(0, . . . , 0)}.

From Theorem 5.1 it is clear that T preserves the equivalence classes ofRP[d](X).
Then, it induces a map T

d

on the quotient space Z
d

(X) = X/RP[d](X). Moreover,
the natural projection ⇡

d

: (X,T ) ! (Z
d

(X), T
d

) defines a topological factor map.
The following theorem describes the topological structure of (Z

d

(X), T
d

).

Theorem 5.2 ([24]). Let (X,T ) be a minimal topological dynamical system. For

each integer d � 1, (Z
d

(X), T
d

) is topologically conjugate to an inverse limit of

minimal d-step nilsystems. Moreover, it is the maximal factor of (X,T ) with this

property, that is, any other factor of (X,T ) which is an inverse limit of minimal

d-step nilsystems factorizes through (Z
d

(X), T
d

) (in particular, it is a factor of

(Z
d

(X), T
d

)).

The system (Z
d

(X), T
d

) is called the maximal d-step nilfactor of (X,T ). We
notice that the bonding maps in the inverse limit (Z

d

(X), T
d

) are topological factors
between minimal d-step nilsystems. These kind of inverse limits are also called
systems of order d in [24].

Some direct consequences of Theorem 5.2 are: (1) (Z1(X), T1) is the maximal
equicontinuous factor of (X,T ) (see [3]) and (2) condition RP[d](X) = �

X

(the
diagonal of X⇥X) characterizes topological conjugacy with the inverse limits of d-
step nilsystems. It follows from RP[d+1](X) ✓ RP[d](X) and (2) that the maximal
d+ 1-step nilfactor of an inverse limit of d-step nilsystems is the system itself.

Let ⇡ : (X,T ) ! (Y, S) be a factor map between minimal systems. For an
integer d � 1, ⇡

d

: (X,T ) ! (Z
d

(X), T
d

) and e⇡
d

: (Y, S) ! (Z
d

(Y ), S
d

) are the
factor maps induced by the regionally proximal relations of order d in each system.
Since (Z

d

(X), T
d

) is the maximal d-step nilfactor of (X,T ) and (Z
d

(Y ), S
d

) is an
inverse limit of minimal d-step nilsystems which is a factor of (X,T ), then by
Theorem 5.2 there exists a unique factor map '

d

: (Z
d

(X), T
d

) ! (Z
d

(Y ), S
d

) such
that '

d

� ⇡
d

= e⇡
d

� ⇡.

Lemma 5.3. Let ⇡ : (X,T ) ! (Y, S) be an almost one-to-one extension between

minimal systems. Then, for any integer d � 1 the canonical induced factor map

'
d

: (Z
d

(X), T
d

) ! (Z
d

(Y ), S
d

) is a topological conjugacy (equivalently, maximal

d-step nilfactors of (X,T ) and (Y, S) coincide).

Proof. Recall ⇡
d

: X ! Z
d

(X) and e⇡
d

: Y ! Z
d

(Y ) denote the quotient maps
described above. First we prove that '

d

: (Z
d

(X), T
d

) ! (Z
d

(Y ), S
d

) is an almost
one-to-one extension. This fact will imply the result.

Let x 2 X be such that ⇡�1{⇡(x)} = {x}. We claim that '�1
d

{'
d

(⇡
d

(x))} =
{⇡

d

(x)}. Let x0 2 X be such that '
d

(⇡
d

(x)) = '
d

(⇡
d

(x0)), so we get e⇡
d

(⇡(x)) =
e⇡
d

(⇡(x0)) and thus (⇡(x),⇡(x0)) 2 RP[d](Y ). By Theorem 5.1, there exists a
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sequence (~n
i

)
i2N in Zd+1 such that S~n

i

·✏⇡(x0) converges to ⇡(x) for every ✏ 2
{0, 1}d+1 \ {(0, . . . , 0)}. Taking a subsequence we can assume that T ~n

i

·✏x0 con-
verges to x, the unique point in ⇡�1{⇡(x)}, for every ✏ 2 {0, 1}d+1 \ {(0, . . . , 0)}.
Then, again by Theorem 5.1, we have that (x, x0) 2 RP[d](X). This implies that
⇡
d

(x) = ⇡
d

(x0) and then '
d

is an almost one-to-one extension.
Finally, by Lemma 2.1, '

d

is a proximal extension. But (Z
d

(X), T
d

) is a dis-
tal system, so there are no proximal pairs. This proves that '

d

is a topological
conjugacy. ⇤

As an application of the previous results we obtain the following corollary.

Corollary 5.4. Let ⇡ : (X,T ) ! (Y, S) be an almost one-to-one extension between

minimal systems. If (Y, S) is an inverse limit of minimal d-step nilsystems then it

is the maximal d-step nilfactor of (X,T ).

For instance, since any Sturmian subshift is an almost one-to-one extension of
an irrational rotation on the circle (see [28]), this rotation is its maximal 1-step
nilsystem or more classically its maximal equicontinuous factor. Similarly, Toeplitz
subshifts are symbolic almost one-to-one extensions of odometers (see [16]), hence
odometers are their maximal 1-step nilsystems.

5.2. The group of automorphisms of a nilsystem. The following is the main
result of this section.

Theorem 5.5. Let (X,T ) be an inverse limit of minimal d-step nilsystems for some

integer d � 1. Then its group of automorphisms Aut(X,T ) is d-step nilpotent.

To prove the theorem we need to introduce some further notation. Given a
function � : X ! X and an integer d � 1, for each k 2 {1, . . . , d} we define the
k-face transformation �[d],k : X [d] ! X [d] by:

(�[d],k(x))
✏

=

⇢
�x

✏

if ✏
k

= 1
x
✏

if ✏
k

= 0
,

for every x 2 X [d] and ✏ 2 {0, 1}d. For example, for d = 2 the face transformations
associated to � : X ! X are �[2],1 = id ⇥ � ⇥ id ⇥ � and �[2],2 = id ⇥ id ⇥ � ⇥ �.
We remark that �[d+1],k = �[d],k ⇥ �[d],k for any k 2 {1, . . . , d}.

When � = T , the transformations T [d],1, T [d],2, . . . , T [d],d are called the face

transformations and F
d

denotes the group spanned by them. Also, we denote by
G
d

the group spanned by F
d

and the diagonal transformation T⇥ · · ·⇥T (2d times).
We remark that Q[d](X) is invariant under G

d

. This result can be extended to face
transformations associated to an automorphism.

Lemma 5.6. Let (X,T ) be a minimal topological dynamical system. Consider � 2
Aut(X,T) and an integer d � 1. For every k 2 {1, . . . , d} the face transformation

�[d],k
leaves invariant Q[d](X).

Proof. Fix k 2 {1, . . . , d}. By minimality of (X,T ), for all x 2 X there exists
a sequence (n

i

)
i2N of integers such that Tn

ix converges to �(x). Then, by the
definition of face transformations, (T [d],k)ni(x[d]) converges to �[d],k(x[d]) (recall
that x[d] = (x, . . . , x)). This implies that �[d],k(x[d]) 2 Q[d](X).

Let x 2 Q[d](X). By definition, there exist x 2 X and a sequence (g
i

)
i2N in

G
d

such that g
i

(x[d]) converges to x. Since � commutes with T we have that �[d],k
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commutes with each element of G
d

and thus �[d],kg
i

(x[d]) = g
i

�[d],k(x[d]) 2 Q[d](X).
Taking the limit we conclude that �[d],k(x) 2 Q[d](X). This proves that �[d],k leaves
invariant Q[d](X). ⇤

Proof of Theorem 5.5. Let �1, . . . ,�d+1 2 Aut(X,T ). Using Lemma 5.6 we have

that �[d+1],i
i

leaves invariant Q[d+1](X) for every i = 1, . . . , d+ 1. Therefore, their

iterated commutator [[[. . . [�[d+1],1
1 ,�[d+1],2

2 ], . . .],�[d+1],d
d

],�[d+1],d+1
d+1 ] also leaves in-

variant Q[d+1](X). Let h = [[[. . . [�1,�2], . . .],�d

],�
d+1] be the iterated commutator

of �1, . . . ,�d+1. We claim that

id⇥ id · · ·⇥ id⇥ h = [[[. . . [�[d+1],1
1 ,�[d+1],2

2 ], . . .],�[d+1],d
d

],�[d+1],d+1
d+1 ].

We prove this equality by induction on d. To illustrate how to deduce this fact we
start showing the case d = 2. In this case,

�[3],1
1 = id⇥ �1 ⇥ id⇥ �1 ⇥ id⇥ �1 ⇥ id⇥ �1;

�[3],2
2 = id⇥ id⇥ �2 ⇥ �2 ⇥ id⇥ id⇥ �2 ⇥ �2;

�[3],3
3 = id⇥ id⇥ id⇥ id⇥ �3 ⇥ �3 ⇥ �3 ⇥ �3.

Then, [�[3],1
1 ,�[3],2

2 ] = id⇥ id⇥ id⇥ [�1,�2]⇥ id⇥ id⇥ id⇥ [�1,�2] and

[[�[3],1
1 ,�[3],2

2 ],�[3],3
3 ] = id⇥ id⇥ id⇥ id⇥ id⇥ id⇥ id⇥ [[�1,�2],�3]

as desired.
Now suppose the equality holds for d � 1 and let �1, . . . ,�d

,�
d+1 2 Aut(X,T ).

Let

h0 = [[[. . . [�1,�2], . . .],�d�1],�d

] and h = [[[. . . [�1,�2], . . .],�d

],�
d+1] = [h0,�

d+1].

By the induction hypothesis we have that

[[[. . . [�[d],1
1 ,�[d],2

2 ], . . .],�[d],d�1
d�1 ],�[d],d

d

] = id⇥ id · · ·⇥ id⇥ h0.

Since �[d+1],k
k

= �[d],k
k

⇥ �[d],k
k

for every k 2 {1, . . . , d} we have

[[[. . . [�[d+1],1
1 ,�[d+1],2

2 ], . . .],�[d+1],d�1
d�1 ],�[d+1],d

d

]

=id⇥ id · · ·⇥ id⇥ h0 ⇥ id⇥ id · · ·⇥ id⇥ h0.

Thus,

[[[. . . [�[d+1],1
1 ,�[d+1],2

2 ], . . .],�[d+1],d
d

],�[d+1],d+1
d+1 ] = id⇥ · · ·⇥ id⇥ [h0,�

d+1]

and the claim is proved.
Therefore, we have that id⇥ id · · ·⇥ id⇥h(x[d]) = (x, x, . . . , x, h(x)) 2 Q[d+1](X)

for every x 2 X. By Theorem 5.1, we have that (h(x), x) 2 RP[d](X) for every
x 2 X. But the system is an inverse limit of d-step nilsystems, then by Theorem 5.2
we have thatRP[d](X) = �

X

and thus h(x) = x. We conclude that h is the identity
automorphism, which proves that Aut(X,T ) is a d-step nilpotent group. ⇤

To extend Theorem 5.5 to proximal extensions of inverse limits of minimal d-step
nilsystems we need to understand the action of automorphisms on the regionally
proximal relation of order d. The following lemma states this fact.



22 SEBASTIÁN DONOSO, FABIEN DURAND, ALEJANDRO MAASS, AND SAMUEL PETITE

Lemma 5.7. Let (X,T ) be a minimal topological dynamical system. For all � 2
Aut(X,T ) and all integer d � 1 we have that (x, y) 2 RP[d](X) if and only if

(�(x),�(y)) 2 RP[d](X). Consequently, the projection ⇡
d

: (X,T ) ! (Z
d

(X), T
d

)
is compatible with Aut(X,T ).

Proof. We only need to prove that (�(x),�(y)) 2 RP[d](X) whenever (x, y) 2
RP[d](X). By Theorem 5.1, there exists a sequence (~n

i

)
i2N in Zd+1 such that

T ~n

i

·✏x converges to y as i goes to infinity for every ✏ 2 {0, 1}d+1 \ {(0, . . . , 0)}.
Since � is continuous and commutes with T we also have that T ~n

i

·✏�(x) converges
to �(y) as i goes to infinity for every ✏ 2 {0, 1}d+1 \{(0, . . . , 0)} too. Then Theorem
5.1 allows us to prove our claim. ⇤

Finally we have the following corollary of Theorem 5.5.

Corollary 5.8. Let (X,T ) be a proximal extension of an inverse limit of mini-

mal d-step nilsystems for d � 1. Then, there is an injection from Aut(X,T ) to

Aut(Z
d

(X), T
d

). In particular, Aut(X,T ) is a d-step nilpotent group.

Proof. By Theorem 5.2 and the hypothesis, ⇡
d

: (X,T ) ! (Z
d

(X), T
d

) is also a
proximal extension. Then, by Lemma 5.7, this factor is compatible with Aut(X,T )
and thus from Lemma 2.4 we get that c⇡

d

: Aut(X,T ) ! Aut(Z
d

(X), T
d

) is injective.
This proves the result since by Theorem 5.5 Aut(Z

d

, T
d

) is a d-step nilpotent group.
⇤

Since Sturmian and Toeplitz subshifts are almost one-to-one extensions of their
maximal equicontinuous factors (maximal 1-step nilfactors), then they are also
proximal extensions (Lemma 2.1). We obtain from the last corollary that their
automorphism groups are abelian. More precisely, Lemmas 5.7 and 2.4 together
imply that their automorphism groups are subgroups of the automorphism group of
their maximal equicontinuous factors, which we characterize in Lemma 5.9 below.
For integers d > 1, it is not di�cult to construct minimal subshifts that are almost
one-to-one extensions of d-step nilsystems by considering codings on well chosen
partitions. An example of this kind will be developed in Section 5.3.

By a byproduct of Theorem 3.1 and Corollary 5.8, it is possible to obtain coarser
properties of the finite group Aut(X,�)/h�i for substitutive Toeplitz subshifts. This
is achieved in [11] where explicit computations of automorphism groups of constant
length substitutions are given.

We finish this section with a characterization of the group of automorphisms of
an equicontinuous system (or 1-step nilsystems). This result is well known but for
the sake of completeness we provide a short proof here (see [2]).

Lemma 5.9. Let (X,T ) be an equicontinuous minimal system. Then Aut(X,T )
is the closure of the group hT i in the set of homeomorphisms of X for the topology

of uniform convergence. Moreover, Aut(X,T ) is homeomorphic to X.

Proof. Denote by G the closure in the set of homeomorphisms of X of the group
hT i for the topology of uniform convergence. Clearly G ✓ Aut(X,T ). Moreover,
by Ascoli’s Theorem, it is a compact abelian group.

Now we prove that Aut(X,T ) ✓ G. Consider a point x 2 X and an automor-
phism � 2 Aut(X,T ). By minimality, there exists a sequence of integers (n

i

)
i2N

such that (Tn

ix)
i2N converges to �(x). Taking a subsequence, we can assume that

the sequence of maps (Tn

i)
i2N converges uniformly to a homeomorphism g in G.
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Combining both of these facts we get that �(x) = g(x) and thus g�1 � �(x) = x.
Since g�1 �� 2 Aut(X,T ), by Lemma 2.2 we conclude that � = g and consequently
� 2 G.

To finish, we remark that Lemma 2.2 ensures that the map from G to X sending
g 2 G to g(x) 2 X is a homeomorphism onto its image Y ✓ X. Since Y is T
invariant and T is minimal we get that Y = X. This proves that Aut(X,T ) is
homeomorphic to X. ⇤

5.3. Coding an a�ne nilsystem. We introduce a class of subshifts with poly-
nomial complexity of arbitrarily high degree whose group of automorphisms is vir-
tually Z. We build these systems as extensions of minimal nilsystems.

5.3.1. Coding topological dynamical systems. We start by recalling some general
results about symbolic codifications.

Let (X,T ) be a minimal topological dynamical system and let U = {U1, . . . , Um

}
be a finite collection of subsets of X. We say that U is a cover of X if

S
m

i=1 Ui

= X.
Clearly, finite partitions of X are covers. The refinement of two covers U =
{U1, . . . , Um

} and V = {V1, . . . , Vp

} of X is given by U _ V = {U
i

\ V
j

; i =

1, . . .m, j = 1, . . . p} \ {;}. For N 2 N we set U
N

=
W

N

i=�N

T�iU .
Let U = {U1, . . . , Um

} be a cover of X and set A = {1, . . . ,m}. We say that
! = (w

i

)
i2Z 2 AZ is a U-name of a point x 2 X if x 2

T
i2Z

T�iU
w

i

. Define

XU = {! 2 AZ;
\

i2Z
T�iU

w

i

6= ;} ✓ AZ.

It is easy to prove that XU is shift invariant and closed whenever the U
i

’s are closed.
In addition, if U denotes the collection {U1, . . . , Um

} we have that XU ✓ XU .
We say that U separates points if every ! 2 XU is a U -name of exactly one point

x 2 X. If U separates points we can build a factor map ⇡U : (XU ,�) ! (X,T ),
where ⇡U (!) is defined as the unique point in

T
i2Z

T�iU
w

i

.

Lemma 5.10. Let (X,T ) be a minimal topological dynamical system and let U =
{U1, . . . , Um

} be a finite partition of X that separates points. Suppose that for every

N 2 N every atom of U
N

has nonempty interior, then (XU ,�) is a minimal subshift.

Proof. Take points !,!0 2 XU and an integer N 2 N. Set x = ⇡U (!) and x0 =

⇡U (!0). By definition we have that
T

N

�N

T�iU
w

i

6= ;. Therefore, by hypothesis,
it has nonempty interior. Since (X,T ) is minimal there exists n 2 Z such that

Tnx0 2 int(
T

N

�N

T�iU
w

i

). This implies that w0
n�N

. . . w0
n+N

= w�N

. . . w
N

. We

have proved that (XU ,�) is a minimal subshift. ⇤

5.3.2. Automorphism groups of some symbolic extensions of nilsytems. Now we
compute automorphism groups of a family of symbolic extensions of some nilsys-
tems. This family was studied in details in [1]. Even though we will recall many of
the results we need here, we will freely make use of many results from [1].

First we recall the construction of [1]. Let A = (a
i,j

)
i,j2N be the infinite matrix

where a
i,j

=
�
j

i

�
. In [1, Section 4], it was proved that Ai is well defined for all i 2 N

and
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Ai =

0

BBBBBB@

1 i i2 i3 i4 · · ·
1 2i 3i2 4i3 · · ·

1 3i 6i2 · · ·
1 4i · · ·

1 · · ·
· · · · · ·

1

CCCCCCA
.

Let ↵ 2 [0, 1) be an irrational number. For any integer d � 1 define A
d

to be the
restriction of A to the upper left corner of dimension d. Notice that Ai

d

= (Ai)
d

for
every i 2 N.

Let T
d

: Td ! Td be the map that sends (x0, . . . , xd�1) 2 Td to the first d
coordinates of A

d+1(x0, . . . , xd�1,↵)t, where in Td all operations are modulo one.
For example, T2 is the map (x0, x1) 7! (x0 + x1 + ↵, x1 + 2↵) and T3 is the map
(x0, x1, x2) 7! (x0 + x1 + x2 + ↵, x1 + 2x2 + 3↵, x2 + 3↵). So for any x 2 T we can
write T

d

(x) = A
d

x+ ~↵. This is the classical presentation of an a�ne nilsystem (see
Section 2.6).

Next, fix an integer d � 1. For every i, n 2 Z let H
i,n

be the a�ne hyper-

plane in Rd given by the equation
P

d�1
k=0 i

kx
k

+ id↵ = n. It can be proved that
T i

d

H
i,n

= H0,n. Also, for each i 2 Z the canonical projections of the hyperplanes

(H
i,n

)
n2Z to Td are the same. Call this projection bH

i

and refer to it as a projected

hyperplane. We remark that bH0 = {(0, x1, . . . , xd�1); (x1, . . . , xd�1) 2 Td�1} and
that the intersection of more than d+ 1 di↵erent projected hyperplanes in ( bH

i

)
i2Z

is empty. We refer to Section 5 of [1] for further details.
For each i 2 Z, since the projected hyperplane bH

i

is defined from equations with
integer coe�cients, it naturally induces a finite partition C

i

of Td whose bound-
aries are defined by bH

i

(the ambiguities in the choice of the boundaries are solved
arbitrarily).

For each integer n � 1 we define the partition V
d

= C0
W
. . .

W
C
d

, then its atoms
are the nonempty intersections of the sets induced by bH0, . . . , bH

d

. It is proved in
Lemma 9 of [1] that those atoms have convex interiors. Also, it is shown in Lemma
5 and 7 in [1] that no point in bH0 [ . . . [ bH

d

belongs to the interior of an atom.
Thanks to the equality T i

d

H
i,n

= H0,n, we remark that the partition T�i

d

V
d

is the

one induced by bH
i

, . . . , bH
i+d

and its atoms also have a convex interior.
We claim that partition V

d

separates points. Let x and y be di↵erent points in
Td. Since every point in Td belongs to at most d projected hyperplanes ( bH

i

)
i2Z, we

have that x, y /2 bH
i

for all large enough i 2 N. In particular x, y /2 bH
i

[ . . . [ bH
i+d

for all large enough i 2 N, which implies that they belong to the interior of atoms
of the partition T�i

d

V
d

. Choose x̃ = (x̃0, . . . , x̃d�1), ỹ = (ỹ0, . . . , ỹd�1) 2 Rd with

x = x̃ mod Zd and y = ỹ mod Zd. The di↵erence in R between
P

d�1
k=0 i

kx̃
k

+ id↵

and
P

d�1
k=0 i

kỹ
k

+ id↵ behaves like ik(x̃
k

� ỹ
k

), where k = max{0  k < d; x̃
k

6= ỹ
k

}.
Then it grows to infinity with i 2 N. Thus for a large i 2 N we can find a point
z̃ = (z̃0, . . . , z̃d�1) in the segment joining x̃ and ỹ such that

P
d�1
k=0 i

kz̃
k

+ id↵ 2 Z,
meaning that z̃ mod Zd 2 bH

i

. Because no point in bH
i

[ . . . [ bH
i+d

belongs to the
interior of an atom of the partition T�i

d

V
d

, we have that x and y are in di↵erent
atoms of partition T�i

d

V
d

. Therefore, if i is large enough and N � i these points

also lie in di↵erent atoms of
W

N

i=�N

T�i

d

V
d

, which shows that V
d

separates points.
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We recall that (XV
d

,�) is the subshift induced by V
d

. By Lemma 5.10, since
V
d

separates points and (V
d

)
N

has nonempty interior for all N 2 N, one has that
(XV

d

,�) is a minimal subshift and there is a factor map ⇡
d

: (XV
d

,�) ! (Td, T
d

).
Moreover, by construction, the set of points in Td with more than one preimage for
⇡
d

consists of points which fall in F
d

= bH0 [ bH1 [ . . . [ bH
d�1 under some power of

T
d

, i.e.,
S

j2Z T
�j

d

F
d

=
S

j2Z T
�j

d

bH0. This set has zero Lebesgue measure and thus

there exist points with exactly one preimage for ⇡
d

. In particular, (XV
d

,�) is an
almost one-to-one extension of (Td, T

d

). By Corollary 5.4 we get,

Lemma 5.11. The maximal d-step nilfactor of (XV
d

,�) is the a�ne nilsystem

(Td, T
d

). Then Td

can be identified with the quotient XV
d

/RP[d](XV
d

).

We are ready to compute the group of automorphisms for these examples.

Theorem 5.12. The group Aut(XV
d

,�) is virtually Z.

Proof. Let � 2 Aut(XV
d

,�) and set W = {! = (w
i

)
i2Z 2 XV

d

; #⇡�1
d

{⇡
d

(!)} � 2}.
Then ⇡

d

(W ) is the set of points in Td with more than one preimage for ⇡
d

. As
discussed above ⇡

d

(W ) =
S

j2Z T
�j

d

F
d

=
S

j2Z T
�j

d

bH0.

By Lemma 5.7, � preserves RP[d](XV
d

). Since ⇡
d

is induced by this relation,
then W is invariant under �. We also get that c⇡

d

(�) 2 Aut(Td, T
d

) leaves invariant
⇡
d

(W ) =
S

j2Z T
�j bH0.

The a�ne nilsystem (Td, T
d

) is ergodic by construction (↵ is irrational) and the
associated matrix has 1 as unique eigenvalue. Theorem 2 and Corollary 1 in [42]
imply that c⇡

d

(�) 2 Aut(Td, T
d

) is an a�ne transformation, i.e., it has the form

Bx+ ~�, where B is an invertible integer matrix and ~� 2 Td (recall that operations
are taken modulo one). Hence, the image of the projected hyperplane bH0 by the
a�ne map c⇡

d

(�) is still a projected hyperplane. But the set ⇡
d

(W ) is invariant
for c⇡

d

(�) and so we get that the projected hyperplane c⇡
d

(�) bH0 is included in the
union of the projected hyperplanes (T�j

d

bH0)j2Z. By Baire’s theorem and since

c⇡
d

(�) bH0 and T�j

d

bH0 for j 2 Z share the same dimension, we obtain that c⇡
d

(�) bH0

is equal to some T�j

d

bH0. Finally, the automorphism T j

d

c⇡
d

(�) 2 Aut(Td, T
d

) leaves
bH0 invariant.
We are left to study the automorphisms of (Td, T

d

) which leave bH0 invariant.
Let ' 2 Aut(Td, T

d

) be such an automorphism. As discussed before, by [42] '

has the form '(x) = Bx + ~� mod Zd, where B = (B
i,j

)1i,jd

is an invertible

matrix with integer entries and ~� = (�0, . . . ,�d�1)t 2 Rd. Since ' commutes with

T
d

we have for every x 2 Td that A
d

Bx + A~� + ~↵ = BA
d

x + B~↵ + ~� mod Zd.
This allows us to conclude that B commutes with A

d

as real matrices and that
(B � Id)~↵ = (A

d

� Id)~� mod Zd.
The map ' leaves bH0 invariant, meaning that '(0, x1, . . . , xd�1) 2 bH0 for any

(x1, . . . , xd�1) 2 Td�1. This allows us to deduce that coe�cients B1,2 = . . . =
B1,d = 0 = �0. Also, since Ai

d

B = BAi

d

for every i 2 N, by looking at the first rows
of these matrices, we deduce that for all 1  j  d and i 2 N

dX

k=1,k 6=j

(B
j,k

)ik�1 + (B
j,j

�B1,1)i
j�1 = 0.
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But the vectors (1, i, i2, . . . , id�1) are linearly independent for di↵erent values of i 2
N, so B = B1,1Id. Therefore, (Ad

�Id)~� = (B�Id)~↵ = (B1,1�1)~↵ mod Zd. Since
A

d

is upper triangular with ones in the diagonal, we deduce that (B1,1 � 1)↵ 2 Q
and thus B1,1 = 1. We have proved that B = Id and then ' is the rotation by
~� = (0,�1, . . . ,�d�1)t and (A

d

� Id)~� 2 Zd. This last property can be written as
0

BBBBBB@

0 1 1 · · · 1
0 2

. . .
. . .

0 d
0

1

CCCCCCA

0

BBBB@

0
�1

.

.

.
�
d�1

1

CCCCA
2 Zd.

This implies that d�
d�1 2 Z which is possible for finitely many �

d�1 mod Z 2
T. Inductively, we deduce that there are finitely many rational solutions ~� =
(0,�1, . . . ,�d�1)t mod Zd in Td. This means that the group of automorphisms that
leaves bH0 invariant is a finite group of rational rotations. Therefore, b⇡(Aut(XV

d

,�))
is spanned by T

d

and a finite set. We recall that the factor map ⇡
d

: (XV
d

,�) !
(Td, T

d

) is almost one-to-one, so by Lemma 2.4 b⇡ : Aut(XV
d

,�) ! Aut(T, T
d

) is an
injection. We conclude that Aut(XV

d

,�) is also spanned by � and a finite set. The
result follows. ⇤

To finish this section, we mention that the main theorem in [1] (see page 2)
asserts that the complexity function of (XV

d

,�) is given by

p(n) =
1

V (0, 1, . . . , d� 1)

X

0k1<k2<...<k

d

n+d�1

V (k1, k2, . . . , kd),

where V (k1, k2, . . . , kd) =
Q

1i<jd

(k
j

�k
i

) is a Vandermonde determinant. We note

that varying d 2 N results in polynomial complexities of arbitrary degree.
Thus we have proved that particular symbolic codings of a�ne nilsystems pro-

duce subshifts of polynomial complexity of arbitrary degree whose automorphism
groups are virtually Z. A natural question is whether or not this is still true for
symbolic extensions of general nilsystems induced by coding on well chosen parti-
tions.

6. Final comments and open questions

In this section, we comment on some natural questions that follow from our own
work together with recent work on the topic of this article.

6.1. Realization of automorphism groups. By the Curtis-Hedlund-Lyndon
theorem the collection of automorphisms of a subshift is countable. So it is natural
to ask whether any countable group can be realized as an automorphism group of a
subshift. This is a complicated question and, as was mentioned in the introduction,
many partial answers have been given in the case of positive entropy subshifts. In
the context of this article the question we want to address is:

Question 6.1. Given a countable group G (not necessarily finitely generated),

does there exist a minimal subshift with subexponential complexity (X,�) such that

Aut(X,�) is isomorphic to G ?

We are far from solving this question. As a first step we provide subshifts whose
automorphism groups are isomorphic to Zd for some integer d � 1.
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Proposition 6.2. For every integer d � 1, there exists a minimal subshift (X,�)
with complexity satisfying p

X

(n) = ⇥(nd) such that Aut(X,�) is isomorphic to Zd

.

Thus, we remark that the statement of Theorem 3.1 is no longer valid for arbi-
trary polynomial complexity.

Proof. Let ↵1, . . . ,↵d

2 R \ Q be rationally independent numbers. For every i 2
{1, . . . , d} let ([0, 1), R

↵

i

) be the rotation modulo one by angle ↵
i

on the unit
interval and let (X

i

,�
i

) be the Sturmian subshift associated to it (we write �
i

to
distinguish the shift in each of the systems). We recall that each Sturmian subshift
is obtained from the coding of the orbits of points for R

↵

i

with respect to the
partition {[0, 1�↵

i

), [1�↵
i

, 1)}. Since each ↵
i

is an irrational number, there exists
an almost one-to-one extension ⇡

i

: (X
i

,�
i

) ! ([0, 1), R
↵

i

) and ⇡
i

is injective except
for the orbit of 1�↵

i

, where every point has exactly two preimages. This last fact
implies that ([0, 1), R

↵

i

) is its maximal equicontinuous factor and that, in (X
i

,�
i

),
the proximal relation is an equivalence relation.

Set X = X1⇥X2 · · ·⇥X
d

, � = �1⇥�2 · · ·⇥�
d

and R
~↵

= R
↵1 ⇥ · · ·⇥R

↵

d

. Since
the angles ↵1, . . . ,↵d

are rationally independent, the product system ([0, 1)d, R
~↵

)
is minimal. This implies, by Theorem 7 in [3, Chapter 11], that (X,�) is transitive.
However, in each subshift (X

i

,�
i

), the proximal relation is an equivalence relation
and so by Theorem 9 in [3, Chapter 11] we get that (X,�) is a minimal subshift.
In addition, the product system ([0, 1)d, R

~↵

) is its maximal equicontinuous factor.
The factor map ⇡ = ⇡1 ⇥ · · ·⇥ ⇡

d

: (X,�) ! ([0, 1)d, R
~↵

) is almost one-to-one and
each point in [0, 1)d has at most 2d preimages for ⇡.

Recall that for each i 2 {1, . . . , d} the group Aut(X
i

,�
i

) is generated by �
i

(see
the comment below Theorem 3.1 or [33]). It is clear that the map (�1, . . . ,�d

) 2
Aut(X1,�1) ⇥ · · · ⇥ Aut(X

d

,�
d

) 7! �1 ⇥ · · · ⇥ �
d

2 Aut(X,�) is an embedding of
the group Zd. We claim that this embedding is actually an isomorphism.

By Lemma 5.7 the factor ⇡ : (X,�) ! ([0, 1)d, R
~↵

) is compatible with Aut(X,�),
so for every � 2 Aut(X,�) the automorphism b⇡(�) 2 Aut([0, 1)d, R

~↵

) is well de-
fined. Moreover, it preserves the set of points in [0, 1)d that have a maximum
number of preimages for ⇡: namely the set Orb

R

↵1
(1�↵1)⇥ · · ·⇥Orb

R

↵

d

(1�↵
d

).
Hence there exist n1, . . . , nd

2 Z such that b⇡(�)(1 � ↵1, . . . , 1 � ↵
d

) = (Rn1
↵1
(1 �

↵1), . . . , Rn

d

↵

d

(1�↵
d

)). This implies that b⇡(�) = Rn1
↵1

⇥· · ·⇥Rn

d

↵

d

= b⇡(�n1
1 ⇥· · ·⇥�n

d

d

).
But, by Lemma 2.4, the map b⇡ : Aut(X,�) ! Aut([0, 1)d, R

~↵

) is injective, thus
� = �n1

1 ⇥ · · ·⇥ �n

d

d

. This proves our claim and Aut(X,�) is isomorphic to Zd.
To finish we compute the complexity function of (X,�). It is well known that

p
X

i

(n) = n+ 1 for every i 2 {1, . . . , d}. Thus, the complexity function of (X,�) is
p
X

(n) = (n+ 1)d. ⇤

Another direction to explore in order to answer Question 6.1 is to analyse specific
families of subshifts. In particular, Toeplitz subshifts have proved to be a very
good source of inspiration for constructively solving some open problems in di↵erent
branches of topological dynamics. As was stated in Corollary 5.8, the automorphism
group of a Toeplitz subshift is a subgroup of its maximal equicontinuous factor
which is an odometer. These systems are well understood so we may expect to
explicitly describe this subgroup.

6.2. Relation between dynamical properties and automorphisms.
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6.2.1. Complexity versus group of automorphisms. The results of [12, 13] and of
this paper show the relation between the complexity and the growth rate of the
automorphism groups of subshifts, especially for subquadratic complexities. Is
it possible to extend these results to higher complexities? Inspired by the main
theorem of this paper and examples in Sections 5.3 and 6.1, we ask

Question 6.3. Let (X,�) be a minimal or transitive subshift such that

d = inf{� 2 N; 0 < lim inf
n!+1

p
X

(n)/n� < +1} > 0.

Is the automorphism group of such a subshift virtually Zk

for some k  d?

6.2.2. Recurrence and growth rate of automorphism groups. Is it possible to give an
extension of Theorem 3.1 to a class of subshifts with higher complexity? To address
this question we propose exploring an alternative notion to word complexity. For
a subshift (X,�), we define the visiting time map by:

R
00

X

(n) := inf{|w|; w 2 L(X) contains each word of X of length n},
where n 2 N. To the best of our knowledge, this concept was first introduced in [9]
but without any name. We have borrowed the notation from this reference and we
bestow a name on it. Clearly, this map is finite for every n 2 N if and only if the
subshift is transitive. In this case, it satisfies R

00

X

(n) � p
X

(n) + n � 1. Moreover,
for a minimal subshift R

00

X

(n) is less than the so-called recurrence function R
X

(n)
as defined in [21]. We will not comment any further on this latter function.

Some computations are known for particular subshifts. For instance, linearly
recurrent subshifts, which include primitive substitutive subshifts, satisfy R

00

X

(n) =
O(n). Also, it is proved in [9] that R

00

X

(n)  2n for every Sturmian subshift.
For higher polynomial degree we obtain the following result.

Proposition 6.4. Let (X,�) be a subshift such that R
00

X

(n) = O(nd) for some

integer d � 1. Then, each finitely generated subgroup of Aut(X,�) is a virtually

nilpotent group whose step only depends on d.

Proof. Let S = h�1, . . . ,�`

i ✓ Aut(X,�) be a finitely generated group. Let r be an
upper bound of the radii of the local maps associated to all generators �

i

of S and
their inverses. For n 2 N, consider
B

n

(S) = {�s1
i1
· · ·�s

m

i

m

; 1  m  n, i1, . . . , im 2 {1, . . . , `}, s1, . . . , sm 2 {1,�1}} .

Let w be a word of length R
00

X

(2nr+1) containing every word of length (2nr+1)
of X. If �,�0 2 B

n

(S) are di↵erent, then �(w) 6= �0(w). Further, there is an
injection from B

n

(S) into the set of words of length R
00

X

(2nr+1)�2r (the injection
is just the evaluation of � on w). This implies that ]B

n

(S)  p
X

(R
00

X

(2nr+1)�2r).

We deduce from the hypothesis on R
00

X

that ]B
n

(S)  nd

2+1 for all large enough
integers n 2 N. The proof is completed by applying the quantitative result of Y.
Shalom and T. Tao in [40] generalizing Gromov’s classical result on the growth rate
of groups. ⇤

Notice that Theorem 1.8 of [40] provides and explicit value for the step of the
nilpotent group appearing in the proposition. It is clear that a subshift of poly-
nomial visiting time (meaning that R

00

X

(n) = O(nd) for some integer d � 1) has
polynomial complexity. It is straightforward to show that the converse is false by
constructing explicit counterexamples.
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6.3. Extension to higher dimensional subshifts. A natural generalization of
the topic developed in this article is to study the automorphism groups of higher
dimensional subshifts and even of tiling systems.

We believe that the study of asymptotic components or the somehow analogous
notion of nonexpansive directions in higher dimensions may also provide useful tools
to address computations of automorphism groups in this context. For instance, in
[15] such an approach allowed the authors to prove that the automorphism group
of the minimal component of the Robinson subshift of finite type is trivial, i.e., it
is generated by the shift map.

Acknowledgements

We are very grateful to Andrew Hart for helping to revise the last version of this
article. We thank both referees that participated with their reports to improve the
paper’s clarity, readability, and organization.

References
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Soc. Math. France 124 (1996), 329–346.
[32] B. Mossé, Puissances de mots et reconnaissabilité des points fixes d’une substitution, The-
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UNIMODULAR PISOT SUBSTITUTIONS AND DOMAIN

EXCHANGES

FABIEN DURAND, SAMUEL PETITE

Abstract. We show that any Pisot substitution on a finite alphabet is conju-
gate to a primitive proper substitution (satisfying then a coincidence condition)
whose incidence matrix has the same eigenvalues as the original one, with pos-
sibly 0 and 1. Then, we prove also substitutive systems sharing this property
and admitting “enough” multiplicatively independent eigenvalues (like for uni-
modular Pisot substitutions) are measurably conjugate to domain exchanges
in Euclidean spaces which factorize onto minimal translations on tori. The
combination of these results generalizes a well-known result of Arnoux-Ito to
any unimodular Pisot substitution.

1. Introduction

A classical way to tackle problems in geometric dynamics is to code the dynamics
through a well-chosen finite partition to obtain a ”nice” subshift which is easier to
study (see the emblematic works [Had98] and [Mor21]). The interesting aspects of
the subshift could then be lifted back to the dynamical systems.
In the seminal paper [Rau82], G. Rauzy proposed to go in the other way round:
take your favorite subshift and try to give it a geometrical representation. He took
what is now called the Tribonacci substitution given by

⌧ : 1 7! 12, 2 7! 13 and 3 7! 1,

and proved that the subshift it generates is measure theoretically conjugate to a
rotation on the torus T2. A similar result was already known for substitutions of
constant length under some necessary and su�cient conditions [Dek78]. Later, in
[AR91], the author show that subshifts whose block complexity is 2n+1, and satisfy
what is called the Condition (*) (which includes the subshift generated by ⌧), are
measure theoretically conjugate to an interval exchange on 3 intervals.
The substitution ⌧ has the specificity to be a unimodular (and irreducible) Pisot
substitution, that is, its incidence matrix has determinant 1, its characteristic poly-
nomial is irreducible and its dominant eigenvalue is a Pisot number (all its algebraic
conjugates are, in modulus, strictly less than 1). These properties provide key ar-
guments to prove the main result in [Rau82]. It naturally leads to what is now
called the Pisot conjecture for symbolic dynamics:

Let � be a Pisot substitution. Then, the subshift it generates has purely discrete
spectrum, i.e., is measure theoretically conjugate to a translation on a group.
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Many attempts have been done in this direction. The usual strategy is the same as
the Rauzy’s one in [Rau82]: show first that the substitutive system is measurably
conjugate to a domain exchange (see Definition 4). Then prove this system is
measurably conjugate to a translation on a group.
A first important rigidity result, due to Host [Hos86], is that any eigenfunction of a
primitive substitution is continuous. In a widely cited, but unpublished manuscript,
Host also proved that the Pisot conjecture is true for unimodular substitutions
defined on two letters, provided a condition called strong coincidence condition
holds. This combinatorial condition first appeared in [Dek78] cited above. Barge
an Diamond in [BD02], show then this condition is satisfied for any unimodular
Pisot substitution on two letters. So the Pisot conjecture is true in this case [HS03].
Following the Rauzy’s strategy, but in a di↵erent way from the Host’s approach,
Arnoux and Ito in [AI01], associate a self-a�ne domain exchange called Rauzy frac-
tal to any unimodular Pisot substitution. They proved, this system is measurably
conjugate to the substitutive system provided the substitution satisfies a combina-
torial condition. Few time later, Host’s results were generalized by Canterini and
Siegel in [CS01] to any unimodular Pisot substitution and to the non-unimodular
case [Sie03, Sie04], but without avoiding the strong coincidence condition. These
works led to the development of a huge number of techniques to study the Rauzy
fractals (see for instance [Fog02] and references therein). Let us mention also other
fruitful geometrical approaches by using tilings in [BK06, BBJK06] and more re-
cently in [Bar14] for the one-dimensional case.
In this paper, we show a similar result to [AI01] and [CS01] but skipping the com-
binatorial condition: any unimodular Pisot substitution is measurably conjugate
to a self-a�ne domain exchange. Notice the domain exchange may, a priori, be
di↵erent from the usual Rauzy fractal.

Theorem 1. Let � be a unimodular Pisot substitution on d letters and let (⌦, S) be
the associated substitutive dynamical system. Then, there exist a self-a�ne domain
exchange transformation (E,B, �̃, T ) in Rd�1 and a continuous onto map F : ⌦ ! E
which is a measurable conjugacy map between the two systems.
If ⇡ : Rd�1 ! Rd�1/Zd�1 denotes the canonical projection, then the map ⇡ � F
defines, for some constant r � 1, an a.e. r-to-one factor map from (⌦, S) to the
dynamical system associated with a minimal translation on the torus Rd�1/Zd�1.

The toral translation is explicitly described in [CS01] (see also [Fog02]). To show
the Pisot conjecture, one still have to show this domain exchange is conjugate to
the toral translation.
We postpone to the next section the basic definitions and notions we use for dynam-
ical systems, substitutive dynamics and Pisot substitutions. In Section 3, we prove
by using the notion of return words, that any substitutive subshift is conjugate to
a proper substitution (i.e., having a nice combinatorial property implying, in par-
ticular, the strong coincidence condition). But, this new substitution may not be
irreducible since the spectrum of its matrix contain the spectrum of a power of the
older one but may also contain the values 0 and 1. We show then, in Section 4, that
a such subshift, having enough multiplicatively independent eigenvalues (precised
later), is measurably conjugate to a self-a�ne domain exchange. A byproduct of
these two results gives us Theorem 1. The proof follows the same strategy as in
[CS01]. However, here, the standard property of irreducibility of Pisot substitutions
are not used. We strongly need, instead, a condition on the eigenvalues which is
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precisely: the number of multiplicatively independent non trivial eigenvalues equalsP
0<|�|<1

dim E
�

where E
�

denotes the eigenspace associated with the eigenvalue
� of the substitution matrix. This suggests a possible extension of these results to
linearly recurrent symbolic systems like in [BJS12].

2. Basic definitions

2.1. Words and sequences. An alphabet A is a finite set of elements called letters.
Its cardinality is |A|. A word over A is an element of the free monoid generated by
A, denoted by A⇤. Let x = x

0

x
1

· · ·x
n�1

(with x
i

2 A, 0  i  n � 1) be a word,
its length is n and is denoted by |x|. The empty word is denoted by ✏, |✏| = 0. The
set of non-empty words over A is denoted by A+. The elements of AZ are called
sequences. If x = . . . x�1

x
0

x
1

. . . is a sequence (with x
i

2 A, i 2 Z) and I = [k, l]
an interval of Z we set x

I

= x
k

x
k+1

· · ·x
l

and we say that x
I

is a factor of x. If
k = 0, we say that x

I

is a prefix of x. The set of factors of length n of x is written
L
n

(x) and the set of factors of x, or the language of x, is denoted by L(x). The
occurrences in x of a word u are the integers i such that x

[i,i+|u|�1]

= u. If u has
an occurrence in x, we also say that u appears in x. When x is a word, we use the
same terminology with similar definitions.
A word u is recurrent in x if it appears in x infinitely many times. A sequence x
is uniformly recurrent if it is recurrent and for each factor u, the di↵erence of two
consecutive occurrences of u in x is bounded.

2.2. Morphisms and matrices. Let A and B be two finite alphabets. Let � be a
morphism from A⇤ to B⇤. When �(A) = B, we say � is a coding. We say � is non
erasing if there is no b 2 A such that �(b) is the empty word. If �(A) is included
in B+, it induces by concatenation a map from AZ to BZ: �(. . . x�1

.x
0

x
1

. . . ) =
. . .�(x�1

).�(x
0

)�(x
1

) . . . , also denoted by �. With the morphism � is naturally
associated its incidence matrix M

�

= (m
i,j

)
i2B,j2A

where m
i,j

is the number of
occurrences of i in the word �(j). Notice that for any positive integer n we get
M

�

n = Mn

�

.
We say that an endomorphism is primitive whenever its incidence matrix is prim-
itive (i.e., when it has a power with strictly positive coe�cients). The Perron’s
theorem tells that the dominant eigenvalue is a real simple root of the characteris-
tic polynomial and is strictly greater than the modulus of any other eigenvalue.

2.3. Substitutions and substitutive sequences. We say that an endomorphism
� : A⇤ ! A⇤ is a substitution if there exists a letter a 2 A such that the word �(a)
begins with a and lim

n!+1 |�n(b)| = +1 for any letter b 2 A. In this case, for any
positive integer n, �n(a) is a prefix of �n+1(a). Since |�n(a)| tends to infinity with
n, the sequence (�n(· · · aaa · · · ))

n�0

converges (for the usual product topology on
AZ) to a sequence denoted by �1(a). The substitution � being continuous for the
product topology, �1(a) is a fixed point of �: �(�1(a)) = �1(a).
A substitution � is left proper (resp. right proper) if all words �(b), b 2 A, starts
(resp. ends) with the same letter. For short, we say that a left and right proper
substitution is proper.
The language of � : A⇤ ! A⇤, denoted by L(�), is the set of words having an
occurrence in �n(b) for some n 2 N and b 2 A. Notice that we have L(�n) = L(�)
for any positive integer n.
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2.4. Dynamical systems and subshifts. A measurable dynamical system is a
quadruple (X,B, µ, T ) whereX is a space endowed with a �-algebra B, a probability
measure µ and measurable map T : X ! X that preserves the measure µ, i.e.,
µ(T�1B) = µ(B) for any B 2 B. This system is called ergodic if any T -invariant
measurable set has measure 0 or 1. Two measurable dynamical systems (X,B, µ, T )
and (Y,B0, ⌫, S) are measure theoretically conjugate if we can find invariant subsets
X

0

⇢ X, Y
0

⇢ Y with µ(X
0

) = ⌫(Y
0

) = 1 and a bimeasurable bijective map
 : X

0

! Y
0

such that S �  =  � T and µ( �1B) = ⌫(B) for any B 2 B0.
By a topological dynamical system, or dynamical system for short, we mean a pair
(X,S) where X is a compact metric space and S a continuous map from X to it-
self. It is well-known that such a system endowed with the Borel �-algebra admits
a probability measure µ preserved by the map S, and then form a measurable dy-
namical system. If the probability measure µ is unique, the system is said uniquely
ergodic.
A Cantor system is a dynamical system (X,S) where the space X is a Cantor space,
i.e., X has a countable basis of its topology which consists of closed and open sets
and does not have isolated points. The system (X,S) is minimal whenever X and
the empty set are the only S-invariant closed subsets of X. We say that a minimal
system (X,S) is periodic whenever X is finite.
A dynamical system (Y, T ) is called a factor of, or is semi-conjugate to, (X,S) if
there is a continuous and onto map � : X ! Y such that � � S = T � �. The map
� is a factor map. If � is one-to-one we say that � is a conjugacy, and, that (X,S)
and (Y, T ) are conjugate.

For a finite alphabet A, we endow AZ with the product topology. A subshift on A
is a pair (X,S|X) where X is a closed S-invariant subset of AZ (S(X) = X) and S
is the shift transformation

S : AZ ! AZ

(x
n

)
n2Z 7! (x

n+1

)
n2Z.

We call language of X the set L(X) = {x
[i,j]

;x 2 X, i  j}. A set defined with two
words u and v of A⇤ by

[u.v]
X

= {x 2 X;x
[�|u|,|v|�1]

= uv}
is called a cylinder set. When u is the empty word we set [u.v]

X

= [v]
X

. The
family of cylinder sets is a base of the induced topology on X. As it will not create
confusion we will write [u] and S instead of [u]

X

and S|X .
For x a sequence on A, let ⌦(x) be the set {y 2 AN; y

[i,j]

2 L(x), 8 [i, j] ⇢ Z}. It
is clear that (⌦(x), S) is a subshift, it is called the subshift generated by x. Notice
that ⌦(x) = {Snx;n 2 Z}. For a subshift (X,S) on A, the following are equivalent:

(1) (X,S) is minimal;
(2) For all x 2 X we have X = ⌦(x);
(3) For all x 2 X we have L(X) = L(x).

We also have that (⌦(x), S) is minimal if and only if x is uniformly recurrent. Note
that if (Y, S) is another subshift then, L(X) = L(Y ) if and only if X = Y .

2.5. Substitutive subshifts. For primitive substitutions �, all the fixed points are
uniformly recurrent and generate the same minimal and uniquely ergodic subshift
(for more details see [Que87]). We call it the substitutive subshift generated by �
and we denote it (⌦

�

, S).
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There is another useful way to generate subshifts. For L a language on the alphabet
A, define XL ⇢ AZ to be the set of sequences x = (x

n

)
n2Z such that L(x) ⇢ L.

The pair (XL, T ) is a subshift and we call it the subshift generated by L. If � is a
primitive substitution, then ⌦

�

= XL� where L
�

denotes the language of � [Que87].
It follows that for any positive integer n, �n and � define the same subshift, that
is ⌦

�

= ⌦
�

n .
If the set ⌦

�

is not finite, the substitution � is called aperiodic.
An algebraic number � is called a Pisot-Vijayaraghan number if all its algebraic
conjugates have a modulus strictly smaller than 1.

Definition 2. Let � be a primitive substitution and let P
�

denote the characteristic
polynomial of the incidence matrix M

�

. We say that the substitution � is

• of Pisot type (or Pisot for short) if P
�

has a dominant root � > 1 and any
other root �0 satisfies 0 < |�0| < 1;

• of weakly irreducible Pisot type (or W. I. Pisot for short) whenever P
�

has a
real Pisot-Vijayaraghan number as dominant root, its algebraic conjugates,
with possibly 0 or roots of the unity as other roots;

• an irreducible substitution whenever P
�

is irreducible over Q;
• unimodular if detM

�

= ±1.

For instance the Fibonacci substitution 0 7! 01, 1 7! 0 and the Tribonacci substi-
tution 1 7! 12, 2 7! 13, 3 7! 1 are unimodular substitutions of Pisot type. Whereas
the Thue-Morse substitution 0 7! 01, 1 7! 10 is a W. I. Pisot substitution. Notice
that the notions of Pisot, W. I. Pisot, irreducible, unimodular depend only on the
properties of the incidence matrix. So starting from a Pisot (resp. W. I. Pisot,
irreducible, unimodular) substitution, we get many examples of Pisot (resp. W. I.
Pisot, irreducible, unimodular) substitutions by permuting the letters of the initial
one.
Standard algebraic arguments ensure that a Pisot substitution is an irreducible
substitution, and of course, a Pisot substitution is of weakly irreducible Pisot type.
In the following we will strongly use the fact that for any substitution of (resp. W.
I. Pisot, irreducible, unimodular) Pisot type � and for every integer n � 1, the
substitutions �n are also of (resp. W. I. Pisot, irreducible, unimodular) Pisot type.
In [HZ98], the authors prove that the fixed point of a unimodular substitution of
Pisot type is non-periodic for the shift, thus the subshift generated is a non-periodic
minimal Cantor system.

2.6. Dynamical spectrum of substitutive subshifts. For a measurable dy-
namical system (X,B, µ, T ), a complex number � is an eigenvalue of the dynamical
system (X,B, µ, T ) with respect to µ if there exists f 2 L2(X,µ), f 6= 0, such that
f � T = �f ; f is called an eigenfunction (associated with �). The value 1 is the
trivial eigenvalue associated with a constant eigenfunction. If the system is ergodic,
then every eigenvalue is of modulus 1, and every eigenfunction has a constant mod-
ulus µ-almost surely. For a topological dynamical system, if the eigenfunction f
is continuous, � is called a continuous eigenvalue. The collection of eigenvalues is
called the spectrum of the system, and form a multiplicative subgroup of the circle
S = {z 2 C; |z| = 1}.
An important result for the spectrum is due to B. Host [Hos86]. It states that
any eigenvalue of a substitutive subshift is a continuous eigenvalue. The following
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proposition, claimed in [Hos92] (see Proposition 7.3.29 in [Fog02] for a proof), shows
that the spectrum of a unimodular substitution of Pisot type is not trivial.

Proposition 3. Let � be a unimodular substitution of Pisot type and let ↵ be a
frequency of a letter in any infinite word of ⌦

�

. Then exp(2i⇡↵) is a continuous
eigenvalue of the dynamical system (⌦

�

, S).

Recall that these frequencies are the coordinates of the right normalized eigenvector
associated with the dominant eigenvalue of the incidence matrix of the substitution
[Que87], and moreover for a unimodular Pisot substitution they are multiplicatively
independent (Proposition 3.1 in [CS01]).
Notice the converse of the proposition is also true [BK06]. For a proof, see the
remark below Lemma 14 or Proposition 11 in [CDHM03]. Actually, this is a gen-
eral fact for any minimal Cantor system observed in [IO07]: given any continuous
eigenvalue exp(2i⇡↵), ↵ belongs to the additive subgroup of R generated by the
intersection of sets of measures of clopen subsets for all the invariant probability
measures. An other proof of that can be found in [CDHM03] (Proposition 11) but
it was not pointed out.

2.7. Domain exchange. Let us recall that a compact Euclidean set is said regular
if it equals the closure of its interior.

Definition 4. We call domain exchange transformation a measurable dynamical
system (E,B, �̃, T ) where E is a compact regular subset of an Euclidean space, �̃
denotes the normalized Lebesgue measure on E and B denotes the Borel �-algebra,
such that:

• there exist compact regular subsets E
1

, . . . , E
n

such that E = E
1

[ · · ·[E
n

.
• The sets E

i

are disjoint in measure for the Lebesgue measure �:

�(E
i

\ E
j

) = 0 when i 6= j.

• For any index i, the map T restricted to the set E
i

, is a translation such
that T (E

i

) ⇢ E.

The domain exchange is said self-a�ne, if there is a finite number of a�ne maps
f
1

, . . . , f
`

such that E =
S

`

i=1

f
i

(E) and sharing the same linear part.

3. Matrix eigenvalues and return substitutions

In this section, we recall the notion of return substitution introduced in [Dur98a]
and that any primitive substitutive subshift is conjugate to an explicit primitive
and proper substitutive subshift without changing too much the eigenvalues of the
associated substitution matrix [Dur98b].

Let A be an alphabet and x 2 AZ and let u be a word of x. We call return word
to u of x every factor x

[i,j�1]

where i and j are two successive occurrences of u
in x. We denote by R

x,u

the set of return words to u of x. Notice that for a
return word v, vu belongs to L(x) and u is a prefix of the word vu. Suppose x is
uniformly recurrent. It is easy to check that for any word u of x, the set R

x,u

is
finite. Moreover, for any sequence y 2 ⌦(x), we have R

y,u

= R
x,u

. The sequence
x can be written naturally as a concatenation

x = · · ·m�1

m
0

m
1

· · · , m
i

2 R
x,u

, i 2 Z,
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of return words to u, and this decomposition is unique. By enumerating the ele-
ments of R

x,u

in the order of their first appearence in (m
i

)
i�0

, we get a bijective
map

⇥
x,u

: R
x,u

! R
x,u

⇢ A⇤,

where R
x,u

= {1, . . . ,Card (R
x,u

)}. This map defines a morphism. We denote by
D

u

(x) the unique sequence on the alphabet R
x,u

characterized by

⇥
x,u

(D
u

(x)) = x.

We call it the derived sequence of x on u. Actually this sequence enables to code
the dynamics of the induced system on the cylinder [u]. To be more precise, we
need to introduce the following notions. A finite subset R ⇢ A+ is a code if every
word u 2 A+ admits at most one decomposition in a concatenation of elements of
R.
We say that a code R is a circular code if for any words

w
1

, . . . , w
j

, w, w0
1

, . . . , w0
k

2 R; s 2 A+ and t 2 A⇤

such that
w = ts and w

1

. . . w
j

= sw0
1

. . . w0
k

t

then t is the empty word. It follows that j = k + 1, w
i+1

= w0
i

0 for 1  i  k and
w

1

= s.

Proposition 5 ([Dur98a] Proposition 6). Let x be a uniformly recurrent sequence
and let u be a non empty prefix of x.

(1) The set R
x,u

is a circular code.
(2) If v is a prefix of u, then each return word on u belongs to ⇥

x,v

(R⇤
x,v

), i.e.,
it is a concatenation of return words on v.

(3) Let v be a nonempty prefix of D
u

(x) and w = ⇥
x,u

(v)u then
• w is a prefix of x,
• D

v

(D
u

(x)) = D
w

(x).
• ⇥

x,u

�⇥
Du(x),v

= ⇥
x,w

.

The following proposition enables to associate to a substitution an other substitu-
tion on the alphabet R

x,u

.

Proposition 6 ([Dur98a]). Let x 2 AN be a fixed point of the primitive substitution
� which is not periodic for the shift and u be a nonempty prefix of x. There exists
a primitive substitution �

u

, defined on the alphabet R
x,u

, characterized by

⇥
x,u

� �
u

= � �⇥
x,u

.

Even if this proposition is not stated for bi-infinite sequences, it follows that each
derived sequence D

u

(x), where u is a prefix of an aperiodic sequence x 2 AZ fixed
by a primitive substitution �, is a fixed point of the primitive substitution �

u

. To
show this it is enough to check that

⇥
x,u

� �
u

(D
u

(x)) = � �⇥
x,u

(D
u

(x)) = �x = x = ⇥
x,u

�D
u

(x).

Since ⇥
x,u

(R
x,u

) is a circular code, we get that the sequence D
u

(x) is fixed by the
substitution �

u

. This substitution, defined in the previous proposition, is called the
return substitution (to u). Moreover, we observe that for any integer l > 0

(�l)
u

= (�
u

)l.
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Furthermore the incidence matrix of the return substitution has almost the same
spectrum as the initial substitution. More precisely, we have:

Proposition 7 ([Dur98b]). Let � be a primitive substitution and let u be a prefix
of a fixed point x which is not shift periodic. The incidence matrices M

�

and M
�u

have the same eigenvalues, except perhaps zero and roots of the unity.

For instance for the Tribonacci substitution ⌧ , the induced substitution ⌧
1

is the
same as ⌧ . On the other hand, if we consider the substitution

� : 1 7! 1123, 2 7! 211, and 3 7! 21,

it is also a substitution of Pisot type and the incidence matrix of the induced
substitution �

11

has 0 as eigenvalue.
With the next property we obtain that if an induced system of a subshift (X,S)
is a proper substitutive subshift (⌦, S), then the system (X,S) is conjugate to a
proper substitutive subshift. The system (X,S) is called an exduction of the system
(⌦, S).

Proposition 8. Let y = (y
i

)
i2Z be a fixed point of an aperiodic primitive substitu-

tion � on the alphabet R. Let ⇥ : R⇤ ! A+ be a non-erasing morphism, x = ⇥(y)
and (X,S) be the subshift generated by x.
Then, there exist a primitive substitution ⇠ on an alphabet B, an admissible fixed
point z of ⇠, and a map � : B ! A such that:

(1) �(z) = x;
(2) If ⇥(R) is a circular code, then � is a conjugacy from (⌦

⇠

, S) to (X,S);
(3) If � is proper (resp. right or left proper), then ⇠ is proper (resp. right or

left proper);
(4) There exists a prefix u 2 B+ of z such that R

y,y0 = R
z,u

and there is an
integer l � 1 such that the return substitutions �l

y0
and ⇠

u

are the same.

Actually the first three statements of this proposition, correspond to Proposition
23 in [DHS99]. The substitution ⇠ is explicit in the proof.

Proof. The statements 1), 2), 3), and the fact that ⇠ is primitive, have been proven
in [DHS99]. We will just give the proof of the first statement because we need it to
prove the fourth statement.
Substituting a power of � for � if needed, we can assume that |�(j)| � |⇥(j)| for
any j 2 R. For all j 2 R, let us denote m

j

= |�(j)| and n
j

= |⇥(j)|. We define

• An alphabet B := {(j, p); j 2 R, 1  p  n
j

};
• A morphism � : B⇤ ! A⇤ by �(j, p) = (⇥(j))

p

;
• A morphism  : R⇤ ! B⇤ by  (j) = (j, 1)(j, 2) · · · (j, n

j

).

Clearly, we have � �  = ⇥. We define a substitution ⇠ on B by

8j 2 R, 1  p  n
j

; ⇠(j, p) =

(
 ((�(j))

p

) if 1  p < n
j

 ((�(j))
[nj ,mj ]

) if p = n
j

.

Thus for every j 2 R, we have ⇠( (j)) = ⇠(j, 1) . . . ⇠(j, n
j

) =  (�(j)), i.e.,

(3.1) ⇠ �  =  � �.
For z =  (y) we obtain ⇠(z) =  (�(y)) =  (y) = z, that is z is a fixed point of ⇠.
Moreover �(z) = �( (y)) = ⇥(y) = x and we get the point (1).
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Let us prove the fourth statement.
Let u =  (y

0

) 2 B⇤ where y = . . . y�1

.y
0

y
1

. . ., y
i

2 B, i 2 Z. First, notice the
morphism  is one-to-one and then we have  (R

y,y0) = R
 (y), (y0)

. It follows that

R
y,y0 = R

 (y), (y0)
= R

z,u

,

and
 �⇥

y,y0 = ⇥
 (y), (y0)

= ⇥
z,u

.

Therefore for the return substitution �
y0 to y

0

, Proposition 6 and Relation (3.1)
give

⇥
z,u

� �
y0 =  �⇥

y,y0 � �y0 =  � � �⇥
y,y0 = ⇠ �  �⇥

y,y0 = ⇠ �⇥
z,u

.

Consequently, we have �
y0 = ⇠

u

. ⇤
As a straightforward corollary of the propositions 6, 5, 8 and 7, we get

Corollary 9. Let � be a primitive aperiodic substitution. Then there exists a proper
primitive substitution ⇠ on an alphabet B, such that

(1) (⌦
�

, S) is conjugate to (⌦
⇠

, S);
(2) there exists l � 1 such that the substitution matrices M l

�

and M
⇠

have the
same eigenvalues, except perhaps 0 and 1.

Proof. Let us fix a nonempty prefix u of a fixed point x of �. Thus x is not shift
periodic. Substituting a power of � for � if needed, we can assume that the word
⇥

x,u

(1)u is a prefix of �(u). By the very definition of return word, for any letter
i 2 R

x,u

, the word ⇥
x,u

(i)u has the word u as a prefix. Then ⇥
x,u

(1)u is a prefix of
the word �(⇥

x,u

(i)u). It follows from the equality in Proposition 6, that ⇥
x,u

(1)u is
also a prefix of the word ⇥

x,u

��
u

(i). The uniqueness of the coding by ⇥
x,u

(R
x,u

),
implies that the word �

u

(i) starts with 1, and the substitution �
u

is left proper.
The propositions 5 and 8 imply the existence of a left proper primitive substitution
⇠0 such that (⌦

�

, S) is conjugate to (⌦
⇠

0 , S), moreover by Proposition 7 there exists
an integer l > 0 such that the incidence matrices M l

�

and M
⇠

0 share the same
eigenvalues, except perhaps 0 and 1.
To obtain a proper substitution we need to modify ⇠0. Let a be the letter such that
for all letter b, ⇠0(b) = aw(b) for some word w(b). Now consider the substitution ⇠00

defined by ⇠00 : b 7! w(b)a. Then, ⇠0 and ⇠00 define the same language, so we have
⌦
⇠

0 = ⌦
⇠

00 = ⌦
⇠

where ⇠ is the composition of substitutions ⇠0 � ⇠00 and is proper.
We conclude observing that M

⇠

= M
⇠

0M
⇠

00 = M2

⇠

0 . ⇤
In terms of Pisot substitutions, Corollary 9 becomes:

Corollary 10. Let � be an aperiodic substitution of Pisot type, then the substitutive
subshift associated with � is conjugate to a substitutive subshift (⌦

⇠

, S) where ⇠ is
a proper primitive substitution of weakly irreducible Pisot type.

The example after Proposition 7 shows that the use of return substitutions seems to
force to deal with W. I. Pisot substitutions. In fact, it is unavoidable to consider W.
I. Pisot substitution to represent a substitutive subshift by a proper substitution.
For instance, consider the non-proper substitution � : 0 7! 001, 1 7! 10. The
dimension group of the associated subshift, computed in [Dur96], is of rank 3. As
a consequence, any proper substitution ⇠ representing the subshift ⌦

�

should be,
at least, on 3 letters (see [DHS99] for the details). Moreover Cobham’s theorem
(see Theorem 14 in [Dur98c]) for minimal substitutive subshifts implies that, taking
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powers if needed, ⇠ and � share the same dominant eigenvalue. So, the substitution
⇠ can not be irreducible.

4. Conjugacy with a domain exchange

In this section we give su�cient conditions on a primitive proper substitution so that
the associated substitutive system is measurably conjugate to a domain exchange
in an Euclidean space.

4.1. Using Kakutani-Rohlin partitions. In this subsection, we will assume that
⇠ is a primitive proper substitution on a finite alphabet A equipped with a fixed
order.
First let us recall a structure property of the system (⌦

⇠

, S) in terms of Kakutani-
Rohlin towers.

Proposition 11 ([DHS99]). Let ⇠ be a primitive proper substitution on a finite
alphabet A. Then for every n > 0,

P
n

= {S�k⇠n�1([a]); a 2 A, 0  k  |⇠n�1(a)|� 1}

is a clopen partition of ⌦
⇠

defining a nested sequence of Kakutani-Rohlin partition
of ⌦

⇠

, more precisely:

• The sequence of bases (⇠n(⌦
⇠

))
n�0

is decreasing and the intersection is only
one point;

• For every n > 0, P
n+1

is finer than P
n

;
• The sequence (P

n

)
n>0

spans the topology of ⌦
⇠

.

To be coherent with the notations in [BDM05], we take the conventions P
0

= {⌦
⇠

}
and for an integer n � 1, r

n

(x) denotes the entrance time of a point x 2 ⌦
⇠

in the
base ⇠n�1(⌦

⇠

), that is

r
n

(x) = min{k � 0; Skx 2 ⇠n�1(⌦
⇠

)}.

By minimality, this value is finite for any x 2 ⌦
⇠

and the function r
n

is continuous.
The homeomorphism S

⇠(⌦⇠)
: ⇠(⌦

⇠

) 3 x 7! Sr2(Sx)(Sx) 2 ⇠(⌦
⇠

) is then the induced
map of the system (X,S) on the clopen set ⇠(⌦

⇠

). Since we have the relation

⇠ � S = S
⇠(⌦⇠)

� ⇠,(4.1)

the induced system (⇠(⌦
⇠

), S
⇠(⌦⇠)

) is a factor of (⌦
⇠

, S) via the map ⇠ (and in fact
a conjugacy).
Note that for any integer n > 0,

r
n

(Sx)� r
n

(x) =

(
�1 if x 62 ⇠n�1(⌦

⇠

)

|⇠n�1(a)|� 1 if x 2 ⇠n�1([a]), a 2 A.
(4.2)

More precisely, we can relate the entrance time and the incidence matrix by the
following equality (see Lemma in [BDM05]): For a primitive proper substitution ⇠,
we have for any x 2 ⌦

⇠

and n � 2

r
n

(x) =
n�1X

k=1

hs
k

(x), (M t

⇠

)k�1H(1)i(4.3)
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where h·, ·i denotes the usual scalar product, M t

⇠

is the transpose of the incidence

matrix, H(1) = (1, · · · , 1)t and s
k

: ⌦
⇠

! Z#A is a continuous function defined by

s
k

(x)
a

= #{r
k

(x) < i  r
k+1

(x); Six 2 ⇠k�1([a])}, for a 2 A.

In other words, the vector s
k

(x) counts, in each coordinate a 2 A, the number of
time that the positive iterates of x meet the clopen set ⇠k�1([a]) before meeting for
the first time the clopen set ⇠k(⌦

⇠

) and after meeting the clopen set ⇠k�1(⌦
⇠

).
The proof of the following lemma is direct from the definition and Proposition 11.

Lemma 12. For ⇠ a primitive proper substitution, we have, for any x 2 ⌦
⇠

,

s
1

(⇠x) = 0 and 8k > 1, s
k

(⇠x) = s
k�1

(x).

For any letter a 2 A, k 2 N⇤, we also have s
k

(x)
a

 sup
b2A

|⇠(b)|.
From the ergodic point of view, it is well-known (see [Que87]) that subshifts gen-
erated by primitive substitutions are uniquely ergodic. We call µ the unique prob-
ability shift-invariant measure of (⌦

⇠

, S). We have the following relations, for any
positive integer n,

~µ(n) = M
⇠

~µ(n+ 1), and hH(1), ~µ(1)i = 1,(4.4)

where ~µ(n) 2 R]A is the vector defined by

~µ(n)
a

= µ(⇠n�1([a])), for any letter a 2 A.

4.2. On the spectrum of a substitutive subshift. From this subsection, we
assume that ⇠ is a primitive proper substitution on a finite alphabet A.
Taking a power of ⇠ if needed, from classical results of linear algebra, there are
M t

⇠

-invariant R-vectorial subspaces E0, Eu, Eb and Es such that

(1) R#A = E0 � Es � Eu � Eb,
(2) M t

⇠

v = 0 for all v 2 E0,

(3) lim
k!+1(M t

⇠

)kv = 0, (M t

⇠

)nv 6= 0 for all v 2 Es \ {0} and any n 2 N,
(4) lim

k!+1 ||(M t

⇠

)kv|| = +1 for all v 2 Eu \ {0} and

(5) ((M t

⇠

)kv)
k2Z is bounded and (M t

⇠

)nv 6= 0 for all v 2 Eb \ {0} and n 2 N.
Let us apply some well-know facts to our context (see [Hos86] or [FMN96] for
substitutions and [BDM05] for a wider context). Let r

n

and s
n

be as defined in
Section 4.1.

Proposition 13. Let ⇠ be a primitive proper substitution on an alphabet A. If
� 2 S is an eigenvalue of the system (⌦

⇠

, S), then (��rn)
n�1

converges uniformly to

a continuous eigenfunction associated with �. Moreover,
P

n�1

max
a2A

|�|⇠n(a)|�1|
converges.

So if exp(2i⇡↵) is an eigenvalue of the substitutive system (⌦
⇠

, S), for any letter a
of the alphabet |⇠n(a)|↵ converges to 0 mod Z as n goes to infinity. In an equivalent
way the vector (M t

⇠

)n↵(1, · · · , 1)t tends to 0 mod Z#A. The next lemma precises
this for the usual convergence.

Lemma 14. Let � = exp(2i⇡↵) be an eigenvalue of a substitutive system (⌦
⇠

, S)
for a primitive proper substitution ⇠ on a finite alphabet A. Then, there exist m 2 N,
v 2 R#A and w 2 Z#A such that

↵H(1) = v + w, (M t

⇠

)mw 2 Z#A and (M t

⇠

)nv !
n!1 0,

where all entries of H(1) are equal to 1. Moreover
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i) The convergence is geometric: there exist 0  ⇢ < 1 and a constant C such
that

||(M t

⇠

)nv||  C⇢n, for any n 2 N.
ii) For any positive integer n,

hv, ~µ(n)i = 0 and ↵ = h(M t

⇠

)n�1w, ~µ(n)i.

Proof. The first claim and item i) comes from [Hos86]. We have just to show the
item ii). Notice that the relations (4.4) give us for any positive integer

hv, ~µ(n)i = hv,Mp

⇠

~µ(n+ p)i = h(M t

⇠

)pv, ~µ(n+ p)i !
p!+1 0.

We deduce then

↵ = ↵hH(1), ~µ(1)i = hv, ~µ(1)i+ hw, ~µ(1)i = hw, ~µ(1)i = h(M t

⇠

)n�1w, ~µ(n)i.

⇤

Remark. We get by Item ii) of Lemma 14, that if exp(2i⇡↵) is an eigenvalue of a
substitutive system, then ↵ is in the subgroup of R generated by the component of
the vector ~µ(n), that is, in the subgroup generated by the frequency of occurrences
of the words. This provides a converse to Proposition 3.

If exp(2i⇡↵
1

), . . . , exp(2i⇡↵
d�1

) are d � 1 eigenvalues of the substitutive system
(⌦

⇠

, S), from Proposition 13 and Lemma 14 there exist m 2 N, v(1), . . . v(d� 1) 2
R]A and w(1), . . . , w(d� 1) 2 Z]A such that for all i 2 {1, . . . , d� 1}:

(4.5) ↵
i

H(1) = v(i) + w(i), (M t

⇠

)mw(i) 2 Z#A and
X

n�1

(M t

⇠

)nv(i) converges.

Notice that up to take a power of ⇠, if needed, we can assume that the constant
m = 1 and that any v(i) has no component in E0.

Let us recall Proposition 3: a unimodular Pisot substitutive subshift on d let-
ters admits d � 1 non trivial eigenvalues exp(2i⇡↵

1

), . . . , exp(2i⇡↵
d�1

) that are
multiplicatively independent, i.e., 1,↵

1

, . . . ,↵
d�1

are rationally independent. This
motivates the next proposition that interprets the arithmetical properties of the
eigenvalues in terms of the vectors v(i) and w(i).

Proposition 15. If exp(2i⇡↵
1

), . . . , exp(2i⇡↵
d�1

) are d� 1 multiplicatively inde-
pendent eigenvalues of the substitutive system (⌦

⇠

, S) for a proper primitive substi-
tution ⇠. Then, both families of vectors {M t

⇠

v(1), . . . ,M t

⇠

v(d� 1)} and {M t

⇠

H(1),
M t

⇠

w(1), . . . , M t

⇠

w(d� 1)} are linearly independent.

Notice it implies also that both family of vectors {v(1), . . ., v(d� 1)} and {H(1),
w(1), . . ., w(d� 1)} are linearly independent.

Proof. The proof is similar to Proposition 10 in [BDM05]. We adapt it to our case.
Assume there exist reals �

0

, �
1

, . . . , �
d�1

, one being di↵erent from 0, such that
�
0

M t

⇠

H(1) +
P

d�1

i=1

�
i

M t

⇠

w(i) = 0. Since all the vectors are in Z]A, by an alge-
braic classical result, we can assume that any �

i

is an integer. Taking the inner

product of this sum with the vector ~µ(2), the normalization and recurrence rela-
tions of this vector (Relation (4.4)) together with the normalization with respect

to each w(i) in item ii) of Lemma 14, give us �
0

+
P

d�1

i=1

�
i

↵
i

= 0. The rational
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independence of the numbers 1,↵
1

, . . . ,↵
d�1

implies any �
i

= 0. So the vectors
M t

⇠

H(1),M t

⇠

w(1), . . . ,M t

⇠

w(d� 1) are independent.

Now, assume that there exist real numbers �
i

such that
P

d�1

i=1

�
i

M t

⇠

v(i) = 0. We

obtain (
P

d�1

i=1

�
i

↵
i

)M t

⇠

H(1)�
P

d�1

i=1

�
i

M t

⇠

w(i) = 0. The independence of the vectors
M t

⇠

H(1),M t

⇠

w(1), . . ., M t

⇠

w(d� 1) implies that �
i

= 0 for any i. So the vectors
M t

⇠

v(1), . . . ,M t

⇠

v(d� 1) are independent. ⇤

The following property gives a bound on the number of multiplicatively independent
eigenvalues for a substitutive subshift.

Proposition 16. Let ⇠ be a proper primitive substitution. If the substitutive system
(⌦

⇠

, S) admits d� 1 eigenvalues exp(2i⇡↵
1

), . . ., exp(2i⇡↵
d�1

), then the vectorial
space spanned by the vectors v(i), E

⇠

= Vect(v(1), . . ., v(d � 1)), is a subspace of
Es.
Moreover if the eigenvalues are muliplicatively independent, then d� 1  dim Es.

Proof. For i 2 {1, . . . , d � 1}, the vector v(i) can be decomposed using the R-
vectorial subspaces E0, Eu, Eb and Es. From Lemma 14 it has no component in
Eu and Eb. From the choice we made in (4.5), it has no component in E0. Thus
v(i) belongs to Es. So we get E

⇠

⇢ Es. The bound by the dimension is obtained
with Proposition 15. ⇤

To construct the domain exchange of a Pisot substitution we will need the following
direct corollary.

Corollary 17. Let ⇠ be a proper primitive substitution. If the substitutive sys-
tem (⌦

⇠

, S) admits dim Es multiplicatively independent eigenvalues, then E
⇠

:=
Vect(v(1), . . . , v(dim Es)) = Es. In particular, we have M t

⇠

(E
⇠

) = E
⇠

.

Notice that for a unimodular Pisot substitution �, dim Es + 1 equals the degree
of the associated Pisot number, or the number of letters in the alphabet. Thus, by
Proposition 3, the proper W. I. Pisot substitution ⇠ associated to � in Corollary
10, fulfills the conditions of Corollary 17.

4.3. Semi-conjugacy with the domain exchange. We prove the main result,
Theorem 1, in this section. For this, we start recalling the very hypotheses we need
to get the result.

Hypotheses P. Let ⇠ be a primitive proper substitution on a finite alphabet A such
that:

i) The characteristic polynomial P
⇠

admits a unique root greater than one in
modulus.

ii) The minimal substitutive subshift (⌦
⇠

, S) admits dim Es = d� 1 eigenval-
ues exp(2i⇡↵

1

), . . . , exp(2i⇡↵
d�1

) such that 1, ↵
1

, . . . , ↵
d�1

are rationally
independent.

iii) Its Perron number � satisfies �| detM t

⇠|Es | = 1.

For instance, all these hypotheses apply to the proper substitution ⇠ of Corollary 10
associated with a unimodular Pisot substitution on d letters: The statement i) is ob-
vious, the others come from the fact that the space Es is spanned by the eigenspaces
associated with the algebraic conjugates �

1

, . . . ,�
d�1

of the Pisot number leading
eigenvalue � of M

⇠

. The unimodular hypothesis implies |��
1

· · ·�
d�1

| = 1.
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From Hypotheses P ii) and by a byproduct of the formula (4.3) on the entrance
time r

n

, with Formula (4.5) on the vectors v(i), up to consider a power of ⇠, we get
for any i 2 {1, . . . , d� 1} and x 2 ⌦

⇠

↵
i

r
n

(x) =
n�1X

k=1

hs
k

(x), (M t

⇠

)k�1v(i)i mod Z.

Let F
n

=
⇣P

n�1

k=0

hs
k

, (M t

⇠

)k�1v(i)i
⌘
t

1id�1

. The Proposition 13 and Lemma 14

ensure the sequence (F
n

)
n

uniformly converges to a continuous function F : ⌦
⇠

!
Rd�1, explicitly defined for x 2 ⌦

⇠

by

F (x) =

 
+1X

k=1

hs
k

(x), (M t

⇠

)k�1v(i)i
!

t

1id�1

.

Let V be the matrix with rows v(1)t, . . . , v(d � 1)t. Then, the map F may be
written as

F (x) = V
+1X

k=1

Mk�1

⇠

s
k

(x).

Lemma 18. Assume Hypotheses P i), ii). There exist a continuous map � : ⌦
⇠

!
R#A and a bijective linear map N : Rd�1 ! Rd�1 such that for ↵ = (↵

1

, . . . ,↵
d�1

)t

and for any x 2 ⌦
⇠

,

(1) F � S(x) = F (x) + ↵ mod Zd�1;
(2) F (x) = V�(x);
(3) M t

⇠

V t = V tN ;

(4) the matrix N is conjugated to the matrix M t

⇠|Es restricted to the space Es;

(5) F � ⇠(x) = N t(F (x)).

Proof. By the approximation property of the eigenfunctions in Proposition 13 (see
also Relation (4.2)), we get F � S(x) = F (x) + ↵ mod Zd�1.
Let us prove Statement (2). We have

F
n

(x) = V
⇣P

n�1

k=1

Mk�1

⇠

s
k

(x)
⌘

(4.6)

= V Proj
⇣P

n�1

k=1

Mk�1

⇠

s
k

(x)
⌘
,(4.7)

where Proj : R#A ! E
⇠

= Vect (v(1), . . . , v(d � 1)) denotes the orthogonal pro-
jection onto E

⇠

. Recall that by Corollary 17, E
⇠

has dimension d � 1. Since
(F

n

)
n

uniformly converges (see Proposition 13 and Lemma 14), the projection
Proj(

P
n�1

k=1

Mk�1

⇠

s
k

(x)) converges when n goes to infinity to the vector �(x) be-
longing to E

⇠

for any x 2 ⌦
⇠

. Therefore, we obtain Statement (2).
Let us prove the other statements. The basic properties of s

n

� ⇠ (Lemma 12) give
for any x 2 ⌦

⇠

and n > 2,

(4.8) F
n

� ⇠ = VM
⇠

 
n�2X

k=1

Mk�1

⇠

s
k

!
.

By the R-independence of the vectors v(i) (Proposition 15), the linear map V t

from Rd�1 to E
⇠

is bijective and since M t

⇠

(E
⇠

) = E
⇠

(Corollary 17), there exists a

bijective linear map N : Rd�1 ! Rd�1 such that
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M t

⇠

V t = V tN.(4.9)

This shows Statement (4). Therefore, using (4.6) and (4.8), we obtain for n > 2,

F
n

� ⇠ = VM
⇠

n�2X

k=1

Mk�1

⇠

s
k

= N tF
n�1

.

Passing through the limit in n, we get (5) and this achieves the proof. ⇤

From Lemma 19 to Proposition 21, we use the strategy developed in [CS01] to tackle
the Pisot conjecture. Recall that µ denotes the unique probability shift-invariant
measure of the system (⌦

⇠

, S), and � denotes the Lebesgue measure on F (⌦
⇠

).

Lemma 19. Assume Hypotheses P i) � iii). There exists a constant C such that
for any letter a 2 A we have:

(1) �(F ([a])) = Cµ([a]),
(2) for any integer n large enough, F ([a]) is the union of the measure theoret-

ically disjoint sets

F (S�k⇠n([b])), with 0  k < |⇠n(b)|, [a] \ S�k⇠n([b]) 6= ;,

(3) for any Borel set B ⇢ [a],

�(F (B)) = Cµ(B).

Proof. Let G = F �S�F�(↵
1

, . . . ,↵
d�1

)t. From the basic properties of the map F
(Lemma 5), it takes integer values. Being continuous, it is locally constant. Hence,
there exists some integer n

0

� 0 such that G is constant on each sets S�k⇠n([b]),
with n > n

0

, b 2 A and 0  k < |⇠n(b)| (see Proposition 11).
Therefore, from Item (5) of Lemma 18, for any such b and k, there exists a vector
�(k, b) 2 Rd�1 such that

F (S�k⇠n([b])) = �(k, b) + F (⇠n([b])) = �(k, b) + (N t)nF ([b]).

By the very hypothesis P iii), we have | detN t| = 1/�, so we get

�(F (S�k⇠n([b]))) = �((N t)nF ([b])) = | det(N t)n|�(F ([b])) =
1

�n

�(F ([b])).

Let a 2 A, the partitions of ⌦
⇠

in Proposition 11 provide

[a] =
[

0k<|⇠(j)|,b2A

[a]\S

�k
⇠

n
([b]) 6=;

S�k⇠n([b]).

Consequently,

�(F ([a])) 
X

k,b;0k<|⇠n(b)|,
[a]\S

�k
⇠

n
([b]) 6=;

1

�n

�(F ([b])) =
1

�n

(Mn

⇠

(�(F ([b])))t
b2A

)
a

.(4.10)

From the Perron’s Theorem, the above inequality is an equality and (�(F ([b])))t
b2A

is a multiple of the eigenvector (µ([a]))t
a2A

= ~µ(1) of the dominant eigenvalue �n

of Mn

⇠

. This shows Item (1). Notice that the equality in (4.10) also implies Item
(2).
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To prove Item (3), it is enough to use the partitions of ⌦
⇠

given in Proposition 11
and the ideas in the beginning of this proof. This part is similar to the proof of
Proposition 4.3 in [CS01] and we left it to the reader. ⇤
With the next proposition, we continue to follow the approach (and the proofs) in
[CS01].

Proposition 20. Assume Hypotheses P i)� iii). There exists a µ-negligeable mea-
surable subset N ⇢ ⌦

⇠

such that F is one-to-one on each cylinder set [a]: for any
x and y in [a] \ N satisfying F (x) = F (y), we have x = y.

Proof. Let a 2 A. From Lemma 19, the sets

N (`)

a

=
[

(k1,j1) 6=(k2,j2);

0k1<|⇠`(b1)|,[a]\S

�k1
⇠

`
([b1]) 6=;

0k2<|⇠`(b2)|,[a]\S

�k2
⇠

`
([b2]) 6=;

F (S�k1⇠`([b
1

])) \ F (S�k2⇠`([b
2

]))

have zero �-measure, for any ` 2 N big enough. Item (3) of Lemma 19, gives

furthermore, the sets M(`)

a

= F�1(N (`)

a

) have zero measure with respect to µ.
Let x

1

and x
2

be two distinct elements of [a] such that F (x
1

) = F (x
2

). It su�ces

to show that they belong to some M(`)

a

. Considering the partitions {P
`

}
l�0

of
Proposition 11, there exist infinitely many ` 2 N with two distinct couples (k

1

, b
1

)
and (k

2

, b
2

), such that 0  k
1

< |⇠`(b
1

)|, 0  k
2

< |⇠`(b
2

)|, x
1

2 S�k1⇠`([b
1

]) and

x
2

2 S�k2⇠`([b
2

]). Then, x
1

and x
2

belong to M(`)

a

for infinitely many `, which
achieves the proof. ⇤
Proposition 21. Assume Hypotheses P i)� iii). The map F is one-to-one except
on a set of measure zero.

Proof. As ⇠ is proper, there exists a letter a such that ⇠(⌦
⇠

) is included in [a].
Therefore, from Proposition 20, F is one-to-one on ⇠(⌦

⇠

) except on a set N of zero
measure. By the basic properties of the map F (precisely Item (5) of Lemma 18),
if two points x, y 2 ⌦

⇠

have the same image through F , then F (⇠(x)) = F (⇠(y)),
and hence x, y 2 ⇠�1(N ).
Recall that the induced system on ⇠(⌦

⇠

) is a factor of (⌦
⇠

, S) via the map ⇠ (see
Relation (4.1)). This implies that the measure µ(⇠�1(·)) is invariant for the induced
system (⇠(⌦

⇠

), S
⇠(⌦⇠)

). Since it is uniquely ergodic with respect to the induced
probability measure, µ(⇠�1(N )) is proportional to µ(N ), so it is null. This achieves
the proof. ⇤
The following proposition is a modification of the arguments in [Kul95] Lemma 2.1.

Proposition 22. Assume Hypotheses P i), ii). For any clopen set c in ⌦
⇠

, the set
F (c) is regular, i.e.,

int F (c) = F (c),

where int A denotes the interior of the set A for the usual Euclidean topology.

Proof. Let us first show that int F (⌦
⇠

) 6= ;. Since 1,↵
1

, . . . ,↵
d�1

are ratio-
nally independant, by Lemma 18, denoting by ⇡ the canonical projection Rd�1 !
Rd�1/Zd�1 = Td�1, the map ⇡ � F : ⌦

⇠

! Td�1 has a dense image hence is onto.
It follows that for any small ✏, there exist a finite family V of integer vectors such
that
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B
✏

(0) ⇢
[

p2V
F (⌦

⇠

) + p.

By the Baire Category Theorem, the set F (⌦
⇠

) has a non empty interior.
Now let ⌦⇤ = ⌦

⇠

\
S
{O;O is open and int F (O) = ;}. From the previous remark

it is a non empty compact set. Notice that ⌦
⇠

\⌦⇤ is the union of countably many
open (and then �-compact) subsets. The image F (⌦

⇠

\⌦⇤) is then a countable union
of compact sets each of those with an empty interior. Again by the Baire Category
Theorem, F (⌦⇤) is dense in F (⌦

⇠

) and since ⌦⇤ is compact, F (⌦⇤) = F (⌦
⇠

).
Let us show that ⌦⇤ is S invariant. Let O be an open set in ⌦

⇠

such that int F (O) is
empty. By Lemma 18, the function F �S�F � (↵

1

, . . . ,↵
d�1

) : ⌦
⇠

! Z is constant
on a partition by clopen sets P of ⌦

⇠

. For any atom c of P, int F (c \ O) = ;
and then int F (S(c \O)) is empty. We have F (SO) = [

c2PF (S(c \O)) is then a
countable union of compact sets with empty interiors. Again by the Baire Category
Theorem, F (SO) has empty interior, and ⌦⇤ is S-invariant.
By minimality, we get that ⌦⇤ = ⌦

⇠

, so the image by F of any open set has a non
empty interior.
Finally, let C be a clopen set, and assume that A := F (C) \ int F (C) is not
empty. From the previous assertion, F (F�1(A) \ C) = A contains a ball and
then A intersects int F (C): a contradiction. This shows the statement of the
proposition. ⇤

Let ⇡ : Rd�1 ! Rd�1/Zd�1 = Td�1 be the canonical projection.

Proposition 23. Assume Hypotheses P i) � iii). The map Z : ⌦
⇠

! Z [ {1}
defined by Z(x) = #(⇡ � F )�1({⇡ � F (x)}) is finite and constant µ-a.e..

Proof. We claim Z is measurable. For any z 2 Zd�1, let A
z

be the set A
z

= {x 2
⌦

⇠

; 9y 2 ⌦
⇠

, F (x) = F (y) + z}. We have A
z

= F�1(F (⌦
⇠

) + z), so it is a Borel
set. Notice that for any integer n, Z�1({n}) is a finite intersection of such sets,
so the claim is proved. By Proposition 21, the map F is a.e. one-to-one, and by
compacity of the set F (⌦

⇠

), the projection ⇡ : F (⌦
⇠

) ! Td�1 is finite-to-one, so
the map Z is a.e. finite. It su�ces to notice that Z is T -invariant, to conclude by
ergodicity. ⇤

Proof of Theorem 1. Let ⇠ be a unimodular Pisot substitution. By Corollary 10 and
Proposition 3, we can assume that ⇠ satisfies the hypotheses P i)� iii) (Subsection
4.3). Let E be the compact set F (⌦

⇠

). Proposition 11 and Lemma 18 on the
properties of the map F both ensure the existence of an integer n such that the
map F � S � F is constant on any set E

n,a,k,

:= F (S�k⇠n([a])) with a 2 A and
0  k < |⇠n(a)|. Let T be the transformation defined on E

n,a,k

by the translation of
the vector (F �S�F )|En,a,k

. It follows from Lemma 19 and Proposition 22 that E
and T define a domain exchange transformation on regular sets. Moreover, Item (5)
of Lemma 18 provides it is self-a�ne with respect to the sets E

n,a,k

and the linear
part (N t)n. Finally, Proposition 21 shows this domain exchange is measurably
conjugate to the subshift (⌦

⇠

, S) and Proposition 23 gives the map ⇡�F : ⌦
⇠

! Td�1

is a.e. Z-to-one for some constant Z. ⇤

In the sequel, we denote by Z the constant of Proposition 23. We give here a
characterization of this constant in term of the volume of the set F (⌦

⇠

).
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Proposition 24. Assume Hypotheses P i)� iii). We have �(F (⌦
⇠

)) = Z.

Proof. The canonical projection ⇡ : Rd�1 ! Td�1 defines a factor map from the
domain exchange to a minimal translation on the torus. So the image measure of
the normalized measure �

�(F (⌦⇠))
is the Lebesgue measure on the torus. For any

integrable function f : F (⌦
⇠

) ! R, the conditional expectation E(f |⇡�1(BT)), with
respect to the Borel �-algebra of the torus BT, is constant over any ⇡-fiber. So it
follows for a.e. points y 2 F (⌦

⇠

),

E(f |⇡�1(BT))(y) =
X

x2F (⌦⇠); ⇡(x)=⇡(y)

�
x,⇡(y)

f(x),

for some non negative measurable function x 7! �
x,⇡(x)

such that

X

x;⇡(x)=⇡(y)

�
x,⇡(y)

= 1 for a.e. y.(4.11)

Since for any integrable function f : F (⌦
⇠

) ! R with support in a unit square U ,
we have

1

�F (⌦
⇠

)

Z

U

fd� =
R
U

E(f |⇡�1(BT))d�

=
R
U\F (⌦⇠)

�
x,⇡(x)

f(x)d�(x).

We obtain that �
x,⇡(x)

= 1

�F (⌦⇠)
. We get the conclusion by the equation (4.11) ⇤
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MINIMAL CONFIGURATIONS
FOR THE FRENKEL-KONTOROVA MODEL

ON A QUASICRYSTAL

BY
JEAN-MARC GAMBAUDO, PIERRE GUIRAUD AND SAMUEL PETITE

Abstract. In this paper, we consider the Frenkel-Kontorova model of a one
dimensional chain of atoms submitted to a potential. This potential splits
into an interaction potential and a potential induced by an underlying sub-
strate which is a quasicrystal. Under standard hypotheses, we show that every
minimal configuration has a rotation number, that the rotation number varies
continuously with the minimal configuration, and that every non negative real
number is the rotation number of a minimal configuration. This generalizes
well known results obtained by S. Aubry and P.Y. le Daeron in the case of a
crystalline substrate.
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1. Introduction

The Frenkel-Kontorova model [FK] describes the physical situation of a layer of
a material over a substrate of other material (see for instance [BK]). In the one
dimensional case, the layer of material is described by the configurations of a bi-
infinite chain of particles on the real line. These configurations are parametrized by
a bi-infinite non decreasing sequence (✓

n

)
n2Z of real numbers, where ✓

n

represents
the position of the particle labeled by n.
The potential energy of the chain reads:

E((✓
n

)
n2Z) =

X

n2Z
U(✓

n

� ✓

n+1

) + V (✓
n

),

where U describes the interaction between particles (only interactions with the
nearest neighbors are considered), and V is a potential induced by the substrate
and depends on its nature.
The following standard extra asumptions are made on U and V :

• Smoothness: the functions U and V : R ! R are C

2;
• Convexity: U

00(x) > 0, 8x 2 R;

• Behavior at 1: lim
x!±1

U(x)
|x| = +1.

Even if the above sum is only formal, it is possible to look for equilibrium con-
figurations which minimize locally the energy (ground states). More precisely let
us consider the function H : R⇥ R ! R defined by:

H(✓, ✓0) = U(✓ � ✓

0) + V (✓).

For a configuration (✓
n

)
n2Z, let us set:

H
p

(✓
i

, ✓

i+1

, . . . , ✓

i+p

) =
j=p�1X

j=0

H(✓
i+j

, ✓

i+j+1

).

We say that the segment (✓
i

, ✓

i+1

, . . . , ✓

i+p

) of the configuration (✓
n

)
n2Z is minimal

if
H

p

(✓
i

, ✓

i+1

, . . . , ✓

i+p

)  H
p

(✓0
i

, ✓

0
i+1

, . . . , ✓

0
i+p

),

for any other segment (✓0
i

, ✓

0
i+1

, . . . , ✓

0
i+p

) such that ✓

0
i

= ✓

i

and ✓

0
i+p

= ✓

i+p

. A
configuration (✓

n

)
n2Z is minimal if all its segments are minimal.

The substrate is a crystal when the configuration of the chain of atoms it is made
of, is an increasing sequence QC = (s

n

)
n2Z such that there exists q 2 Z+ and L > 0

verifying:
s

n+q

= s

n

+ L, 8 n 2 Z.

In this case it is natural to consider that a potential V associated with the crystal
QC is a periodic C

2-function with period L:

V (✓ + L) = V (✓), 8 ✓ 2 R.

This situation when the substrate potential is periodic has been described by S.
Aubry and P. Y. Le Dearon. Their seminal work [AD], together with the indepen-
dent approach of J. Mather [M], gave rise to the so called Aubry-Mather theory,
which yields in particular a good understanding of minimal configurations.
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Let ⇢ 2 R, a configuration (✓
n

)
n2Z has a rotation number equal to ⇢ if the limit:

lim
n!±1

✓

n

n

= ⇢.

Let us remark that the inverse of the rotation number can be interpreted as a
particle density.
Aubry and le Daeron proved in particular that any minimal configuration has a
rotation number, that the rotation number is a continuous function when defined
on the set of minimal configurations equipped with the product topology, and that
any positive real number is the rotation number for some minimal configuration1.

The aim of this paper is to consider the case when the substrate is a quasicrystal

in order to derive, in this more general setting, a similar description of the set of

minimal configurations.

To fix notations and definitions, let us consider a bi-infinite substrate chain of
atoms represented by its configuration (s

n

)
n2Z. Two segments (s

n

, . . . , s

n+p

) and
(s

q

, . . . , s

q+p

) are said equivalent if there exists ⌧ 2 R such that:

s

q+i

= s

n+i

+ ⌧, 8 i = 0, . . . , p.

The chainQC = (s
n

)
n2Z is a quasicrystal if the following properties are satisfied2(see

for instance [LP]):
• Finite local complexity

For any M > 0, the chain possesses only finitely many equivalence classes
of segments with diameters smaller than M .

• Repetitivity
For any segment S in the chain, there exists R > 0 such that any ball with
radius R contains a segment equivalent to S.

• Uniform pattern distribution
For any segment S in the chain, and for any point x 2 R, the quantity

n(S, x, M)
M

converges when M ! +1 uniformly in x to a limit ⌫(S) that does not
depend on x, where n(S, x, M) denotes the number of segments equivalent
to S in the interval [x, x + M ].

Notice that a crystal (with period L) is a quasicrystal and in this particular case,
for each segment S in QC, one has:

⌫(S) =
p(S)
L

,

where p(S) stands for the number of segments equivalent to S in a period L.
For any R > 0, a function VQC : R ! R is a potential with range R associated

with a quasicrystal QC if for each pair of points x and y in R such that

QC \B

R

(x) � x = QC \B

R

(y) � y,

we have:
VQC(x) = VQC(y),

1Actually Aubry-Mather theory says much more about the combinatorics of minimal configu-
rations when projected on a circle with length L.

2See Proposition 2.1 for a dynamical interpretation.
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Figure 1. Construction of the Fibonacci chain

where B

M

(z) stands for the ball with center z and radius M . Whenever QC is a
crystal with period L, it is clear that a potential with range R > 0 associated with
this crystal is a periodic potential with period L.
We call short range potential associated with a quasicrystal QC a potential with
range R, for some R > 0.
Example: A standard example of quasicrystal is given by the Fibonacci sequence.
Consider the set G of configurations (s

n

)
n

such that:
• s

0

is located at 0;
• the lengths of the intervals [s

n

, s

n+1

] have two possible sizes: either large
and equal to L or small and equal to S.

The substitution:
⇢

L ! LS

S ! L

induces a map  on G defined as follows:
For a sequence (s

n

)
n

in G, consider the sequence of lengths (l
n

)
n

2 {L, S}1 defined
by l

n

= s

n+1

� s

n

, 8n 2 Z. Applying to each l

n

the substitution rule we get a new
sequence (l0

n

)
n

2 {L, S}1. The new configuration (s0
n

)
n

=  ((s
n

)
n

) is obtained by
setting:

• s

0
0

= 0;
• s

0
n+1

= s

0
n

+ l

0
n

, 8n 2 Z.

Starting with the equidistributed configuration (s0

n

)
n

, where s

n+1

�s

n

= L,8n 2 Z,

it is easy to check that the sequence of configuration ( k((s0

n

)
n

))
k

converges when
k ! +1 (for the product topology) to a configuration (s1

n

)
n

. This configuration
is on the one hand a quasicrystal and on the other hand a periodic point with period
2 of the operator  . This quasicrystal is called the Fibonacci chain (See Figure 1).

There are several ways to construct a short range potential associated with
the Fibonacci chain. A simple one consists in choosing two real valued smooth
functions, v

L,L

, and v

S,L

with compact support on the interval (�I, I) where
0 < 2I < S(< L). A potential V

Fib

with range 2L, can be defined as follows
(see Figure 2):

• for each n 2 Z and for each ✓ 2 (s1
n

� I, s

1
n

+ I):
– V

Fib

(✓) = v

L,L

(✓�s

1
n

) if both intervals [s1
n�1

, s

1
n

] and [s1
n

, s

1
n+1

] have
the same length L;
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SLL L L S L S LSL SL L

Figure 2. A short range potential associated with the Fibonacci chain

– V

Fib

(✓) = v

S,L

(✓ � s

1
n

) if the intervals [s1
n�1

, s

1
n

] and [s1
n

, s

1
n+1

] have
di↵erent lengths.

• for ✓ /2 [
n2Z(s0

n

� I, s

0
n

+ I), V

Fib

(✓) = 0.
The main result of this paper is the following theorem:

Theorem 1.1. 3

For the Frenkel-Kontorova model with a short range potential associated with a
quasicrystal:

(i) any minimal configuration has a rotation number;
(ii) the rotation number is a continuous function when defined on the set of

minimal configurations equipped with the product topology;
(iii) for any ⇢ � 0, there exists a minimal configuration with rotation number ⇢.

It turns out that, once the appropriate objects have been defined, the proof of
Theorem 1.1 has the same structure as the modern proof for crystals that can be
found for instance in [B] or [C]. More precisely, in the crystal case, a periodic poten-
tial factorizes through a real valued function defined on a circle. In the quasicrystal
case, a short range potential factorizes through a real valued function defined on a
more sophisticated compact metric space called the hull of the quasicrystal. This
hull possesses locally the product structure of an interval by a Cantor set i.e it is
a solenoid. This solenoid can be seen as the suspension of the action of a minimal
homeomorphism on the Cantor set.
Minimal homeomorphisms on the Cantor set have been extensively studied in
topological dynamics and possess a powerful combinatorial description in terms
of Kakutani-Rohlin towers (see for instance [GPS]). The aim of Section 2, which
is devoted to the substrate, is to rephrase these well known results in our specific
context, namely for a suspension, in order to see the hull as an inverse limit of one
dimensional branched manifolds. These branched manifolds will play a central role
in the proof.
In the crystal case, when projecting a minimal configuration on the circle, the
Aubry-Mather theory shows that it wraps around the circle in a very special way,
namely it is ordered as the orbit of a degree one homeomorphism of circle. In
the quasicrystal case, there exists also some combinatorial obstructions, they are

3From a more physical point of view, it is straightforward but interesting to rephrase Theorem
1.1 in terms of particle density of minimal configurations.
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described and analyzed in Section 3 which is devoted to the ground states of the
overlying layer.
Section 4 is devoted to the proof of Theorem 1.1. First, as for the crystal case,
we show, using the inverse limit structure of the hull given in Section 2 and the
combinatorial obstructions gotten in Section 3, that minimal configurations have
a rotation number (point (i)). Then we prove (again as in the crystal case) the
continuity of the rotation number (point (ii)). The proof of point (iii) of Theorem
1.1 in the crystal case is done first by constructing periodic minimal configurations
for any positive rational rotation number and then to use the continuity of the
rotation number to get a minimal configuration for any prescribed positive rotation
number. In the quasicrystal case, the scheme is exactly the same, but the set of
rational numbers needs to be replaced by another dense subset of the positive reals.
More precisely when the rotation number is not 0, its inverse has to be a finite
linear combination with positive integer coe�cients of the densities of patches of
the quasicrystal.
This paper ends with two final remarks developed in Section 5, the first one con-
cerns dynamical systems. In the case of a crystal, minimal configurations for the
Frenkel-Kontorova model are orbits of a twist map on an open annulus. Similarly,
in the quasicrystal case, these minimal configurations are also orbits of a dynamical
system that we describe. The second one consists in giving the bases of a possible
extension of the theory to quasicrystals in higher dimension.

Remark: It should be pointed out that one can find in the literature several studies
on the the Frenkel-Kontorova model with a quasi-periodic potential, for instance a
potential which is the sum of two periodic potentials with incommensurable periods
(see for instance [EFRJ]). Such potential cannot arise naturally from an underly-
ing one dimensional substrate. Actually, the underlying object which organizes the
minimal configurations and which was a circle in the crystal case and a solenoid in
the quasicrystal case, becomes a 2-torus. More precisely the real line is immersed as
a line with irrational slope in the 2-torus. Actually, this is a situation more complex
than the one we are dealing with in this paper which essentially uses dimension 1
objects, and this explains the lack of exact results in this quasi-periodic case.

Nota Bene: To avoid an unnecessary dichotomy and unless explicitly specified, the
quasicrystals that appear in the sequel will not be crystals.

2. The hull of a quasicrystal

In this section, we recall some background results concerning quasicrystals. Most
of these results are true in any dimension and they are presented here in the par-
ticular case of the dimension 1. Material for Subsections 2.1 and 2.2 can be found
in [KP], [BBG] and [BG]. For Subsections 2.4 and 2.5 a discrete approach can be
found in [HPS] and we refer again to [BBG], [BG] and [S] for a more geometrical
point of view.

2.1. The hull as a dynamical system. Consider a chain of atoms whose con-
figuration is a quasicrystal QC = (s

n

)
n2Z. It is clear that each translated copy

QC � u = (s
n

� u)
n2Z, u 2 R, of QC is again a quasicrystal.

The set of translated copiesQC+R of a quasicrystal can be equipped with a topology
that, roughly speaking, says that two quasicrystal configurations are close one to
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the other if in a big ball centered at 0 in R, the segments of both configurations
inside the ball are equivalent and equal up to a small translation. Such a topology
is metrizable and an associated metric can be defined as follows (see [RW] for more
details):
Consider two quasicrystal configurations QC � u

1

and QC � u

2

in QC + R. Let A

denote the set of ✏ 2]0, 1[ for which there exists u with |u| < ✏, such that QC � u

1

and QC � u

2

+ u coincide in B

1/✏

(0). Then

�(QC � u

1

, QC � u

2

) = inf A if A 6= ;
�(QC � u

1

, QC � u

2

) = 1 if A = ; .

Hence the diameter of QC + R is bounded by 1 and the R-action on QC + R is
continuous. The continuous hull ⌦(QC) of the quasicrystal QC is the completion of
the metric space (QC + R, �).
As a direct consequence of the finite local complexity property, it is easy to check
(see for instance [RW]) that ⌦(QC) is a compact metric space and that any element
in ⌦(QC) is a quasicrystal whose segments are equivalent to segments in QC. The
translation group R acts on ⌦(QC) and the dynamical system (⌦(QC), R) possesses
(by construction) a dense orbit (namely the orbit QC + R). On the one hand, the
repetitivity property is equivalent to the minimality of the action i.e all its orbits
are dense, (see [KP]) and, on the other hand, the uniform pattern distribution is
equivalent to the unique ergodicity i.e the R-action possesses a unique invariant
probability measure (see[BG]). These results yield the following proposition.

Proposition 2.1. Let QC be a quasicrystal, then the dynamical system (⌦(QC), R)
is minimal and uniquely ergodic.

In the sequel, we will denote by µ the unique probability measure on ⌦(QC) which
is invariant under the R-action.

2.2. The canonical transversal. The canonical transversal, ⌦
0

(QC), of the hull
⌦(QC) of a quasicrystal QC is the collection of quasicrystals in ⌦(QC) which contain
0 (i.e. such that one atom in the chain is located at 0).

Proposition 2.2. (see [KP]) The canonical transversal of a quasicrystal is either
a finite set when QC is a crystal or a Cantor set when not.

It follows that when the quasicrystal QC is a crystal, ⌦(QC) is homeomorphic to a
circle and when not ⌦(QC) has a solenoidal structure, i.e. it is locally the product
of a Cantor set by an interval.
The return time function L : ⌦

0

(QC) ! R+ is defined by:

L(T ) = inf{t > 0 | T � t 2 ⌦
0

(QC)} 8 T 2 ⌦
0

(QC).

The finite local complexity implies that the function L is locally constant, it takes
finitely many distinct values L

1

, . . . , L

p

and the clopen (closed open) sets C
i

=
L�1(L

i

) for i = 1, . . . , p form a partition of ⌦
0

(QC)4 (see Figure 3).
The first return map ⌧ : ⌦

0

(QC) ! ⌦
0

(QC) is defined by:

⌧(T ) = T � L(T ) 8 T 2 ⌦(QC).

The unique invariant probability measure µ of the R-action on ⌦(QC) induces a
finite measure ⌫ on ⌦

0

(QC) which is ⌧ -invariant.

4Recall that clopen sets form a countable basis for the topology of a totally disconnected set.
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C

Figure 3. The time return function

For any i = 1, . . . , p and for any clopen set C in C
i

, the measure ⌫ satisfies:

⌫(C) =
1
L

i

µ({(T � u) T 2 C, u 2 [0, L

i

]}).

The subsets of ⌦(QC) which read C � u where C is a clopen set in one of the C
i

’s
and u 2 [0, L

i

[ are called verticals.
The following lemma is a direct byproduct of the above definition:

Lemma 2.3. For any S > 0, there exists a positive constant ✏QC(S) such that, for
any vertical V with diameter smaller that ✏QC(S) and any pair of configurations
QC � x and QC � y in V, we have:

QC \B

S

(x) � x = QC \B

S

(y) � y.

2.3. Potentials on the hull. The following result shows that a short range po-
tential associated with a quasicrystal QC, factorizes through a function on ⌦(QC).

Lemma 2.4. Let QC be a quasicrystal, and let VQC be a continuous short range
potential associated with QC. Then, there exists a unique continuous function V̄QC :
⌦(QC) ! R such that:

VQC(x) = V̄QC(QC � x), 8x 2 R.

Furthermore, when VQC has range R > 0, there exists a positive constant ✏QC(R)
such that V̄QC is constant on each vertical with diameter smaller than ✏QC(R).

Remark: Notice that when QC is a crystal, Lemma 2.4 simply means that for any
continuous periodic function g : R ! R with period L, there exists a continuous
function G : R/L.Z ! R such that g = G�⇡, where ⇡ : R ! R/L.Z is the standard
projection.
Proof of Lemma 2.4: Assume that VQC is a potential with range R > 0. Applying
Lemma 2.3, for any vertical V with diameter smaller than ✏QC(R) and any pair
QC � x and QC � y in V , we have:

QC \B

R

(x) � x = QC \B

R

(y) � y,



The Frenkel-Kontorova model on a quasicrystal 9

and thus:
VQC(x) = VQC(y).

Since the set QC + R \ V is dense in V , it follows that a continuous function V̄QC
which satisfies VQC(x) = V̄QC(QC�x), 8x 2 R, must be constant on V and equal
to VQC(y) for any real number y such that QC�y 2 V . Conversely the function V̄QC
defined this way is clearly continuous, satisfies VQC(x) = V̄QC(QC � x), 8x 2 R,

and is constant on verticals with diameters smaller than ✏QC(R). ⇤

2.4. Kakutani-Rohlin towers. The following construction, which has been de-
veloped for the study of minimal dynamics on the Cantor set, will be useful all
along this paper. It is often referred to as Kakutani-Rohlin towers (see [HPS]).
Choose S > 0 and fix a clopen set C in one of the C

i

’s with diameter smaller than
✏QC(S).
Consider the first return time function LC associated with this clopen set (which
is constructed exactly as the first return time function in ⌦

0

(QC)). The finite
local complexity hypothesis implies that the function LC is locally constant and
takes finitely many values LC,1

, . . . , LC,p(C)

. The clopen sets DC,i

= L�1

C (LC,i

) for
i = 1, . . . , p(C) form a partition of C. Again because of the finite local complexity
hypothesis, there exists a finite partition of C in clopen sets E

j

, j = 1, . . . r such that
for each j 2 {1, . . . , r}, there exists i 2 {1, . . . p(C)} so that the following properties
are satisfied:

• E
j

⇢ DC,i

;
• for each u 2 [0, LC,i

[, E
j

�u is a vertical with diameter smaller that ✏QC(S).
For j = 1, . . . , r, the set:

{E
j

� u, 8u 2 [0, LC,i

[},
is called a tower with height LC,i

. The union of all these towers realizes a partition
of ⌦(QC) and the data (QC, S, C, {E

j

}
j2{1,...,r}) is called a Kakutani-Rohlin towers

system with size S.
For j = 1, . . . , r, consider the set E

j

⇢ DC,i

and for each u 2 [0, LC,i

[, we call
floor of the tower E

j

⇥ [0, LC,i

[, the vertical E
j

� u. By identifying all the points in
this vertical, each tower projects on a semi-open interval and the whole hull ⌦(QC)
projects onto a smooth branched one-dimensional manifold which is a collection of
r of circles �

1

, . . . , �

r

tangent at a single point. This branched manifold is called the
skeleton of the Kakutani-Rohlin tower system (QC, S, C, {E

j

}
j2{1,...,r}). It inherits

a natural orientation, a di↵erentiable structure and a natural metric respectively
issued from the orientation, the di↵erentiable structure and the Euclidean metric
of the real line R (see Figure 4). We denote it B and call ⇡ : ⌦(QC) ! B the above
identification.
The proof of the following lemma is plain.

Lemma 2.5. Let R > 0 and VQC a continuous potential associated with QC with
range R > 0. Consider a Kakutani-Rohlin towers system with size S and let B be
its skeleton.
Assume that S � R, then the function V̄QC : ⌦(QC) ! R induced by VQC descends
to a continuous function V̂QC : B ! R:

V̂QC � ⇡ = V̄QC .
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E

E

E

E

1

2

3
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γ

γ

γ

1        
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4

Figure 4. A towers system and its skeleton

Whenever the function VQC is C

r-smooth for some 0  r  1, then the function
V̂QC is also C

r-smooth.

2.5. Inverse limits. Let us choose an increasing sequence (S
n

)
n�0

going to +1
with n and let us construct inductively an infinite sequence of Kakutani-Rohlin
towers system as follows (see [HPS]):

• Fix a point x

0

in ⌦
0

(QC).
• Choose a clopen set C

0

containing x

0

, with diameter smaller than ✏QC(S0

)
and construct a Kakutani-Rohlin towers system (QC, S

0

, C
0

, {E
0,j

}
j2{1,...,r0})

with size S

0

. Up to a renaming of the indices, we can assume that x

0

belongs to E
0,1

. We denote by B
0

the corresponding skeleton and call
⇡

0

: ⌦(QC)! B
0

the standard projection.
• We choose a clopen set C

1

⇢ E
0,1

which contains x

0

with a diameter
small enough so that we can construct a Kakutani-Rohlin towers system
(QC, S

1

, C
1

, {E
1,j

}
j2{1,...,r1}) with size S

1

such that each of its towers inter-
sects all the towers of the previous system. Up to a renaming of the indices,
we can assume that x

0

belongs to E
1,1

. We denote by B
1

the corresponding
skeleton and call ⇡

1

: ⌦(QC)! B
1

the standard projection.
• Assume we have constructed a sequence of nested clopen sets C

n

⇢ C
n�1

⇢
. . . C

1

⇢ C
0

containing x

0

and, for each p = 0, . . . , n, a Kakutani-Rohlin
towers system (QC, S

p

, C
p

, {E
p,j

}
j2{1,...,rp}) with size S

p

such that each of
its towers intersects all the towers of the system associated with p� 1, and
such that x

0

belongs to E
p,1

. We iterate the procedure by choosing a clopen
set C

n+1

⇢ E
n,1

which contains x

0

small enough so that we can construct a
Kakutani-Rohlin towers system (QC, S

n+1

, C
n+1

, {E
n+1,j

}
j2{1,...,rn+1}) with

size S

n+1

such that each of its towers intersects all the towers of the system
associated with n. Up to a renaming of the indices, we can assume that x

0

belongs to E
n+1,1

. We denote by B
n+1

the corresponding skeleton and call
⇡

n

: ⌦(QC)! B
n

the standard projection.
For each n � 0, fix a point y in B

n+1

. The set ⇡

�1

n+1

(y) is included in a floor of a
tower of the tower system (QC, S

p

, C
p

, {E
p,j

}
j2{1,...,rp}), and thus descends through
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⇡

n

to a single point on B
n

. We have defined this way a continuous surjection:

⌧

n

: B
n+1

! B
n

.

The inverse limit:

lim
 ⌧n

B
n

= {(x
n

)
n�0

|x
n

2 B
n

and ⌧

n

(x
n+1

) = x

n

, 8n � 0},

gives a re-interpretation of the hull ⌦(QC):

Proposition 2.6. [BG] When equipped with the product topology the set lim
 ⌧n

B
n

is

homeomorphic to ⌦(QC).

Notice that the map ⌧

n

: B
n+1

! B
n

induces a p

n

⇥ p

n+1

homology matrix
M

n

whose integer coe�cient m

n,i,j

is the number of times the loop �

n+1,j

in B
n+1

covers the loop �

n,i

of B
n

under the action of the map ⌧

n

. We remark that the
construction of the sequences of towers systems we made insures that, for all n � 0,
the matrix M

n

has positive coe�cients. These matrices carry information about
the invariant measure ⌫ on the Cantor set through the following lemma (see for
instance [GPS]):

Lemma 2.7.

⌫

n,i

=
j=pn+1X

j=1

m

n,i,j

⌫

n+1,j

, 8i 2 {1, . . . , p(n)},

where ⌫

n,i

is the measure of the clopen set E
n,i

.

Again the following lemma is plain:

Lemma 2.8. Let R > 0 and VQC be a continuous potential associated with QC
with range R > 0 and choose an increasing sequence (S

n

)
n�0

going to +1, such
that R  S

0

. Then, for each n � 0, the function VQC induces on each branched
manifold B

n

a function V̂QC,n

which satisfies:

V̂QC,n

� ⌧

n

= V̂QC,n+1

.

3. Combinatorics of minimal configurations

In this section, we consider the minimal segments for a short range potential
with range R associated with QC.

Lemma 3.1. Let I and J = I + u be two disjoint intervals in R such that for each
✓ in I:

B

R

(✓) \QC + u = B

R

(✓ + u) \QC,

and let (✓
1

, . . . , ✓

n

) be a minimal segment such that [✓
1

, ✓

n

] contains I and J . For
any pair of consecutive atoms ✓

m

and ✓

m+1

in I\QC, the interval [✓
m

+u, ✓

m+1

+u]
contains at most two atoms of the minimal segment.

Proof. The proof works by contradiction. Assume that there exists a pair of atoms
✓

m

and ✓

m+1

in I \ QC, such that the interval [✓
m

+ u, ✓

m+1

+ u] contains three
consecutive atoms of the minimal segment, say ✓

l

, ✓

l+1

, and ✓

l+2

:

[✓
l

, ✓

l+2

] ⇢ [✓
m

+ u, ✓

m+1

+ u].
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We consider the new segment obtained by taking the atom in position ✓

l+1

and
assigning to it the new position ✓

l+1

� u (Figure 5). When u > 0 (what we can
assume without loss of generality) this segment reads:

(✓
1

, . . . , ✓

i

, . . . , ✓

m

, ✓

l+1

� u, ✓

m+1

, . . . , ✓

l

, ✓

l+2

, . . . , ✓

n

).

To get a contradiction we are going to show that the potential energy of this new
segment is smaller than the potential energy of the first one. On the one hand,
since B

R

(✓
l+1

) \ QC � u = B

R

(✓
l+1

� u) \ QC, the potential energy induced by
the substrate on the atom that changed its position, keeps the same value:

VQC(✓l+1

) = VQC(✓l+1

� u).

Thus, the sum of the potential energy induced by the substrate on the whole seg-
ment is not a↵ected by this change of position.
On the other hand, the di↵erence of the potential energy of interaction between the
new segment and the former one is given by:

�U = (U(✓
m

� ✓

l+1

+ u) + U(✓
l+1

� u� ✓

m+1

)� U(✓
m

� ✓

m+1

))

�(U(✓
l

� ✓

l+1

) + U(✓
l+1

� ✓

l+2

)� U(✓
l

� ✓

l+2

)).
Let us introduce the new variables:

X = ✓

m

� ✓

l+1

+ u, Y = ✓

l+1

� u� ✓

m+1

,

X

0 = ✓

l

� ✓

l+1

, Y

0 = ✓

l+1

� ✓

l+2

.

We have:
X  X

0
< 0 and Y  Y

0
< 0,

and:

�U = (U(X) + U(Y )� U(X + Y ))� (U(X 0) + U(Y 0)� U(X 0 + Y

0)).

For t 2 [0, 1], let us consider the function:

G(t) = U(tX + (1� t)X 0) + U(tY + (1� t)Y 0) � U(t(X + Y ) + (1� t)(X 0 + Y

0)).

We have:
�U = G(1) � G(0),

and

G

0(t) = U

0(tX + (1� t)X 0)(X �X

0) + U

0(tY + (1� t)Y 0)(Y � Y

0)
� U

0(t(X + Y ) + (1� t)(X 0 + Y

0))(X + Y �X

0 � Y

0)
= (U 0(tX + (1� t)X 0) � U

0(t(X + Y ) + (1� t)(X 0 + Y

0)))(X �X

0)
+ (U 0(tY + (1� t)Y 0) � U

0(t(X + Y ) + (1� t)(X 0 + Y

0)))(Y � Y

0).

Observe that for t 2 [0, 1]:

tX + (1� t)X 0 � t(X + Y ) + (1� t)(X 0 + Y

0)

and
tY + (1� t)Y 0 � t(X + Y ) + (1� t)(X 0 + Y

0).
Using the convexity of U , more precisely the fact that U

0 is an increasing function
we get that:

�U  0,

and this inequality is strict as long as ✓

m

6= ✓

l

� u and ✓

m+1

6= ✓

l+2

� u. In this
case, we get the desired contradiction.
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Figure 5. Move of a single atom in a segment

In the situation when ✓

m

= ✓

l

� u and ✓

m+1

= ✓

l+2

� u, we remark that both
segments (✓

m

, ✓

l+1

� u, ✓ � m + 1) and (✓
l�1

, ✓

l

, ✓

l+2

) are not minimal and thus
the new configuration we constructed is not minimal. The corresponding minimal
segment (by fixing the extremities ✓

1

and ✓

n

) has an energy which is strictly smaller,
a contradiction. ⇤

The following lemma shows that there are actually more obstructions than the
ones described in Lemma 3.1.

Lemma 3.2. With the same hypotheses and notations as in Lemma 3.1, consider
two disjoint pairs of successive atoms ✓

m

< ✓

m+1

< ✓

m

0
< ✓

m

0
+1

in I \QC, such
that at least one of the four points ✓

m

+ u < ✓

m+1

+ u < ✓

m

0 + u < ✓

m

0
+1

+ u does
not belong to the minimal segment. Concerning the two intervals [✓

m

+u, ✓

m+1

+u]
and [✓

m

0 +u, ✓

m

0
+1

+u], none of the following three situations is possible (see Figure
6):

(i) both intervals contain two atoms of the minimal segment;
(ii) both intervals do not contain atoms of the minimal segment in their interi-

ors;
(iii) one of the interval contains two atoms of the minimal segment and the other

does not contain atoms in its interior.

Proof. As for Lemma 3.1, we are going to reach a contradiction assuming that
situation (i) occurs. The proof for the other two cases works exactly along the
same lines. Let ✓

l

< ✓

l+1

< ✓

l

0
< ✓

l

0
+1

be atoms of the minimal segment such that:

[✓
l

, ✓

l+1

] ⇢ [✓
m

+ u, ✓

m+1

+ u]

and
[✓

l

0
, ✓

l

0
+1

] ⇢ [✓
m

0 + u, ✓

m

0
+1

+ u].
Assuming again that u > 0, let us move some atoms of the minimal configuration
to reach the following new configuration:

(✓
1

, . . . , ✓

m

, ✓

l+1

� u, . . . , ✓

l

0 � u, ✓

m

0
+1

, . . . , ✓

l

, ✓

m+1

+ u, . . . ✓

m

0 + u, ✓

l

0
+1

, . . . , ✓

n

).

Since for each ✓ in I:

B

R

(✓) \QC + u = B

R

(✓ + u) \QC,

the potential energy induced by the substrate on the atoms did not change even
if the atoms have changed their positions. Thus, the sum of the potential energy
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Figure 6. The forbidden 3 situations

induced by the substrate on the whole segment is not a↵ected by this change of
position.
On the other hand, the di↵erence of the potential energy of interaction between the
new segment and the old one is given by:

�U = �U

1

+ �U

2

,

where

�U

1

= (U(✓
m

� ✓

l+1

+ u) + U(✓
l

� ✓

m+1

� u))� (U(✓
m

� ✓

m+1

) + U(✓
l

� ✓

l+1

)),

and

�U

2

= (U(✓
l

0�u�✓

m

0
+1

)+U(✓
m

0 +u�✓

l

0
+1

))�(U(✓
m

0�✓

m

0
+1

)+U(✓
l

0�✓

l

0
+1

)).

Let us introduce the new variables:

X

0

= ✓

m

X

1

= ✓

l+1

� u and Y

0

= ✓

l

� u Y

1

= ✓

m+1

.

We have:

�U

1

= (U(X
0

�X

1

) + U(Y
0

� Y

1

))� (U(X
0

� Y

1

) + U(Y
0

�X

1

)).

This yields:

�U

1

= �
Z

Y0

X0

 Z
Y1

X1

U

00(v � u)du

!
dv.

Since U is convex, X

0

 Y

0

and X

1

 Y

1

and at least one of these inequalities is
strict, we get:

�U

1

< 0,

and for the same reason
�U

2

< 0.

This yields a contradiction. ⇤
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From the previous two lemmas, we deduce that the quantity of atoms of the
minimal segments which belong to I and to I + u di↵er by an integer smaller than
2. This is summarized in the following proposition that will be our main tool in
the sequel of this paper.

Proposition 3.3. Let (✓
1

, . . . , ✓

n

) be a minimal segment and let I be an interval
in [✓

1

, ✓

n

], then there exists an integer N 2 Z+ such that for any pair of disjoint
intervals I

1

= I + u

1

and I

2

= I + u

2

in [✓
1

, ✓

n

] which satisfy that for each ✓ in I

and k = 1, 2:
B

R

(✓) \QC + u

k

= B

R

(✓ + u

k

) \QC,

each interval I

k

contains either N , N + 1 or N + 2 atoms of the minimal segment.

4. Proof of Theorem 1.1

4.1. Existence of a rotation number. In this subsection, we consider a mini-
mal configuration for a potential with range R associated with QC. Let us con-
sider an increasing sequence (S

l

)
l�0

going to +1 with l and such that S

0

>

R and consider also an associated sequence of Kakutani-Rohlin towers systems
(QC, S

l

, C
l

, {E
l,j

}
j2{1,...,rl})

l�0

and the corresponding sequence of skeletons (B
n

)
n�0

as constructed in Subsection 2.5.
The identification

I : x 2 R 7! QC � x 2 ⌦(QC)
induces an immersion of the real line in QC and the image of a configuration (✓

n

)
n

through this immersion is an element (✓̄
n

)
n

in ⌦(QC)Z where ✓̄

n

= QC � ✓

n

, for
all n 2 Z . In turn, for any l � 0, the projection ⇡

l

: ⌦(X) ! B
l

transforms this
sequence in an element (✓̂l

n

)
n

in BZ
l

where ✓̂

l

n

= ⇡

l

(✓̄
n

) = ⇡

l

� I(✓
n

), for all n 2 Z.
Furthermore we have:

V̂QC,l

(✓̂
n

) = V̄QC(✓̄n

) = VQC(✓n

).

The following lemma is a direct consequence of Proposition 3.3:

Lemma 4.1. Let (✓
n

)
n

be a minimal configuration such that lim
n!+1

✓

n

= +1 and

lim
n!�1

✓

n

= �1 (resp. let (✓
p

, . . . , ✓

q

) be a minimal segment). Then, for any l � 0

and any j 2 {1, . . . , r

l

}, there exists an integer N

l,j

such that for each loop �

l,j

of B
l

,
each connected component of (⇡

l

� I)�1(�
l,j

) ⇢ R (resp. each connected component
of (⇡

l

�I)�1(�
l,j

) ⇢ R which does not intersect (�1, ✓

p

][ [✓
q

,+1)) contains either
N

l,j

or N

l,j

+ 1 or N

l,j

+ 2 atoms of the minimal configuration (resp. the minimal
segment).
In other words, when n increases, the projection of the minimal configuration (resp.
the minimal segment) stays the same amount of time in a given loop up to an error
of 2.

Now we can prove the existence of a non negative rotation number for any
minimal configurations.

First, consider a minimal configuration (✓
n

)
n

such that lim
n!+1

✓

n

= +1 and

lim
n!�1

✓

n

= �1. Let us estimate the length of the interval [✓
0

, ✓

n

] for n � 0. Let

n

l,j

be the number of times ⇡

l

� I([✓
0

, ✓

n

]) covers completely the loop �

l,j

of B
l

. We
have, for each l � 0:
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plX

j=1

n

l,j

L

l,j

 ✓

n

� ✓

0


plX

j=1

n

l,j

L

l,j

+ 2L

l

,

where L

l,j

is the height of the tower associated with the loop �

l,j

(i.e. the length
of the loop �

l,j

) and
L

l

= max
j2{1,...,pl}

L

l,j

.

On the other hand we have:

plX

j=1

n

l,j

N

l,j

 n 
plX

j=1

n

l,j

(N
l,j

+ 2) + 2(N
l

+ 2),

where
N

l

= max
j2{1,...,pl}

N

l,j

.

This yields:
plP

j=1

n

l,j

L

l,j

plP
j=1

n

l,j

(N
l,j

+ 2) + 2(N
l

+ 2)
 ✓

n

� ✓

0

n



plP
j=1

n

l,j

L

l,j

+ 2L

l

plP
j=1

n

l,j

N

l,j

.

When n goes to +1 the quantity:
n

l,j

plP
j=1

n

l,j

L

l,j

goes to the measure ⌫

l,j

of the clopen set E

l,j

. It follows that the sequence (✓
n

�
✓

0

)/n has bounded limit sup and limit inf and that any accumulation point ⇢ of
this sequence satisfies:

plP
j=1

⌫

l,j

L

l,j

plP
j=1

⌫

l,j

(N
l,j

+ 2)
 ⇢ 

plP
j=1

⌫

l,j

L

l,j

plP
j=1

⌫

l,j

N

l,j

.

Recall that the measure ⌫ is the transverse measure associated with an invariant
probability measure on the hull ⌦(QC) and thus:

plX

j=1

⌫

l,j

L

l,j

= 1.

On the other hand we have:
plX

j=1

⌫

l,j

= ⌫(C
l

).

We deduce that:
1

plP
j=1

⌫

l,j

N

l,j

+ 2⌫(C
l

)
 ⇢  1

plP
j=1

⌫

l,j

N

l,j

.

Since these last inequalities are true for any l � 0, and since ⌫(C
l

) goes to 0 as l

goes to +1, it follows that the sequence (✓
n

� ✓

0

)/n converges to the limit:
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lim
l!+1

1
plP

j=1

⌫

l,j

N

l,j

(?).

Observe that this rotation number is di↵erent from 0.
Consider now a minimal configuration which satisfies lim

n!+1
✓

n

= M < +1 or
lim

n!+1
✓

n

= m < +1. The constant configuration

✓

n

= ✓

0

, 8n 2 Z,

has obviously a rotation number equal to 0. Let us assume now that the minimal
configuration is not constant and satisfies lim

n!+1
✓

n

= M < +1. Let us show that

we cannot have lim
n!�1

✓

n

= �1. Indeed, consider the interval [M � 2R,M + 2R]

and choose u > 0 such that the interval [M � 2R� u, M + 2R� u] is disjoint from
[M � 2R,M + 2R] and such that:

B

2R

(M � u) \QC + u = B

2R

(M) \QC.

Consider now, for n large enough, the interval [✓
n

� R, ✓

n

] ⇢ [M � 2R,M ]. The
number of atoms in [✓

n

�R, ✓

n

] goes to +1 with n. If lim
n!�1

✓

n

= �1, it follows

from Proposition 3.3 that the number of atoms in [✓
n

�R� u, ✓

n

� u] and thus in
[M �2R�u, M +2R�u], goes to +1 with n. Consequently the minimal sequence
(✓

n

)
n

has an accumulation point in [M � 2R� u, M + 2R� u] when n goes to �1
which is a contradiction. Thus for a minimal configuration we have:

lim
n!+1

✓

n

< +1 () lim
n!�1

✓

n

> �1
() (✓

n

)
n

is bounded
() (✓

n

)
n

has rotation number 0.

This ends the proof of Part (i) of Theorem 1.1.

4.2. Continuity of the rotation number. Consider a sequence (✓
m,n

)
n

of min-
imal configurations with rotation numbers ⇢

m

which converges, in the product
topology, to a minimal configuration (✓

n

)
n

with rotation number ⇢ > 0. We fix
l > 0 and choose a loop �

l,j

in B
l

. Consider the first time when, starting from 0 on
the real line and going in the positive direction, the projection of the configuration
(✓

n

)
n

enters in this loop. Let us do the same for the configuration (✓
m,n

)
n

. Since
(✓

m,n

)
n

converge to (✓
n

)
n

in the product topology, for m large enough both config-
urations stay the same time in the loop for their first visits. It follows from Lemma
4.1 that the minimal number of times N

m,l,j

, the projections of the configurations
(✓

m,n

)
n

spend in the loop �

l,j

of B
l

, and the minimal number of times N

l,j

, the
projection of the configuration (✓

m,n

)
n

spends in the same loop �

l,j

, satisfy:

|N
m,l,j

� N

l,j

|  2, 8 j 2 {1, . . . , p(l)}.
The rotation number ⇢

m

of the configuration (✓
m,n

)
n

satisfies:

1
plP

j=1

⌫

l,j

N

m,l,j

+ 2⌫(C
l

)
 ⇢

m

 1
plP

j=1

⌫

l,j

N

m,l,j

.
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On the other hand
1

plP
j=1

⌫

l,j

N

l,j

+ 2⌫(C
l

)
 ⇢  1

plP
j=1

⌫

l,j

N

l,j

.

This implies that for m large enough:
����
1
⇢

� 1
⇢

m

����  8⌫(C
l

).

Considering bigger and bigger l yields:

lim
m!+1

⇢

m

= ⇢.

When the rotation number ⇢ = 0, we have proved that the configuration (✓
n

)
n

is
bounded. Let M be its upper bound and consider the loop �

0,i

in B
0

on which M

descends by projection. If M falls on the singular point, we consider the loop where
the M � ✏’s for ✏ > 0 small enough, are falling. Fix K > 2, when m is big enough,
the projection of the configuration (✓

m,n

)
n

(whose rotation number is assumed to
be di↵erent from 0) must spend at least a time K in the loop �

0,i

during one of its
visits and thus, thanks to Lemma 4.1 at least K � 2 times at each of its visits. It
follows that the rotation number of (✓

m,n

)
n

satisfies:

⇢

m

 1
(K � 2)⌫

0,i

,

and, consequently:
lim

m!+1
⇢

m

= 0.

Thus, we have proved Part (ii) of Theorem 1.1.

4.3. Construction of minimal configurations. Observe that a constant config-
uration is a minimal configuration with rotation number 0. For positive rotation
numbers, we are first going to construct minimal configurations for a dense subset
of rotation numbers in R+.

The good candidate F to be a dense set in R+ for which minimal configurations
can be construct is suggested by the expression (?) obtained in the previous sub-
section. Again, let us consider an increasing sequence (S

l

)
l�0

going to +1 with l

and such that S

0

> R. Consider also an associated sequence of Kakutani-Rohlin
towers systems (QC, S

l

, C
l

, {E
l,j

}
j2{1,...,rl})

l�0

and the corresponding sequence of
skeletons (B

n

)
n�0

as constructed in Subsection 2.5. Recalling that the ⌫

l,j

’s are the
measures of the clopen sets E

l,j

, we define the set F as follows:

F =

8
>>><

>>>:

1
plP

j=1

N

l,j

⌫

l,j

, 8N
l,j

2 Z+ \ {0}, 8j 2 {1, . . . , p

l

}, 8l � 0

9
>>>=

>>>;
.

Since the measures of the clopen sets E
l,j

go to zero with l uniformly in j, we check
easily that F is a dense subset of R+.

Proposition 4.2. For any real number ⇢

0

in F , there exists a minimal configura-
tion with rotation number ⇢

0

.
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Figure 7. The branched manifold with its marked points

Proof. Fix l

0

� 0 and choose p

l0 positive integers N

l0,1

, . . . , N

l0,pl0
. Consider the

positive real number:

⇢

0

=
1

pl0P
j=1

N

l0,j

⌫

l0,j

2 F .

Let us construct a minimal configuration with rotation number ⇢

0

.
Step 1: For j = 1, . . . , p

l0 , consider on the loop �

l0,j

of the oriented branched
manifold B

l0 , N

l0,j

� 1 points b̂

l0,1

< · · · < b̂

l0,Nl0,j�1

, disjoint from the singular
point ⇡

l0(x0

) of B
l0 (where we recall that \

l�0

C
l

= {x
0

}) as shown in Figure 7.
For each j = 1, . . . , p

l0 , we consider the segment:

(⇡
l0(x0

), b̂
l0,1

, . . . , b̂

l0,Nl0,j�1

,⇡

l0(x0

)).

Thanks to Lemma 2.8, it makes sense to compute the potential energy of this
segment and to consider the position of the points, b̂

l0,1

, . . . , b̂

l0,Nl0,j�1

, which min-
imizes this potential energy. Having done it for all loops, we denote B̂

l0 the col-
lection of these marked points (all the b̂

l0,k

’s and ⇡

l0(x0

)) on B
l0 and consider the

subset of the real line (⇡
l0 � I)�1(B̂

l0). It is a discrete subset that we can ordered
as a bi-infinite increasing sequence (✓

l0,n

)
n

. This subset of R contains the subset
(⇡

l0 �I)�1(⇡
l0(x0

)) which is a quasicrystal. The configuration (✓
l0,n

)
n

is made with
a concatenation of minimal segments whose extremities are consecutive points in
(⇡

l0 � I)�1(⇡
l0(x0

)) and, there are exactly p

l0 di↵erent equivalence classes of seg-
ments, each of them corresponding to a minimal segment starting at the beginning
and ending at the end of a loop in B

l0 .
Step 2: Consider now the subset ⌧

�1

l0
(B̂

l0) of the branched manifold B
l0+1

. This
subset contains the singular point ⇡

l0+1

(x
0

) and for each j = 1, . . . , p

l0+1

, the
loop �

l0+1,j

of B
l0+1

contains N

l0+1,j

� 1 consecutive points, b̂

l0+1,1

< · · · <

b̂

l0+1,Nl0+1,j�1,

distinct from the singular point ⇡

l0+1

(x
0

). Actually we have:

N

l0+1,j

=
pl0X

i=1

m

l0,i,j

N

l0,i

(??)
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Figure 8. The configurations (✓
l0,n

)
n

and (✓
l0+1,n

)
n

where m

l0,i,j

is the coe�cient of the homology matrix M

l0 . Again, for each j =
1, . . . , p

l0+1

, we consider the segment:

(⇡
l0+1

(x
0

), b̂
l0+1,1

, . . . , b̂

l0+1,Nl0+1,j�1

,⇡

l0+1

(x
0

)).

we choose the position of the points b̂

l0+1,1

, . . . , b̂

l0+1,Nl0+1,j�1

which minimizes
the potential energy. Having done it for all loops, we denote B̂

l0+1

the collec-
tion of these marked points (all the b̂

l0+1,k

’s and ⇡

l0+1

(x
0

)) on B
l0+1

and con-
sider the subset of the real line (⇡

l0+1

� I)�1(B̂
l0+1

). It is a discrete subset that
we can ordered as a bi-infinite increasing sequence (✓

l0+1,n

)
n

. This subset of R
contains the subset (⇡

l0+1

� I)�1(⇡
l0(x0

)) which is a quasicrystal contained in
the quasicrystal (⇡

l0 � I)�1(⇡
l0(x0

)). The configuration (✓
l0+1,n

)
n

is made with
a concatenation of minimal segments whose extremities are consecutive points in
(⇡

l0+1

�I)�1(⇡
l0+1

(x
0

)) and there are exactly p

l0+1

equivalence classes of segments,
each of them corresponding to a minimal segment starting at the beginning and
ending at the end of a loop in B

l0+1

(See Figure 8).
Step 3: We iterate this procedure to get a configuration (✓

l0+m,n

)
n

for each m � 0.

Lemma 4.3. For each m � 0, the configuration (✓
l0+m,n

)
n

has rotation number
⇢

0

.

Proof. As a preliminary remark, observe that by construction:

• For any j in {1, . . . , p(l
0

)}, each time the projection of the configuration
(✓

l0,n

)
n

crosses the loop �

l0,j

of B
l0 , it spends an amount of time N

l0,j

in
this loop.

• Similarly, for any m � 0 and for any k in {1, . . . , p(l
0

+ m)}, each time
the projection of the configuration (✓

l0+m,n

)
n

crosses the loop �

l0+m,k

of
B

l0+m

, it spends an amount of time N

l0+m,k

in loop.
• Remark also that for any m � 0 and any k in {1, . . . , p(l

0

+ m)}, each
time the projection of the configuration (✓

l0,n

)
n

crosses the loop �

l0+m,k

of
B

l0+m

, it spends an amount of time in loop which is precisely N

l0+m,k

.

Using the same estimate as for the proof of the existence of a rotation number
for a minimal configuration, we get that the configuration (✓

l0,n

)
n

has a rotation
number and that this rotation number is the limit when m! +1 of the sequence
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(⇢
m

)
m�0

, where:

⇢

m

=
1

pl0+mP
j=1

⌫

l0+m,j

N

l0+m,j

8m � 0.

Claim: The sequence (⇢
m

)
m�0

is constant.
Proof of the claim: Using the relation (??) we get, for each m � 0:

1
pl0+m+1P

j=1

⌫

l0+m+1,j

N

l0+m+1,j

=
1

pl0+m+1P
j=1

⌫

l0+m+1,j

✓
pl0+mP
i=1

m

l0+m,i,j

N

l0+m,i

◆

=
1

pl0+mP
i=1

N

l0+m,i

 
pl0+m+1P

j=1

m

l0+m+1,i,j

⌫

l0+m+1,j

!
.

Thanks to Lemma 2.7:

⌫

l0+m,i

=
pl0+m+1X

j=1

m

l0+m+1,i,j

⌫

l0+m+1,j

.

Thus:
⇢

m+1

= ⇢

m

, 8m � 0.

This proves the claim and shows that the rotation number of the configuration
(✓

l0,n

)
n

is equal to ⇢

0

.
To conclude the proof of the lemma, we remark that a same computation yields

that, for each p � 0, the configuration (✓
l0+p,n

)
n

has a rotation number and that
this rotation number is the limit when m! +1 of the sequence (⇢

p,m

)
m�0

, where:

⇢

p,m

=
1

pl0+p+mP
j=1

⌫

l0+p+m,i

N

l0+p+m,j

8m � 0.

As shown previously, the sequence (⇢
p,m

)
m�0

is constant and ⇢

p,0

= ⇢

p

= ⇢

0

. ⇤
Step 4:

Lemma 4.4. There exists M > 0 such that:

0  ✓

l0+m,n+1

� ✓

l0+m,n

 M 8m � 0, 8n 2 Z.

Proof. Notice first that because of the very construction of the configurations
(✓

l0+m,n

)
n

the lemma is true if we consider only a finite subset of these sequences.
Let us prove this lemma by contradiction. Let us fix m

0

> 0 and assume that
the lemma is not true for the set of sequences (✓

l0+m,n

)
n

with m > m

0

. Choose
M(m

0

) > 0 such that M(m
0

) is larger than the longest loop of B
l0+m0 . We know

that there exists m > m

0

and n 2 Z such that:

M(m
0

) < ✓

m,n+1

� ✓

m,n

.

Recall that the configuration (✓
l0+m,n

)
n

is a concatenation of minimal segments
whose extremities descend by projection on the singular point of B

l0+m0 . This
implies that there exists a minimal segment:

⇥ = (✓
l0+m,n1 , . . . , ✓l0+m,n

, ✓

l0+m,n+1

, . . . , ✓

l0+m,n2)
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of the configuration (✓
l0+m,n

)
n

and a loop �

l0+m,j

in B
l0+m0 such that:

⇡

l0+m0 � I(⇥) \ �

l0+m0,j

= ;, and �

l0+m0,j

⇢ ⇡

l0+m0 � I([✓
l0+m,n

, ✓

l0+m,n+1

]).

Recall that the image ⌧

l0+m0�1

(�
l0+m0,j

) covers all the loops of B
l0+m0�1

. Using
Lemma 4.1, we deduce that the projection of the segment ⇥ on B

l0+m0�1

stays at
each passage in a loop of B

l0+m0�1

at most 3 times in this loop. It follows that the
rotation number ⇢

l0+m

of the configuration (✓
l0+m,n

)
n

satisfies:

⇢

l0+m

� 1
3⌫(C

l0+m0�1

)
.

This inequality must be true for all m

0

� 0 and thus ⇢

0

= +1, a contradiction. ⇤

Let us consider the set RZ equipped with the product topology. For M > 0, the
set S

M

of non decreasing sequences (⇠
n

)
n

in RZ such that:

0  ⇠

n

� ⇠

n�1

 M, 8n 2 Z,

is a compact subset of RZ. Thus it follows from Lemma 4.4, that the set of all the
configurations (✓

l0+m,n

)
n

, for m � 0 and their translated is in a compact subset of
RZ.
Step 5: For each m � 0, consider u

m

2 R such that 0 belongs to the center of a min-
imal segment of (✓

l0+m,n

+ u

m

)
n

. From lemma 4.1, the sequence of configurations
(✓

l0+m,n

+ u

m

)
n

has an accumulation point in RZ. We denote this configuration
(✓1,n

)
n

.

Lemma 4.5. The configuration (✓1,n

)
n

is a minimal configuration with rotation
number ⇢

0

.

Proof. The fact that the configuration (✓1,n

)
n

is minimal is standard. Consider a
segment of (✓1,n

)
n

. By construction this segment is a limit of minimal segments
and it is straightforward to show that this segment is minimal.
Let us prove now that the configuration (✓1,n

)
n

has rotation number ⇢

0

. Since the
configuration is minimal, it has a rotation number ⇢1 which is defined as the limit:

lim
l!+1

1
plP

j=1

⌫

l,j

N1,l,j

,

where N1,l,j

is the minimal number of times the configuration (✓1,n

)
n

spends in
the j

th loop of B
l

.
We use a similar argument to the one used in the proof of the continuity of the
rotation number. Fix l

1

> l

0

, and choose a loop �

l1,j

in B
l1 . Consider the first

time when, starting from 0 on the real line and going in the positive direction, the
configuration (✓1,n

)
n

enters in this loop. Let us do the same for the configuration
(✓

l0+m,n

+ u

m

)
n

. Since a subsequence of configurations (✓
l0+m,n

+ u

m

)
n

converges,
when m goes +1 to the configuration (✓1,n

)
n

, it follows that for m big enough
both projections of the configurations stay the same time in the loop �

l1,j

for their
first visit in this loop. It follows from Lemma 4.1 that the minimal number N

l0+m,l,j

of times the projection of the configuration (✓
l0+m,n

)
n

spends in the loop �

l1,j

of
B

l1 satisfies:

|N
l0+m,l1,j

� N1,l1,j

|  2, 8 j 2 {1, . . . , p(l
1

)}.
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Thus for m big enough, the rotation number ⇢

0

of the configuration (✓
l0+m,n

)
n

satisfies:
1

pl1P
j=1

⌫

l1,j

N

l0+m,l1,j

+ 2⌫(C
l1)

 ⇢

0

 1
pl1P
j=1

⌫

l1,j

N

l0+m,l1,j

.

On the other hand
1

pl1P
j=1

⌫

l1,j

N1,l1,j

+ 2⌫(C
l1)

 ⇢1  1
pl1P
j=1

⌫

l1,j

N1,l1,j

.

This implies: ����
1

⇢1
� 1

⇢

0

����  8⌫(C
l1).

Since this last inequality is true for all l

1

> l

0

, we get:

⇢1 = ⇢

0

.

⇤

This ends the proof of Proposition 4.2. ⇤

In order to prove Part (iii) of Theorem 1.1, we choose a positive real number ⇢

and consider a sequence of minimal configurations (✓
m,n

)
n

, m � 0, with rotation
number ⇢

m

2 F such that:
lim

m!+1
⇢

m

= ⇢.

A discussion completely similar to the one we used in the proof of Lemma 4.4 allows
us to show that there exists M > 0 such that:

0  ✓

m,n+1

� ✓

m,n

 M 8m � 0, 8n 2 Z.

Consequently, the set of all the configurations (✓
m,n

)
n

, for m � 0 and their trans-
lated, is in a compact subset of RZ and thus, as done previously, we can exhibit
a subsequence of configurations which converges to a minimal configuration (✓

n

)
n

.
Thanks to continuity property of the rotation number (Part (ii) of Theorem 1.1),
we conclude that the rotation number of (✓

n

)
n

is ⇢.

5. Final remarks

5.1. Dynamical systems. Minimal configurations of the Frenkel-Kontorova model
obviously satisfy the variational equations:

U

0(✓
n

� ✓

n+1

) � U

0(✓
n�1

� ✓

n

) + V

0(✓
n

) = 0, 8n 2 Z.

By introducing the new variables5:

p

n

= U

0(✓
n�1

� ✓

n

), 8n 2 Z,

we get the dynamical system defined on R⇥ R by:
8
<

:

p

n+1

= p

n

� V

0(✓
n

)

✓

n+1

= ✓

n

� (U 0)�1(p
n

� V

0(✓
n

))
(? ? ?)

5Recall that U 0 is an increasing homeomorphism of the real line.
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In the crystal case, V

0 is a periodic function with period L, the period of the crys-
tal. It follows that the map defined by (???) descends to a map on the open annulus
R/L.R⇥ R which is an orientation preserving di↵eomorphism which preserves the
standard area form. Area preserving maps of the annulus have been widely studied
and Aubry-Mather theory which makes a bridge between the Frenkel-Kontorova
model and dynamical systems, has been a powerful tool for both sides.

In the quasicrystal case, the dynamical system extends to an area preserving
”di↵eomomorphism” 6 on the solenoidal annulus ⌦(QC) ⇥ R. The study of such
maps will be the subject of a forthcoming paper.

5.2. Quasicrystals in Rd, d > 1. As we already noticed, the construction of
the hull of a quasicrystal and its interpretation as an inverse limit of branched
manifolds can be done for quasicrystals in any dimension (see [BG], [BBG], [S]).
On the other hand, in a recent work [KLR] , H. Koch, R de la Llave and C. Radin
developed a generalization of Aubry-Mather theory for functions on lattices in Rd.
Both arguments make tempting to develop in a same way, a Aubry-Mather theory
for quasicrystals in Rd, d > 1.

Acknowledgments: It is a pleasure for the authors to thank P. le Calvez for very
helpful comments about Aubry-Mather theory and an unknown referee for his useful
suggestions. S. P. has been supported by ECOS-Conicyt grant C03-E03.
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Abstract

The Frenkel-Kontorova model describes how an infinite chain of atoms min-
imizes the total energy of the system when the energy takes into account the
interaction of nearest neighbors as well as the interaction with an exterior
environment. An almost-periodic environment leads to consider a family of
interaction energies which is stationary with respect to a minimal topologi-
cal dynamical system. We introduce, in this context, the notion of calibrated
configuration (stronger than the standard minimizing condition) and, for con-
tinuous superlinear interaction energies, we prove its existence for some en-
vironment of the dynamical system. Furthermore, in one dimension, we give
su�cient conditions on the family of interaction energies to ensure the exis-
tence of calibrated configurations for any environment when the underlying
dynamics is uniquely ergodic. The main mathematical tools for this study
are developed in the frameworks of discrete weak KAM theory, Aubry-Mather
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1 Introduction

A minimizing configuration {xk}k2Z for an interaction energy E : Rd ⇥ Rd ! R
is a chain of points in Rd arranged so that the energy of each finite segment
(xm, xm+1, . . . , xn) cannot be lowered by changing the configuration inside the seg-
ment while fixing the two boundary points. Define

E(xm, xm+1, . . . , xn) :=
n�1
X

k=m

E(xk, xk+1).

Then {xk}k2Z is said to be minimizing if, for allm < n, for all ym, ym+1, . . . , yn 2 Rd

satisfying ym = xm and yn = xn, one has

E(xm, xm+1, . . . , xn)  E(ym, ym+1, . . . , yn). (1)

If the interaction energy is C0, coercive and translation periodic,

lim
R!+1

inf
ky�xk�R

E(x, y) = +1, (2)

8 t 2 Zd, 8x, y 2 Rd, E(x+ t, y + t) = E(x, y), (3)

it is easy to show (see [14]) that minimizing configurations do exist. If d = 1 and
E is a smooth strongly twist translation periodic interaction energy,

@2E

@x@y
 �↵ < 0, (4)

a minimizing configuration admits in addition a rotation number (see Aubry and
Le Daeron [2]). The interaction energy E is supposed to model the interaction
between two successive points as well as the interaction between the chain and the
environment.

For environments which are aperiodic, namely, with trivial translation group,
few results are known (see, for instance, [9, 13, 24]). If d = 1 and E is a twist
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interaction energy describing a quasicrystal environment, Gambaudo, Guiraud and
Petite [13] showed that minimizing configurations do exist, they all have a rotation
number and any prescribed real number is the rotation number of a minimizing
configuration.

We shall make slightly more general assumptions on the properties of E. We
say that E is translation bounded if

8R > 0, sup
ky�xkR

E(x, y) < +1, (5)

translation uniformly continuous if

8R > 0, E(x, y) is uniformly continuous in ky � xk  R, (6)

and superlinear if

lim
R!+1

inf
ky�xk�R

E(x, y)

ky � xk = +1. (7)

A modification of the arguments given by Zavidovique [25, Appendix] shows
that semi-infinite minimizing configurations do exist for a superlinear, translation
bounded and translation uniformly continuous E. We give a short proof of this
result in Appendix A, proposition 60. It is not clear that there exist bi-infinite
minimizing configurations in this general context.

We call ground energy the lowest energy per site for all configurations

Ē := lim
n!+1

inf
x0,...,xn

1

n
E(x0, . . . , xn). (8)

A configuration {xn}n2Z is calibrated at the level Ē if, for every k < l,

⇥

E(xk, . . . , xl)� (l � k)Ē
⇤

 inf
n�1

inf
y0=x

k

,...,y
n

=x
l

⇥

E(y0, . . . , yn)� nĒ
⇤

. (9)

Notice that the number of sites on the right hand side is arbitrary. A calibrated
configuration is obviously minimizing; the converse is false in general, as discussed
in Appendix A. More generally, a configuration which is calibrated at some level c
(replace Ē by c in (9)) is also minimizing.

If d � 1 and E is C0, coercive and translation periodic (conditions (2) and
(3)), an argument using the notion of weak KAM solutions as in [15, 11, 14] shows
that there exist calibrated configurations at the level Ē. Conversely, if d = 1
and E is twist translation periodic, every minimizing configuration is calibrated
for some modified energy E�(x, y) = E(x, y) � �(y � x), � 2 R, with ground
energy Ē(�). If d = 1 and E is arbitrary (at least translation bounded, translation
uniformly continuous and superlinear), it is not known in general that a calibrated
configuration does exist.

In order to give a positive answer to the question of the existence of calibrated
configurations, we will consider in this paper an interaction energy which has almost
periodic behavior. This leads to look at a family of interaction energies parameter-
ized by a minimal dynamical system.
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Concretely, we will assume there exists a family of interaction energies {E!}!
depending on an environment !. Let ⌦ denote the collection of all possible envi-
ronments. We assume that a chain {xk + t}k2Z translated in the direction t 2 Rd

and interacting with the environment ! has the same local energy that {xk}k2Z
interacting with the shifted environment ⌧t(!), where {⌧t : ⌦ ! ⌦}t2Rd

is supposed
to be a group of bijective maps. More precisely, each environment ! defines an
interaction E!(x, y) which is assumed to be topologically stationary in the following
sense

8! 2 ⌦, 8 t 2 Rd, 8x, y 2 Rd, E!(x+ t, y + t) = E⌧
t

(!)(x, y). (10)

In order to ensure the topological stationarity, the interaction energy will be
supposed to have a Lagrangian form. Formally, we will use the following notations.

Notation 1. The space of environments
�

⌦, {⌧t}t2Rd

�

is said to be almost periodic
if ⌦ is a compact metric space equipped with a minimal Rd-action {⌧t}t2Rd

, that is,
a family of homeomorphisms ⌧t : ⌦ ! ⌦ satisfying the cocycle property ⌧s�⌧t = ⌧s+t

for all s, t 2 Rd, and
– ⌧t(!) is jointly continuous with respect to (t,!),
– 8! 2 ⌦, {⌧t(!)}t2Rd

is dense in ⌦.
We say that the family of interaction energies {E!}!2⌦ derive from a Lagrangian
if there exists a continuous function L : ⌦⇥ Rd ! R such that

8! 2 ⌦, 8x, y 2 Rd, E!(x, y) := L(⌧x(!), y � x). (11)

We call the set of data (⌦, {⌧t}t2Rd

, L) an almost periodic interaction model.

Notice that the expression “almost periodic” shall not be understood in the
sense of H. Bohr. The almost periodicity in the Bohr sense is canonically relied to
the uniform convergence. See [3] for a discussion on the di↵erent concepts of almost
periodicity accordingly to the uniform topology or, for instance, the compact open
topology.

Because of the particular form of E!(x, y), these energies are translation bounded
and translation continuous uniformly in ! and in ky � xk  R. We make precise
the two notions of coerciveness and superlinearity in the Lagrangian form.

Definition 2. Let (⌦, {⌧t}t2Rd

, L) be an almost periodic interaction model. The
Lagrangian L is said to be coercive if

lim
R!+1

inf
!2⌦

inf
ktk�R

L(!, t) = +1.

L is said to be superlinear if

lim
R!+1

inf
!2⌦

inf
ktk�R

L(!, t)

ktk = +1.

L is said to be ferromagnetic if, for every ! 2 ⌦, E! is of class C1(Rd ⇥ Rd) and,
for every ! 2 ⌦ and x, y 2 Rd,

x 2 Rd 7! @E!

@y
(x, y) 2 Rd and y 2 Rd 7! @E!

@x
(x, y) 2 Rd

are homeomorphisms.
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Note that if there is a constant ↵ > 0 such that
Pd

i,j=1
@2E

!

@x@y vivj  �↵
Pd

i=1 v
2
i

for all ! 2 ⌦, x, y 2 Rd, then L is ferromagnetic and superlinear.
Let us illustrate our abstract notions by three typical examples.

Example 3. The classical periodic one-dimensional Frenkel-Kontorova model takes
into account the family of interaction energies E!(x, y) = W (y � x) + V!(x), with
! 2 S1, written in Lagrangian form as

L(!, t) = W (t) + V (!) =
1

2
|t� �|2 + K

(2⇡)2
�

1� cos 2⇡!
�

, (12)

where �, K are constants. Here ⌦ = S1 and ⌧t : S1 ! S1 is given by ⌧t(!) = ! + t.
We observe that {⌧t}t is clearly minimal.

The following example comes from [13].

Example 4. Consider, for an irrational ↵ 2 (0, 1) \Q, the set

!(↵) := {n 2 Z : bn↵c � b(n� 1)↵c = 1},

where b·c denotes the integer part. Notice that the distance between two consecutive
elements of !(↵) is b 1

↵c or b 1
↵c+ 1. Now let U0 and U1 be two real valued smooth

functions with supports respectively in (0, b 1
↵c) and (0, b 1

↵c + 1). Let V!(↵) be the
function defined by V!(↵)(x) = U!

n+1�!
n

�b 1
↵

c(x � wn), where !n < !n+1 are the

two consecutive elements of the set !(↵) such that !n  x < !n+1. The associated
interaction energy is the function

E!(↵)(x, y) =
1

2
|x� y � �|2 + V!(↵)(x). (13)

We can directly extend the definition of V!0 to any relatively dense set !0 of the real
line such that the distance between two consecutive points is in {b 1

↵c, b
1
↵c+1}. Let

⌦0 be the collection of all such sets. Then, for any x, t 2 R, we have the relation
V!0(x+ t) = V!0�t(x), where !0� t denotes the set of elements of !0 2 ⌦0 translated
by �t. In section 2, we explain how to associate a compact metric space ⌦ ⇢ ⌦0,
where the group of translations acts minimally, as well as a Lagrangian from which
the family {E!}!2⌦ derives.

As we shall see in section 2, the construction given in example 4 extends to
any quasiscrystal ! of Rd, namely, to any set ! ⇢ Rd which is relatively dense
and uniformly discrete such that the di↵erence set ! � ! is discrete and any finite
pattern repeats with a positive frequency (see definition 22). We will later focus
on the class of environments of quasicrystal type (see definition 17). An example
of almost periodic interaction model on R which is not of quasicrystal type can be
constructed in the following way.

Example 5. The underlying minimal flow is the irrational flow ⌧t(!) = !+t(1,
p
2)

acting on ⌦ = T2. The family of interaction energies E! derives from the La-
grangian

L(!, t) :=
1

2
|t� �|2 + K1

(2⇡)2
�

1� cos 2⇡!1
�

+
K2

(2⇡)2
�

1� cos 2⇡!2
�

, (14)

where ! = (!1,!2) 2 T2.
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For an almost periodic interaction model, the notion of ground energy is given
by the following definition.

Definition 6. We call ground energy of a family of interactions {E!}!2⌦ of La-
grangian form L : ⌦⇥ Rd ! R the quantity

Ē := lim
n!+1

inf
!2⌦

inf
x0,...,xn

2Rd

1

n
E!(x0, . . . , xn).

The above limit is actually a supremum by superadditivity and is finite as soon
as L is assumed to be coercive. Besides, we clearly have a priori bounds

inf
!2⌦

inf
x,y2Rd

E!(x, y)  Ē  inf
!2⌦

inf
x2Rd

E!(x, x). (15)

The constant Ē plays the role of a drift and E!(x, y) � Ē acts like a “signed
distance”. It is natural to modify the previous notion of minimizing configurations
by saying that {xn}n2Z is calibrated at the level Ē if

Pn�1
k=m[E(xk, xk+1)�Ē] realizes

the smallest signed distance between xm and xn for every m < n. Hence, we
consider the following key notions borrowed from the weak KAM theory (see, for
instance, [10]).

Definition 7. We call Mañé potential in the environment ! the function on Rd⇥Rd

given by
S!(x, y) := inf

n�1
inf

x=x0,...,xn

=y

⇥

E!(x0, . . . , xn)� nĒ
⇤

.

We say that a configuration {xk}k2Z is calibrated for E! (at the level Ē) if

8m < n, S!(xm, xn) = E!(xm, xm+1, . . . , xn)� (n�m)Ē.

As discussed in section 3, the Mañé potential for any almost periodic environ-
ment is always finite. More importantly, calibrated configurations always exist for
some environments ! in the projection of a specific set called the Mather set. The
Mather set, denoted Mather(L), will be introduced properly in definition 11 of this
section. It is a nonempty compact set of ⌦ ⇥ Rd and its first projection (the pro-
jected Mather set) by pr : ⌦⇥Rd ! ⌦, describes the set of environments for which
there exists a calibrated configuration passing through the origin of Rd.

The next theorem extends Aubry-Mather theory of the classical periodic model.
It is the first main result of this paper and will be proved in section 3.

Theorem 8. Let (⌦, {⌧t}t2Rd

, L) be an almost periodic interaction model, with L a
C0 superlinear function. Then, for all ! 2 pr(Mather(L)), there exists a calibrated
configuration {xk}k2Z for E! such that x0 = 0 and supk2Z kxk+1 � xkk < +1.

This theorem states that, in the almost periodic case, there exist at least one
environment and one calibrated configuration for that environment (and thus for
any environment in its orbit). It may happen that the projected Mather set does not
meet every orbit of the system. Indeed, in the almost periodic Frenkel-Kontorova
model described in example 5 , for � = 0, we have Ē = 0 which is attained by taking
xn = 0 for every n 2 Z. In addition, it is easy to check that the Mather set is reduced
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to the point (0T2 , 0R) and in particular the projected Mather set {0T2} meets a
unique orbit. We shall later show (theorem 19) that this pathology disappears
for a restricted class of one-dimensional almost periodic interaction models, which
generalizes example 4 and will be called weakly twist almost periodic interaction
model of quasicrystal type (see definitions 17 and 18).

We now present the definition of the Mather set. Let ! 2 ⌦ be fixed. The ground
energy (in the environment !) measures the mean energy per site of a configuration
{xn}n�0 which distributes in Rd so that 1

nE!(x0, . . . , xn) ! Ē. Notice that the
previous mean can be understood as an expectation of L(!, t) with respect to a
probability measure µn,! := 1

n

Pn�1
k=0 �(⌧x

k

(!), x
k+1�x

k

):

1

n
E!(x0, . . . , xn) =

Z

L(!, t)µn,!(d!, dt). (16)

Notice also that µn,! satisfies the following property of pseudoinvariance
Z

f(!)µn,!(d!, dt)�
Z

f(⌧t(!))µn,!(d!, dt) =
1

n

⇣

f � ⌧x
n

(!)� f � ⌧x0(!)
⌘

. (17)

This suggests to consider the set of all weak⇤ limits of µn,! as n ! +1. Following
[20], we call these limit measures holonomic probabilities.

Definition 9. A probability measure µ on ⌦⇥ Rd is said to be holonomic if

8 f 2 C0(⌦),

Z

f(!)µ(d!, dt) =

Z

f(⌧t(!))µ(d!, dt).

Let Mhol denote the set of all holonomic probability measures.

The set Mhol is certainly not empty since it contains any �(!,0), ! 2 ⌦. It is then
natural to look for holonomic measures that minimize L. We show that minimizing
holonomic measures do exist and that the lowest mean value of L is the ground
energy.

Proposition 10. If L is C0 coercive, then Ē = inf{
R

Ldµ : µ 2 Mhol} and the
infimun is attained by some holonomic probability measure.

A measure that attains the previous infimum is called minimizing.

Definition 11. We denote by Mmin the set of minimizing measures. We call
Mather set of L the set

Mather(L) := [µ2M
min

supp(µ) ✓ ⌦⇥ Rd.

The projected Mather set is just pr(Mather(L)), where pr : ⌦⇥Rd ! ⌦ is the first
projection.

Proposition 12.

1. If L is C0 coercive, then

9µ 2 Mmin with Mather(L) = supp(µ).

In particular, Mather(L) is closed.
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2. If L is C0 superlinear, then Mather(L) is compact.

The set of holonomic measures may be seen as a dual object to the set of
coboundaries {u � u � ⌧t : u 2 C0(⌦), t 2 Rd}. Proposition 10 admits thus a dual
version that will actually be proved first.

Proposition 13 (The sup-inf formula). If L is C0 coercive, then

Ē = sup
u2C0(⌦)

inf
!2⌦, t2Rd

⇥

L(!, t) + u(!)� u � ⌧t(!)
⇤

.

We do not know whether the above supremum is achieved in the aperiodic case
(i.e. when any map ⌧t with t 6= 0 has no fixed point). There is finally a third way
to compute the ground energy, which says that the exact choice of the environment
! is irrelevant.

Proposition 14. If L is C0 coercive, then

8! 2 ⌦, Ē = lim
n!+1

inf
x0,...,xn

2Rd

1

n
E!(x0, . . . , xn).

We present now the definition of a weakly twist interaction model of quasicrystal
type (generalizing example 4). We decided to work in a slightly more general frame
than the usual one for quasicrystals (see section 2). The definition is presented
only for the one-dimensional case, nevertheless the description can be done in any
dimension. We begin by introducing the notions of flow boxes, transverse section,
and box decomposition.

Definition 15. Let (⌦, {⌧t}t2R) be an almost periodic environment.
– An open set U ⇢ ⌦ is said to be a flow box of size R > 0 if there exists a compact
subset ⌅ ⇢ ⌦, called transverse section, such that:

⇧ the induced topology on ⌅ admits a basis of closed and open subsets, called
clopen subsets,

⇧ ⌧(t,!) = ⌧t(!), (t,!) 2 R⇥ ⌅, is a homeomorphism from BR(0)⇥ ⌅ onto U .
We shall later write BR = BR(0) and ⌧�1

(i) = ⌧�1
|U

i

: Ui ! BR ⇥ ⌅ for a flow box Ui.

– Two flow boxes Ui = ⌧ [BR
i

⇥ ⌅i] and Uj = ⌧ [BR
j

⇥ ⌅j ] are said to be admissible
if, whenever Ui \ Uj 6= ;, there exists ai,j 2 R such that

⌧�1
(j) � ⌧(t,!) = (t� ai,j , ⌧a

i,j

(!)), 8 (t,!) 2 ⌧�1
(i) (Ui \ Uj).

– A flow box decomposition {Ui}i2I is a cover of ⌦ by admissible flow boxes.

Typical examples of these structures are given by the suspensions of minimal
homeomorphisms on a Cantor set with a locally constant roof functions.

The notion of transversally constant Lagrangian has been introduced in [13].
In the periodic case, equation (3) shows that the interaction energy keeps a con-
stant value by moving the whole configuration by a distance equal to a multiple
of the period. In example 4, equation (13) and the minimality of the action by an
irrational rotation on the circle show that, given any finite configuration, the inter-
action energy keeps the same value for infinitely many translated configurations.
Moreover, this set of translations is a relatively dense set in R depending on the
configuration. We formalize this idea in the following definition.
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Definition 16. Let (⌦, {⌧t}t2R, L) be an almost periodic interaction model admit-
ting a flow box decomposition.
– A flow box ⌧ [BR ⇥⌅] is said to be compatible with respect to a flow box decompo-
sition {Ui}i2I , where Ui = ⌧ [BR

i

⇥ ⌅i], when, for every |t| < R, there exist i 2 I,
|ti| < Ri and a clopen subset ⌅̃i of ⌅i such that ⌧t(⌅) = ⌧t

i

(⌅̃i).
– L is said to be transversally constant with respect to a flow box decomposition
{Ui}i2I if, for every flow box ⌧ [BR ⇥ ⌅] compatible with respect to {Ui}i2I ,

8!,!0 2 ⌅, 8 |x|, |y| < R, E!0(x, y) = E!(x, y).

We extend the case treated in [13] for quasicrystals to the almost periodic in-
teraction models. Similarly to studies for the Hamilton-Jacobi equation (see, for
instance, [6, 7, 8, 19]), we will consider here a stationary ergodic setting.

Definition 17. An almost periodic interaction model (⌦, {⌧t}t2R, L) is said to be
of quasicrystal type if the action {⌧t}t2R is uniquely ergodic (with unique invariant
probability measure �) and L is transversally constant with respect to some flow box
decomposition.

The strongly twist property (4) is the main assumption in Aubry-Mather theory
([2, 21]). We slightly extend this property.

Definition 18. A one-dimensional almost periodic interaction model (⌦, {⌧t}t2R, L)
satisfies the weakly twist property if there exists a C0 function U : ⌦ ! R such that,
for every ! 2 ⌦, the function Ẽ!(x, y) := E!(x, y) + U(⌧x(!)) � U(⌧y(!)) is C2,
and

8x, y 2 R,! 2 ⌦
@2Ẽ!

@x@y
(x, ·) < 0 and

@2Ẽ!

@x@y
(·, y) < 0 a.e.

Now we state the second main result of this paper, which says that, in the qua-
sicrystal case, for any environment, there always exists a calibrated configuration.
Its proof is detailed in section 4.

Theorem 19. Let (⌦, {⌧t}t2R, L) be a one-dimensional weakly twist interaction
model of quasicrystal type. Then the projected Mather set meets uniformly any
orbit of the flow ⌧t. More precisely, for every ! 2 ⌦, there exists a calibrated
configuration for E!, say {xk,!}k2Z, with bounded jumps and at a bounded distance
from the origin uniformly in !:

8m < n, S!(xm,!, xn,!) =
n�1
X

k=m

E!(xk,!, xk+1,!)� (n�m)Ē,

sup
!2⌦

sup
k2Z

|xk+1,! � xk,!| < +1, sup
!2⌦

|x0,!| < +1.

As in examples 3 and 4 as well as in the general setting described in section 2,
interaction models of quasicrystal type are easily built when the interaction energy
has the form E!(x, y) = W (y� x)+V1(⌧x(!))+V2(⌧y(!)), where W is superlinear
weakly convex and V1 and V2 are locally transversally constant and smooth along
the flow.
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Definition 20. Let (⌦, {⌧t}t2R) be an almost periodic interaction model. A func-
tion V : ⌦ ! R is said to be locally transversally constant on a flow box decompo-
sition {Ui}i2I , where Ui = ⌧(BR

i

⇥ ⌅i), if

8 i 2 I, 8!,!0 2 ⌅i, 8 |x| < Ri, V (⌧x(!)) = V (⌧x(!
0)).

Notice that, in example 5, the locally transversally constant property is not
verified.

Corollary 21. Let (⌦, {⌧t}t2R) be a one-dimensional almost periodic interaction
model. Assume that (⌦, {⌧t}t2R) is uniquely ergodic. Let V1, V2 : ⌦ ! R be C0

locally transversally constant functions on the same flow box decomposition that
are C2 along the flow (namely, for all !, the function t 2 R 7! Vi(⌧t(!)) is C2,
i = 1, 2). Let W : R ! R be a C2 superlinear weakly convex function (namely,
W 00(t) > 0 a.e. and |W 0(t)| ! +1 as |t| ! +1). Define

L(!, t) = W (t) + V1(!) + V2(⌧t(!)).

Then L is C0, superlinear and transversally constant, (⌦, {⌧t}t2R, L) is a one-
dimensional weakly twist interaction model of quasicrystal type and all conclusions
of theorem 19 apply.

2 Backgrounds on quasicrystals

In this section, we recall the basic definitions and properties concerning Delone sets
and specially quasicrystals. More details on Delone sets can be found, for instance,
in [4, 17, 18]. Associated to Delone sets, we will consider strongly equivariant
functions. We recall their main properties here and we refer the reader to [13, 16]
for the proofs.

Definition of quasicrystal. A Delone set ! is a discrete subset of the Euclidean
space Rd for which there exist two positive real numbers r! and R! satisfying the
following properties:

– uniform discreteness: each open ball of radius r! in Rd contains at most one
point of !.

– relative density: each closed ball of radius R! in Rd contains at least one point
of !.

If precision is required, we will say that ! is r!-uniformly discrete and R!-relatively
dense.

For R > R!, we say that a subset P of a Delone set ! is a R-patch (or a pattern
for short) of ! if, for some y 2 !, one has

P = ! \BR(y),
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where BR(y) denotes the open ball of a radius R centered at y. We will say that the
patch is centered at y (notice that the center may not be unique). The collection
of return vectors associated to the patch P is the set

RP(!) = {v 2 Rd : P+ v is a patch of !},

where P+ v denotes the translation of all the points of P by the vector v. The set
of occurrences of P is defined as !P := xP + RP(!).

Definition 22. A Delone set ! ⇢ Rd is repetitive if it satisfies all the two following
properties:

– finite local complexity: for any real R > 0, the Delone set ! has just a finite
number of R-patches up to translations;

– repetitivity: for each R > 0, there is a real number M(R) > 0 such that any
closed ball of radius M(R) contains at least one occurrence of every R-patch
of !.

A repetitive Delone set ! ⇢ Rd is a quasicrystal if in addition it satisfies

– uniform pattern distribution: for any pattern P of !, uniformly in x 2 Rd,
the following limit exists

lim
N!+1

#
�

{z 2 Rd : z is an occurrence of P} \BN (x)
�

Leb(BN (x))
= ⌫(P) > 0.

Notice that the finite local complexity is equivalent to the property that the
intersection of the di↵erence set ! � ! with any bounded set is finite (see [18]).

Basic examples of quasicrystals are derived from Beatty sequences: for a real
number ↵ 2 (0, 1), the associated the set is !(↵) := {n 2 Z : bn↵c�b(n�1)↵c = 1}.
For details, we refer to [18].

Observe that, when ! is a repetitive Delone set (respectively, a quasicrystal),
then ! + v, obtained by translating any point of ! by v 2 Rd, is also a repetitive
Delone set (respectively, a quasicrystal). A Delone set is said to be aperiodic if
! + v = ! implies v = 0, and periodic if its stabilizers contains a cocompact
subgroup of Rd. In the former example, it is simple to check that the quasicrystal
!(↵) is aperiodic if, and only if, ↵ is irrational, as in example 4.

We introduce now a combinatorial background. For a Delone set ! and a real
number R > 0, the R-atlas A!(R) of ! is the collection of all the R-patches centered
at a point of ! and translated to the origin. More precisely, we set

A!(R) := {! \BR(x)� x : x 2 !}.

Notice that ! has finite local complexity if, and only if, A!(R) is finite for every R.
For a quasicrystal ! and a patch P, it is plain to check that the collection of return
vectors RP(!) is also a quasicrystal. Hence !P, the set of all the occurrences of P,
is also a quasicrystal.

In order to avoid an unnecessary dichotomy, we will mainly focus on aperi-
odic quasicrystals. The following lemma is well-known and its proof is plain by
contradiction.
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Lemma 23. If ! is an aperiodic quasicrystal, then, given S > 0, there exists a
constant RS > 0 such that, for any R � RS and any R-patch P of !, the quasicrystal
!P is S-uniformly discrete.

Hull of a quasicrystal. As we already mentioned, a translation of a repetitive
Delone set !⇤ is also a repetitive Delone set. We will equipped the set !⇤ + Rd of
all the translations of !⇤ with a topology that reflects its combinatorial properties:
the Gromov-Hausdor↵ topology. Roughly speaking, two Delone sets in this set will
be close whenever they have the same pattern in a large neighborhood of the origin,
up to a small translation.

Such a topology is metrizable and an associated metric can be defined as follows
(for details, see [4, 16]): given ! and ! two translations of !⇤, their distance is

D(!,!) := inf
� 1

r + 1
: 9 |v|, |v| < 1

r
s.t. (! + v) \Br(0) = (! + v) \Br(0)

 

.

The continuous hull ⌦(!⇤) of the Delone set !⇤ is the completion of such a metric
space. The finite local complexity hypothesis implies that ⌦(!⇤) is a compact
metric space and that any element ! 2 ⌦(!⇤) is a Delone set which has, up to
translations, the same patterns as !⇤, namely, A!(R) = A!⇤(R) for any R > 0 (see
[17, 4]). Moreover, ⌦(!⇤) is equipped with a continuous Rd-action given by the
homeomorphisms

⌧v : ! 7! ! � v for ! 2 ⌦(!⇤).

Given ! 2 ⌦(!⇤) and S > 0 such that ! \ BS(0) 6= ;, the associated cylinder
set is defined as

⌅!,S := {! 2 ⌦(!⇤) : ! \BS(0) = ! \BS(0)}.

The translations of cylinder sets,

U!,S,✏ := {! + v : v 2 B✏(0), ! 2 ⌅!,S}, for ✏ > 0, S > 0, ! 2 ⌦(!⇤),

form a base for the topology of ⌦(!⇤).
The dynamical system (⌦(!⇤),Rd) has a dense orbit (namely, the orbit of !⇤).

Actually, the repetitivity hypothesis is equivalent to the minimality of the action,
and so any orbit is dense. The uniform pattern distribution is equivalent to the
unique ergodicity: the Rd-action has a unique invariant probability measure. For
details on these properties, we refer the reader to [17, 4]. We summarize these facts
in the following proposition.

Proposition 24 ([17, 4]). Let !⇤ be a quasicrystal of Rd. Then the dynamical
system (⌦(!⇤),Rd) is minimal and uniquely ergodic.

The canonical transversal ⌅0(!⇤) of the hull ⌦(!⇤) of a quasicrystal is the set
of quasicrystals ! in ⌦(!⇤) such that the origin 0 belongs to !. The designation
of transversal comes from the obvious fact that the set ⌅0(!⇤) is transverse to the
action: for any vector v smaller than the uniform discreteness constant, clearly
⌧v(!) 62 ⌅0(!⇤) for any ! 2 ⌅0(!⇤). This gives a Poincaré section.
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Proposition 25 ([17]). The canonical transversal ⌅0(!⇤) and the cylinder sets ⌅!,S

of an aperiodic quasicrystal !⇤ are Cantor sets. If !⇤ is a periodic quasicrystal, these
sets are finite.

It follows, in one dimension, that the hull admits a flow box decomposition.
This can be generalized straightforwardly in any dimension.

Lemma 26. Let !⇤ be an aperiodic repetitive Delone set of R with constant of
relative denseness R!⇤. Then, for any large enough R > 0, there exist elements
!1, . . . ,!n 2 ⌅0(!⇤) such that the collection of open sets {U!

i

,R,R
!⇤}

n
i=1 is a flow

box decomposition of the almost periodic environment (⌦(!⇤), {⌧t}t2R).

Proof. By lemma 23, for all large enough R and for any R-patch P of !⇤, the
discreteness constant r!P of the occurrence set !P, is greater than 4R!⇤. Notice that,
by the definition of the constant R!⇤ , for all S > 0, the collection {U!,S,R

!⇤}!2⌅0(!⇤)

is a cover of the hull ⌦(!⇤). Moreover, the choice of the constant R implies that,
for any ! 2 ⌅0(!⇤), the map ⌧ : BR

!⇤ (0) ⇥ ⌅!,R+2R
!⇤ ! U!,R+2R

!⇤ ,R!⇤ is an
homeomorphism. This choice also implies that, for any !1,!2 2 ⌅0(!⇤), there is at
most one vector a 2 B2R

!⇤(0) such that ⌧a⌅!1,R+2R
!⇤ \ ⌅!2,R+2R

!⇤ 6= ;. Indeed, if
there are a, a0 2 B2R

!⇤(0) and !,!0 2 ⌅!1,R+2R
!⇤ such that

⌧a! \BR+2R
!⇤ (0) = ⌧a0!

0 \BR+2R
!⇤ (0),

we have in particular

! \BR(a)� a = !0 \BR(a
0)� a0,

which means that a�a0 is an occurrence of an R-patch, and then a = a0 by the choice
of R. Therefore, if two open sets U!1,R+2R

!⇤ ,R!⇤ and U!2,R+2R
!⇤ ,R!⇤ are intersect-

ing, there are t, t0 2 BR
!⇤ (0) such that ⌧t(⌅!1,R+2R

!⇤ ) intersects ⌧t0(⌅!2,R+2R
!⇤ ).

It follows that the vector t � t0 is unique, and the two open sets U!1,R+2R
!⇤ ,R!⇤

and U!2,R+2R
!⇤ ,R!⇤ are admissible. Thus, any finite subcover of the collection

{U!,R,R
!⇤}!2⌅0(!⇤) is a flow box decomposition.

For a more dynamical description of the hull in one dimension, we consider the
return time function % : ⌅0(!⇤) ! R+ given by

%(!) := inf{t > 0 : ⌧t(!) 2 ⌅0(!⇤)}, 8! 2 ⌅0(!⇤).

The finite local complexity implies that this function is locally constant. The first
return map T : ⌅0(!⇤) ! ⌅0(!⇤) is then given by

T (!) := ⌧%(!)(!), 8! 2 ⌅0(!⇤).

It is straightforward to check that, for a repetitive Delone set !⇤, the dynamical
system (⌦(!⇤),R) is conjugate to the suspension of the map T on the set ⌅0(!⇤) with
the time map given by the function %. Thus, when !⇤ is periodic, the continuous hull
⌦(!⇤) is homeomorphic to a circle. Otherwise, ⌦(!⇤) has a laminated structure: it
is locally the product of a Cantor set by an interval. For the quasicrystal case, the
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unique invariant probability measure on ⌦(!⇤) induces a finite measure on ⌅0(!⇤)
that is T -invariant (see [13]).

Associated to a repetitive Delone set ! of Rd, we will mainly consider strongly
!-equivariant functions as introduced in [16].

Definition 27. Let ! be a repetitive Delone set of Rd. A function f : Rd ! R is
strongly !-equivariant with range R > 0 if, for x, y 2 Rd,

�

BR(x) \ !
�

� x =
�

BR(y) \ !
�

� y ) f(x) = f(y).

In example 4, the function V!(↵) is strongly !(↵)-equivariant with range b 1
↵c+1.

Let us mention another example from [16], which holds for any repetitive Delone set
!⇤. Let � :=

P

x2!⇤
�x be the Dirac comb supported on the points of a quasicrystal

!⇤ and let g : R ! R be a smooth function with compact support. Then, one
may check that the convolution product � ⇤ g is a smooth strongly !⇤-equivariant
function. Actually, any strongly !-equivariant function can be defined by a similar
procedure [16].

The following lemma shows that strongly !⇤-equivariant functions arise from
functions on the space ⌦(!⇤) that are constant on the cylinder sets.

Lemma 28 ([13, 16]). Given a repetitive Delone set !⇤ of Rd, let V!⇤ : Rd ! R be
a continuous strongly !⇤-equivariant function with range R. Then, there exists a
unique continuous function V : ⌦(!⇤) ! R such that

V!⇤(x) = V � ⌧x(!⇤), 8x 2 Rd.

Moreover, there exists S > R such that V is constant on any cylinder set ⌅!,S,
! 2 ⌦(!⇤). In addition, if V!⇤ is C2, then V is C2 along the flow (that is, for all
!, the function x 2 Rd 7! V (⌧x(!)) is C2).

Thus, for d = 1 and with the notation of the former lemma, we get that, for any
large enough constant R0 > S + R!⇤ , the function V : ⌦(!⇤) ! R is transversally
constant on a flow box decomposition {U!

i

,R0,R
!⇤}

n
i=1 given by lemma 26. This

comes from the fact that ⌧x(!0) 2 ⌅⌧
x

(!),S whenever x 2 BR
!⇤ (0), !,!

0 2 ⌅!
i

,S+R
!⇤ ,

and V is constant on such cylinder sets.

3 Mather set

The Mather set describes the set of environments for which there exist calibrated
configurations. The Mather set is defined in terms of holonomic minimizing mea-
sures. Before proving propositions 10, 13 and 14, we note temporarily

Ē! = lim
n!+1

inf
x0,...,xn

2Rd

1

n
E!(x0, . . . , xn), L̄ := inf

n

Z

Ldµ : µ 2 Mhol

o

,

and K̄ := sup
u2C0(⌦)

inf
!2⌦, t2Rd

⇥

L(!, t) + u(!)� u � ⌧t(!)
⇤

.

We first show that the infimum is attained in proposition 10.
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Proof of proposition 10. We shall prove later that L̄ = Ē. We prove now that the
infimum is attained in L̄ := inf{

R

Ldµ : µ 2 Mhol}. Let

C := sup
!2⌦

L(!, 0) � L̄ and Mhol,C :=
n

µ 2 Mhol :

Z

Ldµ  C
o

.

We equip the set of probability measures on ⌦⇥ Rd with the weak topology (con-
vergence of sequence of measures by integration against compactly supported con-
tinuous test functions). By coerciveness, for every ✏ > 0 and M > inf L such that
✏ > (C� inf L)/(M � inf L), there exists R(✏) > 0 with inf!2⌦,ktk�R(✏) L(!, t) � M .
By integrating L� inf L, we get

8µ 2 Mhol,C , µ
�

⌦⇥ {t : ktk � R(✏)}
�


Z

L� inf L

M � inf L
dµ  C � inf L

M � inf L
< ✏.

We have just proved that the setMhol,C is tight. Let (µn)n�0 ⇢ Mhol,C be a sequence
of holonomic measures such that

R

Ldµn ! L̄. By tightness, we may assume that
µn ! µ1 with respect to the strong topology (convergence of sequence of measures
by integration against bounded continuous test functions). In particular, µ1 is
holonomic. Moreover, for every � 2 C0(⌦, [0, 1]), with compact support,

0 
Z

(L� L̄)� dµ1 = lim
n!+1

Z

(L� L̄)� dµn  lim inf
n!+1

Z

(L� L̄) dµn = 0.

Therefore, µ1 is minimizing.

We next show that there is no need to take the closure in the definition of the
Mather set. We will show later that it is compact.

Proof of proposition 12 – Item 1. We show that Mather(L) = supp(µ) for some
minimizing measure µ. Let {Vi}i2N be a countable basis of the topology of ⌦⇥Rd

and let
I := {i 2 N : Vi \ supp(⌫) 6= ; for some ⌫ 2 Mmin}.

We reindex I = {i1, i2, . . .} and choose for every k � 1 a minimizing measure µk so
that Vi

k

\ supp(µk) 6= ; or equivalently µk(Vi
k

) > 0. Let µ :=
P

k�1
1
2k
µk. Then µ

is minimizing. Suppose some Vi is disjoint from the support of µ. Then µ(Vi) = 0
and, for every k � 1, µk(Vi) = 0. Suppose by contradiction that Vi \ supp(⌫) 6= ;
for some ⌫ 2 Mmin, then i = ik for some k � 1 and, by the choice of µk, µk(Vi) > 0,
which is not possible. Therefore, Vi is disjoint from the Mather set and we have
just proved Mather(L) ✓ supp(µ) or Mather(L) = supp(µ).

Item 2 of proposition 12 will be proved later. We shall need the fact � = L� L̄
on the Mather set, that will be proved in lemma 36.

The two formulas given in propositions 10 and 13 are two di↵erent ways to
compute Ē. It is not an easy task to show that the two values are equal. It is the
purpose of lemma 29 to give a direct proof of this fact. We also give a second proof
using the minimax formula (see remark 31).

Since we do not yet know that Ē! = L̄ = K̄ = Ē, we first prove the following
result.
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Lemma 29. If L is C0 coercive, then L̄ = K̄ and there exists µ 2 Mhol such that
L̄ =

R

Ldµ.

Proof. Part 1. We show that L̄ � K̄. Indeed, for any holonomic measure µ and
any function u 2 C0(⌦),

Z

Ldµ =

Z

[L(!, t) + u(!)� u � ⌧t(!)]µ(d!, dt)

� inf
!2⌦, t2Rd

⇥

L(!, t) + u(!)� u � ⌧t(!)
⇤

.

We conclude by taking the supremum on u and the infimum on µ.
Part 2. We show that K̄ � L̄. Let X := C0

b (⌦ ⇥ Rd) be the vector space of
bounded continuous functions equipped with the uniform norm. A coboundary is a
function f of the form f = u�⌧�u or f(!, t) = u�⌧t(!)�u(!) for some u 2 C0(⌦).
Let

A := {(f, s) 2 X ⇥ R : f is a coboundary and s � K̄} and

B := {(f, s) 2 X ⇥ R : inf
!2⌦, t2Rd

(L� f)(!, t) > s}.

Then A and B are nonempty convex subsets of X ⇥ R. They are disjoint by the
definition of K̄ and B is open because L is coercive. By Hahn-Banach theorem,
there exists a nonzero continuous linear form ⇤ on X ⇥ R which separates A and
B. The linear form ⇤ is given by �⌦ ↵, where � is a continuous linear form on X
and ↵ 2 R. The linear form � is, in particular, continuous on C0

0 (⌦⇥ Rd) and, by
Riesz-Markov theorem,

8 f 2 C0
0 (⌦⇥ Rd), �(f) =

Z

f dµ,

for some signed measure µ. By separation, we have

�(f) + ↵s  �(u� u � ⌧) + ↵s0,

for u 2 C0(⌦), f 2 X and s, s0 2 R such that inf⌦⇥Rd

(L� f) > s and s0 � K̄. By
multiplying u by an arbitrary constant, one obtains

8u 2 C0(⌦), �(u� u � ⌧) = 0.

The case ↵ = 0 is not admissible, since otherwise �(f)  0 for every f 2 X and
� would be the null form, which is not possible. The case ↵ < 0 is not admissible
either, since otherwise one would obtain a contradiction by taking f = 0 and
s ! �1. By dividing by ↵ > 0 and changing �/↵ to � (as well as µ/↵ to µ), one
obtains

8 f 2 X, �(f) + inf
⌦⇥Rd

(L� f)  K̄.

By taking f = c1, one obtains c(�(1) � 1)  K̄ � inf⌦⇥Rd

L for every c 2 R, and
thus �(1) = 1. By taking �f instead of f , one obtains �(f) � inf⌦⇥Rd

L � K̄ for
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every f � 0, which (again arguing by contradiction) yields �(f) � 0. In particular,
µ is a probability measure. We claim that

8u 2 C0(⌦),

Z

(u� u � ⌧) dµ = 0.

Indeed, given R > 0, consider a continuous function 0  �R  1, with compact
support on ⌦⇥BR+1(0), such that �R ⌘ 1 on ⌦⇥BR(0). Then

u� u � ⌧ � (u� u � ⌧)�R + min
⌦⇥Rd

(u� u � ⌧)(1� �R).

Since � and µ coincide on C0
0 (⌦⇥ Rd) + R1, one obtains

0 = �(u� u � ⌧) �
Z

(u� u � ⌧)�R dµ+ min
⌦⇥Rd

(u� u � ⌧)
Z

(1� �R) dµ.

By letting R ! +1, it follows that
R

(u� u � ⌧) dµ  0 and the claim is proved by
changing u to �u. In particular, µ is holonomic. We claim that

8 f 2 X,

Z

f dµ+ inf
⌦⇥Rd

(L� f)  K̄.

Indeed, we first notice that the left hand side does not change by adding a constant
to f . Moreover, if f � 0 and 0  fR  f is any continuous function with compact
support on ⌦⇥BR+1(0) which is identical to f on ⌦⇥BR(0), the claim follows by
letting R ! +1 in

Z

fR dµ+ inf
⌦⇥Rd

(L� f)  �(fR) + inf
⌦⇥Rd

(L� fR)  K̄.

We finally prove the opposite inequality L̄  K̄. Given R > 0, denote LR =
min(L,R). Since L is coercive, LR 2 X. Then L � LR � 0 and

R

LR dµ  K̄. By
letting R ! +1, one obtains

R

Ldµ  K̄ for some holonomic measure µ.

Remark 30. The existence of a minimizing holonomic probability may be also
obtained from basic properties of Kantorovich-Rubinstein topology on the set of
probabilities measures on a Polish space (X, d). Given a point x0 2 X, let us
consider the set of probability measures on the Borel sets of X that admit a finite
first moment, i.e.,

P1(X) =
�

µ :

Z

X
d(x0, x) dµ(x) < +1

 

.

Notice that this set does not depend on the choice of the point x0. The Kantorovitch-
Rubinstein distance on P1(X) is defined for µ, ⌫ 2 P1(X) by

D(µ, ⌫) := inf
�

Z

X⇥X
d(x, y) d�(x, y) : � 2 �(µ, ⌫)

 

,

where �(µ, ⌫) denotes the set of all the probability measures � on X ⇥ X with
marginals µ and ⌫ on the first and second factors, respectively.
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Recall that a continuous function L : X ! R is said to be superlinear on a Polish
space X if the map defined by x 2 X 7! L(x)/

�

1 + d(x, x0)
�

2 R is proper. Notice
that this definition is also independent of the choice of x0 and, by considering the
distance d̂ := min(d, 1) on X, any proper function is superlinear for d̂. The follow-
ing well known property gives us a su�cient condition for the relative compactness
in P1(X) (for a detailed discussion, we refer the reader to [1]).

Property. If L is a superlinear continuous function on a Polish space X, then
the map µ 7!

R

Ldµ is lower semi-continuous and proper, namely, for all c 2 R, the
set {µ 2 P1(X) :

R

Ldµ  c} is compact for the Kantorovich-Rubinstein topology.

Applying this result to X = ⌦ ⇥ Rd, one may guarantee the existence of mini-
mizing holonomic probabilities for C0 superlinear Lagrangians, since it is plain to
check that the set of holonomic measures is a closed subset of P1(⌦ ⇥ Rd) for the
Kantorovich-Rubinstein topology.

Remark 31 (A second proof for the sup-inf formula). Notice that

min
!2⌦

L(!, 0) = min
!2⌦

Z

(L+ u� u � ⌧) d�(!,0) 8u 2 C0(⌦)

� inf
!2⌦, t2Rd

Z

(L+ u� u � ⌧) d�(!,t)

� inf
µ2P1(⌦⇥Rd)

Z

(L+ u� u � ⌧) dµ

� min
!2⌦, t2Rd

(L+ u� u � ⌧)(!, t)

clearly implies

K̄ = sup
u2C0(⌦)

inf
µ2P1(⌦⇥Rd)

Z

(L+ u� u � ⌧) dµ.

Besides, for a positive integer `, we have the equality

K̄` := sup
u2C0(⌦)
kuk1`

inf
µ2P1(⌦⇥Rd)

Z

(L+ u� u � ⌧) dµ = sup
u2C0(⌦)
kuk1`

inf
µ2C

`

Z

(L+ u� u � ⌧) dµ,

(18)
where the nonempty convex subset

C` :=
�

µ 2 P1(⌦⇥ Rd) :

Z

Ldµ  min
!2⌦

L(!, 0) + 2`
 

(19)

is closed thanks to the property highlighted in the previous remark. Obviously, it
follows that K̄` " K̄  min!2⌦ L(!, 0).

We will use now a topological minimax theorem which is a generalization of
Sion’s classical result [22]. For a recent review on such a subject, see [23]. We
state a particular case of theorem 5.7 there.

Topological Minimax Theorem. Let X,Y be Hausdor↵ topological spaces,
and C ⇢ X,D ⇢ Y be nonempty closed subsets. Let F (x, y) be a real-valued function
on C ⇥D for which
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– there exists a real number ↵⇤ > supy2D infx2C F (x, y) such that, for every
↵ 2 (supy2D infx2C F (x, y),↵⇤),

- for every finite set ; 6= H ⇢ D, the set \y2H{x 2 C : F (x, y)  ↵} is either
empty or connected,

- for every set K ⇢ C, the set \x2K{y 2 D : F (x, y) > ↵} is either empty or
connected;

– for any y 2 D and x 2 C, F (x, y) is lower semi-continuous in x and upper
semi-continuous in y;

– there exists y0 2 D such that x 7! F (x, y0) is proper.

Then,
inf
x2C

sup
y2D

F (x, y) = sup
y2D

inf
x2C

F (x, y).

In order to apply such a result, we take then into account here the function
F : (µ, u) 2 P1(⌦⇥Rd)⇥C0(⌦) 7!

R

(L+ u� u � ⌧) dµ and we consider the closed
sets C` given in (19) and D` := {u 2 C0(⌦) : kuk1  `}. Since F is a�ne in both
variables, it satisfies the first point of the above theorem. The property stated in the
previous remark shows that F also verifies the second and the third points. Thus,
from equation (18), we get by the topological minimax theorem

K̄` = inf
µ2C

`

sup
u2D

`

Z

(L+ u� u � ⌧) dµ. (20)

If µ0 2 C`0 is not a holonomic probability, there exists a function u0 2 C0(⌦) such
that

R �

u0(!) � u0(⌧t(!))
�

dµ0(!, t) > 0. Moreover, up to a multiplication by a
scalar, we can suppose that

R

(u0�u0 � ⌧) dµ0 > min!2⌦ L(!, 0)� inf⌦⇥Rd

L. Thus,
µ0 may be disregarded in the infimum in (20) whenever ` � `0 + ku0k1. Since µ0

is any non-holonomic probability with respect to which L is integrable, we finally
conclude that

K̄ = lim
`!1

inf
µ2C

`

sup
u2D

`

Z

(L+ u� u � ⌧) dµ = inf
µ2M

hol

Z

Ldµ = L̄.

The holonomic condition shall not be confused with invariance in the usual sense
of dynamical systems. We may nevertheless introduce a larger space than ⌦ ⇥ Rd

and a suitable dynamics on such a space. We will apply Birkho↵ ergodic theorem
with respect to that dynamical system to prove that L̄ � Ē.

Notation 32. Consider ⌦̂ := ⌦⇥ (Rd)N equipped with the product topology and the
Borel sigma-algebra. ⌦̂ becomes a complete separable metric space. Any probability
measure µ on ⌦ ⇥ Rd admits a unique disintegration along the the first projection
pr : ⌦⇥ Rd ! ⌦,

µ(d!, dt) := pr⇤(µ)(d!)P (!, dt),

where {P (!, dt)}!2⌦ is a measurable family of probability measures on Rd. Let µ̂
be the Markov measure with initial distribution pr⇤(µ) and transition probabilities
P (!, dt). For Borel bounded functions of the form f(!, t0, . . . , tn), we have

µ̂(d!, dt) = pr⇤(d!)P (!, dt0)P (⌧t0(!), dt1) · · ·P (⌧t0+···+t
n�1(!), dtn).
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If µ is holonomic, then µ̂ is invariant with respect to the shift map

⌧̂ : (!, t0, t1, . . .) 7! (⌧t0(!), t1, t2, . . .).

We will call µ̂ the Markov extension of µ. Conversely, the projection of any ⌧̂ -
invariant probability measure µ̃ on ⌦ ⇥ Rd is holonomic. This gives a fourth way
to compute Ē

Ē = inf
n

Z

L̂ dµ̃ : µ̃ is a ⌧̂ -invariant probability measure on ⌦̂
o

,

where L̂(!, t0, t1, . . .) := L(!, t0) is the natural extension of L on ⌦̂.

Proof of propositions 10, 13 and 14.
– Part 1: We know that K̄ = L̄ by lemma 29.

– Part 2: We claim that Ē! = Ē for all ! 2 ⌦. By the topological stationar-
ity (10) of E! and by the minimality of ⌧t, for any n 2 N, we have that

inf
x0,...,xn

2Rd

E!(x0, . . . , xn) = inf
x0,...,xn

2Rd

inf
t2Rd

E!(x0 + t, . . . , xn + t)

= inf
x0,...,xn

2Rd

inf
t2Rd

E⌧
t

(!)(x0, . . . , xn)

= inf
x0,...,xn

2Rd

inf
!2⌦

E!(x0, . . . , xn),

which clearly yields Ē! = Ē for every ! 2 ⌦.

– Part 3: We claim that Ē � K̄. Indeed, given c < K̄, let u 2 C0(Rd) be
such that, for every ! 2 ⌦ and any t 2 Rd, u(⌧t(!)) � u(!)  L(!, t) � c. Define
u!(x) = u(⌧x(!)). Then,

8x, y 2 Rd, u!(y)� u!(x)  E!(x, y)� c,

which implies Ē � c for every c < K̄, and therefore Ē � K̄.

– Part 4: We claim that L̄ � Ē. Let µ be a minimizing holonomic probability
measure with Markov extension µ̂ (see notation 32). If (!, t) 2 ⌦̂, then

n�1
X

k=0

L̂ � ⌧̂k(!, t) = E!(x0, . . . , xn) with x0 = 0 and xk = t0 + · · ·+ tk�1,

and, by Birkho↵ ergodic theorem,

Ē 
Z

lim
n!+1

1

n

n�1
X

k=0

L̂ � ⌧̂k dµ̂ =

Z

Ldµ = L̄.

A calibrated sub-action u as given by the Lax-Oleinik operator (see section 5) is
not available in general for an almost periodic interaction energy E. The purpose
of such a sub-action is to calibrate the energy in the following way

E!,u(x, y) := E!(x, y)�
⇥

u � ⌧y(!)� u � ⌧x(!)
⇤

� Ē. (21)
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Actually, E!,u(x, y) is nonnegative and, depending whether u is forward or back-
ward calibrated, if one of the variables x or y is fixed, the other one can be chosen
so that the interaction becomes null. Notice that U(!, t) := u � ⌧t(!) � u(!) is a
cocycle, namely, it satisfies

8! 2 ⌦, 8 s, t 2 Rd, U(!, s+ t) = U(!, s) + U(⌧s(!), t). (22)

An important ingredient of the proof of theorem 8 is the notion of Mañé sub-
additive cocycle.

Definition 33. Let L be a coercive Lagrangian. We call Mañé subadditive cocycle
associated to L the function defined on ⌦⇥ Rd by

�(!, t) := inf
n�1

inf
0=x0,x1,...,xn

=t

n�1
X

k=0

⇥

L(⌧x
k

(!), xk+1 � xk)� Ē
⇤

.

We call Mañé potential in the environment ! the function on Rd ⇥ Rd given by

S!(x, y) := �(⌧x(!), y � x) = inf
n�1

inf
x=x0,...,xn

=y

⇥

E!(x0, . . . , xn)� nĒ
⇤

.

The very definitions of � and Ē show that

8! 2 ⌦, 8 t 2 Rd, �(!, 0) � 0 and �(!, t)  L(!, t)� Ē. (23)

(The sequence {Ēn(!, 0) := infx1,...,xn�1 E!(0, x1, . . . , xn�1, 0)}n is subadditive in n
and Ē  limn!1

1
nĒn(!, 0).) Moreover, � is upper semi-continuous (lemma 36)

and a subadditive cocycle:

8! 2 ⌦, 8 s, t 2 R, �(!, s+ t)  �(!, s) + �(⌧s(!), t). (24)

This shows in particular that �(!, t) � Ē � L(⌧t(!),�t) and thus �(!, t) takes
always real values. The nontrivial part is to prove that � is Mather-calibrated.

Definition 34. A measurable function U : ⌦⇥Rd ! [�1,+1[ is called a Mather-
calibrated subadditive cocycle if the following properties are satisfied:

– 8! 2 ⌦, 8 s, t 2 Rd, U(!, s+ t)  U(!, s) + U(⌧s(!), t),
– 8! 2 ⌦, 8 s, t 2 Rd, U(!, t)  L(!, t)� L̄ and U(!, 0) � 0,
– 8µ 2 Mhol with

R

Ldµ < +1 )
R

U(!,
Pn�1

k=0 tk) µ̂(d!, dt) � 0, 8n � 1,
– where µ̂ is the Markov extension of µ.

Notice that, provided we know in advance that U is finite, U(!, 0) � 0 by
replacing s = t = 0 in the subadditive cocycle inequality.

Lemma 35. A Mather-calibrated subadditive cocycle U satisfies in addition
– U(!, t) is finite everywhere,
– sup!2⌦,t2Rd

|U(!, t)|/(1 + ktk) < +1,

– 8µ 2 Mmin, 8n � 1, U(!,
Pn�1

k=0 tk) =
Pn�1

k=0 [L̂� L̄] � ⌧̂k(!, t) µ̂ a.e.
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Proof. Part 1. We show that U is sublinear. Let K := sup!2⌦, ktk1[L(!, t) � L̄].

Fix t 2 Rd and choose the unique integer n such that n� 1  ktk < n. Let tk = k
n t

for k = 0, . . . , n � 1. Then the subadditive cocycle property implies, on the one
hand,

8! 2 ⌦, 8 t 2 Rd, U(!, t) 
n�1
X

k=0

U(⌧t
k

(!), tk+1 � tk)  nK  (1 + ktk)K.

On the other hand, thanks to the hypothesis U(!, 0) � 0, we get the opposite
inequality

8! 2 ⌦, 8 t 2 Rd, U(!, t) � U(!, 0)� U(⌧t(!),�t) � �(1 + ktk)K.

We also have shown that U is finite everywhere.

Part 2. Suppose µ is minimizing. Since

8! 2 ⌦, 8 t0, . . . , tn�1 2 Rd,

n�1
X

k=0

⇥

L̂� L̄
⇤

� ⌧̂k(!, t) � U
⇣

!,

n�1
X

k=0

tk

⌘

,

by integrating with respect to µ̂, the left hand side has a null integral whereas
the right hand side has a nonnegative integral. The previous inequality is thus an
equality that holds almost everywhere.

Lemma 36. If L is C0 coercive, then the Mañé subadditive cocycle � is upper
semi-continuous and Mather-calibrated. In particular, � = L � L̄ on Mather(L),
or more precisely

8µ 2 Mmin, 8 (!, t) 2 supp(µ̂), 8 i < j,

�
⇣

⌧P
i�1
k=0 tk

(!),
j�1
X

k=i

tk

⌘

=
j�1
X

k=i

⇥

L� L̄
⇤

� ⌧̂k(!, t)

(or in an equivalent manner, if x0 = 0 and xk+1 = xk+tk, 8 k � 0, the semi-infinite
configuration {xk}k�0 is calibrated for E! as in definition 7).

Proof. Part 1. We first show the existence of a measurable Mather-calibrated
subadditive cocycle U(!, t). From the sup-inf formula (proposition 13), for every
p � 1, there exists up 2 C0(⌦) such that

8! 2 ⌦, 8 t 2 Rd, up � ⌧t(!)� up(!)  L(!, t)� L̄+ 1/p.

Let Up(!, t) := up � ⌧t(!) � up(!) and U := lim supp!+1 Up. Then U is clearly a
subadditive cocycle and satisfies U(!, 0) = 0. Besides, U is finite everywhere, since
0 = U(!, 0)  U(!, t) + U(⌧t(!),�t) and U(!, t)  L(!, t)� L̄. We just verify the
last property in definition 34. Let µ 2 Mhol be such that

R

Ldµ < +1. For n � 1,
let

Ŝn,p(!, t) :=
n�1
X

k=0

h

L̂� L̄+
1

p

i

� ⌧̂k(!, t)� Up

⇣

!,

n�1
X

k=0

tk

⌘

� 0.
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By integrating with respect to µ̂, we obtain

0 
Z

inf
p�q

Ŝn,p dµ̂  inf
p�q

Z

Ŝn,p(!, t) dµ̂  n

Z

h

L� L̄+
1

q

i

dµ.

By Lebesgue’s monotone convergence theorem, we obtain

Z

h

n(L̂� L̄)� U
⇣

!,

n�1
X

k=0

tk

⌘i

dµ̂ 
Z

n[L� L̄] dµ and

Z

U
⇣

!,

n�1
X

k=0

tk

⌘

µ̂(d!, dt) � 0.

Part 2. We next show that � is Mather-calibrated. We have already noticed that �
satisfies the subadditive cocycle property, besides �  L�L̄ by definition. We point
out that �(!, 0) � 0, since, for x0 = 0, x1, . . . , xn�1, xn = 0, denoting y`n+i = xi,
8 ` = 0, . . . , k, 8 i = 0, . . . , n� 1, we have

kE!(x0, . . . , xn) = E!(y0, . . . , ykn) � inf
0=y0,...,y

kn

=0
E!(y0, . . . , ykn),

which, thanks to proposition 14, implies

inf
0=x0,...,xn

=0

1

n
E!(x0, . . . , xn) � inf

0=y0,...,y
kn

=0

1

nk
E!(y0, . . . , ykn)

k!1���! Ē.

In particular, �(!, t) is finite everywhere. Moreover, �(!, t) � U(!, t) and the
third property of definition 34 is thus automatic.

Part 3. We show that � is upper semi-continuous. For n � 1, let

Sn(!, t) := inf{E!(x0, . . . , xn) : x0 = 0, xn = t}.

Then � = infn�1(Sn � nĒ) is upper semi-continuous if we prove that Sn(!, t) is
continuous whenever ! 2 ⌦ and ktk  D. Let c0 := inf!,x,y E!(x, y) and K :=
sup!2⌦, ktkD E!(0, . . . , 0, t). By coerciveness, there exists R > 0 such that

8x, y 2 Rd, ky � xk > R ) 8! 2 ⌦, E!(x, y) > K � (n� 1)c0.

Suppose !, x0, . . . , xn are such that E!(x0, . . . , xn)  K. Suppose by contradiction
that kxk+1 � xkk > R. Thus

K � E!(x0, . . . , xn) � (n� 1)c0 + E!(xk, xk+1) > K,

which is impossible. We have proved that the infimum in the definition of Sn(!, t),
for every ! 2 ⌦ and ktk  D, can be realized by some points kxkk  kR. By the
uniform continuity of E!(x0, . . . , xn) on the product space ⌦⇥⇧k{kxkk  kR}, we
obtain that Sn is continuous on ⌦⇥ {ktk  D}.
Part 4. Let µ be a minimizing measure with Markov extension µ̂. We show that
every (!, t) in the support of µ̂ is calibrated. Let

⌃̂ :=
n

(!, t) 2 ⌦⇥ (Rd)N : 8n � 1, �
⇣

!,

n�1
X

k=0

tk

⌘

�
n�1
X

k=0

⇥

L� L̄
⇤

� ⌧̂k(!, t)
o

.
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The set ⌃̂ is closed, since � is upper semi-continuous. By lemma 35, ⌃̂ has full
µ̂-measure and therefore contains supp(µ̂). Thanks to the subadditive cocycle prop-
erty of � and the ⌧̂ -invariance of supp(µ̂), we obtain the calibration property

8 (!, t) 2 ⌃̂, 8 0  i < j, �
⇣

⌧x
i

(!),
j�1
X

k=i

tk

⌘

=
j�1
X

k=i

⇥

L� L̄
⇤

� ⌧̂k(!, t).

Proof of proposition 12 – Item 2. We now assume that L is superlinear. From
lemma 35, the Mañé subadditive cocycle is at most linear. There exists R > 0
such that

8! 2 ⌦, 8 t 2 Rd, |�(!, t)|  R(1 + ktk).

By superlinearity, there exists B > 0 such that

8! 2 ⌦, 8 t 2 Rd, L(!, t) � 2Rktk �B.

Let µ be a minimizing measure. Since � = L� L̄ µ a.e. (lemma 35), we obtain

ktk  (R+B + |L̄|)/R, µ(d!, dt) a.e.

We have proved that the support of every minimizing measure is compact. In
particular, the Mather set is compact.

Proof of theorem 8. We show that, for every environment ! in the projected Mather
set, there exists a calibrated configuration for E! passing through the origin. Let µ
be a minimizing measure such that supp(µ) = Mather(L). Let µ̂ denote its Markov
extension. For n � 1, consider

⌦̂n :=
n

(!, t) 2 ⌦⇥ (Rd)N : �
⇣

!,

2n�1
X

k=0

tk

⌘

�
2n�1
X

k=0

⇥

L� L̄
⇤

� ⌧̂k(!, t)
o

.

From lemma 36, supp(µ̂) ✓ ⌦̂n. From the upper semi-continuity of �, ⌦̂n is closed.
To simplify the notations, for every t, we define a configuration (x0, x1, . . .) by

x0 = 0, xk+1 = xk + tk so that ⌧̂k(!, t) = (⌧x
k

(!), (tk, tk+1, . . .)).

Notice that, if (!, t) 2 ⌦̂n, thanks to the subadditive cocycle property of � and
the fact that �  L � L̄, the finite configuration (x0, . . . , x2n) is calibrated in the
environment !, that is,

8 0  i < j  2n, �
⇣

⌧x
i

(!),
j�1
X

k=i

tk

⌘

=
j�1
X

k=i

⇥

L� L̄
⇤

� ⌧̂k(!, t),

or written using the family of interaction energies E!,

8 0  i < j  2n, S!(xi, xj) = E!(xi, . . . , xj)� (j � i)Ē.

Thanks to the sublinearity of S!, there exists a constant R > 0 such that, uniformly
in ! 2 ⌦ and x, y 2 Rd, we have |S!(x, y)|  R(1 + ky � xk). Besides, thanks to



Discrete weak-KAM methods for stationary uniquely ergodic setting 25

the superlinearity of E!, there exists a constant B > 0 such that E!(x, y) �
2Rky � xk �B. Since S!(xk, xk+1) = E!(xk, xk+1)� Ē, we thus obtain a uniform
upper bound D := (R+B + |Ē|)/R on the jumps of calibrated configurations:

8 (!, t) 2 ⌦̂n, 8 0  k < 2n, kxk+1 � xkk  D.

Let ⌦̂0
n = ⌧̂n(⌦̂n). Thanks to the uniform bounds on the jumps, ⌦̂0

n is again closed.
Since µ̂(⌦̂n) = 1, µ̂(⌦̂0

n) = 1 by invariance of ⌧̂ . Let ⌫ := pr⇤(µ) be the projected
measure on ⌦. Then supp(⌫) = pr(Mather(L)). By the definition of ⌦̂0

n, we have

pr(⌦̂0
n) = {! 2 ⌦ : 9 (x�n, . . . , xn) 2 Rd s.t. x0 = 0 and

S!(x�n, xn) � E!(x�n, . . . , xn)� 2nĒ}.

Again by compactness of the jumps, pr(⌦̂0
n) is closed and has full ⌫-measure. Thus,

pr(⌦̂0
n) ◆ pr(Mather(L)). By a diagonal extraction procedure, we obtain, for every

! 2 Mather(L), a bi-infinite calibrated configuration with uniformly bounded jumps
passing through the origin.

4 Calibrated configurations for quasicrystals

This section is devoted to the proof of the second main result of this paper: theo-
rem 19. We first collect elementary results on flow boxes in lemma 37. The notions
of flow boxes and flow box decomposition have been introduced in definition 15.
In general, a minimal flow does not possess a cover of flow boxes. Flow boxes are
open sets obtained by taking the union of every orbits of size R starting from any
point belonging to a closed transverse Poincaré section. The restricted topology on
a transverse section must be special: it must admit a basis of clopen sets. We then
explain in lemma 38 how to build a transversally constant Lagrangian from a locally
transversally constant potential. It is indeed easy to built such a potential in the
context of Delone sets as explained in section 2. We show in lemma 40 how to con-
struct a suspension with locally constant return maps that we call Kakutani-Rohlin
tower. We then assume the flow to be uniquely ergodic and recall in lemma 41 the
construction of a unique transverse measure associated to each transverse section.

Supposing (⌦, {⌧t}t2R, L) to be weakly twist (definition 18), the fundamental
Aubry crossing property is explained in lemma 43. Examples of weakly twist La-
grangian are given in corollary 21. We collect in lemmas 44, 46 and 47 several
intermediate results, that are consequences of the weakly twist property, about the
order of the points composing a minimizing configuration. We assume moreover L
to be transversally constant. Our first nontrivial result is stated in proposition 48:
a finite configuration (xn0 , . . . , x

n
n) which realizes the minimum of the energy among

all configurations of the same length must be strictly monotone, and must have
uniformly bounded jumps |xnk � xnk�1|  R. If E!(x, x) = Ē for some ! 2 ⌦ and
x 2 R, the proof of theorem 19 is obvious. We thus suppose E!(x, x) > Ē for every
! and x. Our second key result shows then that lim infn!+1

1
n |x

n
n � xn0 | > 0: the

frequency of points xnk in a flow box of su�ciently large size is positive. We finally
conclude this section with the proof of theorem 19.
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Lemma 37. Let (⌦, {⌧t}t2R) be an almost periodic R-action. Assume that the
action is not periodic (t 2 R 7! ⌧t(!) 2 ⌦ is injective for every ! 2 ⌦). Then

1. If ⌧ [BR ⇥ ⌅] is a flow box, then there exists R0 such that

⌦ = ⌧ [BR0 ⇥ ⌅] = {⌧t(!) : |t| < R0 and ! 2 ⌅}.

2. If ⌧ [BR⇥⌅] is a flow box, then ⌧ : R⇥⌅ ! ⌦ is open and ⌧ [BR⇥⌅0] is again
a flow box for every clopen subset ⌅0 ⇢ ⌅.

3. If ⌧ [BR ⇥ ⌅] is a flow box, then, for every R0 > 0 and ! 2 ⌅, there exists a
clopen set ⌅0 ⇢ ⌅ containing ! such that ⌧ [BR0 ⇥ ⌅0] is again a flow box.

4. If U = ⌧ [BR ⇥ ⌅] and U 0 = ⌧ [BR0 ⇥ ⌅0] are two admissible flow boxes, if
⌧ [B2R+2R0 ⇥ ⌅] and ⌧ [B2R+2R0 ⇥ ⌅0] are also flow boxes, then

U \ U 0 = ⌧(B̃ ⇥ ⌅̃) = ⌧(B̃0 ⇥ ⌅̃0)

for some clopen sets ⌅̃, ⌅̃0 and some open convex subsets B̃ ⇢ BR, B̃0 ⇢ BR0.

5. If {Ui}i2I is a flow box decomposition, then, for every ! 2 ⌦ and R > 0, there
exits a flow box ⌧ [BR ⇥ ⌅], with a transverse section ⌅ containing !, that is
compatible with respect to {Ui}i2I .

Proof. Let ✓s : R ⇥ ⌅ ! R ⇥ ⌅ be the translation (t,!) 7! (t + s,!). We observe
the trivial conjugacy ⌧s � ⌧ = ⌧ � ✓s and note that both ⌧s : ⌦ ! ⌦ and ✓s : R ! R
are homeomorphisms.

Item 1. Let U = ⌧ [BR⇥⌅]. The set [t2R⌧t(U) is invariant, open, and therefore
equal to ⌦. By compactness ⌦ = ⌧t1(U) [ . . . [ ⌧t

r

(U) = ⌧ [BR0 ⇥ ⌅], with R0 =
R+maxi |ti|.

Item 2. Let V be an open subset of R ⇥ ⌅. Given (t,!) 2 V , there exist
0 < ✏ < R and a clopen set ⌅0 ⇢ ⌅ containing ! such that B✏(t)⇥ ⌅0 ⇢ V . Then

⌧(B✏(t)⇥ ⌅0) = ⌧ � ✓t(B✏(0)⇥ ⌅0) = ⌧t � ⌧(B✏(0)⇥ ⌅0) is open in ⌦.

If ⌅0 ⇢ ⌅ is a clopen set, then BR(0) ⇥ ⌅0 is open in BR(0) ⇥ ⌅ and ⌧ [BR ⇥ ⌅0] is
open in ⌦.

Item 3. We may clearly assume R0 � R. For every 3
4R  |s|  2R0, by

aperiodicity, there exists a clopen set ⌅s ⇢ ⌅ containing ! such that ⌧ is injective
on [BR/4(0) [ BR/4(s)] ⇥ ⌅s. Furthermore, for every |s|  3

4R, ⌧ is injective on
[BR/4(0)[BR/4(s)]⇥⌅ by the definition of a flow box. Let {BR/4(si)}i be a finite

cover of B2R0(0) so that ⌧ is injective on each [BR/4(0) [ BR/4(si)] ⇥ ⌅0, where
⌅0 = \i⌅s

i

. Then there exists ✏ > such that ⌧ is injective on [B✏(0) [B✏(s)]⇥ ⌅0,
for every |s|  2R0. By conjugacy, ⌧ is injective on [B✏(s) [ B✏(s0)]⇥ ⌅0, for every
|s|, |s0|  R0. We thus have obtained that ⌧ : BR0(0)⇥⌅0 ! ⌦ is injective. Moreover,
⌧ is open on BR0(0)⇥ ⌅0 by item 2.

Item 4. Assume U \ U 0 6= ;. There exists a 2 R such that, if ! 2 ⌅, !0 2 ⌅0,
|t| < R, |t0| < R, then ⌧t(!) = ⌧t0(!0) if, and only if, t0 = t � a and !0 = ⌧a(!). In
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particular, a belongs to BR�BR0 and is unique. Then ⌅̃ := ⌅\ ⌧�1
a (⌅0) is a clopen

subset of ⌅ and B̃ := BR \ (a+BR0) is an open convex subset of BR.
Item 5. Let {Ui = ⌧(BR

i

⇥ ⌅i)} be a flow box decomposition. Consider ! 2 ⌦
and R > 0. For every |x|  R, ⌧x(!) 2 Ui for some box Ui. Then x 2 BR

i

(ti) for
some ti such that !i := ⌧t

i

(!) 2 ⌅i. By compactness, one can find a finite set of
indices I such that [i2IBR

i

(ti) covers BR(0). Let i0 2 I be such that 0 2 BR
i0
(ti0)

and !i0 = ⌧t
i0
(!) 2 ⌅i0 . We claim that, for every i 2 I, there exists a clopen subset

⌅i
i0
⇢ ⌅i0 containing !i0 such that ⌧t

i

�t
i0
(⌅i

i0
) is a clopen subset of ⌅i.

Assuming the claim is true, we denote ⌅ := ⌧�t
i0
(\i2I⌅i

i0
) and, by taking ⌅i

i0
’s

smaller if necessary, we choose ⌅ su�ciently small so that ⌧(BR ⇥⌅) is a flow box.
If |x| < R, x 2 BR

i

(ti) for some index i 2 I. Then ⌅̃i := ⌧t
i

�t0(\j2I⌅
j
i0
) is a clopen

subset of ⌅i and

⌧x(⌅) = ⌧x�t
i

(⌧t
i

(⌅)) = ⌧x�t
i

(⌅̃i).

We now prove the claim. We may assume that every BR
i

(ti) has a nonempty
intersection with BR0(0). Let i 2 I and x 2 BR

i

(ti) \ BR0(0). The segment [0, x]
can be split into successive segments [xk�1, xk], k = 1, . . . , n, each one included in
a ball BR

i

k

(ti
k

) for some index ik. The last index satisfies in = i. We construct

by induction clopen subsets ⌅(k)
i0

of ⌅i0 containing !i0 such that ⌧t
i

k

�t
i0
(⌅(k)

i0
) is

a clopen subset of ⌅i
k

containing !i
k

. Let ⌅(0)
i0

= ⌅i0 . Since xk belongs to both
BR

i

k

(ti
k

) and BR
i

k+1
(ti

k+1), we have

⌧(i
k

)(xk � ti
k

,!i
k

) = ⌧(i
k+1)(xk � ti

k+1 ,!i
k+1),

!i
k

2 ⌅i
k

, !i
k+1 2 ⌅i

k+1 ,

ak := ti
k+1 � ti

k

, !i
k+1 = ⌧a

k

(!i
k

), xk � ti
k+1 = xk � ti

k

� ak.

By admissability of the two flow boxes Ui
k

and Ui
k+1 , there exists a clopen subset

⌅0
i
k

of ⌧t
i

k

�t
i0
(⌅(k)

i0
) containing !i

k

such that ⌧a
k

(⌅0
i
k

) ⇢ ⌅i
k+1 . We have proved

that ⌅(k+1)
i0

:= ⌧t
i0�t

i

k

(⌅0
i
k

) is a clopen subset of ⌅i0 containing !i0 and that

⌧t
i

k+1
�t

i0
(⌅(k+1)

i0
) is a clopen subset of ⌅i

k+1 .

An interaction model does not possess a canonical notion of vertical section.
Such a notion naturally exists whenever the model admits a flow box decomposition
(definition 15). We prove in the next lemma that locally transversally constant
functions V1, V2 : ⌦ ! R (a set of conditions checked on boxes of size R) enable to
construct a transversally constant Lagrangian L(!, t) = W (t)+V1(!)+V2(⌧t(!)) (a
set of conditions checked on every su�ciently thin flow box). Corollary 21 follows
from this lemma.

Lemma 38. Let (⌦, {⌧t}t2R) be an almost periodic interaction model admitting a
flow box decomposition. Let V1, V2 : ⌦ ! R be two locally transversally constant
functions on the same flow box decomposition (definition 20), and W = R ! R be
any function. Define L(!, t) = W (t) + V1(!) + V2(⌧t(!)). Then L is transversally
constant (definition 16).
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Proof. Assume V1 and V2 are locally transversally constant on a flow box decom-
position {Ui}i2I . Let ⌧ [BR ⇥ ⌅] be a flow box which is compatible with respect to
{Ui}i2I . If |x|, |y| < R and !,!0 2 ⌅, then

E!(x, y) = W (y � x) + V1,!(x) + V2,!(y).

There exist i 2 I, |ti| < Ri and ⌅̃i a clopen subset of ⌅i such that ⌧x(⌅) = ⌧t
i

(⌅̃i).
Then ⌧x(!) = ⌧t

i

(!i) and ⌧x(!0) = ⌧t
i

(!0
i) for some !i,!

0
i 2 ⌅̃i. We have

V1,!(x) = V1,!
i

(ti) = V1,!0
i

(ti) = V1,!0(x).

Similarly V2,!(y) = V2,!0(y). We have thus proved E!0(x, y) = E!(x, y).

The existence of a flow box decomposition (definition 15) enables us to build
a global transverse section of the flow with locally constant return times. We ex-
tend for an almost periodic interaction model what has been done for quasicrystals
in [13]. We first define the notion of Kakutani-Rohlin tower and show that an
interaction model possessing a flow box decomposition admits a Kakutani-Rohlin
tower.

Definition 39. Let (⌦, {⌧t}t2R) be a one-dimensional almost periodic interaction
model possessing a flow box decomposition {Ui}i2I . We call Kakutani-Rohlin tower
a partition {F↵}↵2A of ⌦ of the form

F↵ = ⌧
�

[0, H↵)⇥ ⌃↵

�

= [0t<H
↵

⌧t(⌃↵)

for some some height H↵ > 0 and some transverse section ⌃↵ (closed set admitting
a basis of clopen subsets), where ⌧

�

(0, H↵) ⇥ ⌃↵

�

is a flow box (open and homeo-
morphic to (0, H↵)⇥⌃↵), and [↵2A⌧({H↵}⇥⌃↵) = [↵2A⌧({0}⇥⌃↵) = [↵2A⌃↵.
Moreover, we say that a Kakutani-Rohlin tower is compatible with respect to {Ui}i2I
if, for every ↵ 2 A, there exist i 2 I, ti 2 R and a clopen subset ⌅̃i ⇢ ⌅i such that
⌃↵ = ⌧t

i

(⌅̃i) and [ti, ti +H↵) ⇢ [�Ri, Ri).

Lemma 40. Let (⌦, {⌧t}t2R) be a one-dimensional almost periodic R-action pos-
sessing a flow box decomposition {Ui}i2I . Then there exists a Kakutani-Rohlin
tower {F↵}↵2A which is compatible with respect to {Ui}i2I .

Proof. Let {Ui}ni=1 be a flow box decomposition, where Ui = ⌧ [BR
i

⇥ ⌅i]. By
definition, Ui is an open set of ⌦. We denote Vi := ⌧

�

[�Ri, Ri) ⇥ ⌅i

�

. We shall
build by induction on i = 1, . . . , n a collection of flow boxes {⌧

�

(0, Hi,j) ⇥ ⌃i,j

�

}j
such that

– the sets Fi,j := ⌧
�

[0, Hi,j)⇥ ⌃i,j

�

are pairwise disjoint,
– Vi \ [k<iVk = [j⌧

�

[0, Hi,j)⇥ ⌃i,j

�

= [jFi,j ,
– ⌧({�Ri}⇥ ⌅i) \ [k<iVk ⇢ [j⌧({0}⇥ ⌃i,j),
– [k<i⌧({Rk}⇥ ⌅k) \ (Vi \ [k<iVk) ⇢ [j⌧({0}⇥ ⌃i,j),
– ⌧({Hi,j}⇥ ⌃i,j) \ [k<iVk ⇢ [k<i [j ⌧({0}⇥ ⌃k,j),
– ⌧({Hi,j}⇥ ⌃i,j) \ [k<iVk ⇢ ⌧({Ri}⇥ ⌅i) \ [k<iVk.

For i = 1, we choose H1,1 = 2R1 and ⌃1,1 = ⌧�R1(⌅1). Assume that we have built
the sets ⌧

�

[0, Hk,j) ⇥ ⌃k,j

�

for every k < i and j. Thanks to the admissibility of
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the flow boxes {Ui}i2I , the set Vi \ Vk, if nonempty, is of the form ⌧(Ji,k ⇥ ⌅i,k),
where Ji,k = [ai,k, bi,k), with �Ri  ai,k < bi,k  Ri, and ⌅i,k is a clopen set of ⌅i.
The complement Vi \ Vk is the union of sets of the form

⌧
�

[�Ri, ai,k)⇥ ⌅i,k

�

, ⌧
�

[bi,k, Ri)⇥ ⌅i,k

�

or ⌧
�

[�Ri, Ri)⇥ (⌅i \ ⌅i,k)
�

.

Hence, Vi \ [k<iVk is obtained as a disjoint union of sets ⌧
�

[c↵, d↵) ⇥ ⌃̃↵

�

, where

⌃̃↵ is any clopen set of the form \k<iSk, with either Sk = ⌅i,k or Sk = ⌅i \ ⌅i,k,
and [c↵, d↵) corresponds to any connected component of [�Ri, Ri) \ [k<iJi,k. We
next rewrite ⌧

�

[c↵, d↵) ⇥ ⌃̃↵

�

as ⌧
�

[0, Hi,j) ⇥ ⌃i,j

�

, with j = j(↵), where ⌃i,j =

⌧c
↵

(⌃̃↵) and Hi,j = d↵ � c↵. By construction, for all k < i with Vi \ Vk 6= ;,
⌧({Rk}⇥⌅k)\Vi = ⌧({bi,k}⇥⌅i,k) and its part which is not in [l<iVl is included into
[j⌧({0}⇥⌃i,j). Furthermore, ⌧({Hi,j}⇥⌃i,j) either is included into ⌧({Ri}⇥⌅i) or
intersects Vk for some k < i and therefore is included into [k<i[j ⌧({0}⇥⌃k,j).

When a Kakutani-Rohlin tower is built, we obtain a global transverse section
[↵2A⌃↵ with a return time constant on each ⌃↵ and equal to H↵. We can induce
on a particular section ⌃↵0 and build a second Kakutani-Rohlin tower with larger
heights. We explain in the next paragraph the notations that will be used for these
successive towers.

If {F 0
↵}↵2A0 is a Kakutani-Rohlin tower of order 0, denote F 0

↵ := ⌧
�

[0, H0
↵)⇥⌃0

↵

�

.
We say that ⌃0 := [↵⌃0

↵ is the basis of the tower. Let !⇤ be a reference point of the
base ⌃0. Consider ↵0 such that !⇤ 2 ⌃0

↵0
. The construction of the tower of order 1

is done by inducing the flow on ⌃1 := ⌃0
↵0
. We obtain a partition of ⌃1 given by

{⌃1
�}�2A1 , where � = (↵0, . . . ,↵p), p � 1, ↵p = ↵0, ↵i 6= ↵0 for i = 1, . . . , p� 1,

⌃1
� = ⌃0

↵0
\ ⌧�1

H0
↵0
(⌃0

↵1
) \ . . . \ ⌧�1

H0
↵0

+...+H0
↵

p�1
(⌃0

↵
p

).

By minimality, there is a finite collection of such nonempty sets ⌃1
� . Define then

H1
� := H0

↵0
+ . . .+H0

↵
p�1

,

F 1
� := ⌧

�

[0, H1
�)⇥ ⌃1

�

�

=
p�1
[

i=0

⌧
�

[ti, ti +H0
↵
i

)⇥ ⌃0
↵
i

�

, with ti =
i�1
X

j=0

H0
↵
j

. (25)

We have just obtained a new Kakutani-Rohlin tower {F 1
�}�2A1 of basis ⌃0

↵0
. We

induced again on the section ⌃1
�0

that contains !⇤ and build the tower of order 2. We

shall write {F l
↵}↵2Al

for the successive towers that are built using this procedure
and F l

⇤ for the tower of height H l
⇤ whose basis ⌃l

⇤ contains !⇤ . The preceding
construction gives min↵2Al+1 H l+1

↵ � H l
⇤ and in particular H l+1

⇤ � H l
⇤. It may

happen that H l
⇤ = H l+1

⇤ = H l+2
⇤ = . . . In that case, the flow is a suspension over ⌃l

⇤
of constant return time H l

⇤ (and ⌦ is isomorphic to ⌃l
⇤ ⇥ S1). In order to exclude

this situation, we split the basis ⌃l
↵0

which contains !⇤ into two disjoint clopen
sets ⌃l

↵0
= ⌃l

↵0
0
[ ⌃l

↵00
0
. We obtain again a Kakutani-Rohlin tower and we induce

as before on the subset which contains !⇤. If (⌦, {⌧t}t2R) is not periodic, we may
choose the splitting so that H l+1

⇤ > H l
⇤ at each step of the construction.



30 Garibaldi, Petite and Thieullen

We now assume the flow (⌦, {⌧t}t2R) to be uniquely ergodic. Let � be the
unique ergodic invariant probability measure. The average frequency of return
vectors to a transverse section of a flow box measures the thickness of the section.
The next lemma gives a precise definition of a family of transverse measures {⌫⌅}⌅
parameterized by every transverse section ⌅.

Lemma 41. Let (⌦, {⌧t}t2R) be an almost periodic and uniquely ergodic R-action.
Given ⌅ a transverse section, let R⌅(!) be the set of return times to ⌅,

R⌅(!) := {t 2 R : ⌧t(!) 2 ⌅}, 8! 2 ⌦.

Then, for every nonempty clopen set ⌅0 ⇢ ⌅, the following limit exists uniformly
with respect to ! 2 ⌦ and is positive:

⌫⌅(⌅
0) := lim

T!+1

#(R⌅0(!) \BT (0))

Leb(BT (0))
> 0.

Moreover, ⌫⌅ extends to a finite and nonnegative measure on ⌅, called transverse
measure to ⌅, and, for every flow box U = ⌧ [BR ⇥ ⌅],

�(⌧(B0 ⇥ ⌅0)) = Leb(B0)⌫⌅(⌅
0), 8B0 ⇢ BR(0), 8⌅0 ⇢ ⌅ (Borel sets).

Proof. Let U = ⌧ [BR⇥⌅] be a flow box. Let t1 6= t2 be two return times of R⌅(!).
Since ⌧ is injective on BR(0) ⇥ ⌅, it is straightforward that BR(t1) \ BR(t2) = ;.
For ! 2 ⌦ and T > 0, consider

µT,!(U
0) =

1

Leb(BT (0))

Z

B
T

(0)
1U 0(⌧s(!)) ds, 8U 0 ⇢ ⌦ (Borel set).

The unique ergodicity of the action implies that, for all � 2 C0(⌦), µT,!(�) con-
verges uniformly in ! to �(�) as T ! +1. Let B0 ⇢ BR(0) be a Borel set and
⌅0 ⇢ ⌅ be a nonempty clopen set. For U 0 = ⌧(B0 ⇥ ⌅0), notice then that

{s 2 Rd : ⌧s(!) 2 U 0} =
[

t2R⌅0 (!)

t+B0, µT,!(U
0) =

X

t2R⌅0 (!)

Leb(BT (0) \ (t+B0))

Leb(BT (0))
,

and, whenever T > 2R,

Leb(B0)
#(BT�R(0) \ R⌅0(!))

Leb(BT (0))
 µT,!(U

0)  Leb(B0)
#(BT+R(0) \ R⌅0(!))

Leb(BT (0))
.

Moreover, clearly #(BT (0)\R⌅0(!))  Leb(B
T+R

(0))
Leb(B

R

(0)) and limT!+1
Leb(B

T+R

(0))
Leb(B

T

(0)) = 1.

Thus, if B0 is open in BR(0), then U 0 is open in ⌦ and

�(U 0)  lim inf
T!+1

µT,!(U
0)  Leb(B0)

Leb(B2R(0))
.

In particular, if B0 is negligible, thanks to the regularity of Leb, �(U 0) = 0. If
B0 is open, B0 ⇢ BR(0) and @B0 is negligible, then, for every ✏ > 0, there exist
nonnegative continuous functions �   such that

�  1⌧(B0⇥⌅)  1⌧(B0⇥⌅)   and �( � �) < ✏.
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Therefore, µT,!(⌧(B0 ⇥⌅0)) converges uniformly in ! to �(⌧(B0 ⇥⌅)) as T ! +1.
On the one hand, for all clopen set ⌅0 ⇢ ⌅, ⌧(BR(0)⇥ ⌅0) is a flow box and

lim
T!+1

#(BT (0) \ R⌅0(!))

Leb(BT (0))
:= ⌫⌅(⌅

0) (exists uniformly in !).

On the other hand, for every B0 = BR0(s0), s0 2 BR(0), ks0k+R0 < R,

�(⌧(B0 ⇥ ⌅0)) = lim
T!+1

µT,!(⌧(B
0 ⇥ ⌅0)) = Leb(B0)⌫⌅(⌅

0).

Hence, ⌫⌅ extends to a measure on the Borel sets of ⌅ and by the monotone class
theorem �(⌧(B0⇥⌅0)) = Leb(B0)⌫⌅(⌅0) for every Borel sets B0 ⇢ BR(0) and ⌅0 ⇢ ⌅.

We finally remark that ⌫⌅(⌅0) > 0 for every nonempty clopen set ⌅0 ⇢ ⌅, since
otherwise there would exist an open set of ⌦ of �-measure zero.

We come back to Kakutani-Rohlin towers of flows. Let {F l
↵}↵2Al

be such a tower
of order l and {F l+1

� }�2Al+1 be the subsequent tower as introduced in (25). We recall
the definition of the homology matrix as explained in lemma 2.7 of [13]. For every
↵ 2 Al and � 2 Al+1, � = (↵0, . . . ,↵p), ↵0 = ↵p, ↵i 6= ↵0 for i = 1, . . . , p � 1, we
denote

M l
↵,� := #{0  k  p� 1 : ↵k = ↵}.

A flow box of order l+1, ⌧
�

[0, H l+1
� )⇥⌃l+1

�

�

, is obtained as a disjoint union of flow

boxes of order l of the type ⌧
�

[ti, ti + H l
↵
i

) ⇥ ⌃l
↵
i

�

. The integer M l
↵,� counts the

number of times a flow box of order l + 1 indexed by � cuts a flow box of order l
indexed by ↵. The main result that we shall need is given by the following lemma.

Lemma 42. Let (⌦, {⌧t}t2R) be a one-dimensional almost periodic and uniquely
ergodic R-action. Let {F l

↵}↵2Al

be a sequence of Kakutani-Rohlin towers built
as in (25). Let ⌫l be the transverse measure associated to the transverse section
[↵2Al

⌃l
↵. If ⌫l↵ := ⌫l(⌃l

↵), then

⌫l↵ =
X

�2Al+1

M l
↵,�⌫

l+1
� .

Proof. Let ⌅ = [�2Al+1⌃l+1
� . For ! 2 ⌅, let 0 = t0, t1, t2, . . . be its successive

return times to ⌅. We introduce as in lemma 41 the set of return times to the
transverse section ⌃l

↵, say, R
l
↵(!) := {t 2 R : ⌧t(!) 2 ⌃l

↵}. The set Rl+1
� (!) is

defined similarly. Since

#
�

Rl
↵(!) \ [0, tn)

�

=
X

�2Al+1

M l
↵,� #

�

Rl+1
� (!) \ [0, tn)

�

,

we divide by tn and apply lemma 41 to conclude.

The main property used in one-dimensional Aubry theory [2] is the twist prop-
erty. It will not be used in the infinitesimal form. The following lemma is an easy
consequence of definition 18. It shows that the energy of a configuration can be
lower by exchanging the positions.
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Lemma 43 (Aubry crossing lemma). If L satisfies the weakly twist property,
then, for every ! 2 ⌦, for every x0, x1, y0, y1 2 R verifying (y0 � x0)(y1 � x1) < 0,

⇥

E!(x0, x1) + E!(y0, y1)
⇤

�
⇥

E!(x0, y1) + E!(y0, x1)
⇤

= ↵(y0 � x0)(y1 � x1) > 0,

with ↵ = 1
(y0�x0)(y1�x1)

R y0
x0

R y1
x1

@2Ẽ
!

@x@y (x, y) dydx < 0 and Ẽ! as in definition 18.

Proof. The inequality is obtained by integrating the function @2

@x@y Ẽ! on the domain
[min(x0, y0),max(x0, y0)]⇥ [min(x1, y1),max(x1, y1)].

The first consequence of Aubry crossing lemma is that minimizing configurations
shall be strictly ordered. We begin by an intermediate lemma.

Lemma 44. Let L be a weakly twist Lagrangian, ! 2 ⌦, n � 2, and x0, . . . , xn 2 R
be a nonmonotone sequence (that is, a sequence which does not satisfy x0  . . .  xn
nor x0 � . . . � xn).

– If x0 = xn, then E!(x0, . . . , xn) >
Pn�1

i=0 E!(xi, xi).
– If x0 6= xn, then there exists a subset {i0, i1, . . . , ir} of {0, . . . , n}, with i0 = 0

and ir = n, such that (xi0 , xi1 , . . . , xir) is strictly monotone and

E!(x0, . . . , xn) > E!(xi0 , . . . , xir) +
X

i 62{i0,...,ir}

E!(xi, xi).

Proof. We prove the lemma by induction.
Let x0, x1, x2 2 R be a nonmonotone sequence. Then x0, x1, x2 are three distinct

points. Thus, x0 < x1 implies x2 < x1 and x1 < x0 implies x1 < x2. In both cases,
lemma 43 tells us that

E!(x0, x1) + E!(x1, x2) > E!(x0, x2) + E!(x1, x1).

Let (x0, . . . , xn+1) be a nonmonotone sequence. We have two cases: either
x0  xn or x0 � xn. We shall only give the proof for the case x0  xn.

Case x0 = xn. Then (x0, . . . , xn) is nonmonotone and by induction

E!(x0, . . . , xn+1) > E!(xn, xn+1) +
n�1
X

i=0

E!(xi, xi)

= E!(x0, xn+1) +
n
X

i=1

E!(xi, xi).

Case x0 < xn. Whether (x0, . . . , xn) is monotone or not, we may choose a
subset of indices {i0, . . . , ir} such that i0 = 0, ir = n, xi0 < xi1 < . . . < xi

r

and

E!(x0, . . . , xn+1) �
⇣

E!(xi0 , . . . , xir) +
X

i 62{i0,...,ir}

E!(xi, xi)
⌘

+ E!(xn, xn+1).

If xn  xn+1, then (x0, . . . , xn) is necessarily nonmonotone and the previous
inequality is strict. If xn = xn+1, the lemma is proved by modifying ir = n+ 1. If
xn < xn+1, the lemma is proved by choosing r + 1 indices and ir+1 = n+ 1.
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If xn+1 < xn = xi
r

, by applying lemma 43, one obtains

E!(xi
r�1 , xir) + E!(xn, xn+1) > E!(xn, xi

r

) + E!(xi
r�1 , xn+1),

E!(x0, . . . , xn+1) > E!(xi0 , . . . , xir�1 , xn+1) +
X

i 62{i0,...,ir}

E!(xi, xi) + E!(xn, xn).

If xi
r�1 < xn+1, the lemma is proved by choosing ir = n + 1. If xi

r�1 = xn+1, the
lemma is proved by choosing r � 1 indices and ir�1 = n + 1. If xn+1 < xi

r�1 , we
apply again lemma 43 until there exists a largest s 2 {0, . . . , r} such that xs < xn+1

or xn+1  x0. In the former case, the lemma is proved by choosing s + 1 indices
and by modifying is+1 = n+ 1. In the latter case, namely, when xn+1  x0 < xn,
we have

E!(x0, . . . , xn+1) > E!(x0, xn+1) +
n
X

i=1

E!(xi, xi)

and the lemma is proved whether xn+1 = x0 or xn+1 < x0.

The Mañé subadditive cocycle �(!, t) (definition 33) is obtained by minimizing
a normalized energy E!(x0, . . . , xn)�nĒ on all the configurations satisfying x0 = 0
and xn = t. The following lemma shows that it is enough to minimize on strictly
monotone configurations (unless t = 0).

Corollary 45. If L satisfies the weakly twist property, then, for every ! 2 ⌦, the
Mañé subadditive cocycle �(!, t) satisfies:

– if t = 0, �(!, 0) = E!(0, 0)� Ē,
– if t > 0, �(!, t) = infn�1 inf0=x0<x1<...<x

n

=t[E!(x0, . . . , xn)� nĒ],
– if t < 0, �(!, t) = infn�1 inf0=x0>x1>...>x

n

=t[E!(x0, . . . , xn)� nĒ].

Proof. Lemma 44 tells us that we can minimize the energy of E!(x0, . . . , xn)� nĒ
by the sum of two terms:
– either xn = x0, then

E!(x0, . . . , xn)� nĒ �
⇥

E!(x0, x0)� Ē
⇤

+
X

i/2{0,n}

⇥

E!(xi, xi)� Ē
⇤

;

– or xn 6= x0, then for some (xi0 , . . . , xir) strictly monotone, with i0 = 0 and ir = n,

E!(x0, . . . , xn)� nĒ �
⇥

E!(xi0 , . . . , xir)� rĒ
⇤

+
X

i 62{i0,...,ir}

⇥

E!(xi, xi)� Ē
⇤

.

We conclude the proof by noticing that Ē  infx2RE!(x, x).

We recall that a finite configuration (x0, x1, . . . , xn) is said to be minimizing in
the environment ! if E!(x0, x1, . . . , xn)  E!(y0, y1, . . . , yn) whenever x0 = y0 and
xn = yn. The following lemmas show that, under certain conditions, a minimizing
configuration is strictly monotone.

Lemma 46. Suppose that L satisfies the weakly twist property. For every ! 2 ⌦,
if (x0, . . . , xn) is a minimizing configuration, with x0 6= xn, such that xi is strictly
between x0 and xn for every 0 < i < n� 1, then (x0, . . . , xn) is strictly monotone.
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Proof. Let (x0, . . . , xn) be such a minimizing sequence. We show, in part 1, it is
monotone, and, in part 2, it is strictly monotone.

Part 1. Assume by contradiction that (x0, . . . , xn) is not monotone. According
to lemma 44, one can find a subset of indices {i0, . . . , ir} of {0, . . . , n}, with i0 = 0
and ir = n, such that (xi0 , . . . , xir) is strictly monotone and

E!(x0, . . . , xn) > E!(xi0 , . . . , xir) +
X

i 62{i0,...,ir}

E!(xi, xi).

We choose the largest integer r with the above property. Since (x0, . . . , xn) is not
monotone, we have necessarily r < n. Since (x0, . . . , xn) is minimizing, one can
find i 62 {i0, . . . , ir} such that xi 62 {xi0 , . . . , xir}. Let s be one of the indices of
{0, . . . , r} such that xi is between xi

s

and xi
s+1 . Then, by lemma 43,

E!(xi
s

, xi
s+1) + E!(xi, xi) > E!(xi

s

, xi) + E!(xi, xi
s+1).

We have just contradicted the maximality of r. Therefore, (x0, . . . , xn) must be
monotone.

Part 2. Assume by contradiction that (x0, . . . , xn) is not strictly monotone.
Then (x0, . . . , xn) contains a subsequence of the form (xi�1, xi, . . . , xi+r, xi+r+1)
with r � 1 and xi�1 6= xi = . . . = xi+r 6= xi+r+1. To simplify the proof, we assume
xi�1 < xi+r+1. We want built a configuration (x0i�1, x

0
i, . . . , x

0
i+r, x

0
i+r+1) so that

x0i�1 = xi�1, x0i+r+1 = xi+r+1 and

E!(xi�1, xi, . . . , xi+r, xi+r+1) > E!(x
0
i�1, x

0
i, . . . , x

0
i+r, x

0
i+r+1).

By changing by a coboundary as in definition 18, we may assume that E!(x, y) is
C2 in x and y. Indeed, since (xi�1, . . . , xi+r+1) is minimizing, we have

E!(xi�1, . . . , xi+r+1) = E!(xi�1, xi + ✏, xi+1 � ✏, . . . , xi+r � ✏, xi+r+1) + o(✏2).

Let

↵ =
1

xi � xi�1

Z x
i

x
i�1

@2E!

@x@y
(x, xi) dx < 0,

� =
1

xi+r+1 � xi+r

Z x
i+r+1

x
i+r

@2E!

@x@y
(xi+r, y) dy < 0.

By Aubry crossing lemma,

E!(xi�1, xi + ✏) + E!(xi + ✏, xi+1 � ✏)

= E!(xi�1, xi+1 � ✏) + E!(xi + ✏, xi + ✏)� 2✏(xi � xi�1)↵+ o(✏).

Since xi = xi+r, obviously E!(xi + ✏, xi + ✏) = E!(xi+r + ✏, xi+r + ✏). Again by
Aubry crossing lemma,

E!(xi+r + ✏, xi+r + ✏) + E!(xi+r � ✏, xi+r+1)

= E!(xi+r � ✏, xi+r + ✏) + E!(xi+r + ✏, xi+r+1)� 2✏(xi+r+1 � xi+r)� + o(✏).
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Then, for ✏ small enough, we have

E!(xi�1, . . . , xi+r+1) > E!(xi�1, xi � ✏, . . . , xi�r�1 � ✏, xi+r + ✏, xi+r+1),

which contradicts that (xi�1, . . . , xi+r+1) is minimizing. We have thus proved that
(x0, . . . , xn) is strictly monotone.

Lemma 47. Let L be a weakly twist transversally constant Lagrangian. Then, there
exists R > 0 such that the fact (x0, . . . , xn) 2 R is a minimizing configuration for
an arbitrary environment ! 2 ⌦ and verifies |xn�x0| � R implies that (x0, . . . , xn)
is strictly monotone.

Proof. Let {Ui = ⌧ [BR
i

⇥⌅i]}i2I be a flow box decomposition with respect to which
L is transversally constant. Since {Ui}i2I is a finite cover, we may choose R large
enough so that every orbit of size R meets every box entirely: for every !, for every
|y � x| � R, for every i 2 I, there exists ti 2 R such that (ti � Ri, ti + Ri) ⇢ [x, y]
and ⌧t

i

(!) 2 ⌅i.
We first show that there cannot exist r � 0 and 0 < k < n� r such that

xk < xk�1, xk = . . . = xk+r and xk < xk+r+1.

Otherwise, Aubry crossing lemma implies that

E!(xk�1, xk) + E!(xk, xk+r+1) > E!(xk�1, xk+r+1) + E!(xk, xk).

We rewrite the configuration (x0, . . . , xk�1, xk+r+1, . . . , xn) as (y0, . . . , yn�r�1). Let
Ui be a flow box containing ⌧x

k

(!). There exists |s| < Ri and !0 2 ⌅i such that
⌧x

k

(!) = ⌧s(!0). By the choice of R, there exists t such that (t�Ri, t+Ri) ⇢ [x0, xn]
and ⌧t(!) 2 ⌅i. Let z0 = . . . = zr := t + s and 1  l  n � r � 1 be such that
yl�1 < z0  yl. Using the fact that L is transversally constant on Ui, we have

E!(xk, xk) = E!0(s, s) = E⌧
t

(!)(s, s) = E!(z0, z0).

By applying again Aubry crossing lemma, we obtain

E!(yl�1, yl) + E!(z0, z0) � E!(yl�1, z0) + E!(z0, yl),

with a strict inequality if z0 < yl. We have just obtained a new configura-
tion (y0, . . . , yl�1, z0, . . . , zr, yl, . . . , yn�r�1) of n points with a strictly lower energy,
which contradicts the fact that (x0, . . . , xn) is minimizing.

There cannot exist similarly r � 0 and 0 < k < n� r such that

xk > xk�1, xk = . . . = xk+r and xk > xk+r+1.

There cannot exists either a sub-configuration (xk�1, xk, . . . , xk+r, xk+r+1), r � 1,
of the form xk�1 6= xk+r+1 and xk = . . . = xk+r strictly between xk�1 and xk+r+1

thanks to lemma 46. We are thus left to a configuration of the form

x0 = . . . = xr <. . .< xn�r0 = . . . = xn or x0 = . . . = xr >. . .> xn�r0 = . . . = xn
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for some r, r0 � 0. Assume by contradiction that x0 = x1 (the case xn�1 = xn
is done similarly). As before, there exist Ui containing ⌧x0(!), |s| < Ri and
!0 2 ⌅i such that ⌧x0(!) = ⌧s(!0), as well as there exists t 2 R such that
(t � Ri, t + Ri) ⇢ [min{x0, xn},max{x0, xn}] and ⌧t(!) 2 ⌅i. One can show in an
analogous way that, whenever z := t + s belongs to (min{xl�1, xl},max{xl�1, xl}]
for 2  l  n, E(x0, x1, . . . , xn) � E(x1, . . . , xl�1, z, xl, . . . , xn), with strict inequal-
ity if z < max{xl�1, xl}. Since (x0, x1, . . . , xn) is as minimizing configuration, this
implies that z = max{xl�1, xl} and thus (x1, . . . , xl�1, z, xl, . . . , xn) is a minimizing
configuration. The first part of this proof shows that this cannot happen.

The proof that (x0, . . . , xn) is strictly monotone is complete.

Proposition 48. Let L be a weakly twist transversally constant Lagrangian. Then,
there exists R > 0 such that, for ! 2 ⌦, n � 2, and (x0, . . . , xn) with E(x0, . . . , xn) =
min(y0,...,yn)E!(y0, . . . , yn), the inequality diam({xk : 0  k  n}) � R implies that
(x0, . . . , xn) is strictly monotone and sup1kn |xk � xk�1|  R.

Proof. Consider ! 2 ⌦, n � 2, and (x0, . . . , xn) realizing the minimum of the energy
among all configurations of length n in the environment !.

Part 1. We show there exists R0 > 0 (independent from ! and n) such that
|x1 � x0|  R0 and |x2 � x1|  R0. Indeed, we have

E!(x0, x1)  E!(x1, x1) and E!(x0, x1, x2)  E!(x2, x2, x2),

which implies

E!(x0, x1)  sup
x2R

E!(x, x) and E!(x1, x2)  2 sup
x2R

E!(x, x)� inf
x,y2R

E!(x, y).

The existence of R0 follows then from the coerciveness of L, which is uniform with
respect to !. Similarly, we have |xn�1 � xn�2|  R0 and |xn � xn�1|  R0.

Part 2. We show there exists R00 > 0 such that, if (x0, . . . , xm) is strictly
monotone, then |xi � xi�1|  R00 for every 1  i  m. It is clear from the
definition that, if L is transversally constant with respect to a particular flow box
decomposition {⌧ [Br

i

⇥ ⌅i]}, then L is transversally constant for any flow box
decomposition such that its flow boxes are compatible with respect to {⌧ [Br

i

⇥⌅i]}.
Therefore, let {Ui = ⌧ [BR0 ⇥ ⌅0

i]} be a finite cover of ⌦ by flow boxes such that
⌧ [B2R0 ⇥ ⌅0

i] is again a flow box and L is transversally constant with respect to
{⌧ [B2R0 ⇥ ⌅0

i]}. We choose R00 > 0 large enough so that every orbit of length R00

meets entirely each ⌧ [B2R0 ⇥ ⌅0
i]. Let Ui be a flow box containing ⌧x1(!): there

exist |s1| < R0 and !0 2 ⌅0
i such that ⌧x1(!) = ⌧s1(!

0). From part 1, we deduce that
⌧ [B2R0 ⇥ ⌅0

i] contains {⌧x0(!), ⌧x1(!), ⌧x2(!)}: there exist |s0|, |s2| < 2R0 such that
⌧x0(!) = ⌧s0(!

0) and ⌧x2(!) = ⌧s2(!
0). Assume by contradiction |xi � xi�1| > R00.

Then, there exists t 2 R such that (t�2R0, t+2R0) ⇢ [min{xi�1, xi},max{xi�1, xi}]
and ⌧t(!) 2 ⌅0

i. Let z0 = t+ s0, z1 = t+ s1 and z2 = t+ s2. Notice that (xi�1, xi)
and (z0, z1, z2) are ordered in the same way. As L is transversally constant on
⌧ [B2R0 ⇥ ⌅0

i], we obtain

E!(x0, x1, x2) = E!0(s0, s1, s2) = E⌧
t

(!)(s0, s1, s2) = E!(z0, z1, z2).
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Aubry crossing lemma applied twice gives

E!(xi�1, xi) + E!(z0, z1, z2) > E!(xi�1, z1) + E!(z0, xi) + E!(z1, z2),

> E!(xi�1, z1, xi) + E!(z0, z2).

As L is transversally constant, E!(z0, z2) = E!(x0, x2) as above and we obtain

E!(xi�1, xi) + E!(x0, x1, x2) > E!(xi�1, z1, xi) + E!(x0, x2).

The configuration (x0, x2, . . . , xi�1, z1, xi, . . . , xm) has a strictly lower energy, which
contradicts the fact that (x0, . . . , xm) is minimizing. We obtain similarly that, if
(xm, . . . , xn) is strictly monotone, then |xi�1 � xi|  R00 for every m+ 1  i  n.

Part 3. Let R000 be the constant given by lemma 47. Take R > 2R00 + 4R000. If
|xn � x0| > R000, then (x0, . . . , xn) is strictly monotone by lemma 47 and the jumps
|xi � xi�1| are uniformly bounded by R00. The proof is finished.

Assume by contradiction that |xn � x0|  R000. Let a = min0kn xk and
b = max0kn xk. Since diam({xk : 0  k  n}) � R, one of the two inequalities
|a�x0| > R/2 or |b�x0| > R/2 must be satisfied. Assume to simplify |b�x0| > R/2
(the case |a � x0| > R/2 is done similarly). Hence, b = xm for some 0 < m < n.
Since (x0, . . . , xm) and (xm, . . . , xn) are minimizing and satisfy |xm � x0| > R000

and |xm � xn| > R000, these two configurations are strictly monotone. Then, part 2
tells us that the jumps |xi � xi�1| are uniformly bounded by R00. In particular,
|xm+1 � xm|  R00. The configuration (x0, . . . , xm+1) is minimizing and, since
|xm�x0| > R00+2R000, it satisfies |xm+1�x0| > R000. By lemma 47, it must be strictly
monotone. Thus, (x0, . . . , xn) is strictly monotone and |xn�x0| > |xm+1�x0| > R000,
which is a contradiction.

The proof of the fact that |xk �xk�1| is uniformly bounded uses the same ideas
as in lemma 3.1 of [13]. The fact that L is transversally constant enables us to
translate subconfigurations without modifying the total energy. For a minimizing
and strictly monotone configuration, by minimality of the energy, two consecutive
points cannot enclose a translated subconfiguration of three points. More precisely,
we have the following lemma that extends lemma 3.2 of [13].

Lemma 49. Let L be a weakly twist Lagrangian which is transversally constant for
a flow box decomposition {Ui}i2I . Suppose that the flow box ⌧ [BR⇥⌅] is compatible
with respect to {Ui}i2I . Let (x0, . . . , xn) be a strictly monotone minimizing config-
uration for some environment ! 2 ⌦. Let (a�R, a+R) and (b�R, b+R) be two
disjoint intervals such that ⌧a(!) 2 ⌅ and ⌧b(!) 2 ⌅. Assume that (a � R, a + R)
is a subset of [x0, xn]. Let A be the number of sites 0  k  n such that xk belongs
to (a�R, a+R) and let B be defined similarly. Then B  A+ 2. In particular, if
(b�R, b+R) ⇢ [x0, xn], then |A�B|  2.

Proof. To simplify we assume that (x0, . . . , xn) is strictly increasing. The proof is
done by contradiction by assuming B � A+ 3. Denote

{y1, . . . , yA} := {x0, . . . , xn} \ (a�R, a+R) and

{y01, . . . , y0B} := {x0, . . . , xn} \ (b�R, b+R).
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Let y0 be the greatest xk  a�R and yA+1 be the smallest xk � a+R. We write
sk := y0k � b and zk := a + sk for k = 1, . . . , B. The partition into A + 1 disjoint
intervals [A+1

k=1 (yk�1, yk] must contain A+3 distinct points {z1, . . . , zA+3}. We have
therefore to consider two cases.

Case 1. Either some interval (yk�1, yk] contains three points (zi�1, zi, zi+1). By
Aubry crossing lemma,

E!(yk�1, yk) + E!(zi�1, zi) > E!(yk�1, zi) + E!(zi�1, yk),

E!(zi�1, yk) + E!(zi, zi+1) � E!(zi�1, zi+1) + E!(zi, yk).

Since L is transversally constant on ⌧ [BR ⇥ ⌅], we obtain

E!(y
0
i�1, y

0
i, y

0
i+1) + E!(yk�1, yk) = E!(zi�1, zi, zi+1) + E!(yk�1, yk)

> E!(zi�1, zi+1) + E!(yk�1, zi, yk)

= E!(y
0
i�1, y

0
i+1) + E!(yk�1, zi, yk).

We have obtained a configuration (. . . , y0i�1, y
0
i+1, . . . , yk�1, zi, yk, . . .) with strictly

lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.
Case 2. Or there exist two distinct intervals (yk�1, yk] and (yl�1, yl], k < l,

that contain each two points (zi�1, zi) and (zj�1, zj), respectively. Notice that we
may have yk = yl�1, but we must have zi < zj�1, zi+1 2 (a � R, a + R), and
possibly zi+1 = zj�1. We want to obtain a contradiction by showing that one can
decrease the sum of energies E!(y0i�1, . . . , y

0
j) + E!(yk�1, . . . , yl) while fixing the

four boundary points. By changing by a coboundary as in definition 18, we may
assume that E!(x, y) is C2 in x and y.

We perturb the point zi slightly by a small quantity ✏ and allow an increase of
the energy of order ✏2. Since (zi�1, zi, zi+1) is minimizing, we have

E!(zi�1, zi, zi+1) = E!(zi�1, zi � ✏, zi+1) + o(✏2).

By Aubry crossing lemma,

E!(yk�1, yk) + E!(zi�1, zi � ✏)

= E!(yk�1, zi � ✏) + E!(zi�1, yk)� ✏(zi�1 � yk�1)↵+ o(✏),

with ↵ = 1
z
i�1�y

k�1

R z
i�1

y
k�1

@2E
!

@x@y (x, yk) dx < 0. Again by Aubry crossing lemma,

E!(yl�1, yl) + E!(zj�1, zj) � E!(yl�1, zj) + E!(zj�1, yl),

with equality if zj = yl. Since L is transversally constant, we obtain

E!(y
0
i�1, . . . , y

0
j) + E!(yk�1, . . . , yl)

= E!(zi�1, . . . , zj) + E!(yk�1, . . . , yl)

> E!(zi�1, yk, . . . , yl�1, zj) + E!(yk�1, zi � ✏, zi+1, . . . , zj�1, yl)

= E!(y
0
i�1, wk, . . . , wl�1, y

0
j) + E!(yk�1, zi � ✏, zi+1, . . . , zj�1, yl)

with tk := yk�a, wk := b+tk,. . . ,tl�1 := yl�1�a, wl�1 := b+tl�1. We have obtained
a configuration (. . . , y0i�1, wk, . . . , wl�1, y

0
j , . . . , yk�1, zi�✏, zi+1, . . . , zj�1, yl, . . .) with

strictly lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.
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It may happen that E!(x, x) = Ē for some ! 2 ⌦ and x 2 R. Let xn = x
for every n. Then (xn)n2Z is a calibrated configuration in the environment ! and
�(⌧

x

(!),0) is a minimizing measure. If L is transversally constant on a flow box
⌧ [BR ⇥ ⌅] such that ⌧x(!) 2 ⌅, then �(!0,0) is a minimizing measure for every
!0 2 ⌅. The projected Mather set contains ⌅ and theorem 19 is proved. We are
thus left to understand the case inf!2⌦, x2RE!(x, x) > Ē.

Lemma 50. Let L be a weakly twist Lagrangian for which

inf
!2⌦, x2R

E!(x, x) > Ē.

For ! 2 ⌦ and for every n, let (xn0 , . . . , x
n
n) be a configuration realizing the minimum

E!(xn0 , . . . , x
n
n) = minx0,...,xn

2RE!(x0, . . . , xn). Then limn!+1 |xnn � xn0 | = +1.

Proof. The proof is done by contradiction. Let ! 2 ⌦ and R > 0. Assume there
exist infinitely many n’s for which every configuration (xn0 , . . . , x

n
n) realizing the

minimum of E!(x0, . . . , xn) satisfies |xnn � xn0 |  R. Thanks to lemma 44, we can
find distinct indices {i0, . . . , ir} of {0, . . . , n} such that i0 = 0, ir = n, (xni0 , . . . , x

n
i
r

)
is monotone (possibly not strictly monotone) and

E!(x
n
0 , . . . , x

n
n) � E!(x

n
i0 , . . . , x

n
i
r

) +
X

i 62{i0,...,ir}

E!(x
n
i , x

n
i ).

Let ✏ > 0 be chosen so that E!(x, y) � Ē + ✏ for every |y � x|  ✏. Thus, if ✓n
denotes the number of indices 1  k  r such that |xni

k

� xni
k�1

| > ✏, it is clear that
✓n  R/✏. Since

nĒ � E!(x
n
0 , . . . , x

n
n) � (n� ✓n)(Ē + ✏) + ✓n inf

x,y2R
E!(x, y),

we obtain a contradiction by letting n ! +1.

We now assume that L is transversally constant. We show in the following
proposition that a sequence of configurations (xn0 , . . . , x

n
n) realizing the minimum

of the energy E!(x0, . . . , xn) among all configurations of length n admits a weak
rotation number in the sense that

lim inf
n!+1

|xnn � xn0 |
n

> 0. (26)

The existence of a rotation number for an infinite minimizing configuration (xk)k2Z
has been established in [13]. The following proposition extends partially this result
in two directions: the interaction model is more general; we compute the rotation
number of a sequence of configurations of increasing length and not the rotation
number of a unique infinite configuration.

Proposition 51. Let (⌦, {⌧t}t2R, L) be a one-dimensional weakly twist quasicrystal
interaction model. Assume that

inf
!2⌦, x2R

E!(x, x) > Ē.
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For ! 2 ⌦ and for every n, let (xn0 , . . . , x
n
n) be a configuration realizing the minimum

of the energy among all configurations of length n:

E!(x
n
0 , . . . , x

n
n) = min

x0,...,xn

E!(x0, . . . , xn).

Then,
– Ē = limn!+1

1
nE!(xn0 , . . . , x

n
n) = supn�1

1
nE!(xn0 , . . . , x

n
n),

– for n su�ciently large, (xn0 , . . . , x
n
n) is strictly monotone,

– there is R > 0 (independent of !) such that supn�1 sup1kn |xnk �xnk�1|  R,

– lim infn!+1
1
n |x

n
n � xn0 | > 0.

Proof. We shall assume that the flow (⌦, {⌧t}t2R) is not periodic.
Step 1. The first item has been proved in proposition 14; the limit can be

obtained as a supremum because of superadditivity. Moreover, from lemma 50,
|xnn � xn0 | ! +1. From proposition 48, the configuration (xn0 , . . . , x

n
n) must be

strictly monotone and have uniformly bounded jumps R. We are left to prove the
last item of the proposition.

Step 2. By definition of a quasicrystal, L is transversally constant with re-
spect to some flow box decomposition {Ui}i2I (definition 15). Let {F↵}↵2A be a
Kakutani-Rohlin tower that is compatible with respect to {Ui}i2I (definition 39)
and let ⌃ = [↵2A⌃↵ be its basis. We may assume that min↵2AH↵ is as large
as we want and, in particular, larger than R (see the construction (25)). We also
assume that n is su�ciently large so that every tower F↵ of basis ⌃↵ is completely
cut by the trajectory ⌧t(!) for t 2 (min{xn0 , xnn},max{xn0 , xnn}). We consider ⌫ the
transverse measure to ⌃ (as defined in lemma 41) and we denote ⌫↵ := ⌫(⌃↵).

Step 3. Let Sn < Tn be the two return times to ⌃ (namely, ⌧Sn(!) 2 ⌃ and
⌧Tn(!) 2 ⌃) that are chosen so that [Sn, Tn) is the smallest interval containing the
sequence (xnk)

n
k=0. From the definition of a Kakutani-Rohlin tower, [Sn, Tn) can be

written as a disjoint union of intervals of type I↵,i := [t↵,i, t↵,i+H↵), where the list
{t↵,i}i, i = 1, . . . , Cn

↵ , denotes the successive return times to ⌃↵ between Sn and Tn.
We distinguish two exceptional intervals among this list: the two intervals which
contain xn0 and xnn. If xn0 < xnn, then Nn

↵,i denotes the number of points (xnk)
n
k=1

belonging to I↵,i and Nn
↵ denotes the maximum of Nn

↵,i. If x
n
n < xn0 , then Nn

↵,i and

Nn
↵ are defined similarly by considering in this case (xnk)

n�1
k=0 . From lemma 49, we

obtain Nn
↵ � 2  Nn

↵,i  Nn
↵ for every nonexceptional interval I↵,i. We show that

supn�1N
n
↵ < +1 for every ↵ 2 A. The proof is done by contradiction.

Let En
↵,i be the energy of the configuration localized in I↵,i. More precisely,

assume first xn0 < xnn; index the part of (xnk)
n
k=1 in I↵,i by (xnk,↵,i)

N
k=1 with N = Nn

↵,i;
denote by xn0,↵,i the nearest point strictly smaller than xn1,↵,i and define the partial

energy En
↵,i := E!(xn0,↵,i, . . . , x

n
N,↵,i). If xnn < xn0 , the part of (xnk)

n�1
k=0 in I↵,i is

indexed by (xnk,↵,i)
N�1
k=0 with N = Nn

↵,i; denote by xnN,↵,i the nearest point strictly
larger than xnN�1,↵,i and define En

↵,i similarly.

Thanks to the hypothesis infx2RE!(x, x) > Ē, one can choose ✏ > 0 such that
E!(x, y) � Ē+ ✏ as soon as |y�x|  ✏. Let H̄ := max↵2AH↵. Then, if ✓n↵,i denotes
the number of consecutive points xnk,↵,i in I↵,i satisfying |xnk,↵,i � xnk�1,↵,i| > ✏,
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obviously ✓n↵,i  H̄/✏. Thus, since n =
P

↵2A
P

1iCn

↵

Nn
↵,i, we have that

nĒ � E!(x
n
0 , . . . , x

n
n) =

X

↵2A

X

1iCn

↵

En
↵,i

�
X

↵2A

X

1iCn

↵

h

✓n↵,i inf
x,y2R

E!(x, y) +
�

Nn
↵,i � ✓n↵,i

�

(Ē + ✏)
i

= n(Ē + ✏) +
X

↵2A

X

1iCn

↵

✓n↵,iE � n(Ē + ✏) +
X

↵2A
Cn
↵

H̄

✏
E,

where E := (infx,y2RE!(x, y) � Ē � ✏) < 0. Among the intervals (I↵,i)i, i =
1, . . . , Cn

↵ , at most two of them are exceptional; the other intervals satisfy Nn
↵,i �

Nn
↵ � 2. We thus get n �

P

↵2A(C
n
↵ � 2)(Nn

↵ � 2). For n su�ciently large, we have

Cn
↵

Tn � Sn
 (1 + ✏)⌫↵,

Cn
↵ � 2

Tn � Sn
� (1� ✏)⌫↵ and

1

n

X

↵2A
Cn
↵ 

(1 + ✏)
P

↵2A ⌫↵

(1� ✏)
P

↵2A ⌫↵(Nn
↵ � 2)

.

If Nn
↵ ! +1 for some ↵ and a subsequence n ! +1, then 1

n

P

↵2ACn
↵ ! 0 and

we obtain a contradiction with the previous inequality.
Step 4. For every ↵, I↵,i ⇢ [xn0 , x

n
n] except maybe for at most two of them. Then

|xnn � xn0 |
n

�
P

↵2A(C
n
↵ � 2)H↵

P

↵2ACn
↵N

n
↵

.

Denote N̄↵ := lim supn!+1Nn
↵ . From step 3 we know that N̄↵ < +1. By dividing

by (Tn � Sn) and by letting n ! +1, we obtain

lim inf
n!+1

|xnn � xn0 |
n

�
P

↵2A ⌫↵H↵
P

↵2A ⌫↵N̄↵
=

1
P

↵2A ⌫↵N̄↵
> 0.

Proof of theorem 19. We assume that (⌦, {⌧t}t2R, L) is a one-dimensional weakly
twist quasicrystal interaction model. We discuss two cases.

Case 1. Either inf!2⌦ infx2RE!(x, x) = Ē. Then E!⇤(x⇤, x⇤) = Ē for some
!⇤ and x⇤. By hypothesis, L is transversally constant with respect to a flow box
decomposition {Ui = ⌧ [BR

i

⇥ ⌅i]}i2I . Let i 2 I be such that ⌧x⇤(!⇤) 2 Ui. Let be
|ti| < Ri and !i 2 ⌅i such that ⌧x⇤(!⇤) = ⌧t

i

(!i). Then

Ē = E!⇤(x⇤, x⇤) = E!
i

(ti, ti) = E!(ti, ti), 8! 2 ⌅i.

We have just proved that �(⌧
t

i

(!),0) is a minimizing measure for every ! 2 ⌅i.
The projected Mather set contains ⌧t

i

(⌅i). By minimality of the flow, we have
⌦ = ⌧ [BR ⇥ ⌅i] thanks to item 1 of lemma 37. The projected Mather set thus
meets every su�ciently long orbit of the flow.
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Case 2. Or inf!2⌦ infx2RE!(x, x) > Ē. Proposition 51 shows that, if !⇤ 2 ⌦
has been fixed, if for every n � 1 a sequence (xnk)0k<n of points of R realizing the
minimum E!⇤(x

n
0 , . . . , x

n
n) = minx0,...,xn

E!⇤(x0, . . . , xn) has been fixed, then
– Ē = limn!+1

1
nE!⇤(x

n
0 , . . . , x

n
n),

– (xnk)0k<n is strictly monotone for n large enough,
– there is R > 0 (independent of !⇤) such that supn�1 sup1kn |xnk � xnk�1| < 2R,

– ⇢ := lim infn!+1
1
n |x

n
n � xn0 | > 0.

Let µn,!⇤ be the probability measure on ⌦⇥ R defined by

µn,!⇤ :=
1

n

n�1
X

k=0

�(⌧
x

n

k

(!⇤), xn

k+1�xn

k

).

Notice that
R

Ldµn,!⇤ = 1
nE!⇤(x

n
0 , . . . , x

n
n). Since the consecutive jumps of xnk are

uniformly bounded, the sequence of measures {µn,!⇤}n�1 is tight. By taking a
subsequence, we may assume that µn,!⇤ ! µ1 with respect to the weak topology.
Moreover, µ1 is holonomic and minimizing. Let ⌅ ⇢ ⌦ be a transverse section of
a flow box ⌧ [BR ⇥ ⌅]. Let R⌅(!⇤) be the set of return times to ⌅ as defined in
lemma 41. Let pr1 : ⌦⇥ R ! ⌦ be the first projection. Then

pr1⇤(µn,!⇤)(⌧ [BR ⇥ ⌅]) =
1

n
#
�

k : xnk 2 [t2R⌅(!⇤)BR(t)
 

� 1

n
#(BT

n

(cn) \ R⌅(!⇤)),

with Tn := 1
2 |x

n
n � xn0 | and cn := 1

2(x
n
0 + xnn). The previous inequality comes from

the fact that the intervals BR(t) are disjoints and contain at least one xnk . Then

pr1⇤(µn,!⇤)(⌧ [BR ⇥ ⌅]) � 2Tn

n

#(BT
n

(0) \ R⌅(⌧c
n

(!⇤))

Leb(BT
n

(0))
.

By taking the limit as n ! +1, one obtains pr1⇤(µ1)(⌧ [BR ⇥ ⌅]) � ⇢⌫⌅(⌅) > 0.
Therefore, since ⌅ is arbitrary, every orbit of the flow of length 2R meets the
projected Mather set.

5 Lax-Oleinik operators

The Lax-Oleinik operator is a tool used in PDE’s to solve Hamilton-Jacobi equa-
tions. The Frenkel-Kontorova model appears naturally by discretization in time
of these equations. The solutions of the Lax-Oleinik operator are called viscosity
solutions or weak KAM solutions in the continuous time setting. We will call them
here sub-actions.

Definition 52. Let (⌦, {⌧t}t2Rd

, L) be an almost periodic interaction model. We
call backward Lax-Oleinik operator the (nonlinear) operator acting on the space of
Borel measurable functions by

T�[u](!) := inf
t2Rd

⇥

u � ⌧�t(!) + L(⌧�t(!), t)
⇤

.
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Similarly, we call forward Lax-Oleinik operator the operator

T+[u](!) := sup
t2Rd

⇥

u � ⌧t(!)� L(!, t)
⇤

.

We will see that these Lax-Oleinik operators are less regularizing than the usual
operators used in discrete weak KAM theory [14] (or in discrete dynamic program-
ming [15]), when they are defined for a specific choice of an environment. For the
usual definition of T±, for a particular choice of E, see Appendix A, definition 59.
From now on, we denote by L1(X) the space of bounded Borel measurable func-
tions on a topological space X.

Definition 53. A measurable function u is called a sub-action (at the level L̄ = Ē)
if one of the following conditions is satisfied

8! 2 ⌦, 8 t 2 Rd, u � ⌧t(!)  u(!) + L(!, t)� L̄

() u+ L̄  T�[u] () u� L̄ � T+[u].

There are then two possibilities for calibration: a sub-action u is said to be

backward calibrated if T�[u] = u+ L̄,

forward calibrated if T+[u] = u� L̄.

Continuous calibrated sub-actions do exist in the periodic setting. The main
problem we are facing is that bounded measurable sub-actions may not exist in
the almost periodic setting. We recall that L̄ = Ē may be computed using four
formulas, given by definition 6, and propositions 10, 13 and 14.

As in definition 59, one may introduce two Lax-Oleinik operators T!±, associ-
ated to the interaction E! for any ! 2 ⌦, each one acting on measurable functions
as follows

T!�[u](y) := inf
x2Rd

⇥

u(x) + E!(x, y)
⇤

, (27)

T!+[u](x) := sup
y2Rd

⇥

u(y)� E!(x, y)
⇤

. (28)

Notice that, if u is a solution of T�[u] = u + L̄ or T+[u] = u � L̄, then, for every
! 2 ⌦, u!(x) := u � ⌧x(!) is a solution of T!�[u!] = u! + Ē or T!+[u!] = u! � Ē.

The main result in this section is about the existence of a bounded calibrated
sub-action provided an obvious obstruction is removed. The following result is sim-
ilar to Gottschalk-Hedlund theorem. We denote by Cusc

b (⌦) and C lsc
b (⌦) the spaces

of bounded upper semi-continuous and bounded lower semi-continuous functions,
respectively.

Theorem 54. Let (⌦, {⌧t}t2Rd

, L) be an almost periodic interaction model. Assume
that L is C0 coercive. Then, the following conditions are equivalent:

1. 9u 2 C lsc
b (⌦), T�[u] = u+ L̄,

2. 9u 2 Cusc
b (⌦), T+[u] = u� L̄,
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3. 8! 2 ⌦, supn�0 |Tn
�[0](!)� nL̄| < +1,

4. 8! 2 ⌦, supn�0 |Tn
+[0](!) + nL̄| < +1,

5. 9! 2 ⌦, 9u 2 L1(Rd), T!�[u] = u+ Ē,

6. 9! 2 ⌦, 9u 2 L1(Rd), T!+[u] = u� Ē.

(As usual, Tn
± denotes the nth iterate of T±.) Moreover, any bounded measurable

solution of T!�[u] = u+ Ē or T!+[u] = u� Ē is actually uniformly continuous.

The backward and forward calibrated solutions are two very di↵erent objects
obtained by reversing the group action. Define

⌧̌t := ⌧�t, ⇢(!, t) = (⌧�t(!), t), and Ľ := L � ⇢. (29)

The family of interactions associated to Ľ reads

Ě!(x, y) := Ľ(⌧̌x(!), y � x) = E!(�y,�x). (30)

Notice that coerciveness and superlinearity are preserved by changing L to Ľ. For
every probability measure µ, we associate the reversed measure

µ̌ := ⇢�1
⇤ (µ). (31)

Then µ is holonomic for {⌧t}t if, and only if, µ̌ is holonomic for {⌧̌t}t, and µ is
minimizing for L if, and only if, µ̌ is minimizing for Ľ. In particular, L and Ľ
have the same ground energy. For every measurable function u, we associate the
reversed function

ǔ := �u, then T+[u] = �Ť�[ǔ]. (32)

This duality between T� and Ť+ implies readily

u+ L̄  T�[u] () u� L̄ � T+[u] () ǔ+ L̄  Ť�[ǔ], (33)

u� L̄ = T+[u] () ǔ+ L̄ = Ť�[ǔ]. (34)

The second equivalence means that u is forward calibrated for L if, and only if, ǔ
is backward calibrated for Ľ.

We will use the following regularity along every orbit of the action.

Definition 55. A function u 2 L1(⌦) is said to be equicontinuous along the group
action if

lim
✏!0+

sup
!2⌦

sup
ktk✏

|u � ⌧t(!)� u(!)| = 0.

Lemma 56. Assume that L is C0 coercive.

1. If u is lower semi-continuous and finite everywhere, then T�[u] 2 L1(⌦). If
u is upper semi-continuous and finite everywhere, then T+[u] 2 L1(⌦). If
u is a finite everywhere sub-action which is either lower semi-continuous or
upper semi-continuous, then u 2 L1(⌦).
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2. If u 2 C0(⌦), then T�[u] 2 C0(⌦).

3. If u 2 L1(⌦), then T�[u] 2 L1(⌦) and is equicontinuous along the group
action. Moreover, the modulus of equicontinuity is uniform over kuk1  R,
that is,

8R > 0, lim
✏!0+

sup
kuk1R

sup
!2⌦

sup
ktk✏

|T�[u] � ⌧t(!)� T�[u](!)| = 0.

4. If {un}n�0 is a nondecreasing sequence of lower semi-continuous functions
such that supn�0 kunk1 < +1, then

sup
n�0

T�[un] = T�
⇥

sup
n�0

un
⇤

.

If {un}n�0 is any sequence of measurable functions, then

inf
n�0

T�[un] = T�
⇥

inf
n�0

un
⇤

.

5. If u 2 C lsc
b (⌦), then T�[u] 2 C lsc

b (⌦). If u 2 Cusc
b (⌦), then T�[u] 2 Cusc

b (⌦).

Proof. Part 1. Let FN := {! 2 ⌦ : u(!)  N}. As u is lower semi-continuous,
FN is closed; as u is finite everywhere, ⌦ = [N2ZFn. By Baire’s theorem, there
exists N(u) such that FN(u) has nonempty interior. By minimality, on may find
D > 0 such that, for every ! 2 ⌦, there exists ktk  D with ⌧�t(!) 2 FN(u).
By the definition of the backward Lax-Oleinik operator, T�[u](!)  u � ⌧�t(!) +
L(⌧�t(!), t). We obtain the uniform upper bound:

sup
!2⌦

T�[u](!)  N(u) + sup
!2⌦, ktkD

L(⌧�t(!), t).

By the lower semi-continuity of u, we obtain the following uniform lower bound

inf
!2⌦

T�[u](!) � inf
!2⌦

u(!) + inf
!2⌦, t2Rd

L(!, t).

We have just proved that T�[u] is bounded. If u is upper semi-continuous, ǔ is
lower semi-continuous and T+[u] = �Ť�[ǔ] is bounded by the previous proof.

If u is a lower semi-continuous and finite everywhere sub-action, then u 
T�[u] � L̄. As T�|u] is bounded, u is bounded from above, being bounded from
bellow by semi-continuity. Similarly, from upper semi-continuity and u � T+[u]+L̄,
one obtains that u 2 L1(⌦).

Part 2. We first notice that, if u 2 L1(⌦), then an optimal translation t 2 Rd given
in the definition of T�[u] is uniformly bounded from above by a constant D > 0,
which is obtained from the coerciveness of L:

inf
!2⌦, ktk�D

⇥

u � ⌧�t(!) + L(⌧�t(!), t)
⇤

> sup
!2⌦

⇥

u(!) + L(!, 0)
⇤

.

The family of continuous functions
�

! 2 ⌦ 7! u � ⌧�t(!) + L(⌧�t(!), t)
 

ktkD
is

equicontinuous and, by the compactness of ⌦, the infimum T�[u] is also continuous.
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Part 3. For R > 0, choose as in part 2 a constant DR > 0 so that, for every
kuk1  R,

8! 2 ⌦, T�[u](!) = inf
ktkD

R

⇥

u � ⌧�t(!) + L(⌧�t(!), t)
⇤

.

(Notice that we can choose ktk  DR uniformly over the set {u : kuk1  R} for
every R.) Then, given ⌘ > 0, there exists ktk  DR such that, for all ! 2 ⌦ and
s 2 Rd,

T�[u](⌧s(!))� T�[u](!) 


⇥

u � ⌧�t(!) + L(⌧�t(!), t+ s)
⇤

�
⇥

u � ⌧�t(!) + L(⌧�t(!), t)
⇤

+ ⌘ 
 L(⌧�t(!), t+ s)� L(⌧�t(!), t) + ⌘.

Taking first suprema and letting then ⌘ ! 0, one obtains

sup
!2⌦, ksk✏

�

�T�[u](⌧s(!))� T�[u](!)
�

�  sup
!2⌦, ktkD

R

, ksk✏
|L(!, t+ s)� L(!, t)|.

The right hand side goes to 0 as ✏ ! 0 by the uniform continuity of L on compact
sets. We have proved that {T�[u]}kuk1R is equicontinuous along the group action.

Part 4. Since the set {un}n is uniformly bounded in L1(⌦), the infimum on t in
the definition of T�[un] can be realized over ktk  DR, for some DR > 0, uniformly
in ! and n � 0. Define

fn(!, t) := un � ⌧�t(!) + L(⌧�t(!), t).

Then fn : ⌦ ⇥ {ktk  DR} ! R is lower semi-continuous and nondecreasing in n.
The following lemma 57 shows that, for every ! fixed,

sup
n�0

inf
ktkD

R

fn(!, t) = inf
ktkD

R

sup
n�0

fn(!, t) , sup
n�0

T�[un](!) = T�
h

sup
n�0

un

i

(!).

For any sequence {un}n, the property infn T�[un] = T�[infn un] is obtained by
simply permuting the two infima.

Part 5. Let u 2 C lsc
b (⌦). There exists a nondecreasing sequence of continuous

functions un such that supn�0 un = u. Part 4 implies that supn�0 T�[un] = T�[u].
Moreover, T�[un] is continuous by part 2, which shows that T�[u] is lower semi-
continuous. Besides, T�[u] is bounded by part 3. If u 2 Cusc

b (⌦), then there exists
a nonincreasing sequence of continuous functions un such that u = infn un. One
gets by part 4 that infn T�[un] = T�[u] is upper semi-continuous and by part 3 that
T�[u] is bounded.

We have used the following basic lemma.

Lemma 57. Let X be a compact metric space and un : X ! R be a nondecreasing
sequence of lower semi-continuous functions. Suppose that supn un(x) < +1 for
every x 2 X. Then supn infx2X un(x) = infx2X supn un(x).
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Proof. On the one hand, it is clear that

inf
x2X

sup
n�0

un(x) � sup
n�0

inf
x2X

un(x).

On the other hand, since un is lower semi-continuous, the minimum of every un
is attained: let xn 2 X be such that infx2X un(x) = un(xn). By compactness of
X, let x1 be an accumulation point of {xn}n. Let u = supn un, which is finite
by assumption. For ✏ > 0, choose N such that uN (x1) > u(x1) � ✏. Since
uN is lower semi-continuous, choose a neighborhood U of x1 so that uN (x) >
u(x1)�2✏ for every x 2 U . Since {un}n is nondecreasing, we have that, for n � N
su�ciently large, xn 2 U and un(xn) � uN (xn) > u(x1) � 2✏, from which we
obtain supn�0 infx2X un(x) > u(x1)� 2✏. Letting ✏ ! 0, we have just proved that
supn�0 infx2X un(x) � infx2X supn�0 un(x).

We will also need to recall the notions of lower semi-continuous envelope ulsc
and upper semi-continuous envelope uusc of a bounded function u, namely,

8! 2 ⌦, ulsc(!) := sup{�(!) : �  u and � 2 C0(⌦)}, (35)

8! 2 ⌦, uusc(!) := inf{�(!) : u  � and � 2 C0(⌦)}. (36)

We have then a key lemma.

Lemma 58. Let u 2 L1(⌦).

1. If v := T�[u], then vlsc = T�[ulsc] and vusc  T�[uusc].

2. If v := T+[u], then vusc = T+[uusc] and vlsc � T+[ulsc].

3. If u+ L̄  T�[u], then ulsc + L̄  T�[ulsc] and uusc + L̄  T�[uusc].

4. If u� L̄ � T+[u], then ulsc � L̄ � T+[ulsc] and uusc � L̄ � T+[uusc].

5. If u+ L̄ = T�[u], then ulsc + L̄ = T�[ulsc].

6. If u� L̄ = T+[u], then uusc � L̄ = T+[uusc].

Proof. Even items may be derived immediately from respective odd items simply
by reversing the group action and using, in particular, relation (32). So we only
prove the odd items of the lemma.

Part 1. Let � 2 C0(⌦) be such that �  v. Then, for all ! and t, �(⌧t(!)) 
u(!) + L(!, t) � L̄. For a fixed t, �(⌧t(!)) � L(!, t) + L̄ is continuous in !. By
definition of the envelope, �(⌧t(!))  ulsc(!)+L(!, t)�L̄ for all ! and t. By taking
the supremum on �, we obtain vlsc(⌧t(!))  ulsc(!)+L(!, t)� L̄ or vlsc  T�[ulsc].
Conversely, ulsc  u implies T�[ulsc]  T�[u]. By lemma 56, part 5, T�[ulsc] is
lower semi-continuous. We thus obtain that T�[ulsc]  vlsc. Hence, T�[ulsc] = vlsc.

Let {�n}n ⇢ C0(⌦) be a nonincreasing sequence such that infn �n = uusc. By
lemma 56, part 4, T�[uusc] = infn T�[�n] � T�[u] = v. By lemma 56, part 5,
T�[uusc] is upper semi-continuous. We have obtained that T�[uusc] � vusc.
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Part 3. If u + L̄  T�[u], by taking the semi-continuous envelope of both parts
of the inequality and by using the first part of this lemma, we obtain ulsc + L̄ 
T�[ulsc]. Moreover, u + L̄  T�[uusc]. By lemma 56, part 5, T�[uusc] is upper
semi-continuous. In particular, uusc + L̄  T�[uusc].

Part 5. If u + L̄ = T�[u], then ulsc + L̄  T�[ulsc] by part 3. Let {�n}n be a
nondecreasing sequence of continuous functions such that ulsc = supn �n. Then
�n  u, T�[�n]  T�[u] = u+ L̄, T�[�n] is continuous, T�[�n]  ulsc + L̄, and, by
lemma 56, part 4, we obtain T�[ulsc]  ulsc + L̄. Thus, T�[ulsc] = ulsc + L̄.

Proof of theorem 54. It is clear by reversing the direction of the group action as in
(29) and (30) that item 1 , item 2, item 3 , item 4, and item 5 , item 6. It is
also clear that item 1 ) item 5 using lemma 56 (item 3) to show that u! 2 C0

b (Rd).

Part 1. We prove that item 5 ) item 3. Notice first that

Tn
�[0](!̄) = inf

�

E!̄(x�n, . . . , x�1, x0) : x0 = 0 and x�k 2 Rd
 

, 8 !̄ 2 ⌦.

By assumption, there exist ! 2 ⌦ and u 2 L1(Rd) such that

8 y 2 Rd, u(y) = inf
x2Rd

�

u(x) + E!(x, y)� Ē
 

.

On the one hand, we have that

8 t 2 Rd, 8x�n, . . . , x0 2 Rd, E⌧
t

(!)(x�n, . . . , x0) � u(x0 + t)� u(x�n + t) + nĒ.

Since Ē = L̄, by minimality of the interaction model, we obtain thus

inf
!̄2⌦

inf
n�0

⇥

Tn
�[0](!̄)� nL̄

⇤

� �2kuk1.

On the other hand, for all t 2 Rd, there are xt�n, . . . , x
t
0 2 Rd, with xt0 = 0, such

that

E⌧
t

(!)(x
t
�n, . . . , x

t
0)  u(xt0 + t)� u(xt�n + t) + nĒ +

n�1
X

k=0

1

2k
,

which yields

8n � 1, 8 t 2 Rd, Tn
�[0](⌧t(!))� nL̄  2(kuk1 + 1),

and an upper bound also follows from the minimality of the action.

Part 2. We prove that item 3 ) item 1. We claim that it is enough to show the
existence of v0 2 L1(⌦) such that

v0 + L̄  T�[v0] and sup
n�0

�

�Tn
�[v0]� nL̄

�

�

1 < +1. (37)

Indeed, we may first assume that v0 2 C lsc
b (⌦) since by lemma 58, part 3,

(v0)lsc + L̄  T�[(v0)lsc],

�kv0k1  (v0)lsc  Tn
�[(v0)lsc]� nL̄  Tn

�[v0]� nL̄  kTn
�[v0]� nL̄k1.
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From now on, suppose that v0 is lower semi-continuous and bounded. Let vn :=
Tn
�[v0]� nL̄. Then vn is lower semi-continuous by lemma 56, part 5, vn+1 � vn by

the sub-action property, supn kvnk1 < +1 by the claim, and T�[vn] = vn+1 + L̄
by construction. By lemma 56, part 4, if v = supn vn, then

v 2 C lsc
b (⌦) and T�[v] = T�[ lim

n!+1
vn] = lim

n!+1
T�[vn] = v + L̄.

It remains just to prove the existence of v0 2 L1(⌦) verifying (37). Define then
v0 := infk�0[T k

�[0] � kL̄]. Notice that v0 is finite everywhere by assumption and
satisfies v0 + L̄  T�[v0] by the following inequalities

v0(!) = inf
n�0

inf
x�n

,...,x�1,x0=0

⇥

E!(x�n, . . . , x0)� nL̄
⇤

,

8! 2 ⌦, 8 t 2 Rd, v0(⌧t(!))  v0(!) + E!(0, t)� L̄.

Moreover, v0 is upper semi-continuous and, by lemma 56, part 1, v0 is bounded.
Notice that

vn := Tn
�[v0]� nL̄ = inf

k�n
[T k

�[0]� kL̄].

is a nondecreasing sequence. Define

un := sup
k�n

[T k
�[0]� kL̄].

Then u0 is finite everywhere by hypothesis, and lower semi-continuous. By lemma 56,
part 1, T�[u0] is bounded. Since

T�[u0]� L̄ � u1 � un � vn � v1 � v0,

we finally obtain that supn kvnk1 = supn kTn
�[v0]� nL̄k1 < +1.

Appendices

A Minimizing configurations for general interaction

The existence of a semi-infinite minimizing configuration without asking it to be
calibrated at the level Ē is easier to guarantee and requires few hypothesis. We
consider, in the first part of this appendix, a unique interaction energy E(x, y) that
will be supposed to be superlinear (7), translation bounded (5) and translation
uniformly continuous (6). By adapting a point of view proposed by Zavidovique
[25, Appendix], we will show that there always exists a semi-infinite minimizing
configuration {xn}0n=�1 with bounded jumps. The configuration will actually be
calibrated at some level c̄, which has no reason to be equal to Ē. We consider, in the
second part of this appendix, an almost periodic interaction model and show the
existence of a bi-infinite calibrated configuration for some E!̄. We do not describe
the set of such environments !̄.
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The main problem for a general interaction energy is to obtain an a priori bound
on the jumps kxn+1 � xnk of any finite minimizing configuration. The main tool is
to construct a discrete weak KAM solution (or a calibrated sub-action as in [14]).
We will say that u : Rd ! R is Lipschitz in the large if

sup
x,y2Rd

|u(y)� u(x)|
ky � xk+ 1

< +1. (38)

Definition 59. We call backward Lax-Oleinik operator the (nonlinear) operator T�
acting on continuous functions u : Rd ! R by

8 y 2 Rd, T�[u](y) := inf{u(x) + E(x, y) : x 2 Rd}.

We say that u is a calibrated sub-action for E at the level c 2 R if T�[u] = u+ c.

For translation periodic interaction energy E, it was shown in [14] that the inter-
action energy E�(x, y) = E(x, y)�h�, y�xi admits a periodic calibrated sub-action
u� at the level Ē(�). Notice then that u(x) := u�(x)+h�, xi becomes calibrated for
E = E0 at the level Ē(�). It was also shown there that � 7! �Ē(�) is convex and
superlinear. These two simple observations implies that the equation T�[u] = u+ c
admits a solution Lipschitz in the large for all values c in (�1, sup� Ē(�)].

For general interaction energies as discussed in this appendix, we do not have an
a priori growth on calibrated sub-actions. An important observation in [25] is that
translation boundedness implies Lipschitz in the large and superlinearity implies
sublinearity and compactness. Let

c̄ := sup
u2C0(Rd)

inf
x,y2Rd

[E(x, y) + u(x)� u(y)]. (39)

Proposition 60. Let E : Rd⇥Rd ! R be a C0 superlinear, translation bounded and
translation uniformly continuous interaction energy. Then there exists a uniformly
continuous function ū : Rd ! R which solves the Lax-Oleinik equation T�[ū] = ū+c̄.
In particular, there exists a backward calibrated configuration {x�k}+1

k=0 at the level
c̄ with uniformly bounded jumps supk�1 kx�k+1 � x�kk < +1.

Proposition 61. Let (⌦, {⌧t}t2Rd

, L) be an almost periodic interaction model. Sup-
pose L is superlinear. Then

c̄ := sup
u2C0(Rd)

inf
x,y2Rd

[E!(x, y) + u(x)� u(y)]

is independent of ! and, for a certain !̄ 2 ⌦, there exists a (bi-infinite) calibrated
configuration for E!̄ at the level c̄.

As we noticed above, the constant c̄ may not be equal to Ē if we do not assume
any growth at infinity on u. It is not clear that calibrated configurations exist for
any environment !.

The first two lemmas exhibit a priori compactness for the Lax-Oleinik operator.
Let

c0 := inf
x,y2Rd

E(x, y) and K0 := sup
ky�xk1

E(x, y)� c0. (40)

Notice that c0  c̄  supxE(x, x) and that K0 < +1 thanks to the translation
boundedness. Then, we have the following lemma.



51

Lemma 62. Let c0  c  c̄ and u 2 C0(Rd) be such that u(y)� u(x)  E(x, y)� c
for every x, y 2 Rd. Then u is Lipschitz in the large with constant K0,

8x, y 2 Rd, |u(y)� u(x)|  K0
�

ky � xk+ 1
�

.

Proof. Let n � 1 be the unique integer satisfying n � 1 < ky � xk  n. Define
xk := x+ k

n(y � x), for k = 0, . . . , n. Then

u(xk+1)� u(xk)  E(xk, xk+1)� c, |u(xk+1)� u(xk)|  K0,

|u(y)� u(x)|  nK0  K0
�

ky � xk+ 1
�

.

Notice that T� is a monotone operator, u  v ) T�[u]  T�[v], commutes with
the constants, T�[u + �] = u + �, 8� 2 R, and is concave, T�[�u + (1 � �)v] �
�T�[u] + (1 � �)T�[v], 8� 2 [0, 1]. Notice also that u + c  T�[u] is equivalent to
u(y)� u(x)  E(x, y)� c, 8x, y 2 Rd. Define the semi-norm

kukLip := sup
0<ky�xkR0

|u(y)� u(x)|
ky � xk+ sup

kx�zk_ky�zk2R0

|E(z, y)� E(z, x)| , (41)

where R0 > 0 is a constant chosen a priori and given explicitly by the formula

R0 :=
1

K0

⇣

K0 +B0 + sup
x2Rd

E(x, x)
⌘

, (42)

with B0 > 0 defined by the superlinearity:

8x, y 2 Rd, E(x, y) � 2K0ky � xk �B0. (43)

We equip C0(Rd) with the topology of the uniform convergence on any compact
sets. Then C0(Rd) becomes a Frechet space. Let

Hc :=
�

u 2 C0(Rd) : u(0) = 0, u+ c  T�[u] and kukLip  1
 

. (44)

Define T̃�[u] := T�[u] � T�[u](0). Notice that the case c0 = c̄ occurs if, and only
if, u ⌘ 0 satisfies the inequality u+ c̄  T�[u]. For the general situation, we point
out the following lemma.

Lemma 63. For every c0 < c < c̄, Hc is a nonempty compact convex set of C0(Rd),
T̃�[Hc] ✓ Hc, and T̃� is a continuous map restricted to Hc.

Proof. Define

H̃c :=
�

u 2 C0(Rd) : u(0) = 0 and u+ c  T�[u]
 

.

Because of the monotonicity and concavity of T�, H̃c is a closed convex subset of
C0(Rd) invariant by T̃�. By the choice of c, H̃c is nonempty. By Ascoli theorem,
Hc is compact in C0(Rd). We prove that T̃�[H̃c] ✓ Hc and that T̃� : H̃c ! C0(Rd)
is continuous.
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We first prove that kT�[u]kLip  1 for every u 2 H̃c. We claim that an optimal
point xopt in the definition of T�[u](x) is at a uniform distance from x. Indeed,
notice that we have T�[u](x) = u(xopt) + E(xopt, x)  u(x) + E(x, x), and then

2K0kx� xoptk �B0  E(xopt, x)  u(x)� u(xopt) + E(x, x)

 K0(kx� xoptk+ 1) + E(x, x),

from which it follows that
kx� xoptk  R0.

We show now that kT�[u]kLip  1. For ky � xk  R0, we obtain that

T�[u](x) = u(xopt) + E(xopt, x),

T�[u](y)  u(xopt) + E(xopt, y),

T�[u](y)� T�[u](x)  sup
kx�zk_ky�zk2R0

|E(z, y)� E(z, x)|,

kT�[u]kLip  1.

We next show the T� restricted to H̃c is continuous. For u, v 2 H̃c and R > 0,
notice that

T�[u](x) = u(xopt) + E(xopt, x),

T�[v](x)  v(xopt) + E(xopt, x),

sup
kxkR

|T�[v](x)� T�[u](x)|  sup
kxkR+K0

|v(x)� u(x)|.

Then T� and therefore T̃� are continuous for the topology of the uniform conver-
gence on compact sets.

Proof of proposition 60. The set Hc̄ = \c0<c<c̄Hc is a nonempty compact convex
subset of the Hausdor↵ topological vector space C0(Rd) and T̃� : Hc̄ ! Hc̄ is a
continuous map. By Schauder theorem (see [5] for a recent reference), T̃� admits a
fixed point ū 2 Hc̄. Let c := T̃�[ū](0), then T�[ū] = ū+ c. Since ū 2 Hc̄, we have,
on the one hand, ū+ c̄  T�[ū] = ū+ c and therefore c̄  c. On the other hand,

c̄ � inf
x,y

⇥

E(x, y) + ū(x)� ū(y)
⇤

= inf
y

⇥

T�[ū](y)� ū(y)
⇤

= c.

We have just shown that there exists ū 2 C0(Rd), uniformly Lipschitz in the large,
with kūkLip  1, such that T�[ū] = ū + c̄, where c̄ is given by (39). We construct
by induction a backward calibrated configuration using the identity

8 k � 1, ū(x�k+1) = ū(x�k) + E(x�k, x�k+1)� c̄.

Proof of proposition 61. Let

c̄(!) := sup
u2C0(Rd)

inf
x,y2Rd

[E!(x, y) + u(x)� u(y)].
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The conclusion of the proof of proposition 60 asserts that the supremum in c̄(!)
can be realized on a smaller space which may be defined independently of !. Let

C0
Lip(Rd) :=

n

u 2 C0(Rd) :u(0) = 0, kukLip  1
o

,

where the new semi-norm kukLip is given by

kukLip := sup
ky�xk�R̄

|u(y)� u(x)|
2K̄ky � xk

_

_

sup
0<ky�xkR̄

inf
kx�zk2R̄
ky�zk2R̄

|u(y)� u(x)|
ky � xk+ sup

!2⌦
|E!(z, y)� E!(z, x)|

,

with K̄, R̄ given as in (40), (42) and (43):

K̄ := sup
!2⌦, ky�xk1

E!(x, y)� inf
!2⌦, x,y2Rd

E!(x, y),

R̄ :=
1

K̄

⇣

K̄ + B̄ + sup
!2⌦, x2Rd

E!(x, x)
⌘

,

8x, y 2 Rd, inf
!2⌦

E!(x, y) � 2K̄ky � xk � B̄.

Then
c̄(!) := max

u2C0
Lip

(Rd)
inf

x,y2Rd

[E!(x, y) + u(x)� u(y)].

For every u 2 C0
Lip(Rd), the infimum is a continuous function of ! thanks to the

uniform superlinearity of E!. In particular, ! 7! c̄(!) is lower semi-continuous.
By the topological stationarity (10) of E!, ! 7! c̄(!) is constant along any orbit
{⌧t(!)}t2Rd

. The set {! : c̄(!)  inf c̄} is closed, nonempty, and invariant. By
minimality, c̄ is a constant function.

We now prove the existence of a calibrated configuration at the level c̄. Let
! 2 ⌦ be fixed. By proposition 60, there exists u! 2 C0

Lip(Rd) such that

8 y 2 Rd, u!(y) = min
x2Rd, ky�xkR̄

⇥

u!(x) + E!(x, y)� c̄
⇤

.

Let n � 1. We construct by induction a backward configuration {x�k}k=2n
k=0 starting

at x0 = 0 and satisfying

8 1  k  2n, u!(x�k+1) = u!(x�k) + E!(x�k, x�k+1)� c̄.

By shifting by the same amount the environment !n = ⌧x�n

(!) and the configu-
ration xnk := xk�n � x�n, we obtain a finite configuration {xnk}nk=�n centered at
the origin xn0 = 0 and calibrated for E!

n

at the level c̄. Thanks to the fact that
the successive jumps are uniformly bounded, by a diagonal extraction procedure,
one can find a subsequence of integers {n0}, !̄ 2 ⌦, and a bi-infinite configuration
{x̄k}+1

k=�1 so that !n ! !̄ and xnk ! x̄k for every k 2 Z along the subsequence

{n0}. Since the calibration property passes to the limit, {x̄k}+1
k=�1 is a calibrated

configuration for E!̄ at the level c̄.
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[1] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of
probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2005.
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C⇤-ALGEBRAS OF PENROSE HYPERBOLIC TILINGS

HERVE OYONO-OYONO AND SAMUEL PETITE

Abstract. Penrose hyperbolic tilings are tilings of the hyperbolic plane which
admit, up to a�ne transformations a finite number of prototiles. In this paper,
we give a complete description of the C⇤-algebras and of the K-theory for such
tilings. Since the continuous hull of these tilings have no transversally invariant
measure, these C⇤-algebras are traceless. Nevertheless, harmonic currents give
rise to 3-cyclic cocycles and we discuss in this setting a higher-order version of
the gap-labelling.

Keywords: Hyperbolic aperiodic tilings, C⇤-algebras of dynamical systems,
K-theory, Cyclic cohomology
2000 Mathematics Subject Classification: 37A55, 37B051, 46L55, 46L80
Subject Classification: Noncommutative topology and geometry, Dynamical
systems

1. Introduction

The non-commutative geometry of a quasi-periodic tiling studies an appropriate
C⇤-algebra of a dynamical system (X,G), for a compact metric space X, called the
hull, endowed with a continuous Lie group G action. This C⇤-algebra is of relevance
to study the space of leaves which is pathological in any topological sense. The hull
owns also a geometrical structure of lamination or foliated space, the transverse
structure being just metric [?]. The C⇤-algebras and the non-commutative tools
provide then topological and geometrical invariants for the tiling or the lamina-
tion. Moreover, some K-theoretical invariants of Euclidean tilings have a physical
interpretation. In particular, when the tiling represents a quasi-crystal, the image
of the K-theory under the canonical trace labels the gaps in the spectrum of the
Schrödinger operator associated with the quasi-crystal [?].

For an Euclidean tiling, the group G is Rd and Rd-invariant ergodic probability
measures on the hull are in one-to-one correspondence with ergodic transversal
invariant measures and also with extremal traces on the C⇤-algebra [?]. These
algebras are well studied and this leads, for instance, to give distinct proofs of the
gap labelling conjecture [?, ?, ?], i.e. for minimal Rd-action, the image of the K-
theory under a trace is the countable subgroup of R generated by the images under
the corresponding transversal invariant measure of the compact-open subsets of the
(Cantor) canonical transversal.

For a hyperbolic quasi-periodic tiling, the situation is quite distinct. The group
of a�ne transformations acts on the hull and since this group is not unimodular,
there is no transversally invariant measure [?]. A new phenomena shows up for the
C⇤-algebra of the tiling: it has no trace. Nevertheless, the a�ne group is amenable,
so the hull admits at least one invariant probability measure. These measures are

1
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actually in one-to-one correspondence with harmonic currents [?], and they provide
3-cyclic cocycles on the smooth algebra of the tiling.

The present paper is devoted to give a complete description of the C⇤-algebra and
the K-theory of a specific family of hyperbolic tilings derivated from the example
given by Penrose in [?]. The dynamic of the hulls under investigation, have a
structure of double suspension (this make sens in term of groupoids as we shall
see in section ??) which enables to make explicit computations. This suggests that
the pairing with the 3-cyclic cocycle is closely related to the one-dimension gap-
labelling for a subshift associated with the tiling. But the right setting to state an
analogue of the gap-labelling seems to be Frechet algebras and a natural question
is whether this bring in new computable invariants.

Background on tiling spaces is given in the next section and we construct exam-
ples of hyperbolic quasi-periodic tilings in the third section. A description of the
considered hulls is given in section 4. In section 5, we recall the background on
the groupoids and their C⇤-algebras. Sections 6 and 7 are devoted to the complete
description of the C⇤-algebras of the examples and their K-theory groups in terms
of generetors are given in section 8. For readers interested in topological invariants
of the hull, we compute its K-theory and its Cěch cohomology and we relate these
computations to the former one. In the last section we construct 3-cyclic cocycles
associated to these tilings and we discuss an odd version of the gap-labelling.

2. Background on tilings

Let H2 be the real hyperbolic 2-space, identified with the upper half complex
plane: {(x, y) 2 R2 |y > 0} with the metric ds2 = dx2+dy2

y2 . We denote by G the
group of a�ne transformations of this space: i.e. the isometries of H2 of the kind
z 7! az + b with a, b reals and a > 0.

A tiling T = {t1, . . . , tn, . . .} of H2, is a collection of convex compact polygons ti
with geodesic borders, called tiles, such that their union is the whole space H2, their
interiors are pairwise disjoint and they meet full edge to full edge. For instance,
when F is a fundamental domain of a co-compact lattice � of isometries of H2, then
{�(F ), � 2 �} is a tiling of H2. However the set of tilings is much richer than the
one given by lattices as we should see later on. Similarly to the Euclidian case, a
tiling is said of G-finite type or finite a�ne type, if there exists a finite number of
polygons {p1, . . . , pn} called prototiles such that each ti is the image of one of these
polygons by an element of G. Besides its famous Euclidean tiling, Penrose in [?]
constructs a finite a�ne type tiling made with a single prototile which is not stable
for any Fuchsian group. The construction goes as follows.

2.1. Hyperbolic Penrose’s tiling. Let P be the convex polygon with vertices
Ap with a�x (p� 1)/2 + ı for 1  p  3 and A4 : 2ı + 1 and A5 : 2ı P is a polygon
with 5 geodesic edges. Consider the two maps:

R : z 7! 2z and S : z 7! z + 1.

The hyperbolic Penrose’s tiling is defined by P = {Rk � SnP | n, k 2 Z} (see figure
??). This is an example of finite a�ne type tiling of H2.

This tiling is stable under no co-compact group of hyperbolic isometries. The
proof is homological: we associate with the edge A4A5 a positive charge and two
negative charges with edges A1A2, A2A3. If P was stable for a Fuchsian group,
then P would tile a compact surface. Since the edge A4A5 can meet only the edges
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Figure 1. The hyperbolic Penrose’s tiling

A1A2 or A2A3, the surface has a neutral charge. This is in contradiction with the
fact P is negatively charged.
G. Margulis and S. Mozes [?] have generalized this construction to build a family
of prototiles which cannot be used to tile a compact surface. Notice the group of
isometries which preserves P is not trivial and is generated by the transformation
R. In order to break this symmetry, it is possible, by a standard way, to decorate
prototiles to get a new finite a�ne type tiling which is stable under no non-trivial
isometry (we say in this case that the tiling is aperiodic).

3. Background on tiling spaces

In this section, we recall some basic definitions and properties on dynamical
systems associated with tilings. We refer to [?], [?] and [?] for the proofs. We give
then a description of the dynamical system associated to the hyperbolic Penrose’s
tiling.

3.1. Action on tilings space. First, note that the group G acts transitively, freely
(without a fixed point) and preserving the orientation of the surface H2, thus G
is a Lie group homeomorphic to H2. The metric on H2 gives a left multiplicative
invariant metric on G. We fix the point O in H2 with a�x i that we call origin.
For a tiling T of G finite type and an isometry p in G, the image of T by p is again
a tiling of H2 of G finite type. We denote by G.T the set of tilings which are image
of T by isometries in G. The group G acts on this set by the left action:

G⇥G.T �! G.T
(p, T 0) 7�! p.T 0 = p(T 0).

We equip G.T with a metrizable topology, so that the action becomes continuous.
A base of neighborhoods is defined as follows: two tilings are close one to the other
if they agree, on a big ball of H2 centered at the origin, up to an isometry in G close
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to the identity. This topology can be generated by the metric � on G.T defined by
(see [?]):
For T and T 0 be two tilings of G.T , let

A = {✏ 2 (0,
1p
2
] | 9 g 2 B✏(Id) ⇢ G s.t. g.T \B1/✏ = T 0 \B1/✏}

where B1/✏ is the set of points x 2 H2
⇠= G such that d(x,O) < 1/✏.

We define:
�(T, T 0) = inf A if A 6= ;

�(T, T 0) =
1p
2

else.

The continuous hull of the tiling T , is the metric completion of G.T for the metric
�. We denote it by XG

T . Actually this space is a set of tilings of H2 of G-finite type.
A patch of a tiling T is a finite set of tiles of T . It is straightforward to show that
patches of tilings in XG

T are copies of patches of T . The set XG
T is then a compact

metric set and the action of G on G ·T can be extended to a continuous left action
on this space. The dynamical system (XG

T , G) has a dense orbit: the orbit of T .
Some combinatorial properties can be interpreted in a dynamical way like, for
instance, the following.

Definition 3.1. A tiling T satisfies the repetitivity condition if for each patch P ,
there exists a real R(P ) such that every ball of H2 with radius R(P ) intersected with
the tiling T contains a translated by an element G of the patch P .

This definition can be interpreted from a dynamical point of view (for a proof see
for instance [?]).

Proposition 3.2 (Gottschalk). The dynamical system (XG
T , G) is minimal (any

orbit is dense) if and only if the tiling T satisfies the repetitivity condition.

We call a tiling aperiodic if the action of G on XG
T is free: for all p 6= Id of G

and all tilings T 0 of XG
T we have p.T 0 6= T 0.

As we have seen in the former section the hyperbolic Penrose’s tiling is not aperiodic,
however, using this example, we shall construct in section ?? uncountably many
examples of repetitive and aperiodic a�ne finite type tilings.

When the tiling T is aperiodic and repetitive, the hull XG
T has also a geometric

structure of a specific lamination called a G-solenoid (see [?]). Locally at any point
x, there exists a vertical germ which is a Cantor set included in XG

T , transverse to
the local G-action and which is defined independently of the neighborhood of the
point x. This implies that XG

T is locally homeomorphic to the Cartesian product of
a Cantor set with an open subset (called a slice) of the Lie group G. The connected
component of the slices that intersect is called a leaf and has a manifold structure.
Globally, XG

T is a disjoint union of uncountably many leaves, and it turns out that
each leaf is a G-orbit. Since the action is free, each leaf is homeomorphic to H2.

In the aperiodic case, the G-action is expansive: There exists a positive real ✏
such that for every points T1 and T2 in the same vertical in XG

T , if �(T1.g, T2.g) < ✏
for every g 2 G, then T1 = T2.
Furthermore this action has locally constant return times: if an orbit (or a leaf)
intersects two verticals V and V 0 at points v and v.g where g 2 G, then for any
point w of V close enough to v, w.g belongs to V 0.
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3.2. Structure of the hull of the Penrose Hyperbolic tilings. First recall
the notion of suspension action for X a compact metric space and f : X ! X a
homeomorphim. The group Z acts diagonally on the product space X ⇥ R by the
following homeomorphism denoted Af

Af : X ⇥ R ! X ⇥ R
(x, t) 7! (f(x), t� 1)

The quotient space of (X ⇥ R)/Af , where two points are identified if they belong
to the same orbit, is a compact set for the product topology and is called the
suspension of (X, f). The group R acts also diagonally on X⇥R: trivially on X and
by translation on R. Since this action commutes with Af , this induces a continuous
R action on the suspension space (X ⇥ R)/Af that we call: the suspension action
of the system (X, f) and we denote it by

�

(X ⇥ R)/Af , R
�

.
We recall here, the construction of the dyadic completion of the integers. On

the set of integers Z, we consider the dyadic norm defined by

|n|2 = 2� sup{p2N, 2p divides |n|} n 2 Z.

Let ⌦ be the completion of the set Z for the metric given by |.|2. The set ⌦ has
a commutative group structure where Z is a dense subgroup, and ⌦ is a Cantor
set. The continuous action given by the map o : x 7! x + 1 on ⌦ is called adding-
machine or odometer and is known to be minimal and equicontinuous. We denote
by ((⌦⇥ R)/Ao, R) the suspension action of this homeomorphism.

Recall that a conjugacy map between two dynamical systems is a homeomophism
which commutes with the actions. Let N be the group of transformations {z 7!
z + t, t 2 R} isomorphic to R.

Proposition 3.3. Let XN
P be the closure (for the tiling topology) of the orbit N .P ⇢

XG
P . Then the dynamical system (XN

P ,N ) is conjugate to the suspension action of
the odometer ((⌦⇥ R)/Ao, R).

Proof. Let � : N .P ! (⌦⇥R)/Ao be the map defined by �(P+t) = [0, t] where [0, t]
is the Ao-class of (0, t) 2 ⌦⇥R. Since the tiling is invariant under no translations,
the application � is well defined. It is straightforward to check that � is continuous
for the tiling topology and for the topology on (⌦⇥R)/Ao arising from the dyadic
topology on ⌦. So the map � extends by continuity to XN

P . Let us check that �
is a homeomorphism by constructing its inverse. Let  : Z ⇥ R ! XN

P defined by
 (n, t) = P + n + t. This application is continuous for the dyadic topology, so it
extends by continuity to ⌦ ⇥ R. Notice  (n, t) is constant along the orbits of the
Ao action on Z⇥R which is dense in ⌦⇥R. Thus  is constant along the Ao-orbits
in ⌦ ⇥ R and  factorizes through a map  from the suspension (⌦ ⇥ R)/Ao to
XN
P . It is plain to check that  �� = Id on the dense set N .P and that � � = Id

on the dense set ⇡(Z ⇥ R) where ⇡ : ⌦ ⇥ R ! (⌦ ⇥ R)/Ao denotes the canonical
projection. Hence � is an homeomorphism from XN

P onto (⌦⇥R)/Ao. It is obvious
that � commutes with the R-actions. ⇤

4. Examples

We construct in this section a family of tilings of H2 of finite a�ne type, indexed
by sequences on a finite alphabet. For uncountably many of them, the tilings will be
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aperiodic and repetitive, the action on the associated hull will be free and minimal.
A description of these actions in terms of double-suspension is given.

4.1. Construction of the examples. To construct such tilings we will use the
hyperbolic Penrose’s tiling described in section ??, so we will keep the notations
of this section. Recall that its stabilizer group under the action of G, is the group
h R i generated by the a�ne transformations R. The main idea is to ”decorate” this
tiling in order to break its symmetry, the decoration will be coded by a sequence
on a finite alphabet. By a decoration, we mean that we will substitute to each
tile t the same polygon t equipped with a color. We take the convention that two
colored polygons are the same if and only if the polygons are the same up to an
a�ne map and they share the same color. By substituting each tile by a colored
tile, we obtain a new tiling of finite a�ne type with a bigger number of prototiles.
Notice that the coloration is not canonical. It also possible to do the same by
substituting to a tile t, an unique finite family of convex tiles {ti}i, like triangles,
such that the union of the ti is t and the tiles ti overlaps only on their borders. We
choose the coloration only for presentation reasons.

Let r be an integer bigger than 1. We associate to each element of {1, . . . , r} an
unique color. Let P be the polygon defined in section ?? to construct the Penrose’s
tiling. For an element i of {1, . . . , r}, we denote by Pi the prototile P colored in
the color i. To a sequence w = (wk)k 2{1, . . . , r}Z, we associate the G-finite-type
tiling P(w) built with the prototiles Pi for i in {1, . . . , r} and defined by:

P(w) = {Rq � Sn(Pw�q

), n, q 2 Z}.
Notice that the stabilizer of this tiling is a subgroup of h R i.

The set of sequences on {1, . . . , r} is the product space {1, . . . , r}Z which is a
Cantor set for the product topology. There exists a natural homeomorphism on
it called the shift. To a sequence (wn)n2Z

the shift � associates the sequence
(wn+1)n2Z

. Let Zw denote the closure of the orbit of w by the action of the shift
�: Zw = {�n(w), n 2 Z}. The set Zw is a compact metric space stable under the
action of �.

Remark 4.1. The map

Z! ! XG
P(w); !0 7! P(w0)

is continuous.

Since R.P(w) denotes the tiling image of P(w) by R, we get the relation

(4.1) R.P(w) = P(�(w)).

Thanks to this, we obtain the following property:

Lemma 4.2.
• The sequence w is aperiodic for the shift-action, if and only if P(w) is stable

under no non-trivial a�ne map.
• The dynamical system (Zw, �) is minimal, if and only if (XG

P(w), G) is min-
imal.

Proof. The first point comes from the relation ?? and from the fact that the stabi-
lizer of P(w) is a subgroup of h R i. The last point comes from the characterization
of minimal sequences: (Zw, �) is minimal if and only if each words in w appears
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infinitely many times with uniformly bounded gap [?]. This condition is equivalent
to the repetitivity of P(w). ⇤

Recall that we have defined the group N = {z 7! z + t, t 2 R} and that XN
P

stands for the closure (for the tiling topology) of the N -orbit N .P in XG
P of the

uncolored tiling P. Notice that the continuous action of R on XG
P preserves the

orbit N .P so we get an homeomorphism of XN
P that we denote also by R. We

consider on the space XN
P ⇥ Zw ⇥ R⇤

+ equipped with the product topology, the
homeomorphism R defined by R(T , w0, t) = (R.T , �(w0), t/2). The quotient space
(XN
P ⇥ Zw ⇥ R⇤

+)/R, where the points in the same R orbit are identified, is a
compact space.

The a�ne group G also acts on the left on XN
P ⇥ Zw ⇥R⇤

+; where the action of
an element g : z 7! az + b is given by the homeomorphism

(T , w0, t) 7! (T +
b

at
, w0, at) = g.(T , w0, t).

It is straightforward to check that the application R commutes with this action,
so this defines a G-continuous action on the quotient space (XN

P ⇥ Zw ⇥ R⇤
+)/R.

Proposition 4.3. Let w be an element of {1, . . . , r}Z. Then the map

 : G.P(w) ! (XN
P ⇥ Zw ⇥ R⇤

+)/R
g.P(w) 7! [g.(P, w, 1)]

where [x] denotes the R-class of x, extends to a conjugacy map between (XG
P(w), G)

and
�

(XN
P ⇥ Zw ⇥ R⇤

+)/R, G
�

.

Proof. Let � be the transformation N .P ⇥ Zw ⇥ R⇤
+ ! XG

P(w) defined by

�(P + ⌧, w0, t) = Rt.(P(w0) + ⌧)

where Rt denotes the map z 7! tz. According to remark ??, the application �
is continuous for the tiling topology on N .P, so it extends by continuity to a
continuous map from XN

P ⇥ Zw ⇥ R⇤
+ to XG

P(w). Thanks to relation (??), we get
� �R = � on the dense subset N .P ⇥ Zw ⇥ R⇤

+. Therefore the map � factorizes
throught a continuous map � : (XN

P ⇥ Zw ⇥R⇤
+)/R! XG

P(w). Since the stabilizer
of the tiling P(w) is a subgroup of the one generated by the transformation R, and
by relation (??), the map

 : G · P(w) !
�

XN
P ⇥ Zw ⇥ R⇤

+

�

/R; Rt · P(w) + ⌧ 7! [P + ⌧/t, !, t]

is well defined. It is straightforward to check that  is continuous, so it extends
to a continuous map from XG

P(w) to
�

XN
P ⇥ Zw ⇥ R⇤

+

�

/R that we denote again  .
Furthermore we have � �  = Id on G · P(w) and  � � = Id on the dense set
⇡(N .P ⇥ Zw ⇥ R⇤

+) where ⇡ denotes the canonical projection XN
P ⇥ Zw ⇥ R⇤

+ !
�

XN
P ⇥Zw⇥R⇤

+

�

/R. Hence the map � is an homeomorphism. The homeomorphism
 obviously commutes with the action. ⇤

Notice that, XN
P is locally the Cartesian product of a Cantor set by an interval

of R. For w 2 {1, . . . , r}Z, XG
P(w) is locally homeomorphic the product of a Cantor

set by an open subset (a slice) of R⇤
+⇥R since the Cartesian product of two Cantor

sets is again a Cantor set. The G-action maps slices onto slices.
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4.2. Ergodic properties of Penrose’s tilings. For a metric space X and a con-
tinuous action of a group � on it, a �-invariant measure is a measure µ defined
on the Borel �-algebra of X which is invariant under the action of � i.e.: For any
measurable set B ⇢ X and any g 2 �, µ(B.g) = µ(B). For instance, any group �
acts on itself by right multiplication, there exists (up to a scalar) only one measure
invariant for this action: it is called the Haar measure.

Any action of an amenable group � (like Z, R and all their extensions) on a
compact metric space X admits a finite invariant measure and in particular, any
homeomorphism f of X preserves a probability measure. An ergodic invariant
measure µ is such that every measurable functions constant along the orbits are
µ almost surely constant. Every invariant measure is the sum of ergodic invariant
measures [?]. A conjugacy map sends the invariant measure to invariant measure
and the ergodic measures to the ergodic measures.

In our case, the group of a�ne transformations G, is the extension of two groups
isomorphic to R, hence is amenable. It is well known that the only invariant
measures for the suspension action

�

(X⇥R)/Af , R
�

are locally the images through
the canonical projection ⇡ : X ⇥ R !

�

X ⇥ R
�

/Af of the measures µ ⌦ � where
µ is a f -invariant measure on X and � denotes the Lebesgue measure of R. The
proof is actually contained in property ??.

It is well known also that the map o : x 7! x + 1 on the dyadic set of integers ⌦,
admits only one invariant probability measure: the Haar probability measure on
⌦. Hence the suspension of this action

�

(⌦⇥ R)/Ao, R
�

admits only one invariant
probability measure. By proposition ??, XN

P has only one invariant probability
measure ⌫. Notice that the map R preserves XN

P , and since RNR�1 = N , the
probability R⇤⌫ is N -invariant and hence R preserves ⌫. Nevertheless, the local
product decomposition of ⌫ is not invariant by R, because R divides by 2 the length
of the intervals of the N -orbit. So R has to inflate the Haar measure on ⌦ by a
factor 2.

Proposition 4.4. If w is an element in {1, . . . , r}Z, then any finite invariant
measure of

�

(XN
P ⇥ Zw ⇥ R⇤

+)/R, G
�

is locally the image through the projection
XN
P ⇥ Zw ⇥ R⇤

+ ! (XN
P ⇥ Zw ⇥ R⇤

+)/R of a measure ⌫ ⌦ µ⌦m where

• ⌫ is the only invariant probability measure of (XN
P , R);

• m is the Haar measure of (R⇤
+, .);

• µ is a finite invariant measure of (Zw, �).

Proof. It is enough to prove this for an ergodic finite G-invariant measure ✓ on the
suspension (XN

P ⇥ Zw ⇥ R⇤
+)/R. Since R acts cocompactly on XN

P ⇥ Zw ⇥ R⇤
+,

✓ defines a finite measure on a fundamental domain of R, and the sum of all the
images of this measure by iterates of R and R�1 defines a �-finite measure ✓ on
XN
P ⇥ Zw ⇥ R⇤

+ which is G and R-invariant.
Let ⇡2 : XN

P ⇥ Zw ⇥ R⇤
+ ! Zw be the projection to the second coordinate, then

⇡2⇤✓ is a shift invariant measure on Zw. The measure ✓ can be disintegrated over
⇡2⇤✓ = µ by a family of measures (�w0)w02Z

w

defined for µ-almost every w0 2 Zw

on XN
P ⇥ {w0}⇥ R⇤

+ such that

✓(B ⇥ C) =
Z

C

�w0(B)dµ(w0),

for any Borel sets B ⇢ XN
P ⇥ R⇤

+ and C ⇢ Zw.
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The G-invariance of ✓ implies that the measures �w0 are G-invariant for almost
all w0. The projection to the first coordinate ⇡1 : XN

P ⇥ {w0} ⇥ R⇤
+ ! XN

P is
N -equivariant. The measures ⇡1⇤�w0 are then N -invariant measures, hence are
proportional to ⌫. Each measure �w0 can be disintegrated over ⌫ by a family of
measures (mx,w0)x2XNP , w02Z

w

on R⇤
+ defined for ⌫-almost every x 2 XN

P , so that

�w0(B ⇥ {w0}⇥ I) =
Z

B

Z

I

mx,w0d⌫(x),

for any Borel sets B ⇢ XN
P and I ⇢ R⇤

+. Each measure �w0 is invariant under the
action of transformations of the kind z 7! az for a 2 R⇤

+. It is then straightforward
to check that the measures mx,w0 are multiplication-invariant for almost every x. By
unicity of the Haar measure, there exists a measurable positive function (x,w0) 7!
h(x,w0) defined almost everywhere so that mx,w0 = h(x,w0)m. The N -invariance
of the measures �w0 implies that the map h is almost surely constant along the N -
orbits, and the R-invariance of ✓ implies that h is almost surely constant along the
R-orbits. This defines then a measurable map on the quotient space by R which is
G-invariant, the ergodicity of ✓ implies this map is almost surely constant. ⇤

Notice that an invariant measure on XG
P(w) can be decomposed locally into the

product of a measure on a Cantor set by a measure along the leaves. Since the map
R does not preserve the transversal measure on ⌦ in XN

P , the holonomy groupoid
of XG

P(w) does not preserve the transversal measure on the Cantor set.
The G-action is locally free and acts transitively on each leaf, so each orbits in-
herits a hyperbolic 2-manifolds structure. Actually, XG

P(w) can be equipped with a
continuous metric with a constant curvature �1 in restriction to the leaves. The
invariant measures of XG

P(w) have then also a geometric interpretation in terms of
harmonic measures, a notion introduced by L. Garnett in [?].

Definition 4.5. A probability measure µ on M is harmonic if
Z

M

�fdµ = 0

for any continuous function f with restriction to leaves of class C2, where � denotes
the Laplace-Beltrami operator in restriction on each leaf.

Actually, it is shown in [?] , that on XG
P(w) the notions of harmonic and invariant

measures are the same and such measures can be described in terms of inverse limit
of vectoriel cones.

5. Transformation groupoids

We gather this section with results on groupoids and their C⇤-algebras. Good
material on this topic can be found in [?]. Let us fix first some notations. Let G be
a locally compact groupoid, with base space X, range and source maps respectively
r : G ! X and s : G ! X. Recall that X can be viewed as a closed subset of G
(the set of units). For any element x of X, we set

Gx = {� 2 G such that r(�) = x}

and
Gx = {� 2 G such that s(�) = x}.
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Let us denote for any � in G by L� : Gs(�) ! Gr(�) the left translation by �.
Thourought this section, all the groupoids will be assumed locally compact and
second countable. Recall that a Haar system � for G is a family (�x)x2X of borelian
measures on G such that

(1) the support of �x is Gx;
(2) for any f in Cc(G), the map X ! C; x !

R

Gx

fd�x is continuous;
(3) L�⇤�

s(�) = �r(�) for all � in �.
Our prominent examples of groupoid will be semi-direct product groupoid: let H
be a locally compact group acting on a locally compact space X. The semi-direct
product groupoid X o H of X by H is defined by

• X ⇥H as a topological space ;
• the base space is X and the structure maps are r : X oH ! X; (x, h) 7! x

and s : X o H ! X; (x, h) 7! h�1x ;
• the product is (x, h) · (h�1x, h0) = (x, hh0) for x in X and h and h0 in H.

Let µ be a left Haar mesure on H. Then the groupoid X o H is equipped with
a Haar system �µ = (�µ

x)x2X given for any f in Cc(X ⇥ H) and any x in X by
�µ

x(f) =
R

H
f(x, h)dµ(h).

5.1. Suspension of a groupoid. Recall that any automorphism ↵ of a groupoid
G induces a homeomorphism of its base space X that we shall denote by ↵X .

Definition 5.1. Let G be a groupoid with base space X equipped with a Haar system
� = (�x)x2X . A groupoid automorphism ↵ : G ! G is said to preserve the Haar
system � if there exists a continuous function ⇢↵ : G ! R+ such that for any x in
X the measures ↵⇤�x and �↵(x) on G↵(x) are in the same class and ⇢↵ restricted to
G↵(x) is d↵⇤�x

d�↵(x) . The map ⇢↵ is called the density of ↵.

Remark 5.2. Let G be a groupoid with base space X and Haar system � = (�x)x2X

and let ↵ : G ! G be an automorphism of groupoid preserving the Haar system �.
(1) Since L� � ↵ = ↵ � L↵�1(�) for any � in G, we get that

L�,⇤↵⇤�
↵�1(s(�)) = ↵⇤L↵�1(�),⇤�

s(↵�1(�)) = ↵⇤�
r(↵�1(�)).

Since L�,⇤↵⇤�↵�1(s(�)) is a measure on Gr(�) absolutly continuous with re-
spect to L�,⇤�s(�) = �r(�) with density ⇢↵ �L��1 we see that ⇢↵ �L��1 and
⇢↵ coincide on Gr(�). In particular ⇢↵ is constant on Gx for any x in X.

(2) The automorphism of groupoid ↵�1 : G ! G also preserves the Haar system
� and ⇢↵�1 = 1/⇢↵ � ↵.

Definition 5.3. Let G be a groupoid with base space X, range and source map r and
s and let ↵ : G ! G be a groupoid automorphism. Using the notations of section ??
the suspension of the groupoid G respectively to ↵ is the groupoid G↵

def==(G⇥R)/A↵

with base space X↵
def==(X ⇥ R)/A↵

X

. For any � in G and t in R, let us denote by
[�, t] the class of (�, t) in G↵.

• The range map r↵ and the source map s↵ are defined in the following way:
– r↵([�, t]) = [r(�), t] for every � in G and t in R;
– s↵([�, t]) = [s(�), t] for every � in G and t in R;

• Let � and �0 be elements of G such that s(�) = r(�0) and let t be in R, then
[�, t] � [�0, t] = [� � �0, t];
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• [�, t]�1 = [��1, t].
There is an action of R on G↵ by automorphisms given for s in R and [�, t] in G↵

by s · [�, t] = [�, t + s].

Lemma 5.4. Let G be a groupoid with base space X equipped with a Haar system
� = (�x)x2X and let ↵ : G ! G be an automorphism preserving the Haar System �.
Let us assume that ⇢↵ = ⇢↵�↵. Then G↵ admits a Haar system �↵ =

⇣

�[x,t]
↵

⌘

[x,t]2X
↵

given for any [x, t] in X↵ and any continuous fonction f in Cc

⇣

G[x,t]
↵

⌘

by

�[x,t]
↵ (f) =

Z

Gx

⇢↵(�)�tf([�, t])d�x(�).

Proof.

• Let us prove first that the definition of �[x,t]
↵ (f) for [x, t] in X↵ and f in

Cc

⇣

G[x,t]
↵

⌘

makes sense.
Z

Gx

⇢↵(�)�tf([�, t])d�x(�) =
Z

Gx

⇢↵(↵(�))�tf([↵�1(↵(�), t])d�x(�)

=
Z

G↵(x)
⇢↵(�)�t+1f([↵�1(�), t])d�↵(x)(�)

=
Z

G↵(x)
⇢↵(�)�t+1f([�, t� 1])d�↵(x)(�).

• It is clear that the continuity condition is fullfilled. Let us show then that
(�[x,t])[x,t]2X

↵

is a Haar system. Let �0 be an element of G, let t be a real

number and let f be a function in Cc

⇣

G[r(�0),t]
↵

⌘

. Then

�[r(�0),t]
↵ (f) =

Z

Gr(�

0)
⇢↵(�)�tf([�, t])d�r(�0)(�)

=
Z

Gs(�

0)
⇢↵(�0 · �)�tf([�0 · �, t])d�s(�0)(�)

=
Z

Gs(�

0)
⇢↵(�)�tf([�0 · �, t])d�s(�0)(�)

= �[s(�0),t]
↵ (f � L[�0,t]),

where the third equality holds in view of remark ??.
⇤

5.2. C⇤-algebra of a suspension groupoid. Let us recall first the construction
of the reduced C⇤-algebra C⇤

r (G, �) associated to a groupoid G with base X and
Haar system � = (�x)x2X . Let L2(G, �) be the C0(X)-Hilbert completion of Cc(G)
equipped with the C0(X)-valued scalar product

h�, �0i(x) =
Z

Gx

�̄(��1)�0(��1)d�x(�)

for � and �0 in Cc(G) and x in X, i.e the completion of Cc(G) with respect to the
norm k�k = supx2Xh�, �i1/2. The C0(X)-module structure on Cc(G) extends to
L2(G, �) and h•, •i extends to a C0(X)-valued scalar product on L2(G, �). Recall
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that an operator T : L2(G, �) ! L2(G, �) is called adjointable if there exists an
operator T ⇤ : L2(G, �) ! L2(G, �), called the adjoint of T such that

hT ⇤�, �0i = h�, T�0i

for all � and �0 in L2(G, �). Notice that the adjoint, when it exists is unique and that
operator that admits an adjoint are automatically C0(X)-linear and continuous.
The set of adjointable operators on L2(G, �) is then a C⇤-algebra with respect to
the operator norm. Then any f in Cc(G) acts as an adjointable operator on L2(G, �)
by convolution

f · �(�) =
Z

Gr(�)
f(�0)�(�0�1�)d�r(�)(�0)

where � is in Cc(G), the adjoint of this operator being given by the action of
f⇤ : � 7! f̄(��1). The convolution product provides a structure of involutive
algebra on Cc(G) and using the action defined above, this algebra can be viewed as
a subalgebra of the C⇤-algebra of adjointable operators of L2(G, �). The reduced
C⇤-algebra C⇤

r (G, �) is then the closure of Cc(G) in the C⇤-algebra of adjointable
operators of L2(G, �). Namely, if we define for x in X the measure on Gx by
�x(�) =

R

Gx

�(��1)d�x(�) for any � in Cc(Gx), then L2(G, �) is a continuous field
of Hilbert spaces over X with fiber L2(Gx, �x) at x in X. The corresponding C0(X)-
structure on C⇤

r (G, �) is then given for h in C0(X) by the multiplication by h � s.

Example 5.5. Let H be a locally compact group acting on a locally compact space
X, and consider the semi-direct product groupoid X o H equipped with a Haar
system arising from the Haar measure on H. Then C⇤

r (X ⇥ H,�µ) is the usual
reduced crossed product C0(X) or H.

Let us denote for any x in X by ⌫x the representation of C⇤
r (G, �) on the fiber

L2(Gx, �x). Then for any f in C⇤
r (G, �), we get that kfkC⇤

r

(G,�) = supx2X k⌫x(f)k.

Lemma 5.6. Let G be a locally compact groupoid with base space X equipped with
a Haar system � = (�x)x2X and let ↵ : G ! G be an automorphism preserving
the Haar System �. Let us define the continuous map ⇢0↵ : G ! R; � 7! ⇢↵(��1).
Then there exists a unique automorphism ↵̃ of the C⇤-algebra C⇤

r (G, �) such that
for every f in Cc(G) we have ↵̃(f) = (⇢0↵⇢↵)1/2f � ↵�1.

Proof. The map Cc(G) ! Cc(G); � 7! ⇢01/2
↵ ��↵�1 extends uniquely to a continuous

linear and invertible map W : L2(G, �) ! L2(G, �) such that

hW · �, W · �i(x) = h�, �i(↵�1(x)),

for all x in X. Its inverse W�1 is defined by W�1(�) = (⇢0↵ � ↵)�1/2� � ↵ for all �
in Cc(G). Let us define

↵̃ : C⇤
r (G, �) ! C⇤

r (G, �); x 7! W · x · W�1.

Then W · f · W�1 = (⇢0↵⇢↵)1/2f � ↵�1 for all f in Cc(G). ⇤

Recall that if A is a C⇤-algebra and if � is an automorphism of A then the
mapping torus of A is the C⇤-algebra

A� = {f 2 C([0, 1], A) such that �(f(1)) = f(0)}.
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Namely, the mapping torus A� can be viewed as the algebra of continuous function
h : R ! A such that h(t) = �(h(t + 1)) for all t in R. In this picture, there is an
action of R on A� by translations defined for t in R and f in A� by

t · f(s) = f(s� t)

for any s in R. Translations then define a strongly continuous action by automor-
phisms b� of R on A� . By the mapping torus isomorphism, we have a natural Morita
equivalence between A o� Z and A ob� R.

Let ↵ be an automorphism of a groupoid G preserving a Haar system � and
with density ⇢↵. For a function f in Cc(G↵), we define f̂ in Cc([0, 1] ⇥ G) ⇢
C([0, 1], C⇤

r (G, �)) by f̂(t, �) = ⇢�t/2
↵ (�)⇢0�t/2

↵ (�)f([�, t]). We can check easily that
f̂ belongs to the mapping torus C⇤

r (G, �)↵̃.

Proposition 5.7. Let G be a locally compact groupoid with base space X equipped
with a Haar system � = (�x)x2X and let ↵ : G ! G be an automorphism preserving
the Haar System � such that ⇢↵ � ↵ = ⇢↵. Then there is an unique automorphism
of C⇤-algebras

⇤↵ : C⇤
r (G↵, �↵) ! C⇤

r (G, �)↵̃

such that ⇤↵(f) = f̂ for any f in Cc(G↵).

Proof. Let f be a function of Cc(G↵). Then

kf̂kC⇤
r

(G,�)
↵̃

= sup
t2[0,1]

kf̂(t, •))kC⇤
r

(G,�)

= sup
t2[0,1], x2X

k⌫x(f̂(t, •))k

On the other hand,

kfkC⇤
r

(G
↵

,�
↵

) = sup
t2[0,1], x2X

k⌫[x,t](f)k,

where ⌫[x,t] is the representation of C⇤
r (G↵, �↵) on the fiber L2(G↵,[x,t], �↵,[x,t]) at

[x, t] 2 (X ⇥ R)/A↵
X

. If we define for t in [0, 1] the map ⇡t : G ! G↵ : � 7! [�, t],
then

Cc(G[x,t]) ! Cc(Gx) : � 7! ⇢0
�t/2
↵ � � ⇡t

extends to an isometry Wt : L2(G↵,[x,t], �↵,[x,t]) ! L2(Gx, �x) and Wt conjugate
⌫[x,t](f) and ⌫x(f̂(t, •)). Thus kf̂kC⇤

r

(G,�)
↵̃

= kfkC⇤
r

(G
↵

,�
↵

) and

Cc(G↵) ! C⇤
r (G, �)↵̃; f 7! f̂

extends to a monomorphism ⇤↵ : C⇤
r (G↵, �↵) ! C⇤

r (G, �)↵̃. The set

A↵ = {h 2 Cc([0, 1]⇥ G) such that h(1, ↵(�)) = ⇢0
t/2
↵ ⇢t/2

↵ h(0, �) for all � 2 G}

is dense in C⇤
r (G, �)↵̃. Let us define for an element h of A↵ the map h̃ : G⇥R ! C

as the unique map such that

• h̃(�, t) = ⇢0�t/2
↵ ⇢�t/2

↵ h(t, �) for all � in G and t in [0, 1];
• h(↵(�), t) = h(�, t + 1) for all � in G and t in R.

Then h̃ defines a continuous map of Cc(G↵) whose image under ⇤↵ is h. Hence ⇤↵

has dense range in C⇤
r (G, �)↵̃ and thus is surjective. ⇤
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Remark 5.8. With the notations of above proposition, let us define for a real s the
automorphism of groupoid ✓s : G↵ ! G↵; [�, t] 7! [�, s + t]. Then ✓s is preserving
the Haar system �↵ = (�[x,t])[x,t]2X

↵

with density

G↵ ! R; [�, t] 7! ⇢↵(�)s.

We obtain from lemma ?? an automorphism ✓̃s of C⇤
r (G↵, �↵) which gives rise to a

strongly continuous action of R on C⇤
r (G↵, �↵) by automorphism. The isomorphism

⇤↵ : C⇤
r (G↵, �↵) ! C⇤

r (G, �)↵̃

of proposition ?? is then R-equivariant, where the action of R on C⇤
r (G, �)↵̃ is the

action b↵̃ associated to a mapping torus.

6. The dynamic of the uncolored Penrose tiling under translations

As we have seen before, the closure XN
P of N · P for the tiling topology is the

suspension (⌦ ⇥ R)/Ao of the odometer homeomorphism o : ⌦ ! ⌦; x 7! x + 1,
where ⌦ is the dyadic completion of the integers. The R-algebra C((⌦⇥ R)/Ao)
is then the mapping torus algebra of C(⌦) with respect to automorphism induced
by o. In consequence, the crossed product algebras C(XN

P ) o R and C(⌦) o Z are
Morita equivalent. The purpose of this section is to recall the explicit description
of the isomorphism C(⌦) o Z

⇠=! C(XN
P ) o R arising from this Morita equivalence.

For this, let us define on Cc(⌦⇥ R) the C(⌦) o Z-valued inner product

h⇠, ⇠0i(!, k) =
Z

R

⇠̄(!, s)⇠0(! � k, s + k)ds

for ⇠ and ⇠0 in Cc(⌦⇥R) and (!, k) in (⌦⇥R). This inner product is positive and
gives rise to a right C(⌦)oZ-Hilbert module E , the action of C(⌦)oZ being given
for h in Cc(⌦⇥ Z) and ⇠ in Cc(⌦⇥ R) by

⇠ · h(!, t) =
X

n2Z

⇠(n + !, t� n)h(n + !, n)

for (!, k) in ⌦ ⇥ R. The right C(⌦) o Z-Hilbert module E is also equipped with
a left action of C ((⌦⇥ R)/Ao) o R given for f in Cc ((⌦⇥ R)/Ao ⇥ R) and ⇠ in
Cc(⌦⇥ R) by

f · ⇠(!, t) =
Z

R

f([!, t], s)⇠(!, t� s)ds

for (!, k) in ⌦⇥R. We get in this way a C ((⌦⇥ R)/Ao)oR�C(⌦)oZ imprimitivity
bimodule which implements the Morita equivalence we are looking for. Actually,
there is an isomorphism of right C(⌦) o Z-Hilbert module

 : E ! L2([0, 1])⌦ C(⌦) o Z
defined in a unique way by  (g) = g⌦u for g in Cc(R) supported in (0, 1), where u
is the unitary of C(⌦) o Z corresponding to the positive generator of Z. Using the
right C ((⌦⇥ R)/Ao) o R-module structure of the C ((⌦⇥ R)/Ao) o R�C(⌦) o Z
imprimitivity bimodule E and the isomorphism  , we get an isomorphism

(6.1) C ((⌦⇥ R)/Ao) o R
⇠=! K(L2([0, 1]))⌦ C(⌦) o Z.

This isomorphism can be described as follows. Let us define for f and g in L2([0, 1])
the rank one operator

⇥f,g : L2([0, 1]) ! L2([0, 1]); h 7! fhg, hi.
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We define for ⇠ and ⇠0 in Cc(⌦⇥R) the continuous function of Cc ((⌦⇥ R)/Ao ⇥ R)

⇥⌦
⇠,⇠0([!, s], t) =

X

k2Z

⇠(! + k, s� k)⇠̄0(! + k, s� t� k)

for all ! in ⌦ and s and t in R. It is straightforward to check that ⇥⌦
⇠,⇠0 is well

defined and that

⇥⌦
⇠,⇠0 · ⌘ = ⇠h⇠0, ⌘i

for all ⌘ in Cc(⌦⇥R). If we set for f and g in Cc(R) with support in (0, 1) and for �
in C(⌦), ⇠ = 1⌦f , ⇠0 = �⌦g and ⇠00 : ⌦⇥R ! R; (!, t) 7! g(t+1), then the image of
⇥⌦

⇠,⇠0 under the isomorphism of equation (??) is ⇥f,g⌦� 2 K(L2([0, 1]))⌦C(⌦)oZ
and moreover,

(6.2) ⇥⌦
⇠,⇠0([!, s], t) =

X

k2Z

f(s� k)�̄(! + k)ḡ(s� t� k).

The image of ⇥⌦
⇠,⇠00 under the isomorphism of equation (??) is ⇥f,g⌦u 2 K(L2([0, 1]))⌦

C(⌦) o Z and moreover,

(6.3) ⇥⌦
⇠,⇠00([!, s], t) =

X

k2Z

f(s� k)ḡ(s + 1� t� k).

Let us define the automorphism ↵ of the groupoid (⌦⇥ R)/Ao oR in the following
way

• ↵([!, s], t) = ([!/2, s/2], t/2) if ! is even;
• ↵([!, s], t) = ([(! + 1)/2, (s + 1)/2], t/2) if ! is odd.

Notice that ↵�1([!, s], t) = ([2!, 2s], 2t) for all ! in ⌦ and s and t in R. Then ↵
preserves the Haar system of (⌦⇥ R)/Ao o R arising from the Haar mesure on R
and has constant density ⇢↵ = 2. Hence according to lemma ??, the automorphism
of groupoid ↵ induces an automorphism ↵̃ of C⇤-algebra C ((⌦⇥ R)/Ao) o R such
that ↵̃(h) = 2h � ↵�1 for all h in C ((⌦⇥ R)/Ao ⇥ R). We are now in position
to describe how ↵̃ is transported under the isomorphism of equation (??) to an
automorphism ⌥ of K(L2([0, 1]))⌦ C(⌦) o Z. With ⇠, ⇠0 and ⇠00 as defined above,

↵̃(⇥⌦
⇠,⇠0)([!, s], t) = 2⇥⌦

⇠,⇠0([2!, 2s], 2t)

= 2
X

k2Z

f(2s� k)�̄(2! + k)ḡ(2s� 2t� k)

= 2
X

k2Z

f(2s� 2k)�̄(2! + 2k)ḡ(2s� 2t� 2k) +(6.4)

2
X

k2Z

f(2s� 2k � 1)�̄(2! + 2k � 1)ḡ(2s� 2t� 2k � 1)

and
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↵̃(⇥⌦
⇠,⇠00)([!, s], t) = 2⇥⌦

⇠,⇠00([2!, 2s], 2t)

= 2
X

k2Z

f(2s� k)ḡ(2s + 1� 2t� k)

= 2
X

k2Z

f(2s� 2k)ḡ(2s + 1� 2t� 2k) +(6.5)

2
X

k2Z

f(2s� 2k � 1)ḡ(2s� 2t� 2k).

To complete the description of the automorphism ⌥ of K(L2([0, 1])) ⌦ C(⌦) o Z
corresponding to ↵̃, we need to introduce some further notations. We define the
partial isometries U0, U1 and V of L2([0, 1]) by

• U0f(t) =
p

2f(2t) if t 2 [0, 1/2] and U0f(t) = 0 otherwise;
• U1f(t) =

p
2f(2t� 1) if t 2 [1/2, 1] and U1f(t) = 0 otherwise;

• V f(t) = f(t + 1/2) if t 2 [0, 1/2] and V f(t) = 0 otherwise,
for f in C([0, 1]). Let use define also the endomorphisms W0 and W1 of the C⇤-
algebra C(⌦) by W0�(!) = �(2!) and W1�(!) = �(2! + 1), for � in C(⌦) and !
in ⌦. Using this notations, equations (??) and (??) can be rewriten as

↵̃(⇥⌦
⇠,⇠0)([!, s], t) =

X

k2Z

U0f(s�k)W0�̄(!+k)U0ḡ(s�t�k)+
X

k2Z

U1f(s�k)W1�̄(!+k)U1ḡ(s�t�k)

and

↵̃(⇥⌦
⇠,⇠00)([!, s], t) =

X

k2Z

U0f(s�k)U1ḡ(s� t�k +1)+
X

k2Z

U1f(s�k)U0ḡ(s� t�k).

Thus, in view of equations (??) and (??), we get that

⌥(⇥f,g ⌦ �) = ⇥U0f,U0g ⌦W0� + ⇥U1f,U1g ⌦W1�

and
⌥(⇥f,g ⌦ u) = ⇥U0f,U1g ⌦ u + ⇥U1f,U0g ⌦ 1.

From this we deduce

⌥(k ⌦ �) = U0 · k · U⇤
0 ⌦W0� + U1 · k · U⇤

1 ⌦W1�

and

⌥(k ⌦ u) = U0 · k · U⇤
1 ⌦ u + U1 · k · U⇤

0 ⌦ 1
= U0 · k · U⇤

0 · V ⌦ u + U1 · k · U⇤
1 · V ⇤ ⌦ 1

= (U0 · k · U⇤
0 + U1 · k · U⇤

1 ) · (V ⌦ u + ·V ⇤ ⌦ 1)

where the second equality holds since V ⇤ · U0 = U1 and V · U1 = U0 and the third
holds since V ⇤U1 = V U0 = 0. In consequence, if we extends ⌥ to the multiplier
algebra of K(L2([0, 1]))⌦ C(⌦) o Z, we finally obtain that the automorphism ⌥ is
the unique homomorphism of C⇤-algebra such that

⌥(k ⌦ �) = U⇤
0 · k · U0 ⌦W0� + U⇤

1 · k · U1 ⌦W1�

and

(6.6) ⌥(1⌦ u) = V ⌦ u + V ⇤ ⌦ 1,

where k is in K(L2([0, 1])), � is in C(⌦) and 1⌦ u and V ⌦ u + V ⇤ ⌦ 1 are viewed
as multipliers of K(L2([0, 1]))⌦ C(⌦) o Z.
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The following lemma will be helpful to compute the K-theory of the C⇤-algebra
of the Penrose hyperbolic tiling. For short, we will denote from now on K(L2([0, 1]))
by K.

Lemma 6.1. Let A be the unitarisation of K⌦C(⌦) o Z and let f be a norm one
function of L2([0, 1]). Then the unitaries

(1�⇥f,f ⌦ 1) + ⇥f,f ⌦ u

and

(6.7) ⇥U0f,U1f ⌦ u + ⇥U1f,U0f ⌦ 1 + 1�⇥U0f,U0f ⌦ 1�⇥U1f,U1f ⌦ 1

of A are homotopic.

Proof. If we set f0 = f and complete to a Hilbertian base f0, . . . , fn, . . . of L2([0, 1]),
then U0f0, . . . , U0fn, . . . ;U1f0, . . . , U1fn, . . . is a Hilbertian basis of L2([0, 1]). In
this base the unitary of equation (??) can be written down as

0

B

B

B

B

B

B

B

B

@

0
1

. . .

u
0

. . .
1

0
. . .

0
1

. . .

1

C

C

C

C

C

C

C

C

A

which is homotopic to
0

B

B

B

B

B

B

B

B

@

u
1

. . .

0
0

. . .
0

0
. . .

1
1

. . .

1

C

C

C

C

C

C

C

C

A

.

All unitaries that can be writen down in such way in some hilbertian basis of
L2([0, 1]) are homotopic and since this is the case for 1 � ⇥f,f ⌦ 1 + ⇥f,f ⌦ u, we
get the result. ⇤

7. The C⇤-algebra of a Penrose hyperbolic tiling

Let us consider the semi-direct product groupoid G = (XN
P ⇥ Zw) o R corre-

sponding to the diagonal action of R on XN
P ⇥ Zw, by translations on XN

P and
trivial on Z!. Let us denote by � = (�(P0,!))(P0,!)2XNP ⇥Z

w

the Haar system pro-
vided by the left Haar mesure on R. Let us define the groupoid automorphism
↵w : G ! G; (P 0, w0, t) 7! (R · P 0, �(w0), 2t). Then ↵w preserves the Haar system
� with constant density ⇢↵

w

= 1/2 and thus according to lemma ?? the suspen-
sion groupoid G↵

w

admits a Haar system �↵
w

. The semi-direct product groupoid
XG
P(w) o R, where R acts on XG

P(w) by translations, is equipped with an action of
R by automorphisms �t : XG

P(w) o R ! XG
P(w) o R; (T , s) 7! (2t · T , 2ts) for any t

in R. The automorphism �t preserves the Haar system with constant density 2�t

and thus in view of proposition ?? induced a strongly continuous action of R on
the crossed product C⇤-algebra C(XG

P(w)) o R.
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Lemma 7.1. Let w be an element of {1, . . . , r}Z. Then there is a unique isomor-
phism of groupoids �w : G↵

w

�! XG
P(w) o R such that:

(1) �w([P + x,w, y, 0]) = (P(w) + x, y) for all x and y in R;
(2) �w is equivariant with respect to the actions of R;
(3) �w,⇤�↵

w

is the Haar system on XG
P(w) o R provided by the Haar measure

on R.

Proof. With notations of the proof of proposition ??, let us define T (w0) = �([T,w, 1]),
were T is in XN

P and w0 is in {1, ..., r}Z. Then the map

XN
P ⇥ Zw ! XG

P(w); (T , w0) 7! T (w0)

is continuous and since (R · T )(�(w0)) = R · T (w0), the continuous map

G ⇥ R ! XG
P(w) o R; (T , w0, x, y) 7! (R2yT (w0), 2yx)

induces a continuous homomorphism of groupoids

�w : G↵
w

! XG
P(w) o R.

This map is clearly one-to-one since the equality R2tT (w0) = T 0(w00) for t in R, T
and T 0 in XN

P and w00 and w0 in Zw holds if and only if t is integer, w00 = �t(w0)
and R2tT = T 0. To prove that �w is onto, let us remark that any element of XG

P(w)

can be written as R2aT (w0), with a in R, T in XN
P and w0 in Z!. We get then

�w([T , w0, 2�at, a]) = (R2aT (w0), t)

for all t in R.
It is then straightforward to check that condition (3) of the lemma is satisfied.

The uniqueness of �w is a consequence on one hand of its equivariance and on the
other hand of the density of the R-orbit of P in XN

P . ⇤
As a consequence of lemma ??, we get

Corollary 7.2. The map

Cc(XG
P(w) o R) ! Cc(G↵

w

); f 7! f � �w

induces an R-equivariant isomorphism
e�w : C0(XG

P(w)) o R ! C⇤
r (G↵

w

, �↵
w

).

Proposition 7.3. Using the notations of lemmas ?? and ??, the C⇤-algebras
C(XG

P(w)) o G and C⇤
r (G, �) o↵̃

w

Z are Morita equivalent.

Proof. Recall that G = R o R⇤
+, where the group (R⇤

+, ·) acts on (R,+) by multi-
plication. Iterate crossed products leads to an isomorphism

C(XG
P(w)) o G ⇠= (C(XG

P(w)) o R) o R⇤
+.

If we identify the groups (R,+) and (R⇤
+, ·) using the isomorphism

R ! R⇤
+; t 7! 2t,

this provides the action under consideration in lemma ?? of R on C(XG
P(w)) o R

and hence, the algebras C(XG
P(w)) o G and C⇤(G↵

w

, �↵
w

) o R are isomorphic. In
view of lemma ?? and of remark ??, the C⇤-algebra C(XG

P(w))oG is isomorphic to
C⇤

r (G, �)↵̃
w

o R. But since C⇤
r (G, �)↵̃

w

is the mapping torus algebra with respect
to the automorphism ↵̃w : C⇤

r (G, �) ! C⇤
r (G, �), the crossed product C⇤-algebra
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C⇤
r (G, �)↵̃

w

oR is Morita equivalent to C⇤
r (G, �)o↵̃

w

Z and hence we get the result.
⇤

8. The K-theory of the C⇤-algebra of a Penrose hyperbolic tiling

Let us consider the semi-direct groupoid G = (XN
P ⇥ Zw) o R corresponding to

the diagonal action of R on XN
P ⇥ Zw, by translations on XN

P and trivial on Zw.
According to proposition ?? we have an isomorphism

K⇤(C(XG
P(w)) o G)

⇠=! K⇤(C⇤
r (G, �) o↵̃

w

Z)

induced by the Morita equivalence. In order to compute this K-theory group, we
need to recall some basic facts concerning the K-theory group of a crossed product
of a C⇤-algebra A by an action of Z provided by an automorphism ✓ of A. This
K-theory can be computed by using the Pimsner-Voiculescu exact sequence [?]

K0(A) ✓⇤�Id����! K0(A) ◆⇤����! K0(A o✓ Z)
x

?

?

?

?

y

K1(A o✓ Z) ◆⇤ ���� K1(A) ✓⇤�Id ���� K1(A)

,

where ◆⇤ is the homomorphism induced in K-theory by the inclusion ◆ : A ,! Ao✓ Z
and ✓⇤ is the homomorphism in K-theory induced by ✓. The vertical maps are given
by the composition

K⇤(A o✓ Z)
⇠=�! K⇤(A✓ ob✓ R)

⇠=�! K⇤+1(A✓)
ev⇤�! K⇤+1(A),

where
• A✓ is the mapping torus of A with respect to the action ✓ endowed, with

its associated action b✓ of R;
• the first map is induced by the Morita equivalence between A o✓ Z and

A✓ ob✓ R;
• the second map is the Thom-Connes isomorphism;
• the third map is induced in K-theory by the evaluation map

ev : A✓ ! A; f 7! f(0).

For an automorphism  of an abelian group M , let us define Inv M as the set
of invariant elements of M and by Coinv M = M/{x �  (x), x 2 M} the set of
coinvariant elements. We then get short exact sequences

(8.1) 0! Coinv K0(A)! K0(A o✓ Z)! Inv K1(A)! 0

and

(8.2) 0! Coinv K1(A)! K1(A o✓ Z)! Inv K0(A)! 0.

Moreover the inclusions in these exact sequences are induced by ◆⇤. The first step
in the computation of K⇤(C⇤

r (G, �) o↵̃
w

Z) is provided by next lemma, which is
straightforward to prove.

Lemma 8.1. Let Z be a Cantor set and let us denote by C(Z, Z) the algebra of
continuous and integer valued functions on Z.

(1) we have an isomorphism C(Z, Z)! K0(C(Z)); �E 7! [�E ].
(2) K1(C(Z)) = {0},
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where for a compact-open subset E of Z, then �E stands for the characteristic
function of E.

Plugging C⇤r (G, �) o↵̃
w

Z into the short exact sequences (??) and (??), we get

(8.3) 0! Coinv K0(C⇤r (G, �))! K0(C⇤r (G, �) o↵̃
w

Z)! Inv K1(C⇤r (G, �))! 0

and

(8.4) 0! Coinv K1(C⇤r (G, �))! K1(C⇤r (G, �) o↵̃
w

Z)! Inv K0(C⇤r (G, �))! 0.

According to equation (??), the C⇤-algebra C⇤r (G, �) is isomorphic to C(Zw) ⌦
K ⌦ C(⌦) o Z. The K-theory of C⇤r (G, �) can be the computed by using the
Künneth formula: in view of lemma ??, K0(C(Zw)) ⇠= C(Zw, Z) is torsion free and
K1(C(Zw)) = {0} and by Morita equivalence, we get that

K0(C⇤r (G, �)) ⇠= C(Zw, Z)⌦K0(C(⌦) o Z)

and
K1(C⇤r (G, �)) ⇠= C(Zw, Z)⌦K1(C(⌦) o Z).

This isomorphism, up to the Morita equivalence and to the isomorphism of equation
(??) are implemented by the external product in K-theory and will be precisely
described later on. Once again, K⇤(C(⌦) o Z) can be computed from the short
exact sequences (??) and (??), and we get, using lemma ?? that

(8.5) K0(C(⌦) o Z) ⇠= Coinv C(⌦, Z)

and

(8.6) K1(C(⌦) o Z) ⇠= Inv C(⌦, Z) ⇠= Z.

The isomorphism of equation (??) is induced by the composition

C(⌦, Z)
⇠=! K0(C(⌦))! K0(C(⌦) o Z),

which factorizes through Coinv C(⌦, Z), where the first map is described in lemma
??, and the second map is induced on K-theory by the inclusion C(⌦) ,! C(⌦)oZ.
In the first isomorphism of equation (??) the class of [u] in K1(C(⌦) o Z) of the
unitary u of C(⌦) o Z corresponding to the positive generator of Z is mapped to
the constant function 1 of C(⌦, Z).

Lemma 8.2. Let ⌫ be the Haar measure on ⌦. Then
(1)

R

fd⌫ is in Z[1/2] for all f in C(⌦, Z);
(2) C(⌦, Z)! Z[1/2]; f 7!

R

fd⌫ factorizes through an isomorphism

Coinv C(⌦, Z)
⇠=! Z[1/2].

Proof. It is enought to check the first point for characteristic function of compact-
open subset of ⌦. For an integer n and k in {0, . . . , 2n�1}, we set Fn,k = 2n⌦ +
k. Then (Fn,k)n2N, 0k2n�1 is a basis of compact-open neighborhoods for ⌦ and
thereby, every compact-open subset of ⌦ is a finite disjoint union of some Fn,k.
Since ⌫(Fn,k) = 2�n, we get the first point.

The measure µ being invariant by translation, the map

C(⌦, Z)! Z[1/2]; f 7!
Z

fd⌫
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factorizes through a group homomorphism Coinv C(⌦, Z) ! Z[1/2]. This homo-
morphism admits a cross-section

(8.7) Z[1/2]! Coinv C(⌦, Z); 2�n 7! [�F
n,0 ].

This map is well defined since Fn,0 = Fn+1,0
`

(2n + Fn+1,0) and thus

[�F
n,0 ] = [�F

n+1,0 ] + [�2n+F
n+1,0 ] = 2[�F

n+1,0 ]

in Coinv C(⌦, Z). Since the (�F
n,k

)n2N, 0k2n�1 generates C(⌦, Z) as an abelian
group, it is enought to check that the cross-section of equation (??) is a left inverse
on �F

n,k

, which is true since [�F
n,k

] = [�k+F
n,0 ] = [�F

n,0 ] in Coinv C(⌦, Z). ⇤

Proposition 8.3. Let C(Zw, Z[1/2]) ⇠= C(Zw, Z)⌦Z[1/2] be the algebra of contin-
uous function on Zw, valued in Z[1/2] (equipped with the discrete topology). Then
with the notations of the proof of lemma ??, we have isomorphisms

(1)

C(Zw, Z[1/2])
⇠=�! K0(C(Zw)⌦ C(⌦) o Z)

�E

2n
7! [�E ⌦ �F

n,0 ],

where E is a compact-open subset of Zw and �E is its characteristic func-
tion.

(2)

C(Zw, Z)
⇠=�! K1(C(Zw)⌦ C(⌦) o Z)

�E 7! [�E ⌦ u + (1� �E)⌦ 1],

where u is the unitary of C(⌦) o Z corresponding to the positive generator
of Z.

Proof. As we have already mentionned, K⇤(C(Zw)) is torsion free and the Künneth
formula provides isomorphisms

K0(C(Zw))⌦K0(C(⌦) o Z)
⇠=! K0(C(Zw)⌦ C(⌦) o Z)

[p]⌦ [q] 7! [p⌦ q],

where p and q are some matrix projectors with coe�cients respectively in C(Zw)
and C(⌦) o Z, and

K0(C(Zw))⌦K1(C(⌦) o Z)
⇠=! K1(C(Zw)⌦ C(⌦) o Z)

[p]⌦ [v] 7! [p⌦ v + (Ik � p)⌦ Il],

where p is a projector in Ml(C(Zw)) and v is a unitary in Mk(C(⌦) o Z). The
proposition is then a consequence of lemmas ??, ?? and of the discussion related
to equations (??) and (??). ⇤

In order to compute the invariants and the coinvariants of

K⇤(C⇤r (G, �)) ⇠= K⇤(C(Zw)⌦K ⌦ C(⌦) o Z),

we will need a carefull description of the action induced in K-theory by the au-
tomorphism �⇤ ⌦ ⌥ of C(Zw) ⌦ K ⌦ C(⌦) o Z, where �⇤ is the automorphism of
C(Z!) induced by the shift � and where ⌥ was defined in section ??.
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Lemma 8.4. If we equip C(Zw) ⌦ K ⌦ C(⌦) o Z with the Z-action provided by
�⇤ ⌦⌥ and under the Z-equivariant isomorphism

C⇤
r (G, �) ⇠= C(Zw)⌦K ⌦ C(⌦) o Z,

the action induced by ↵w on K0(C⇤
r (G, �) ⇠= C(Zw, Z[1/2]) and on K1(C⇤

r (G, �) ⇠=
C(Zw, Z) are given by the automorphisms of abelian groups

 0 : C(Zw, Z[1/2]) ! C(Zw, Z[1/2])
f 7! 2f � ��1

and

 1 : C(Zw, Z) ! C(Zw, Z)
f 7! f � ��1.

Proof. According to proposition ?? and using the Morita equivalence between
C(Zw) ⌦ C(⌦) o Z and C(Zw) ⌦ K ⌦ C(⌦) o Z, in order to describe  0, we have
to compute the image under (�⇤ ⌦⌥)⇤ of

[�E ⌦⇥f,f ⌦ �F
n,0 ] 2 K0(C(Zw)⌦K ⌦ C(⌦) o Z)

where,
• �E is the characteristic function of a compact-open subset E of Zw;
• �F

n,0 is the characteristic function of Fn,0 = 2n⌦ for n � 1;
• ⇥f,f is the rank one projector associated to a norm 1 function f of L2([0, 1]).

We have

�⇤ ⌦⌥(�E ⌦⇥f,f ⌦ �F
n,0) = ��(E) ⌦⇥U0f,U0f ⌦W0�F

n,0 + ��(E) ⌦⇥U1f,U1f ⌦W1�F
n,0

= ��(E) ⌦⇥U0f,U0f ⌦ �F
n�1,0 ,

where the last equality holds since W0�F
n,0 = �F

n�1,0 and W1�F
n,0 = 0. Since

⇥U0f,U0f is again a rank one projector, then up to the Morita equivalence between
C(Zw) ⌦ C(⌦) o Z and C(Zw) ⌦ K ⌦ C(⌦) o Z, the image of [�E ⌦ �F

n,0 ] 2
K0(C(Zw)⌦C(⌦)oZ) under (�⇤⌦⌥)⇤ is [��(E)⌦�F

n�1,0 ] 2 K0(C(Zw)⌦C(⌦)oZ).
Using proposition ??, this completes the description of  0. For  1, notice first that
up to the isomorphism

K0(C(Zw))⌦K0(K ⌦ C(⌦) o Z)
⇠=! K1(C(Zw)⌦K ⌦ C(⌦) o Z)

provided by the Künneth formula, the action of (�⇤ ⌦⌥)⇤ is �⇤⇤ ⌦⌥⇤ and then the
result is a consequence of lemma ?? and of proposition ??. ⇤

Let us equip C(Zw, Z[1/2]) and C(Zw, Z) with the Z-actions respectively pro-
vided by  0 and  1. Then since k 0(h)k = 2khk for any h in C(Zw, Z[1/2]), we get
that Inv C(Zw, Z[1/2]) = {0} We are now in position to get a complete description
of the K-theory of C(XG

P(w))oG. In view of the short exact sequences of equations
(??) and (??), the two following theorems are then consequences of lemma ?? and
of proposition ??.

Theorem 8.5. We have a short exact sequence

0 ! Coinv C(Zw, Z[1/2]) ◆0! K0(C(XG
P(w)) o G) ! Inv C(Zw, Z) ! 0,
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where up to the Morita equivalence C(XG
P(w)) o G ⇠= C⇤r (G, �) o↵̃

w

Z, the element
◆0[2�n�E ] is the image of [�E ⌦⇥f,f ⌦�F

n,0 ] 2 K0(C(Zw)⌦K⌦C(⌦) o Z) under
the homomorphism induced in K-theory by the inclusion

C(Zw)⌦K ⌦ C(⌦) o Z ⇠= C⇤r (G, �) ,! C⇤r (G, �) o↵̃
w

Z,

where

• �E is the characteristic function of a compact-open subset E of Zw;
• �F

n,0 is the characteristic function of Fn,0 = 2n⌦;
• ⇥f,f is the rank one projector associated to a norm 1 function f of L2([0, 1]).

Theorem 8.6. We have an isomorphism

Coinv C(Zw, Z)
⇠=! K1(C(XG

P(w)) o G)

induced on the coinvariants by the composition

C(Zw, Z) ⇠= K0(C(Zw))
⌦[u]! K1(C(Zw)⌦C(⌦)oZ) ⇠= K1(C⇤r (G, �)! K1(C⇤r (G, �)o↵̃

w

Z),

where

• ⌦[u] is the external product in K-theory by the class in K1(C(⌦) o Z) of
the unitary u of C(⌦) o Z corresponding to the positive generator of Z;

• the last map in the composition is the homomorphism induced in K-theory
by the inclusion C⇤r (G, �) ,! C⇤r (G, �) o↵̃

w

Z.

The short exact sequence of theorem ??, admits an explicit splitting which can be
described in the following way: assume first that (Zw, �) is minimal. In particular,
Inv C(Zw, Z) ⇠= Z is generated by 1 2 C(Zw, Z). Let us considerer the following
diagram, whose left square is commutative

K1(C⇤(R)) ����! K1(C⇤(G, �))
?

?

y

?

?

y

Z ⇠= K0(C) ����! K0(C(XN
P ⇥ Zw)) ev⇤����! K0(C(⌦⇥ Zw))

,

where

• the horizontal maps of the left square are induced by the inclusion C ,!
C(XN

P ⇥ Zw).
• vertical maps are the Thom-Connes isomorphisms.
• The map ev : C(XN

P ⇥ Zw))�!C(⌦ ⇥ Zw) is induced by the continuous
map ⌦! XN

P
⇠= (⌦⇥ R)/Ao; x 7! [x, 0];

Up to the Morita equivalence between C⇤(G, �) and C(Zw)⌦C(⌦) o Z, the right
down staircase is the boundary of the Pimsner-Voiculescu six-term exact sequence
that computes K⇤(C(Zw)⌦C(⌦) o Z). From this, we see that K1(C⇤(G, �) ⇠= Z is
generated by the image of the generator ⇣ of K1(C⇤(R)) corresponding under the
canonical identification K1(C⇤(R)) ⇠= K1(C0(R)) ⇠= K0(C) ⇠= Z to the class of any
rank one projector in some Mn(C). On the other hand, we have a diagram with
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commutative squares

K
0

(C⇤(R) o R⇤
+

) �����! K
0

(C(XG
P(w)

) o G) �����!⇠
=

K
0

(C⇤(G↵
w

, �↵
w

) o R) �����!⇠
=

K
0

(C⇤(G, �)↵
w

o R)
??y

??y
??y

??y

K
1

(C⇤(R)) �����! K
1

(C(XG
P(w)

) o R) �����!⇠
=

K
1

(C⇤(G↵
w

, �↵
w

)) �����!⇠
=

K
1

(C⇤(G, �)↵
w

)
??yev⇤

K
0

(C⇤(G, �))

where,
• the horizontal maps of the left square are induced by the inclusion

C⇤(R) ,! C(XG
P(w)) o R;

• the horizontal maps of the middle square are induced by the isomorphism
of lemma ??

• the horizontal maps of the right square are induced by the isomorphism of
proposition ??

• the first row of vertical maps are Thom-Connes isomorphisms.
It is then straightforward to check that the down staircase of the diagram is in-
deed induced by the inclusion C⇤(R) ,! C(XN

P ⇥ Zw) o R = C⇤(G, �). Notice
that K0(C⇤(R) o R⇤

+) ⇠= Z (by Thom-Connes isomorphism). Moreover, under the
inclusion C0(R⇤

+) o R⇤
+ ,! C0(R) o R⇤

+
⇠= C⇤(R) o R⇤

+, any rang one projector e
of K(L2(R⇤

+)) ⇠= C0(R⇤
+) o R⇤

+ provides a generator for K0(C⇤(R) o R⇤
+) whose

image under the left vertical map is the generator ⇣ for K1(C⇤(R)) ⇠= K0(C) ⇠= Z.
Using the description of the boundary map of Pimsner-Voiculescu six-term exact
sequence, we see that e, viewed as an element of C(XG

P(w)) o G whose class in
K-theory provides a lift for 1 2 C(Zw, Z) in the short exact sequence of theorem
??.

In general, Inv C(Zw, Z) is generated by characteristic functions of Z-invariant
compact-open subsets of Zw. According to proposition ??, any Z-invariant compact-
open subset E of Zw provides a R-invariant compact subset eE of XG

P . Hence, with
above notations, if � eE is the characteristic function for eE, then � eEe can be viewed
as an element of C(XG

P(w)) o G. Let � : Inv C(Zw, Z) ! K0(C(XG
P(w)) o G) be

the group homomorphism uniquelly defined by �(�E) = � eEe for E a Z-invariant
compact-open subset of Zw. Then � is a section for the short exact sequence of
theorem ??.

9. Topological invariants for the continuous hull

It is known that for Euclidian tilings, topological invariants of the continuous hull
are closely related to the K-theory of the C⇤-algebra associated to the tiling. The
K-theory of the latter turn out to be isomorphic to the K-theory of the hull which is
using the Chern character rationally isomorphic to the integral Cěch cohomology.
Moreover, in dimension less or equal to 3, the Chern character can be defined
valued in integral cohomology and we eventually obtain an isomorphism between the
integral Cěch cohomology of the hull and the K-theory of the C⇤-algebra associated
to the tiling. In consequence of this fact, a lot of interest has been generated in the
computation of topological invariants of the hull.
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For Penrose hyperbolic tilings, since the group of a�ne isometries of the hy-
perbolic half-plane is isomorphic to a semi-direct product R o R, we get using the
Thom-Connes isomorphism that

(9.1) K⇤(C(XG
P(w)) o G) ⇠= K⇤(XG

P(w)).

Moreover, since the cohomological dimension of XG
P(w) is 2, the Chern character

can also be defined with values in integral Cěch cohomology and hence we get as
in the Euclidian case of low dimension an isomorphism

K⇤(C(XG
P(w)) o G) ⇠= Ȟ(XG

P(w), Z).

These topological invariants can be indeed computed directly using technics very
closed to those used in section ??. Indeed for a C⇤-algebra A provided with an
automorphism �, there is natural isomorphisms

(9.2) K0(A�) ⇠= K1(A o� Z) and K1(A�) ⇠= K0(A o� Z),

called the mapping torus isomorphisms, where A� is the mapping torus algebra
constructed at the end of section ??. Recall from proposition ?? that XG

P(w) can
be viewed as a double suspension

(9.3) (((⌦⇥ R)/Ao)⇥ Z! ⇥ R) /Af

with f : (⌦ ⇥ R)/Ao ! (⌦ ⇥ R)/Ao; ([x, t], !0) 7! ([2x, 2t], �(!0)). In regard of
the mapping torus isomorphism, the double crossed product by Z corresponds in
K-theory to the double suspension structure on XG

P(w). For people interested in
topological invariants, we explain how a straight computation can be carried out.

For a C⇤-algebra A provided with an automorphism �, the short exact sequence

(9.4) 0! C0((0, 1), A)! A�
ev! A! 0,

where ev is the evaluation at 0 of elements of A� ⇢ C([0, 1], A), gives rise to short
exact sequences

0! Coinv K1(A)! K0(A�)! Inv K0(A)! 0

and
0! Coinv K0(A)! K1(A�)! Inv K1(A)! 0

where invariants and coinvariants are taken with respect to the action induced by �
on K⇤(A) (see section ??). In particular, if X is a compact set and f : X ! X is a
homeomorphism, and with the notations of section ?? the mapping torus of C(X)
with respect to the automorphism induced by f is C((X ⇥ R)/Af ). We deduce
short exact sequences

0! Coinv K1(X)! K0((X ⇥ R)/Af )! Inv K0(X)! 0

and
0! Coinv K0(X)! K1((X ⇥ R)/Af )! Inv K1(X)! 0.

Similarly, we have short exact sequences in Cěch cohomology

0! Coinv Ȟn�1(X, Z)! Ȟn((X ⇥ R)/Af , Z)! Inv Ȟn(X, Z)! 0,

derived from the inclusion

(9.5) (0, 1)⇥X ,! (X ⇥ R)/Af .
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Since the space XG
P(w) has a structure of double suspension, we see following the

same route as in section ?? that XG
P(w) only has cohomology in degree 0, 1 and 2

and we get isomorphisms

K0(XG
P(w)) ⇠= Inv C(Zw, Z)� Coinv C(Zw, Z[1/2])(9.6)

K1(XG
P(w)) ⇠= Coinv C(Zw, Z)(9.7)

Ȟ0(XG
P(w), Z) ⇠= Inv C(Zw, Z)(9.8)

Ȟ1(XG
P(w), Z) ⇠= Coinv C(Zw, Z)(9.9)

Ȟ2(XG
P(w), Z) ⇠= Coinv C(Zw, Z[1/2]).(9.10)

Recall that invariants and coinvariants of C(Zw, Z) are taken with respect to the
automorphism

C(Zw, Z) ! C(Zw, Z); f 7! f � ��1,

and that coinvariants of C(Zw, Z[1/2]) are taken with respect to the automorphism

C(Zw, Z[1/2]) ! C(Zw, Z[1/2]); f 7! 2f � ��1.

Let us describe explicitly these isomorphisms. The identification of equation (??)
yields to a continuous map

(9.11) XG
P(w) ! (Zw ⇥ R)/A�,

induced by the equivariant projection ((⌦⇥R)/Ao)⇥Z! ⇥R ! Zw ⇥R. Together
with the inclusion Zw ⇥ (0, 1) ,! (Zw ⇥R)/A�, this gives rise to a homomorphism
K1(Zw⇥(0, 1)) ! K1(XG

P(w)) inducing under Bott peridodicity the isomorphism of
equation (??) (recall from lemma ?? that K0(Zw) = K0(C(Zw)) ⇠= C(Z!, Z)). The
identification of equation (??) is obtained in the same way by using the isomorphism

C(Z!, Z) ⇠= Ȟ0(Z!, Z)
⇠=! Ȟ1(Z! ⇥ (0, 1), Z)

provided by the cup product by the fundamental class of Ȟ1((0, 1), Z). Recall
that Inv C(Zw, Z) is generated by characteristic functions of invariant compact-
open subsets of Z!. If E is such a subset, then (E ⇥ R)/A�

/E

is a compact-open
subset of (Zw ⇥ R)/A� and is pulled-back under the map of equation (??) to a
compact-open subset eE of XG

P(w). The isomorphism of equation (??) identifies
�E 2 Inv C(Z!, Z) with the class of eE in Ȟ0(XG

P(w), Z) and the isomorphism of
equation (??) identifies �E with the class of � eE in K0(Zw) = K0(C(Zw)). Using
twice the inclusion of equation (??) for the double suspension structure of XG

P(w),
we obtain an inclusion ⌦ ⇥ Z! ⇥ (0, 1)2 ,! XG

P(w) and hence by Bott periodicity
a map C(⌦ ⇥ Z!, Z) ! K0(XG

P(w)). Then, if E is a compact-open subset of Z!

and n is an integer, the image of �E⇥2n⌦ under this map is up to identification of
equation (??) the class of �E/2n in Coinv C(Zw, Z[1/2]). The description of the
identification of equation (??) is obtained in the same way by using the isomorphism

C(⌦⇥ Z!, Z) ⇠= Ȟ0(⌦⇥ Z!, Z)
⇠=! Ȟ2(⌦⇥ Z! ⇥ (0, 1)2, Z)

provided by the cup product by the fundamental class of Ȟ2((0, 1)2, Z). More-
over, since the Chern character is natural and intertwins Bott periodicity and
the cup product by the fundamental class of Ȟ1

c ((0, 1), Z), we deduce that up to
the identifications of equations (??) to (??), it is given by the identity maps of
Inv C(Zw, Z)�Coinv C(Zw, Z[1/2]) and of Coinv C(Zw, Z). It is easy to guess how
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the generators of K⇤(XG
P(w)) described in equations (??) and (??) should be iden-

tified with those of K⇤(C(XG
P(w))oG) described in section ?? under Thom-Connes

isomorphism of equation (??). Recall first that for a unital C⇤-algebra A provided
with an automorphism �,

• the mapping torus A� is provided with an action b� of R by automorphisms
(see section ??) and moreover A o� Z and A� ob� R are Morita equivalent;

• the mapping torus isomorphisms are the composition of the Thom-Connes
isomorphisms K0(A�)

⇠=�! K1(A o� Z) and K1(A�)
⇠=�! K0(A o� Z) with

the isomorphism K⇤(A� ob� R) ⇠= K⇤(A o� Z) induced with the above
Morita-equivalence;

It is then straightforward to check that viewing C(XG
P(w))oG as a double crossed

product by Z as we did in section ??, the Thom-Connes isomorphism

K⇤(C(XG
P(w)))

⇠=! K⇤(C(XG
P(w))oG)

is obtained by using twice the mapping torus isomorphim (up to stabilisation for the
second one). In view of our purpose of idenfying the generators of K⇤(C(XG

P(w)))
with those of K⇤(C(XG

P(w))oG), we will need the following alternative description
of the mapping torus isomorphism using the bivariant Kasparov K-theory groups
KKZ

⇤ (•, •) [?]. Let A be a C⇤-algebra and let � be an automorphism of A. Since the
action of Z on R by translations is free and proper, we have a Morita equivalence
between A� and C0(R, A) o Z, where C0(R, A) ⇠= C0(R)⌦ A is equipped with the
diagonal action of Z. Recall that the Z-equivariant unbounded operator ı d

dt of L2(R)
gives rise to a unbounded K-cycle and hence to an element y in KKZ

1 (C0(R), C).
Then the mapping torus isomorphism of equation (??) is the composition

K⇤(A�)
⇠=�! K⇤(C0(R, A) o Z)

⌦
C0(R,A)oZ

J
Z

(⌧
A

(y))
�! K⇤+1(A o� Z)

where,
• the first map comes from the Morita equivalence;
• J

Z

: KKZ

⇤ (•, •) ! KK⇤(• o Z, • o Z) is the Kasparov transformation in
bivariant KK-theory;

• for any C⇤-algebra B equipped with an action of � by automorphism ⌧B :
KK�

⇤ (•, •)! KK�
⇤ (•⌦B, •⌦B) is the tensorisation operation;

• ⌦C0(R,A)oZ

J
Z

(⌧A(y)) stands for the right Kasparov product by J
Z

(⌧A(y)).
Then the identification between the generators of K⇤(XG

P(w)) and of K⇤(C(XG
P(w))o

G) can be achieved using the next two lemmas.

Lemma 9.1. Let A be a unital C⇤-algebra together with an automorphism �. Let
e be invariant projector in A and let xe be the class in K0(A�) of the projector
[0, 1] ! A; t 7! e. Then the image of xe under the mapping torus isomorphism is
equal to the class of the unitary 1 � e + e · u of A o� Z in K1(A o� Z) (here u is
the unitary of A o� Z corresponding to the positive generator of Z);

Proof. The invariant projector e gives rise to an equivariant map C ! A; z ! ze
and hence to a homomorphism C(T) ! A� . By naturality of the mapping torus,
this amounts to prove the result for A = C which is done in [?, Example 6.1.6]. ⇤
Lemma 9.2. Let A be a unital C⇤-algebra together with an automorphism � and
let x be an element in K⇤(A). The two following elements then coincide:
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• the image of x under the composition

K⇤(A)
⇠=! K⇤+1(C((0, 1), A)) ! K⇤+1(A�) ! K⇤+1(A o� Z),

where
– the first map is the Bott periodicity isomorphism;
– the second map is induced by the inclusion C((0, 1), A) ,! A�;
– the third map is the mapping torus isomorphism.

• the image of x under the map K⇤(A) ! K⇤(Ao�Z) induced by the inclusion
A ,! A o� Z.

Proof. Let us first describe the imprimity bimodule implementing the Morita equiv-
alence between A� and C0(R, A) o Z. Indeed, in a more general setting, if

• X is a locally compact space equipped with a proper action of Z by home-
omorphisms,

• B is a C⇤-algebra provided with an action of Z by automorphisms;
• BZ

X stands for the algebra of equivariant continuous maps f : X ! B such
that Z.x 7! kf(x)k belongs to C0(X/Z).

then, if we equip C0(X,B) ⇠= C0(X) ⌦ B with the diagonal action of Z, there is
an imprimitivity BZ

X �C0(X,B) o Z-bimodule defined in the following way: let us
consider on Cc(X,B) the C0(X,B) o Z-valued inner product

h⇠, ⇠0i(n) = n(⇠⇤)⇠0,

for ⇠ and ⇠0 in Cc(X,B) and n in Z. This inner product is namely positive and gives
rise to a right C0(X,B)oZ-Hilbert module E(B,X), the action of C0(X,B)oZ on
the right being given for ⇠ in Cc(X,B) and h in Cc(Z ⇥X,B) ⇢ Cc(Z, C0(X,B))
by

⇠ · h(t) =
X

n2Z

n(E(n + t))n(h(n, n + t)).

The action by pointwise multiplication of BZ

X ⇢ Cb(X,B) on C0(X,B) extends
to a left BZ

X -module structure on E(B,X). Let us denote by [E(B,X)] the class
of the BZ

X � C0(X,B) o Z-bimodule E(B,X) in KK⇤(BZ

X , C0(X,B) o Z). It is
straightforward to check that

• [E(B,X)] is natural in both variable, in particular, if Y is an open in-
variant subset of X and let us denote by ◆Y,X,B : C0(Y, B) ! C0(X,B)
and ◆Z

Y,X,B : BZ

Y ! BZ

X the homomorphisms induced by the inclusion
Y ,! X and respectively by [◆Y,X,B ] and [◆Z

Y,X,B ] the corresponding classes
in KKZ

⇤ (C0(Y,B), C0(X,B)) and KK⇤(BZ

Y , BZ

X), then

[◆Z

Y,X,B ]⌦BZ

X

[E(B,X)] = [E(B, Y )]⌦C0(Y,B) J
Z

([◆Y,X,B ]).

• up to the identification BZ

Z

⇠= B, the class [E(B, Z)] is induced by the
composition

B �! C0(Z, B) ,! C0(Z, B) o Z
where the first map is b 7! �0 ⌦ b.

• if V is any locally compact space, and if we consider Z acting trivially on it,
then up to the identifications BZ

X⇥V
⇠= BZ

X⌦C0(V ) and C0(X⇥V,B)oZ ⇠=
C0(X,B) o Z⌦ C0(V ), we have [E(B, V ⇥X)] = ⌧C0(V )([E(B,X)]).
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Noticing that for a C⇤-algebra A provided with an automorphism �, we have a
natural identification A�

⇠= AZ

R

, the mapping torus isomorphism of equation (??)
is obtained by right Kasporov product with [E(A, R)]⌦C0(R,A)oZ

J
Z

(⌧A([y])). From
this, we see that the composition in the statement of the lemma is given by right
Kasparov product with

(9.12) z = ⌧A([@])⌦C0((0,1),A) [◆Z

(0,1)⇥Z,R,A]⌦A
�

[E(A, R)]⌦C0(R,A)oZ

J
Z

(⌧A(y))

where
• [@] in KK1(C, C0(0, 1)) is the boundary of the evaluation at 0 extension

0! C0(0, 1)! C0[0, 1)! C! 0;

• we have used the identification (0, 1) ⇥ Z ⇠= R \ Z to see (0, 1) ⇥ Z as an
invariant open subset of R, in particular we have AZ

(0,1)⇥Z

⇠= C0((0, 1), A).
According to the naturality properties of [E(•, A)] listed above, we get that

[◆Z

(0,1)⇥Z,R,A]⌦A
�

[E(R, A)] = [E((0, 1)⇥ Z, A)]⌦C0(Z,A)oZ⌦C0(0,1) J
Z

([◆(0,1)⇥Z,R,A])
= ⌧C0(0,1)([E(Z, A)])⌦C0(Z,A)oZ⌦C0(0,1) J

Z

([◆(0,1)⇥Z,R,A])(9.13)

Using commutativity of exterior Kasparov product, we get from equation (??)
that

(9.14) z = [E(Z, A)]⌦C0(Z,A)oZ

J
Z

(⌧C0(Z,A)([@])⌦C0((0,1)⇥Z,A)[◆(0,1)⇥Z,R,A]⌦⌧A(y)).

Let y0 be the element of KK1(C0(0, 1), C) corresponding in the unbounded pic-
ture to the unbounded operator ı d

dt on L2(0, 1) and let [F ] be the element of
KKZ(C0(Z), C) corresponding to the equivariant representation by compact op-
erator of C0(Z) onto `2(Z) (equipped with the left regular representation) given by
pointwise multiplication. Then it is straightforward to check that

[◆(0,1)⇥Z,R,A]⌦C0(R,A) ⌧A(y) = ⌧A(⌧C0(Z)(y0)⌦C0(Z) [F ]).

But it is a standard fact that [@] ⌦C0(0,1) y0 = 1 in the ring KK0(C, C) ⇠= Z and
hence we eventually get that

z = [E(A, Z)]⌦C0(Z,A)oZ

J
Z

(⌧A([F ])).

A direct inspection of the right hand side of this equality shows that z is indeed
the class of KK⇤(A, A o Z) induced by the inclusion A ,! A o Z. ⇤

Recall that in section ??, we have established isomorphisms

(9.15) K0(C(XG
P(w)) o G) ⇠= Coinv C(Zw, Z[1/2])� Inv C(Zw, Z)

and

(9.16) K1(C(XG
P(w)) o G) ⇠= Coinv C(Zw, Z).

Under this identification, and using lemma ?? and twice lemma ??, we are now in
position to describe the image of the generators of K⇤(XG

P(w)) under the double
Thom-Connes isomorphism.

Corollary 9.3. Under the identification of equations (??), (??), (??) and (??),
the double Thom-Connes isomorphism

K⇤(XG
P(w))

⇠=�! K⇤(C(XG
P(w)) o G)

corresponds to the identity maps of Coinv C(Zw, Z[1/2])�Inv C(Zw, Z) and Coinv C(Zw, Z).
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Proof. The statement concerning the factor Inv C(Zw, Z) is indeed a consequence
of the discussion at the end of section ??. Before proving the statements concerning
the factors Coinv C(Zw, Z) and Coinv C(Zw, Z[1/2]), we sum up for convenience of
the reader the main features, described in sections ?? and ?? of the dynamic of the
continuous hull for the coloured and the uncoloured Penrose hyperbolic tilings.

• the closure XN
P of NP ·P in XG

P for the tiling topolology of the Penrose hy-
perbolic tiling P is homeomorphic to the suspension of the homeomorphism
o : ⌦! ⌦; ! 7! ! + 1;

• the continuous hull XG
P(w) of the coloured Penrose hyperbolic tiling P(w)

is homeomorphic to the suspension of the homeomorphism XN
P ⇥ Z! !

XN
P ⇥ Z! : (T , w0) 7! (R · T , �(w0));

• If we provide XN
P ⇥ Z! with the diagonal action of R, by translations on

XN
P and trivial on Z!, and equip the groupoid G = (XN

P ⇥ Z!) o R with
the Haar system arising from the Haar measure of R, then C(XG

P(w))oR is
the mapping torus of C⇤

r (G, �) with respect to the automorphim ↵̃! arising
from the automorphism of groupoid G ! G; (T , w0, t) 7! (R · T , �(!0), 2t)
(see section ??);

• C⇤
r (G, �) is Morita-equivalent to the crossed product C(⌦⇥Z!)oZ for the

action of Z on C(⌦⇥ Z!) arising from o⇥ IdZ
!

(see section ??).
Let us consider the following diagram:
(9.17)

Ki(C⇤
r (G, �)) ����! Ki(C(XG

P(w)) o G)

=

x

?

?

x

?

?

TC

Ki(C(⌦⇥ Zw)) ����! Ki(C⇤
r (G, �)) ����! Ki+1(C(XG

P(w)) o R)

=

x

?

?

x

?

?

TC

x

?

?

TC

Ki(C(⌦⇥ Zw)) ����! Ki+1(C(XN
P ⇥ Zw)) ����! Ki(C(XG

P(w)))

,

where
• the bottom and the right middle horizontal arrows are the maps defined for

any C⇤-algebra A provided by an automorphism � as the composition

Ki(A)! Ki+1(C0((0, 1), A)! Ki+1(A�)

of the Bott peridocity isomorphism with the homomorphism induced in
K-theory by the inclusion C0((0, 1), A) ,! A� ;

• the left middle horizontal arrow is up to the Morita equivalence between
C⇤

r (G, �) and C(⌦⇥Z!)oZ induced by the inclusion C(⌦⇥Z!) ,! C(⌦⇥
Z!) o Z;

• the top horizontal arrow is up to the Morita equivalence between C⇤
r (G, �)o↵̃

!

Z and C(XG
P(w))oG is induced by the inclusion C⇤

r (G, �) ,! C⇤
r (G, �)o↵̃

!

Z.
• the vertical maps TC stand for the Thom-Connes isomorphisms.

Then the inclusion Coinv C(Zw, Z[1/2]) ,! K0(XG
P(w)) of equation (??) is induced

by the composition of the bottom arrows and the inclusion Coinv C(Zw, Z[1/2]) ,!
K0(C(XG

P(w))oG) of equation (??) is induced by the upper staircase. According to
lemma ??, the left bottom and the right top squares are commutative. Hence, the
proof of the statements regarding to the Coinv C(Zw, Z[1/2]) summand amounts
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to show that the bottom right square is commutative. To see this, let us equip
XN
P ⇥ Zw ⇥ [0, 1) with the action of R by homeomorphisms

XN
P ⇥ Zw ⇥ [0, 1)⇥ R �! XN

P ⇥ Zw ⇥ [0, 1); (T , !0, s, t) 7! (T + 2�st, !0, s).

If we restrict this action to XN
P ⇥Zw⇥(0, 1), then the inclusion XN

P ⇥Zw⇥(0, 1) ,!
XG
P(w) is R-equivariant and the Bott periodicity isomorphism is the boundary of

the equivariant short exact sequence

(9.18) 0! C0(XN
P ⇥Zw ⇥ (0, 1))! C0(XN

P ⇥Zw ⇥ [0, 1))! C0(XN
P ⇥Zw)! 0

provided by evaluation at 0. This equivariant short exact sequence gives rise to a
short exact sequence for crossed products
(9.19)
0! C0(XN

P ⇥Zw⇥(0, 1))oR! C0(XN
P ⇥Zw⇥[0, 1))oR! C0(XN

P ⇥Zw)oR! 0.

and since the Thom-Connes isomorphism is natural, it intertwins the corresponding
boundary maps and hence we get a commutative diagram

(9.20)
Ki+1(C(XN

P ⇥ Zw) o R) ����! Ki(C0(XN
P ⇥ Zw ⇥ (0, 1) o R) ����! Ki(C(XG

P(w)) o R)

TC

x

?

?

x

?

?

TC

x

?

?

TC

Ki(C(XN
P ⇥ Zw)) ����! Ki+1(C0(XN

P ⇥ Zw ⇥ (0, 1)) ����! Ki+1(C(XG
P(w)))

,

where the left horizontal arrows are induced by the boundary maps corresponding
to the exact sequences of equation (??) and (??) and the right horizontal arrows are
induced by the equivariant inclusion XN

P ⇥ Zw ⇥ (0, 1) ,! XG
P(w). Let us consider

the family groupoids (0, 1) ⇥ G and [0, 1) ⇥ G. Notice that if XG
P(w) o R is viewed

as the suspension of the groupoid G, then (0, 1)⇥ G is the restriction of XG
P(w) o R

to a fundamental domain. The reduced C⇤-algebras of these two groupoids are
respectively C0((0, 1), C⇤

r (G, �))) and C0([0, 1), C⇤
r (G, �)) and the automorphism of

groupoids

[0, 1)⇥ G ! (XN
P ⇥ Zw ⇥ [0, 1)) o R; (T , !0, s, t) 7! (T , !0, s, 2st)

gives rise to a commuting diagram
0 ������! C0((0, 1), C⇤

r

(G, �)) ������! C0([0, 1), C⇤
r

(G, �)) ������! C⇤
r

(G, �) ������! 0

??y
??y

??y=

0 ������! C0(XNP ⇥ Z
w

⇥ (0, 1)) o R ������! C0(XNP ⇥ Z
w

⇥ [0, 1)) o R ������! C0(XNP ⇥ Z
w

) o R ������! 0.

Using naturality of the boundary map, we see that the composition of the top
horizontal arrows in diagram (??) is the composition

Ki(C⇤
r (G, �))! Ki+1(C0((0, 1), C⇤

r (G, �))! Ki+1(C(XG
P(w)) o R))

of the Bott peridocity isomorphism with the homomorphism induced in K-theory
by the inclusion C0((0, 1), C⇤

r (G, �)) ,! C(XG
P(w)) o R. This concludes the proof

for the statement concerning the summand Coinv C(Z!, Z[1/2]). The statement
concerning the summand Coinv C(Z!, Z) is a consequence of the commutativity
of the top square of diagram ?? and of lemma ?? applied to the middle bottom
vertical arrow. ⇤
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10. The cyclic cocycle associated to a harmonic probabilty

Recall that according to the discussion ending section ??, a probability is har-
monic if and only if it is G-invariant. In this section, we associate to a harmonic
probability a 3-cyclic cocycle on the smooth crossed product algebra of XG

P(!)oG.
This cyclic cocycle is indeed builded from a 1-cyclic cocycle on the algebra of smooth
(along the leaves) functions on XG

P(!) by using the analogue in cyclic cohomology
of the Thom-Connes isomorphism (see [?]). We give a description of this cocycle
and we discuss an odd version of the gap-labelling.

10.1. Review on smooth crossed products. We collect here results from [?]
concerning smooth crossed products by an action of R that we will need later on.

Let A be a Frechet algebra with respect to an increasing family of semi-norms
(k • kk)k2N

.

Definition 10.1. A smooth action on A is a homomorphism ↵ : R ! Aut A such
that

(1) For every t in R and a in A, the function t 7! ↵t(a) is smooth.
(2) For every integers k and m, there exist integers j and n and a real C such

that
�

�

�

dk

dtk

↵t(a)
�

�

�

m
 C(1 + t2)j/2kakn for every a in A.

If ↵ is a smooth action on A, then the smooth crossed product Ao↵R is defined
as the set of smooth functions f : R ! A such that

kfkk,m,n
def== sup

t2R

(1 + t2)k/2

�

�

�

�

dm

dtm
f(t)

�

�

�

�

n

< +1

for all integers k, m and n. The smooth crossed product Ao↵R provided with the
family of semi-norm k•kk,m,n for k, m and n integers together with the convolution
product

f ⇤ g(t) =
Z

f(s)↵s(g(t� s))dt

is then a Frechet algebra. Notice that a smooth action ↵ on a Frechet algebra A
gives rise to a bounded derivation Z↵ of Ao↵R defined by Z↵(f)(t) = tf(t) for all
f in Ao↵R and t in R.

Let AG
P(!) be the algebra of continuous and smooth along the leaves functions

on XG
P(!), i.e functions whose restrictions to leaves admit at all order di↵erential

which are continuous as functions on XG
P(!). Let �0 and �1 be the two actions of

R on AG
P(!) respectively induced by

R⇥XG
P(!) ! XG

P(!); (t, T ) 7! T + t

and
R⇥XG

P(!) ! XG
P(!); (t, T ) 7! R2t · T .

Let X and Y be respectively the vector fields associated to �0 and �1. Then AG
P(!)

is a Frechet algebra with respect to the family of semi-norms

f 7! sup
XG

P(!)

|XkY l(f)|,
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where k and l run through integers. It is clear that �0 is a smooth action on AG
P(!).

Moreover,

R⇥AG
P(!) o�0 R ! AG

P(!) o�0 R; (t, f) 7! [s 7! �1(f(2�ts))]

is an action of R on AG
P(!)o�0R by automorphisms. This action is not smooth in

the previous sense. Nevertheless, the action �1 satisfies conditions (1),(2) and (3)
of [?, Section 7.2] with respect to the family of functions ⇢n : R ! R; t 7! 22n|t|,
where n runs through integers. In this situation, we can define the smooth crossed
product AG

P(!)o�0Ro⇢
�1R of AG

P(!)o�0R by �1 to be the set of smooth functions
f : R ! AG

P(!)o�0R such that

kfkk,l,m
def== sup

t2R

⇢k(t)
�

�

�

�

dl

dtl
f(t)

�

�

�

�

m

< +1

for all integers k, l and m (we have reindexed for convenience the family of semi-
norms on AG

P(!)o�0R using integers). Then AG
P(!)o�0Ro⇢

�1R provided with the
family of semi-norms k•kk,l,m for k, l and m integers together with the convolution
product is a Frechet algebra. Moreover, this algebra can be viewed as a dense
subalgebra of C(XG

P(!)) o G. As for smooth actions, the action �1 gives rise to a
derivation Z�1 of AG

P(!)o�0Ro⇢
�1R (defined by the same formula).

10.2. The 3-cyclic cocycle. Let ⌘ be a G-invariant probability on XG
P(!). Define

⌧w,⌘ : AG
P(!) ⇥AG

P(!) ! C; (f, g) 7!
Z

Y (f)gd⌘.

Using the Leibnitz rules and the invariance of G, it is straightforward to check that
⌧w,⌘ is 1-cyclic cocycle. In [?] was constructed for a smooth action ↵ on a Frechet
algebra A a homomorphism Hn

� (A) ! Hn+1
� (Ao↵ R), where H⇤

�(•) stands for the
cyclic cohomology. This homomorphism is indeed induced by a homomorphism
at the level of cyclic cocycles #↵ : Zn

� (A) ! Zn+1
� (Ao↵R) and commutes with

the periodisation operator S. Hence it gives rise to a homomorphism in periodic
cohomology HP ⇤(A) ! HP ⇤+1(Ao↵R) which turns out to be an isomorphism.
This isomorphism is for periodic cohomology the analogue of the Thom-Connes
isomorphism in K-theory.

We give now the description of #�0⌧w,⌘. Let us define first

X�0 : AG
P(!)o�0R ! AG

P(!)o�0R

and
Y�0 : AG

P(!)o�0R ! AG
P(!)o�0R

respectively by X�0f(t) = X(f)(t) and Y�0f(t) = Y (f)(t), for all f in AG
P(!)o�0R

and t in R. Using the relation Y � �0
t = �0

t � Y � t ln 2�0
t � X and applying the

definition of #0
� (see [?, section 3.3]), we get:

Proposition 10.2. For any elements f , g and h in AG
P(!)o�0 o R, we have

(1)

#�0⌧w,⌘(f, g, h) = �2⇡i⌘(Y�0f ⇤ g ⇤ Z�0h(0) + Z�0f ⇤ g ⇤ Y�0h(0)

�2⇡i ln 2(⌘(1/2Z�0
2f ⇤ g ⇤X�0h(0) + Z�0f ⇤ Z�0g ⇤X�0(h)(0)� 1/2X�0f ⇤ g ⇤ Z�0

2(0))
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(2)
#�0⌧w,⌘(�1

t f, �1
t g,�1

t h) = #�0⌧w,⌘(f, g, h)
for all t in R, i.e the cocycle #�0⌧w,⌘ is �1-invariant.

According to [?, Section 7.2], the action �1 on AG
P(!)o�0 o R also gives rise

to a homomorphism #�1 : Zn
� (AG

P(!)o�0R) ! Zn+1
� (AG

P(!)o�0Ro⇢
�1R) which in-

duces an isomorphim HP ⇤(AG
P(!)o�0R)

⇠=�! HP ⇤+1(AG
P(!)o�0Ro⇢

�1R). A direct
application of the definition of #�1 leads to

Lemma 10.3. Let � be a �1-invariant 3-cyclic cocycle for AG
P(!)o�0R. Let us

define for any f, g and h in AG
P(!)o�0Ro⇢

�1R.

e�(f, g, h) = 2⇡ı

Z

t0+t1+t2=0
f(t0)�1

t0g(t1)�1
�t2(t2).

Then

#�1�(f0, f1, f2, f3) = �e�(f0, f1, f2 ⇤ Z�1f3) + e�(Z�1f0 ⇤ f1, f2, f3)

� e�(f0, Z�1f1 ⇤ f2, f3)� e�(Z�1f0, f1 ⇤ f2, f3)

Definition 10.4. With above notations, the 3-cyclic cocycle on AG
P(!)o�0Ro⇢

�1R
associated to the Penrose hyperbolic tiling coloured by w and to a G-invariant prob-
ability ⌘ on XG

P(!) is
�w,⌘ = #�1#�0⌧w,⌘.

Notice that if we carry out this construction for a tiling T of the Euclidian space
with continuous hull XR

2

T with respect to the R2-action by translations, we get
taking twice the crossed product by R a 3-cyclic cocycle which is indeed equivalent
(via the periodisation operator) to the 1-cycle cocycle on C(XR

2

T )oR2 ⇠= (C(XR

2

T )o
R)oR arising from the trace on C(XR

2

T )oR associated to an R-invariant probability
on XR

2

T .
The class [�w,⌘] of �w,⌘ in HP 1(AG

P(!)o�0Ro⇢
�1R) is the image of the class of

⌧w,⌘ under the composition of isomorphism

HP 1(AG
P(!))

⇠=�! HP 0(AG
P(!)o�0R)

⇠=�! HP 1(AG
P(!)o�0Ro⇢

�1R).

Since pairing with periodic cohomology provides linear forms for K-theory groups,
the 3-cyclic cocycle �w,⌘ provides a linear map

�w,⌘,⇤ : K1(AG
P(!)o�0Ro⇢

�1R) ! C; x 7! h[�w,⌘], xi.

The main issue in computing �w,⌘,⇤(K1(AG
P(!)o�0Ro⇢

�1R)) is that the Thom-
Connes isomorphism a priori may not hold for K1(AG

P(!)o�0R). If it were the
case, the inclusion AG

P(!)o�0Ro⇢
�1R ,! C(XG

P(!)) o G would induces an isomor-

phism K1(AG
P(!)o�0Ro⇢

�1R)
⇠=�! K1(C(XG

P(!)) o G) and from this we could get
that

�w,⌘,⇤(K1(AG
P(!)o�0Ro⇢

�1R)) = Z[⌘̂] def== {⌘̂(E), E compact-open subset of Zw},

where ⌘̂ is the probability on Zw of proposition ?? in one-to-one correspondance
with ⌘.
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Since Z[⌘̂] is indeed the one dimension gap-labelling for the subshift correspond-
ing to w, this would be viewed as an odd version of the gap labelling. Nevertheless,
the right setting to state this generalisation of the gap-labelling seems to be the
Frechet algebra and a natural question is whether we have

{h[�w,⌘], xi; x 2 K1(AG
P(!)o�0R o⇢

�1 R)} = Z[⌘̂]

or if the pairing bring in new invariants.
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mas & Synthèse 8 (1999), 49-95
[10] J. Kaminker, I. Putnam. A proof of the gap labelling conjecture, Michigan Mathematical

Journal 51, (2003), no 3, 537–546.
[11] G. G., Kasparov. Equivariant KK-theory and the Novikov conjecture. Invent. Math. 91

(1988), no. 1, 147–201.
[12] J. Kellendonk, I.F. Putnam. Tilings, C⇤-algebras and K-theory, Directions in Mathemat-

ical Quasicrystals, CRM Monograph Series 13 (2000), 177-206, M.P. Baake & R.V. Moody
Eds., AMS Providence.

[13] G. Margulis, S. Mozes. Aperiodic tiling of the hyperbolic plane by convex polygons, Israel
Journ. of Math. 107 (1998), 319-325

[14] S. Petite. On invariant measures of finite a�ne type tilings, Ergod. Th. & Dyn. Syst.
(2006) 26, 1159-1176

[15] R. Penrose. Pentaplexity, Mathematical Intelligencer 2 (1979), 32-37
[16] J. F. Plante Foliations with measure preserving holonomy, Ann. of Math. (2)102 (1975),

327–361
[17] I. Putnam. The C*-algebras associated with minimal homeomorphisms of the Cantor set,

Pacific J. Math. 136 (1989), 329-352.
[18] M. Pimsner, D. Voiculescu, Exact sequences for K-groups and Ext-groups of certain

cross-product C⇤-algebras, J. Operator Theory 4 (1980), no. 1, p. 93–118.
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Laboratoire de Mathématiques, Université Blaise Pascal & CNRS (UMR 6620), Les
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On invariant measures of finite affine type tilings

Samuel Petite ∗

Abstract

In this paper, we consider tilings of the hyperbolic 2-space H2, built with a finite
number of polygonal tiles, up to affine transformation. To such a tiling T , we associate a
space of tilings: the continuous hull Ω(T ) on which the affine group acts. This space Ω(T )
inherits a solenoid structure whose leaves correspond to the orbits of the affine group.
First we prove that the finite harmonic measures of this laminated space correspond to
finite invariant measures for the affine group action. Then we give a complete combina-
torial description of these finite invariant measures. Finally we give examples with an
arbitrary number of ergodic invariant probability measures.

1 Introduction

Let N be either the hyperbolic 2-space H2, identified with the upper half complex plane:

{z ∈ C |Im(z) > 0} with the metric ds2 = dx2+dy2

y2 , or the Euclidean plane R2.

A tiling T = {t1, . . . , tn, . . .} of N , is a collection of convex compact polygons ti with
geodesic borders, called tiles, such that their union is the whole space N , their interiors
are pairwise disjoint and they meet full edge to full edge. Let G denote a Lie group of
isometries of N preserving the orientation. A tiling is said of G-finite type if there exists a
finite number of polygons {p1, . . . , pn} called prototiles such that each ti is the image of one
of these polygons by an element of G. For instance, when F is a fundamental domain of a
discrete co-compact group G of isometries of N , then {γ(F ), γ ∈ G} is a tiling of N . However
the set of finite type tilings is much richer than the one given by discrete co-compact groups.
When N = R2, R. Penrose [15] gave an example whose set of prototiles is made with teen
rhombi: the Penrose’s tiling. When N = H2, Penrose also constructed a finite type tiling
made with a single prototile which is not stable for any Fuchsian group. This example is the
typical example of tilings studied in this paper. The construction goes as follows.
Let P be the convex polygon with vertices Ap with affix (p − 1)/2 + i for 1 ≤ p ≤ 3 and
A4 : 2i+1 and A5 : 2i (see figure 1): P is a polygon with 5 geodesic edges. Consider the two
maps:

R : z $→ 2z and S : z $→ z + 1.

The hyperbolic Penrose’s tiling is defined by T = {Rk ◦ SnP |n, k ∈ Z} (see figure 2). This
tiling is an example of P-finite type tiling where P denote the group of affine maps i.e.
isometries of H2 of the kind z $→ az + b with a, b reals and a > 0.
The argument of Penrose is a homological one: he associates with the edge A4A5 a positive
charge and two negative charges with edges A1A2, A2A3. If T was stable for a Fuchsian

∗Laboratoire d’Analyse, Topologie, Probabilités, U.M.R. 6632 du CNRS, Université Paul Cézanne, 13 397
Marseille Cedex 20 France; e-mail: samuel.petite@univ.u-3mrs.fr
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Figure 1: The prototile P

group, then P would tile a compact surface. Since the edge A4A5 can meet only the edges
A1A2 or A2A3, the surface has a neutral charge. This is in contradiction with the fact P is
negatively charged.
G. Margulis and S. Mozes [12] have generalized this construction to build a family of prototiles
which cannot be used to tile a compact surface. Notice the group of isometries which preserves
T is generated by the transformation R. In order to break this symmetry, it is possible to
decorate prototiles to get a new finite type tiling which is not stable for any non trivial
isometry (we say in this case that the tiling is aperiodic). Using the same procedure, C.
Goodmann-Strauss [10] construct a set of polygons which can tile H2 only in an aperiodic
way.

To understand the combinatorial properties of a tiling, it is useful to associate with this
tiling, a set of tilings that we can study both from a geometric and dynamical point of view.
The image of a G finite type tiling T by an element of G is again a G finite type tiling. We
consider a compact metric space Ω(T ), which is the completion of the set of tilings image
of T by elements of G, for a natural metrizable topology defined in section 2. The space
Ω(T ) is called the continuous hull of T . The group G acts continuously on this space. In this
paper we are mainly interested in the situation when the G-action on the hull is free (without
fixed point). This is the case for the P-action on the hulls of examples in [10] as well as for
the translation group action on the hull of the Euclidean Penrose’s tiling. In this case, the
G-action induces a specific laminated structure on the hull: a G-solenoid structure, where
leaves are orbits for the group G-action (see section 2). The combinatorial properties of the
tiling T are related to geometrical properties of Ω(T ) and dynamical properties of (Ω(T ),G).
In particular, the distribution of tiles of the tiling, which is our main interest for this paper,
can be described by the statistical properties of the leaves of the solenoid.
On the one hand, these properties can be grasped from a dynamical point of view. When
the group G is amenable, the G-action possesses finite invariant measures. R. Benedetti,
J.-M. Gambaudo [2] show that a G-solenoid can be seen as a projective limit lim←(Bn,πn)
of branched manifold Bn. Furthermore, when the group G is unimodular (for example when
N = R2 and G is the translation group), authors of [2] prove that the notions of transverse
invariant measure, foliated cycle and finite G invariant measure, are equivalent. Thanks to
this, they characterize the finite G-invariant measures as the elements of a projective limit
of cones in the dim G-homology groups of the branched manifolds Bn. When the group G is
amenable and not unimodular (this is the case when G is the affine group P), their results
do not apply. Actually, we prove that on P-solenoid there is no transverse invariant measure
(Proposition 3.1).
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Figure 2: The hyperbolic Penrose’s tiling

On the other hand, statistical properties of the leaves can be studied through a geometric
point of view. Following the work of L. Garnett [7] on foliations, we can consider harmonic
currents on the hull (such currents always exist on laminations). A riemannian metric on the
leaves yields a correspondence between harmonic currents and finite harmonic measures and
these measures give statistical properties of random path in a leaf of Brownian motions. More
particulary, harmonic measures enable to define the average time of a generic path crossing
an open subset of the hull. We prove that, for a P-solenoid, both geometrical and dynamical
approaches are related:

Theorem 1.1 A finite measure on a P-solenoid is harmonic if and only if it is invariant
for the affine group action.

Remark 1 It is important to note that the proof of this theorem is totally independent from
the structure of space of tilings.

By using the structure of projective limit lim←(Bn,πn) of a P-solenoid, we give a character-
ization of harmonic measures of a P-solenoid:

Theorem 1.2 There exists a sequence of linear morphisms An such that the set of harmonic
measures is isomorphic to the projective limit of cones in 2 chains spaces of branched manifold
Bn, lim←(C2(Bn,R)+, An).

The linear morphisms An will be defined in section 4. We deduce from Theorem 1.2 that the
number of ergodic invariant probability measures on the solenoid is bounded from above by
the maximal number of faces of the branched manifolds. Finally we prove, by giving explicit
examples:

Proposition 1.3 For any integer r ≥ 1, there exists a P-finite type tiling T such that the P-
action on Ω(T ) is free and minimal (all orbits are dense) and has exactly r invariant ergodic
probability measures.

This paper is organized as follows. In section 2, we recall some standard background
on the tiling space, their solenoid structures and their description as projective limits of
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branched manifolds. Section 3 is devoted to harmonic currents and foliated cycles. We prove
here that there exists no foliated cycle for a P-solenoid. In Section 4, we prove Theorem 1.1
and Theorem 1.2. The last section, is devoted to the construction of examples which prove
Proposition 1.3.

2 Background on tiling spaces

We recall here different useful notions defined in [11] and [2]

2.1 Action on the hull

Let G be the subgroup of isometries acting transitively, freely and preserving the orientation
of the surface N , thus G is a Lie group homeomorphic to N . The metric on N gives a left
multiplicative invariant metric on G. We fix a point O in N that we call origin.
For a tiling T of G finite type and an isometry p in G, the image of T by p−1 is again a
tiling of N of G finite type. We denote by T.G the set of tilings which are image of T by
isometries in G. The group G acts on this set by the right action:

G× T.G −→ T.G
(p, T ′) −→ T ′.p = p−1(T ′)

We equip T.G with a metrizable topology, finer as one induced by the metric on N . A
base of neighborhoods is defined as follows: two tilings are close one of the other if they agree,
on a big ball of N centered at the origin, up to an isometry in G close to the identity. This
topology can be generated by the metric δ on T.G defined by :

for T and T ′ be two tilings of T.G, let

A = {ϵ ∈ [0, 1]|∃ g ∈ Bϵ(Id) ⊂G s.t. (T.g) ∩B1/ϵ(O) = T ′ ∩B1/ϵ(O)}

where B1/ϵ(O) is the set of points x ∈ N such that d(x,O) < 1/ϵ.
we define :

δ(T, T ′) = inf A if A ̸= ∅

δ(T, T ′) = 1 else.

The continuous hull of the tiling T , is the metric completion of T.G for the metric δ. We
denote it by Ω(T ). Actually this space is a set of tilings of N of G-finite type. A patch of
a tiling T is a finite set of tiles of T . It is straightforward to check that patches of tilings in
Ω(T ) are copies of patches of T . The set Ω(T ) is then a compact metric set and the action
of G can be extended to a continuous right action on this space. The dynamical system
(Ω(T ),G) has a dense orbit (the orbit of T ).

We fix in each prototile prot of T , a marked point xprot in its interior. Consequently,
each tile t of a tiling T ′ ∈ Ω(T ) admits a distinguished point xt. Let Ω0(T ) denote the set
of tilings of Ω(T ) such that one xt coincides with the origin O. With the induced topology,
Ω0(T ) is compact and completely disconnected.

Definition 2.1 A tiling T satisfies the repetitivity condition if for each patch P , there exists
a real R(P ) such that every ball of N with radius R(P ) intersected with the tiling T contains
a copy of the patch P .
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This definition can be interpreted from a dynamical point of view (see for instance [11]).

Proposition 2.2 The dynamical system (Ω(T ),G) is minimal (all orbits are dense) if and
only if the tiling T satisfies the repetitivity condition.

We call a tiling non-periodic if the action of G on Ω(T ) is free: for all p ̸= Id of G and
all tilings T ′ of Ω(T ) we have T ′.p ̸= T ′. In this case the space Ω0(T ) is a Cantor set. It is
straightforward to show, for N = R2 and G is the translation group that when the stabilizer
of T is reduced to the identity (T is aperiodic) and T is repetitive then T is non periodic.
For example the Euclidean Penrose’s tiling is a non-periodic repetitive tiling of R2 finite type.
When N = H2 and G is the affine group P, we saw that the hyperbolic Penrose’s tiling is
not aperiodic, however, using this example, we shall construct in the last section examples of
repetitive and non-periodic affine finite type tilings (with specific ergodic properties).

2.2 Structure of G-solenoid

2.2.1 Solenoids

Let M be a compact metric space, suppose there exists a covering of M by open set Ui,
called boxes, and homeomorphisms called charts hi : Ui → Vi ×Ci where Vi is an open set of
G, considered as a Lie group, and Ci is a totally disconnected compact metric space. The
collection of open set and homeomorphisms (Ui, hi) is called an atlas of a G-solenoid if the
transition map hi,j = hi ◦ h

−1
j , on their domains of definitions, read:

hi,j(x, c) = (fi,j.x, gi,j(c))

where fi,j.x means the multiplication of x ∈ Vj with an element fi,j of G, independent of x
and c ∈ Cj ; and gi,j is a continuous map from Cj to Ci independent of x.

Two atlases are equivalent if their union is again an atlas. We will call a compact metric
space M with an equivalence class of atlas, a G-solenoid.

The transition maps structure provides the following important notions:

1. slices and leaves: a slice is a set of the kind h−1i (Vi × {c}). The leaves are the union of
the slices which intersect. The global space M is laminated by these leaves. Leaves are
differentiable manifolds of dimension 2. A G-solenoid M is called minimal if every leaf
of M is dense in M .

2. Vertical germs: it is a set of the kind h−1i ({x} × Ci). Transition maps map vertical
germs onto vertical germs, and thus this notion is well defined (independently of the
charts).

These transition maps enable to define right multiplication by an element of G close to
the identity. We suppose furthermore that each leaf is diffeomorphic to N and that this local
G right action on a leaf extends to a free G right action on M . Leaves correspond to orbits of
the action of G by right multiplication. This action is minimal if and only if the G-solenoid
is minimal.

Furthermore this action has locally constant return times: if an orbit (or a leaf) intersects
two verticals V and V ′ at points v and v.g where g ∈ G, then for any point w of V close
enough to v, w.g belongs to V ′.
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It turns out that the hull of a tiling has a laminated structure (see for instance É. Ghys
[8]). More precisely, in [2] authors prove that the hull Ω(T ) of a non periodic G finite type
tiling T , has a G-solenoid structure. The boxes of Ω(T ) are homeomorphic to spaces Vi×Ci

where Vi is an open subset of G ≃ N and Ci is a closed and open subset of Ω0(T ). The
charts are the inverse of the maps fi : Vi × Ci → Ui ⊂ Ω(T ) with fi(z, T ′) = z−1(T ′).

The action of the group G on the solenoid coincides with the action of this group on the
hull. This G-action is expansive: there exists a positive real ϵ such that for every points T1

and T2 in the same vertical in Ω(T ), if δ(T1.g, T2.g) < ϵ for every g ∈ G, then T1 = T2.
If furthermore T verifies the repetitivity condition, the hull Ω(T ) is minimal, and the

transversal in any point in any box is homeomorphic to a Cantor set.

2.2.2 Branched manifolds and projective limits

A box decomposition of a solenoid M is a finite collection of charts B1, . . . , Bn such that:
any two boxes are disjoint and the closure of the union of all boxes is the whole space M ;
furthermore each Bi is homeomorphic to a space Vi × Ci, with Ci a totally disconnected set
and Vi an open convex geodesic polyhedron in N . The vertical boundary of Bi is the set
homeomorphic to ∂Vi × Ci.

The hull of a finite affine type tiling has a natural box decomposition, where boxes are
homeomorphic to the product of a prototile of the tiling times a disconnected set. Boxes
are sets of tilings having the same tile on the origin. We say that this box decomposition is
associated to tiles of the tiling.

Let us consider a box decomposition on M . We consider now the equivalence relation ∼
generated by the relation ≈:

x ≈ y ⇔ x and y belong to the closure of the same box and are in the same vertical.

Let B be the quotient space M/ ∼ and let p be the projection of M onto B. Authors of
[2] prove that the set B with the quotient topology, has a differentiable structure and is a
branched manifold, a structure by R. Williams (see [22]). Actually, in the proof of Theorem
1.2 we will only use the simplex structure of B.

Example: consider a non-periodic tiling T which is a decorated hyperbolic Penrose’s
tiling (see section 5). The set of prototiles is a finite union of different copies of P . Let
us consider now the box decomposition of Ω(T ) associated to its prototiles. The quotient
space Ω(T )/ ∼ is then homeomorphic to the collapsing of prototiles along edges. Points on
prototiles are identified if somewhere, on T , their copies meet (see [1]). For the Penrose’s
tiling T , this identification leads to a branched manifold N homeomorphic to P with edges
identified as follows: edges A1A2, A2A3 and A4A5 are identified themselves and edge A4A1 is
identified with A5A3. This space is homeomorphic to the mapping torus of the application
x )→ 2x mod 1 on the circle S1 ≃ R/Z. There is a natural projection of Ω(T )/ ∼ onto N .

We say that the box decomposition B2 is zoomed out of the box decomposition B1 if:

1. for each point x in a box B1 in B1 and in a box B2 in B2, the vertical of x in B2 is
contained in the vertical of x in B1.

2. the vertical boundaries of the boxes of B2 are contained in the vertical boundaries of
the boxes of B1.
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3. for each box B2 in B2, there exists a box B1 in B1 such that B1 ∩ B2 ̸= ∅ and the
vertical boundary of B1 doesn’t intersect the vertical boundary of B2.

4. if a vertical in the vertical boundary of a box in B1 contains a point in a vertical
boundary of a box in B2, then it contains the whole vertical.

A tower system of a solenoid M is a sequence of box decompositions (Bn)n≥1, such that for
any n ≥ 1, Bn+1 is zoomed out of Bn and the diameters of the verticals in Bn go to zero
when n goes to infinity. In [2] it is proved that any P-solenoid admits a tower system(Bn)n.

From above, for every n, there exists a branched manifold Bn associated to the box
decomposition Bn and a projection pn : M → Bn. By definition, the set of verticals of boxes
of Bn+1 is included in the set of verticals of Bn, this induces a natural map πn : Bn+1 → Bn

such that pn = πn ◦ pn+1.

Theorem 2.3 (R. Benedetti, J.M. Gambaudo) A G-solenoid M , always posses a tower
system (Bn)n≥1, and M is homeomorphic to the projective limit lim←(Bn,πn).

We recall that lim←(Bn,πn) is a subspace of ΠBn defined by {(xn) ∈ ΠBn | xn = πn(xn+1)}
and equipped with the topology induced by the product topology.

3 Foliated cycles and harmonic currents

3.1 Foliated cycles

Let us fix an atlas. The leaves of a G solenoid M carry a 2-manifold structure. Following
[8], we call k-differential form the data, in any box, of a family of real k-differential forms
(C∞) on slices Vi × {c} which depends continuously of the parameter c (in the C∞-topology)
and such that each family is mapped onto each other by the transition maps. We denote by
Ak(M) the set of k-differential forms on M . The differentiation along leaves gives an operator
d : Ak(M)→ Ak+1(M).

Foliated cycles, introduced by D. Sullivan [20], are a continuous linear forms A2(M)→ R

which are positive on positive forms and vanish on exact forms.

Proposition 3.1 A P-solenoid does not admit a foliated cycle.

In order to prove this result, let us introduce the following definition.

Definition 3.2 A finite transverse invariant measure on M is the data of a finite positive
measure µi on each set Ci such that for any Borelian set B in some Ci which is contained in
the definition set of the transition map gij then

µi(B) = µj(gij(B))

The data of a transverse invariant measure for a given atlas provides another invariant trans-
verse measure for any equivalent atlas and thus gives an invariant measure on each verticals.
Thus it makes sense to consider a transverse invariant measure µt of a P-solenoid. It turns
out that finite transverse invariant measures are in one-to-one correspondence with foliated
cycles (also called Ruelle-Sullivan current) and that conversely any foliated cycle implied the
existence of a transverse invariant measure.
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Proof of Proposition 3.1: if µt is a finite invariant transverse measure of a P-solenoid
Ω and λ is a left invariant Haar measure on Borelian sets of P (for example the measure
induced by the standard metric on H2). We can define a global finite measure µ on Ω as
follows. On a box Ui × Ci we consider the product measure λ ⊗ µt, which is well defined
thanks the invariance properties of considered measures. Up to multiplication by a scalar,
we can suppose the measure µ is a probability measure on Ω. As P acts on Ω, any element
g of P defines an homeomorphism of Ω denoted τg.
Let f be a continuous function on Ω with value in R with support included in a box B ≃ U×C.
Thanks the locally constant return times property, we can decompose B into a finite disjoint
union of boxes bi ≃ U ×Ci where Ci is a closed and open subset of C, such that bi and τ(bi)
are included in the same box Di. We consider now the probability measure τg ∗ µ obtained
by the transport of µ by τg. We have

∫

fdτg ∗ µ =
∑

i

∫

bi

fdτg ∗ µ.

In each box Di,
∫

bi
fdτg ∗ µ =

∫

Di
f(τ−1g (x))λ ⊗ µt. For a point (z, c) ∈ U × Ci, we have

τ−1g ((z, c)) = (z.g−1, c) where for z = (x, y) in H2 and g−1 is the transformation z &→ az + b,
the point z.g−1 = (x+ by, ay). Therefore we obtain

∫

bi
fdτg ∗ µ = a

∫

bi
fdµ and

∫

fdτg ∗ µ = a

∫

fdµ. (♯)

By taking a partition of the unity associated with open sets of an atlas, it is possible to prove
the equality (♯) holds true for any continuous function f : Ω → R. Thus the measure τg ∗ µ
is the measure aµ. This is a contradiction with the fact that µ is a probability measure. !

Remark 2 When the Lie group G is unimodular, a G-solenoid admits foliated cycles, which
are characterized in [2].

Remark 3 The existence of a foliated cycle is a very strong hypothesis. The non existence
of foliated cycle gives information on geometric behavior of leaves. Following J. Plante [16],
it implies the exponential growth for every leaf of a P-solenoid.

3.2 Harmonic currents

Harmonic currents were introduced by L. Garnett in [7]. The Laplacian ∆ in the leaf direction
induces an operator ∆ : A0(M) → A2(M) and its image (Im∆) is contained in the space of
exact forms. A harmonic current is a continuous operator A2(M) → R strictly positive on
strictly positive form and null on Im∆. Foliated cycles are then specific harmonic current.
Any lamination and in particular any G-solenoid admits a harmonic current ([7]).
As for foliated cycles it is possible to associate to a harmonic current I a finite positive
measure on M . We choose a metric on the tangent bundle of M . This defined a 2 differential
form along the leaves, which enables us to identify A2(M) with the space of (C∞) functions
on M . Thanks to the positivity of I, it can be extended to a linear form on space of
functions on M and it defines then a finite positive measure µ on M . These measures µ are
called harmonic measures and are characterized by the following property. For any bounded
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measurable function f on M , smooth in the leaf direction, the integral
∫

∆fdµ is null, where
∆ denotes the the Laplacian in the leaf direction.

L. Garnett [7] gives the local structure of such measures. In a box Ui ≃ Vi × Ci a harmonic
measure µ disintegrates into a probability measure νi on Ci times the measure fi(z, c)dz
where dz denotes the Riemannian leaf measure and fi : Vi × Ci → R+ denotes a function
defined for almost all c of Ci and harmonic on all the slices Vi × {c}. Thus for any Borelian
B included in Ui:

µ(B) =

∫∫

B
fi(z, c)dzdνi(c)

This local decomposition is not unique. If two decompositions µi, fi and µ′i, f
′
i define the

same measure, then it exists a measurable application δi : Ci → R+
∗ such that µi = δ−1i (c)µ′i

and fi(z, c) = δi(c)f ′i(z, c).
Thus if we fix an atlas of M , harmonic functions fi(z, c) defined on slices are equal on

intersecting slices up to a positive constant. Since in our case, leaves have no topology, it is
possible to extend the harmonic function fi(z, c) defined on a slice, into a positive harmonic
function on all the leaf.

Remark 4 For a R2-solenoid, the leaves are homeomorphic to the plane. The harmonic
function obtained is positive and defined on all the plane then it is a constant function. The
harmonic measure associated with is locally disintegrated into a measure µi on Ci times the
Riemannian measure, and µi is thus a transverse invariant measure.

3.3 Harmonic measures and ergodic theorem

Let x ∈M be a point of the solenoid and let Γx be the set {γ : R+ → Lx continuous |γ(0) =
x, γ(R+) ⊂ Lx} where Lx is the leaf passing trough x. The set Γx is the set of continuous
path beginning at x and strictly include in Lx. We equip this set with the topology of
uniform convergence on compact sets. On the space of Borel sets, there exists a natural
finite measure wx called the Wiener measure. This measure is defined so that the motion
Γx × R+ : (γ, t) &→ γ(t) ∈ Lx is a Brownian motion.
Let Γ =

⊔

x∈M Γx be the set of continuous paths of M strictly included in leaves, we equip
again this set with the topology of uniform convergence on compact sets. If µ is a finite
measure on M , then µ = wx ⊗ µ(x) is a finite measure on Γ.
The semi-group R+ acts on the space Γ by time translations: for τ > 0 and γ ∈ Γ we define
the semi-group of transformations Sτ with Sτ (γ)(s) = γ(s+ τ). It is straightforward to check
transformations Sτ preserve µ if and only if µ is a harmonic measure. This is due to the fact
that the Wiener measure is built with the heat kernel. For a harmonic measure µ, we can
apply the Birkhoff ergodic theorem.

Theorem 3.3 (L. Garnett) For any bounded continuous function f from M to R the limit
l(x, γ) = limn→∞ 1/nΣn−1

i=0 f(γ(i)) exists for µ almost all points x and wx almost all paths γ
of Γx.
This limit is constant on leaves of M and l(x, γ) is constant for wx almost path γ.
Furthermore

∫

l(x)dµ(x) =
∫

f(x)dµ(x).

Thanks to this theorem, we can define the average time of a generic path γ crossing a Borelian
set B of M [8]. It is the limit limT→∞ 1/T

∫ T
0 χB(γ(t))dt where dt denotes the Lebesgue

measure and χB the indicative function of B.
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4 Invariant measures for the action

In this section we characterize invariant measures for the P-action on a P-solenoid M .

4.1 Proof of Theorem 1.1

These measures we are studying are defined on the Borel σ-algebra of the solenoid M . A
measure m is invariant if for any g ∈ P and any measurable set B ⊂M , m(B.g) = m(B).
Since the group P is the extension of two Abelian groups, P is amenable, and the set of
invariant measures is a closed non-empty set for the weak topology. Actually, for a P-solenoid
invariant measures and harmonic measures are the same (Theorem 1.1).

First let us prove that a harmonic measure of M is an invariant finite measure for the P-
action. We will use the lemma:

Lemma 4.1 Let H : H2 → R be a positive harmonic map. If the quotient H(x,y)
y is uniformly

bounded, then H(x, y) = αy for some real α.

Proof : It is a consequence of the Pick’s formula (see [4] for example). Any positive harmonic
map H reads H(x, y) = αy+

∫∞
−∞

y
(s−x)2+y2 dλ(s) where λ is a positive measure on R defined

for any real a < b by:

λ(]a, b]) = lim
y→0

1

b− a

∫ b

x=a
H(x, y)dx

and dx denotes here the standard Lebesgue measure on the real line. The fact the quotient
H(x,y)

y is uniformly bounded implies the measure λ is null. !

Let µ be a harmonic measure of M and let φ be a continuous positive function with support
included in a box B ≃ U × C of M . We identify the Lie group P with H2 and consider
the function F : P → R defined by F (τ) =

∫

φd(τ ∗ µ) where τ ∗ µ denotes the measure
transported via the action of τ . Fix an element τ of P and a small positive real ϵ. Thanks
the locally constant return times property, we can decompose B into a finite disjoint union
of boxes bi ≃ U × Ci with Ci a closed and open subset of C with a diameter smaller than ϵ;
such that for each i, bi and bi.τ−1 are included in a same box Di. By taking ϵ small enough,
for every element g of a neighborhood of τ , we have also that bi and bi.g−1 are included in
Di.
Therefore, we get

F (τ) =
∑

i

∫

bi

φdτ ∗ µ.

In each box Di, the measure µ reads fi(z, t)dzdνi(t) with fi a harmonic map in z. Then

∫

bi

φdg ∗ µ =

∫

Di

φ(z.g−1, t)fi(z, t)dzdνi

=

∫

Di

φ(z, t)fi(z.g, t)
dz

a
dνi

where g is the map z (→ az + b. We recall here for z = (x, y) in H2, z.g = (x+ by, ay).

As shown in section 3.2, the map fi(., t) for a fixed t, can be extended to a harmonic map
on the whole half plane H2. The map g (→ fi(z.g, t) is defined on P and it is straightforward
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to check it is a harmonic map. Thus the bounded map g ∈ H2 →
∫

bi
φdg ∗ µ ∈ R reads

(x, y) $→ H(x,y)
y with H a positive harmonic map. The lemma 4.1 enables us to conclude the

function F is constant.
For a continuous function φ, by taking a partition of the unity associated with a cover of M
by the open set of an atlas , we can prove the value

∫

φd(τ ∗ µ) is independent of τ , this
concludes the first part of the proof.

Conversely let us prove that finite invariant measures are harmonic measures. This can
be seen in the local expression of an invariant measure.

Lemma 4.2 If a measure m on M is an invariant measure for the right P-action then in
each box, the measure m disintegrates into a transversal sum of leaf measures, where almost
every leaf measure is a right invariant Haar measure of P.

Proof : Fix a box V ×C, we decompose m in this box into a transversal measure ν on C and
a system of leaf measure σc on V × {c} for each c of C. Hence we have for any measurable
function f with support included in the box,

∫

fdm =

∫

C

∫

V
f(z, c)dσc(z)dν(c).

We fix a point x of the box and a closed neighborhood K included in the box. Let A be the
set of bounded measurable functions with support in K. If m is P-invariant for any f ∈ A
and for any g ∈ P s.t. K.g is included in the box,

∫

f(x)− f(x.g)dm(x) = 0.
We can decompose f = f1 + f2 where f1 is the restriction of f to slices for which

∫

V f(x)−
f(x.g)dσc > 0; and f2 is the restriction of f to slices for which the integral is negative. If m
is invariant, then

∫

fi(x)− fi(x.g)dm(x) = 0 and thus

ν{c ∈ C|
∫

V
fi(x)− fi(x.g)dσc ̸= 0} = 0 for i = 1, 2.

It follows that when m is invariant, for ν almost all c in C,
∫

f(x)−f(x.g)dσc = 0. Therefore,
by identifying the leaf with the Lie group P, for ν almost all c, σc is a right invariant Haar
measure. !

When identifying the Lie group P with H2, a right invariant measure reads λ
ydxdy for some

constant λ > 0. Therefore an invariant measure m on M can be written in a box λc
dxdy
y dν(c),

where c ∈ C $→ λc ∈ R+ is a measurable map. Then the measure m is harmonic. This ends
the proof of Theorem 1.1.

As we know, the local decomposition of an invariant measure m is not unique. If
λc
y dxdydν(c) and λ′

c
y dxdydν

′(c) are two decompositions of the same measure m, the mea-

sures ν and ν ′ are in the same class, and thus there exists a positive measurable map defined
almost everywhere δ : C → R+

∗ such that ν = 1
δ(.)ν

′ and λc = δ(c)λ′c. An important conse-

quence is that the value
∫

C λcdσ(c) is well defined. Consider f the positive function H2 → R

defined by f(x, y) =
∫

C λcdσ(c).y, then the measure of a cylinder A× C (where A is a mea-

surable set of V ) of the box is m(A × C) =
∫

A f(x, y)dxdyy2 . We will use this function to
characterize invariant measures.
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4.2 Combinatorics of the invariant measures

For a branched manifold B, let us denote by C2(B,R) the finite dimensional R module space
with basis the 2 faces of B.Its elements are called 2 chains. For all the branched manifolds that
we consider, the 2-faces are equipped with a natural orientation. Let C2(B,R)+ be the cone of
vectors of C2(B,R) with positive coefficients, and let P(B,R) be the intersection of C2(B,R)+

and the closed unit sphere centered in the origin for the norm |(b1, . . . , bq)|1 = Σi|bi|. We
denote by M(M) the set of finite positive measure of M invariant for the P-action.

We consider first a box decomposition of the P-solenoid M . With each box B and
for an invariant measure m, we have seen that we can associate a non negative number
b =

∫

C λcdσ(c) > 0. The identification of elements belonging to the same vertical of the
box decomposition leads to a fibration p of M over a branched manifold B. We associate to
the interior Fi of a 2-face of B a box Bi = p−1(Fi) with the fibration and then we consider
the 2-chain ΣibiFi ∈ C2(B,R)+. Therefore the fibration p : M → B induces a linear map
p∗ : M(M)→ C2(B,R)+.

If we consider now a tower decomposition (Bn)n, we obtain a sequence of fibration pn
over branched manifolds Bn and a sequence of map πn : Bn+1 → Bn such that pn = πn ◦pn+1

and M ≃ lim←(Bn,πn). These maps induce linear maps (pn)∗ : M(M)→ C2(Bn,R)+.

The relation between (pn)∗(m) and (pn+1)∗(m) can be described as follows. We denote
by Bn

i ≃ Fn
i × Cn

i the boxes of Bn, where the index i is an enumeration of these boxes.
Let fi(x, y) be the function (x, y) &→

∫

Cn
i
λn
icdσ

n
i (c).y = bni y for a local decomposition of the

measure m. The intersection of Bn
i and Bn+1

j is either empty or a disjoint union of boxes
⊔

l D
l
ij . In the non trivial case, there exists transition maps hlij : Dl

ij ∩ Bn
i → Bn+1

j , with

hlij(z, c) = (glij .z, γij(c)) and glij ∈ P.
Thus for any cylinder A× Cn

i of Bn
i we have

m(A× Cn
i ) =

∑

j

∑

l

m(hlij((A× Cn
i ) ∩Dl

ij)

=
∑

j

∑

l

∫

glij(A)
fj(x, y)

dxdy

y2

=
∑

j

∑

l

∫

A
α(glij)b

n+1
j

dxdy

y

where α is the morphism α(z &→ az + b) = a

=
∑

j

∑

l

α(glij)

∫

A
fj(x, y)

dxdy

y2
.

Since this is true for any A ⊂ V n
i , we have the relation:

bni =
∑

j

∑

l

α(glij)b
n+1
j =

∑

j

bn+1
j

∑

l

α(glij).

Let us denote p(n) the dimension of C2(Bn,R) and An the p(n) × p(n + 1) matrix with
positive coefficients ani,j =

∑

l α(g
l
ij) when Bn

i and Bn+1
j intersect and 0 otherwise. We have
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the relation (pn)∗(m) = An((pn+1)∗(m)), and thus the sequence ((pn)∗(m))n is an element of
Lim←(C2(Bn,R)+, An). This enables us to extend maps (pn)∗ to a map

p∗ : M(M)→ lim
←

(C2(Bn,R)
+, An).

It is obvious that p∗ maps the set of probability invariant measures to the set
lim←(P(Bn,R), An).

Actually this linear map is an isomorphism whose inverse can be constructed as follows.
Let (vn)n be an element of lim←(C2(Bn,R)+, An). We consider the family of cylinder A such
that there exists a box Bn

i ≃ V n
i ×Cn

i where A ⊂ Bn
i and A ≃ An

i ×Cn
i for some measurable

subset An
i of V n

i . Let m(A) be the value
∫

An
i
bni

dxdy
y where vn = (bn1 , . . . , b

n
i , . . . , b

n
p(n)). Thanks

to the relations between vn and vn+1, the value m(A) is well defined and can be extended by
additivity to the σ-algebra generated by cylinders A. This set is big enough so that its σ-
algebra is actually the Borel σ-algebra. It is then straightforward to check that p∗(m) = (vn)n.
Furthermore, since m disintegrates locally into a transverse measure times a measure of the
kind by dxdy

y2 on the slices, m is a harmonic measure, then from Theorem 1.1 m is also an
invariant measure.

The above result can be summarized in the following theorem which is an explicit refor-
mulation of Theorem 1.2 :

Theorem 4.3 If M is a P solenoid and M is homeomorphic to a projective limit of branched
manifolds Bn, lim←(Bn, pn), constructed with a tower system.
Then: M(M) is homeomorphic to
lim←(C2(Bn,R)+, An), where An is a matrix with positive coefficients An : Rp(n+1) → Rp(n)

with dim C2(Bn,R) = p(n).
The restriction to the set of invariant probability measure is then homeomorphic to
Lim←(P(Bn,R)+, An).

This last theorem allows us to exhibit some criteria to bound the number of invariant prob-
abilities.

Proposition 4.4 With the same conditions as in Theorem 4.3 and M is minimal.

1. If the number of faces of Bn are uniformly bounded by N , then there is at most N
ergodic invariant probability measures.

2. If furthermore M is minimal and the linear map An are uniformly bounded, then there
is a unique invariant probability measure.

Proof : Without loose of generality, we may assume that for all n ≥ 1, dimRC2(Bn,R) =
N . Let us consider N sequences (wn

j )n ∈ ΠnC2(Bn,R)+ for j ∈ {1, . . . , N} where wn
j =

(wn
j,1, . . . , w

n
ji, . . . , w

n
j,N ) and wn

j,i = 0 if j ̸= i and 1 otherwise.

Fix an integer n, for any j in {1, . . . , N} and m > n let wnm
j = An ◦ . . . ◦ Am−1(wm

j ).
Up to a choice of a subsequence, we can suppose that the sequences (wnm

j )m>n converge to
wj ∈ P(B1,R). Let us denote projn the projection of the product ΠnC2(Bn,R) onto C2(Bn,R),
and Probn = projn(Lim←(P(Bn,R), An). The set Probn is a convex set and if Hm is the
convex hull of {wnm

j |j = 1, . . . , N}, we have Probn =
⋂

m>nAn ◦ . . . ◦Am−1(Hm). Therefore
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Probn is the convex hull of {wj |j = 1, . . . , N}. Suppose now there is more than N ergodic
invariant probabilities then for n big enough, there would be more than N extremal points
in Probn, a contradiction.

In order to prove the second statement, we show that for any n, Probn is reduced to a point.
For this we define the hyperbolic distance between two points x, y in P(Bn,R).

dh(x, y) = −ln
(m+ l).(m+ r)

l.r

where m is the Euclidean length of the segment [x, y] and l, r are the length of connected
components of S\[x, y] where S is the largest line segment containing [x, y] in P(Bn,R). It
is straightforward to check positive matrices contract this distance and the minimality of the
action implies the positivity of matrices. Since linear maps An are uniformly bounded and
defined on space with bounded dimension, the contraction is uniform. Therefore Probn =
⋂

m>nAn ◦ . . . ◦Am−1(P(Bm,R)) is reduced to a point. !

5 Examples and proof of Proposition 1.3

We give an example of a non periodic repetitive P finite type tiling with exactly r ergodic
invariant probability measures, for any integer r > 0.

The idea is to decorate the Penrose’s tiling with a non periodic bi-infinite sequence. We
choose a sequence such that the action of the shift on the closure X of the orbit for the action,
is minimal and has r ergodic invariant probability measures.

First, consider the case r ≥ 2. Let Σ be the set {1, . . . , r}. We associate to each symbol
in Σ a different color. Let P be the polygon defined in the introduction to build the Penrose’s
tiling. Let R and S be the affine maps defined in the introduction. For an element i of Σ, let
Pi be the prototile P painted in the color i. To a sequence w = (wk)k∈Z ∈ ΣZ, we associate
the decorated tiling T (w) of finite affine type, with prototiles Pi for i in Σ, defined by

T (w) = {Rq ◦ Sn(Pwq )|n, q ∈ Z}.

Its tiles are isometric to P and its stabilizer is included in < R >. To a sequence (wn)n∈Z the
shift σ associates the sequence (w′n)n∈Z where w′n = wn+1. Thus we have T (w).R = T (σ(w)).
Therefore if the sequence w is not periodic for the action of the shift, then T (w) is not stable
for any element of P.
The product space ΣZ is equipped with the product topology and is a Cantor set. Let X
denote the closure of the orbit of w by the action of the shift σ: X = {σn(w), n ∈ Z}. The
set X is a compact metric space stable under the action of σ. When the dynamical system
(X,σ) is minimal then Ω(T (w)) is minimal.

In [23], S. Williams generalizes an example of J. C. Oxtoby ([14]) and defines a Toeplitz
sequence w ∈ ΣZ for which the action of the shift is minimal and has r ergodic probability
measures. We recall here the definition of this sequence.
Consider the sequence of natural numbers (pi)i∈N with p0 = 3 and pi+1 = 3i.pi and the
sequence si ≡ i mod r ∈ Σ for i ∈ N.
Define then the sequence w = (wq)q∈Z ∈ ΣZ by inductive steps. The first step (step 1) is to
set wq = s1 for all q ≡ 0 or −1 mod p1. In general for i ∈ N, k in Z, let J(i, k) denote the set
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Figure 3: Decorated Penrose’s tiling associated to an Oxtoby’s sequence

of integers q ∈ [kpi, (k + 1)pi) for which wq has been not yet defined at the end of the step i.
The step (i+ 1) is to set wq = si+1 for q ∈ J(i, k) with k ≡ −1 or 0 mod 3i.
The dynamical system (X,σ) is minimal and X is a Cantor set.

Let us define now a sequence of atlas of words for the sequence w. Let A0 be the set
of words {si, i = 1 . . . r}. Let A1 be the set of words {s1s

p1−2
i s1, i = 1, . . . , r}, where

for two words a and b, ab denotes the concatenation of the two words and aq denotes the
concatenation of q times the word a. In the general case for any integer q ≥ 1, we denote
by pq,i i ∈ {1, . . . , r} the word of Aq indexed by i and for q > 1, Aq is the set of words

{pq−1,sq(pq−1,i)
3q−1−2pq−1,sq , i = 1, . . . , r}. For any q ∈ N the sequence w is a bi-infinite

sequence of words of Aq.

The suspension of the action of σ on X, is the quotient space X = R × X/σ where points
(t, x) and (s, x′) are identified if s − t ∈ Z and x = σs−t(x′). The natural R-action by time
translation on the space R×X induces a R-action on the suspension. It turns out that the
suspension R × X/σ is a R-solenoid ([2]) which has exactly r invariant ergodic probability
measures ([23]). For any q ≥ 0, Aq defines a box decomposition of the suspension X . Each
box is identified with a unique word of Aq.

We will construct a tower system for Ω(T (w)) associated to the former box decompositions
of the suspension, thanks to a collection of patches for the tiling T (w). For a word b =
wi0 . . . wi0+l of w, let Pa(b) be the patch

⋃l
j=0{R

−j ◦ Sk(Pwi0+j
) for k = 0, . . . , j} of T (w).

Now let us consider for q ≥ 0 the collection of patches Paq = {Pa(pq,i), for i = 1, . . . , r}.
For any q, the tiling T (w) is an union of elements of Paq, copies of patches meeting only on
their borders. Remark that all the patches of Paq have the same size and actually, the box
decompositions of Ω(T (w)) associated to Paq define a tower system of the hull.
If we denote by ∼q the relation generated by the identification of borders of patches of Paq
which meet somewhere in the tiling T (w) and Bq =

⊔r
i=1Papq,i/ ∼q, we have applications πq

such that:
Ω(T (w)) ≃ lim

←
(Bq,πq).

Now we construct a natural continuous map h from Ω(T (w)) onto X . For an element
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g : z !→ az+ b of the group P, we define h(T (w).g) = [(log2(a), w)] ∈ X where [(t, x)] denotes
the class of the element (t, x) in R ×X for the relation defined by σ. The map h is then a
continuous map from T (w).P to X . Remark that if the origin O lies in a copy of a patch
Pa(pq,i) for some q ≥ 1 and i ∈ Σ in the tiling T (w).g, then O lies also in a copy of the patch
Pa(pq,i) in the tiling T (σn(w)), where n denotes the integer part of log2(a). Thus the origin
of the sequence σn(w) lies in the word pq,i. As h(T (w).g) = [(log2(a) − n,σn(w))], we get
that h(T (w).g) is in the box of the suspension defined by the word pq,i. It follows that for
any q ≥ 1, the map h sends the restriction to the orbit of T (w) of the box associated to the
patch Pa(pq,i) to the box of the suspension associated to the word pq,i. Thus the map h is
uniformly continuous.
It follows that h can be extended to a map from Ω(T (w)) onto X also denoted h. It is
straightforward to check that each fiber of the map h is stable under the action of the group
N = {z !→ z + t, t ∈ R}. Furthermore, as P is an extension over N and the group
{z !→ az, a > 0}, the action of the group P preserves the set of fibers. Then the P-action
on the hull Ω(T (w)) defines through the application h, a P-action on the suspension X and
h is a semi-conjugacy from the hull Ω(T (w)) to X . The group N acts trivially on X . The
invariant measures for the P-action on X are the invariant measures for the R-action. We
claim that the map h sends the invariant measures of the hull onto the invariant measures of
the suspension.
To prove this, we use a Følner’s base of P that we denote (An)n and a right multiplicative
invariant Haar measure on P that we denote λ. Let µ be a ergodic invariant probability
measure for the P-action on X . By the ergodic theorem, there exists a point x in the
suspension such that the sequence of probability measures µn = 1

λ(An)

∫

An
δg.xdλ(g) converges,

when n grows to infinity, to the measure µ. Let y be a point in Ω(T (w)) such that h(y) = x.
Then, up to the choice of a subsequence, the sequence of probability measures on Ω(T (w))
νn = 1

λ(An)

∫

An
δg.ydλ(g) converges to a probability measure ν invariant for the P-action. As

h ∗ νn = µn, we get h ∗ ν = µ. It follows that the map h sends the set of invariant measures
of Ω(T (w)) onto the set of invariant measures of X . Furthermore the map h sends ergodic
measures on ergodic measures. Then Ω(T (w)) has at least r independent ergodic probability
measures. From Proposition 4.4, we also know that the hull Ω(T (w)) admits at most r
invariant ergodic probability measures. Thus there are exactly r probability measures.

To obtain an example of a minimal P-solenoid with a single P-invariant probability mea-
sure, we use the same strategy as before. We keep the same notations as the case r = 2
but we define an other Toeplitz sequence w on which the shift action is free, minimal and
uniquely ergodic ([9]). We consider the substitution S over the alphabet Σ = {1, 2} defined
by S(1) = 112, S(2) = 122. Using the extension of the substitution over the words by
the concatenation, we can iterate the substitution. The sequence w is then the bi-infinite
sequence defined by:

w = lim
n

←−−−
S

n(2). lim
n

−−−→
S

n(1),

where the dot . is placed between the 0 and −1 coordinate.

Let A0 be the set {1, 2}, and for any integer q ≥ 1, let Aq be the atlas of words
{Sq−1(1)Sq−1(i)Sq−1(2), i = 1, 2} for the sequence w. The sequence w is a bi-infinite
sequence of words of Aq. Now let us consider the collection of patches Paq = {Pa(wo), wo ∈
Aq}. For any q ≥ 0, the tiling T (w) is an union of elements of Paq and the box decompositions
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of Ω(T (w)) associated to Paq define a tower system of the hull. The hull Ω(T (w)) is then
homeomorphic to lim←(Bq,πq) where Bq =

⊔

wo∈Aq
Pa(wo)/ ∼q.

By Theorem 4.3, the space of invariant measures M(Ω(T (w))) is isomorphic to
lim←(C2(Bn,R)+, An). A simple calculation shows that the linear applications An are defined
by the matrices:

An =

(

1 + 2−3
n+1 1

2−3
n2+2 2−3

n+1 + 2−3
n2+2

)

.

Proposition 4.4 enables us to conclude that the hull Ω(T (w)) admits only one P-invariant
probability measure.
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