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Abstract. The set of automorphisms of a one-dimensional subshift (X,σ) forms
a countable, but often very complicated, group. For zero entropy shifts, it has
recently been shown that the automorphism group is more tame. We provide the
first examples of countable groups that cannot embed into the automorphism group
of any zero entropy subshift. In particular, we show that the Baumslag-Solitar
groups BS(1, n) and all other groups that contain logarithmically distorted elements
cannot embed into Aut(X) when htop(X) = 0. We further show that distortion in
nilpotent groups gives a nontrivial obstruction to embedding such a group in any
low complexity shift.

1. Introduction

If Σ is a finite alphabet and X ⊂ ΣZ is a closed set that is invariant under the
left shift σ : ΣZ → ΣZ, then (X, σ) is called a subshift . The collection of homeomor-
phisms φ : X → X that commute with σ forms a group (under composition) called
the automorphism group Aut(X) of the shift (X, σ). This group is always count-
able, but for many classical subshifts (including all mixing shifts of finite type) it has
a complicated subgroup structure, containing isomorphic copies of all locally finite,
residually finite groups, the fundamental group of any 2-manifold, the free group on
two generators, and many other groups (see [10, 2, 13]). On the other hand, for
shifts with low complexity (see Section 2 for precise definitions), there are numerous
restrictions that arise (see [5, 6, 7]). Theorems of this nature typically take the fol-
lowing form: suppose (X, σ) is a subshift with some dynamical assumption (such as
minimality or transitivity) and suppose that the complexity function of (X, σ) grows
more slowly than some explicitly chosen subexponential rate, then Aut(X) has some
particular algebraic property. Without these growth-rate and dynamical assump-
tions, little is known about the algebraic structure Aut(X) and it was asked in [7,
Question 6.1] whether every countable group arises as the automorphism group of
some minimal, zero entropy shift. We answer this question negatively, giving explicit
countable groups that cannot embed. Moreover, we give an algebraic constraint on
Aut(X) that applies to any subshift with zero topological entropy (with no need for
further assumptions on the dynamics).

To show how these constraints arise, we study the types of distortion that can arise
(or not) in Aut(X). For a finitely generated group G, an element g ∈ G is distorted
with respect to a symmetric generating set S if the distance of its iterates to the
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identity grows sublinearly (with respect to iteration) in the word-length metric. A
priori, this definition depends on the choice of a symmetric generating set S, but it
is well-known that g is distorted with respect to one symmetric generating set if and
only if it is with respect to every symmetric generating set. Thus we can refer to an
element g as distorted without making explicit reference to the set S. Distortion can
be quantified, depending on how slowly the distance of the iterates to the identity
grows: we say that g is polynomially distorted if dS(e, gn) = O(n1/d) (for some d ∈ N)
and that g is logarithmically distorted if dS(e, gn) = O(log(n)).

A different notion of distortion is in terms of the range of the automorphism: we
say that φ ∈ Aut(X) is range distorted if the size of the shortest block-code defining
φn grows sublinearly in n. This idea is explored in [3], where it is shown that if φ is of
infinite order and range distorted then the topological entropy of (X,φ), rather than
that of shift (X, σ), is zero. The two notions of distortion are related: if G ⊂ Aut(X)
is a finitely generated subgroup and if φ ∈ G is distorted in G, then the automorphism
φ is range distorted (see Proposition 3.4).

One of our main tools is the interplay between the level of distortion in Aut(X)
and the growth rate of the complexity function of (X, σ). We use this to study the
algebraic structure of the group Aut(X).

In [6], it is shown that for a minimal shift whose complexity grows at most polyno-
mially, any finitely generated, torsion free subgroup of Aut(X, σ) is virtually nilpo-
tent. For very low complexity systems, we improve on this result, showing that for any
shift whose complexity function is o(n((d+1)(d+2)/2)+2), any finitely generated, torsion
free subgroup of the automorphism group is virtually d-step nilpotent (the precise
statement is in Theorem 4.10). In particular, if the complexity is o(n5), any finitely
generated, torsion free subgroup of Aut(X, σ) is virtually abelian. In Theorem 4.4, we
show that the growth-rate of the complexity of (X, σ) provides further obstructions
for an infinite nilpotent group G to embed into the automorphism group of a shift.

We would be remiss were we not to acknowledge that examples of non-abelian lat-
tice actions as shift automorphisms are sorely lacking; in the setting of low complexity
(zero entropy), we have none and for positive entropy shifts, we can not rule out some
of the simplest non-abelian groups. It is conceivable that few or no such actions exist.
Even if this turns out to be the case, it is our hope that some of our results furnish
the first steps towards non-existence proofs.

We conclude with several open questions, primarily on what sorts of restrictions
can be placed on the automorphism group of a shift.

2. Background on shifts

2.1. One-dimensional subshifts and automorphisms. We assume throughout
that Σ is a finite set endowed with the discrete topology, and ΣZ is endowed with the
product topology. For x ∈ ΣZ, we write x[n] ∈ Σ for the value of x at n ∈ Z.

The left shift σ : ΣZ → ΣZ is defined by (σx)[n] = x[n+1], and is a homeomorphism
from ΣZ to itself. The pair (X, σ) is a subshift, or just a shift when the context is
clear, if X ⊂ ΣZ is a closed set that is invariant under the left shift σ : ΣZ → ΣZ.
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The system (X, σ) is said to be minimal if the orbit closure of any x ∈ X is all of
X.

An automorphism of the shift (X, σ) is a homeomorphism φ : X → X such that
φ ◦ σ = σ ◦ φ. The group of all automorphisms of (X, σ) is denoted Aut(X, σ), or
simply Aut(X) when σ is clear from the context.

A map φ : X → X is a sliding block code if there exists R ∈ N such that for any
x, y ∈ X with x[i] = y[i] for −R ≤ i ≤ R, we have that φ(x)[0] = φ(y)[0]. The least
R such that this holds is called the range of φ.

By the Curtis-Hedlund-Lyndon Theorem [10], any automorphism φ : X → X of a
shift (X, σ) is a sliding block code. In particular, Aut(X) is always countable.

2.2. The language and complexity of a one-dimensional subshift. The words
Lk(X) of length k in X are defined to be the collection of all a1, . . . , ak ∈ Σk such
that there exist x ∈ X and m ∈ Z with x[m+ i] = ai for 1 ≤ i ≤ k. The length of a
word w ∈ L(X) is denoted by |w|. The language L(X) =

⋃∞
k=1 Lk(X) is defined to

be the collection of all finite words.
A word w ∈ L(X) is said to be right special (respectively, left special) if it can be

extended in the language in at least two distinct ways to the right (respectively, to
the left). Thus w is right special if |{x ∈ Σ: wx ∈ L(X)}| ≥ 2 and w is left special
if |{x ∈ Σ: xw ∈ L(X)}| ≥ 2. A well-known consequence of the work of Morse and
Hedlund [21] is that every infinite shift admits a right special word of length n for
every n ≥ 1 (similarly for left special words).

The complexity PX : N→ N of the shift (X, σ) counts the number of words of length
n in the language of X. Thus

PX(n) =
∣∣Ln(X)

∣∣.
The exponential growth rate of the complexity is the topological entropy htop of the
shift σ. Thus

htop(σ) = lim
n→∞

log(PX(n))

n
.

This is equivalent to the usual definition of topological entropy using (n, ε)-separated
sets (see, for example [14]).

2.3. Two-dimensional subshifts. With minor modifications, the previous notions
may be extended to higher dimensions. For our needs dimension two suffices, and so
we specialize to that case. The set of functions η : Z2 → Σ is ΣZ2

endowed with the
product topology. The shift action of Z2 on ΣZ2

is given by σz(η) := η(·−z) for every

η ∈ ΣZ2
, z ∈ Z2. Every σz is a homeomorphism on ΣZ2

. A two-dimensional shift is
a closed subset X ⊂ ΣZ2

invariant by the shift action. To avoid confusion with the
one-dimensional case we denote by (X, σ|X ,Z2) the associated dynamical system.

A function η ∈ ΣZ2
is said vertically (resp. horizontally) periodic if it is a periodic

point for σ(0,1) (resp. σ(1,0)). We say that a subset A ⊂ Z2 codes a subset B ⊂ Z2 if

for any η, θ ∈ X ⊂ ΣZ2
coinciding on the set A (in other words, η|A = θ|A) it follows

that η and θ coincide on B (meaning that η|B = θ|B).
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We give a definition of the complexity function PX : {finite subsets of Z2} → N,
which is analogous to that for one-dimensional shifts. Namely, for each finite set
S ⊂ Z2 the value PX(S) is defined to be the number of legal X colorings of the finite
set S ⊂ Z2.

If OZ2(η) denotes the closure of the shift orbit of η ∈ ΣZ2
, POZ2 (η)(n, k) (simply

denoted Pη(n, k)) is the number of distinct colorings of n × k rectangles R(n, k) =
{0, · · · , n − 1} × {0, · · · , k − 1} ⊂ Z2 which occur in OZ2(η), or equivalently the
number of distinct η-colorings among the sets R(n, k) + z for z ∈ Z2.

3. Subgroups of the automorphism group

3.1. Group distortion.

Definition 3.1. If G is a countable group, the element g ∈ G is (group) distorted if
there exists a finite set S ⊂ G such that

lim
n→∞

`S(gn)

n
= 0,

where `S(g) denotes the length of the shortest presentation of g by elements of S
(meaning the word length metric on the group 〈S〉 generated by S with respect to
the generating set S).

Note that since `S(·) is subadditive, this limit exists by Fekete’s Lemma. Fur-
thermore, this definition also makes sense in a non-finitely generated group G. Also
observe that any (positive or negative) power or root of a distorted element is still
distorted.

Of course, it follows immediately from the definition that any element of finite
order is distorted. A less trivial example is provided by the discrete Heisenberg group
H, defined by

H = 〈s, t, u : su = us, ts = st, [u, t] = utu−1t−1 = s〉.(3.1)

One can check that for any n ∈ Z, we have that

sn
2

= [un, tn] = untnu−nt−n

and so s is a distorted element of infinite order.
In a similar way, for an automorphism φ the following limit, called the stable range,

range∞(φ) := lim
n→∞

range(φn)

n
,

exists (note that the sequence of ranges (range(φn))n∈N is subadditive). This can be
interpreted as the average increase of the range along powers of φ. For instance, for
the shift map σ on an infinite shift X, we trivially have that for n ≥ 1, range(σn) ≤ n.
Since there always exists a right special word of every length, and so in particular of
length 2n− 1, it follows that range(σn) = n and so range∞(σ) = 1.

Definition 3.2. An element of Aut(X) is range distorted if its stable range is 0.
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It follows immediately from the definition that any power or root of a range dis-
torted automorphism is still range distorted.

Definition 3.3. For a finite set S ⊂ Aut(X), the range RS of the generating set S
is defined to be

RS = max
g∈S

range(g).

We check that if g ∈ G is group distorted, then it it is also range distorted:

Proposition 3.4. If G is a finitely generated subgroup of Aut(X) and g ∈ G is
distorted, then g is also range distorted and its topological entropy htop(g) = 0.

Proof. Let S denote a symmetric generating set for G. For all g1, g2 ∈ Aut(X), the
range satisfies range(g1g2) ≤ range(g1)+range(g2), and so it follows that for all m ∈ N

range(gm) ≤ `S(gm)RS,

since the element g is group distorted in G. Moreover, from the fact that g is range
distorted it is not difficult to show that htop(g) = 0. This is done, for example in
Theorem 5.13 of [3]. �

However, we do not know if the converse holds, namely if a range distorted element
of Aut(X) is a distortion element in the group Aut(X).

A consequence of Proposition 3.4 is that for infinite X, the shift map σ is never
distorted in Aut(X). Of independent interest, since the center of the Heisenberg
group is 〈s〉, we have:

Corollary 3.5. Let T : H → Homeo(Z) be a homomorphism from the Heisenberg
group to the group of self homeomorphisms of a zero-dimensional, compact metric
space Z. Then the subaction (Z, T (s)) is expansive only if Z is finite.

Proof. Assume that (Z, T (s)) is expansive. Then it is conjugate to a subshift (X, σ)
by [12]. Since s lies in the center of H, the conjugacy maps every element of T (H)
into Aut(X). Since T (s) is a distorted element, we have that σ is range distorted and
hence X is finite. �

Definition 3.6. For a finitely generated group G with generating set S, the element
g ∈ G has logarithmic distortion if it has infinite order and there exists C > 0 such
that

`S(gm) ≤ C log(m),

where `S(·) denotes the word length of the element in the generating set S.
The smallest such C satisfying this inequality (with the fixed generating set S) is

denoted CS.

Note that the property of an element having logarithmic distortion is independent
of the generating set S, depending only on the algebraic properties of the group.
However, the constant C depends on the choice of generators S.

We also say an element g has polynomial distortion whenever `S(gn) = O(n1/d)
for some finite set S ⊂ G and integer d ≥ 1. Similarly, an automorphism φ is
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logarithmically (respectively polynomially) range distorted if range(φn) = O(log n)
(respectively O(n1/d)).

Examples 3.7. The following groups have elements with logarithmic distortion :

• SL(k,Z) for any k ≥ 3 (see [15]).
• SL(2,Z[1/p]), for any prime p (see [15]).
• The Baumslag-Solitar group BS(1, n) = 〈a, b : bab−1 = an〉.

To see this for the Baumslag-Solitar group BS(1, n) = 〈a, b : bab−1 = an〉 with
n > 1, take the generators S = {a, b, b−1}. Then for any integer m ≥ 2, write m
in base n: m = α0 + α1n + · · · + αkn

k where each αi ∈ {0, . . . , n − 1}. Using the
Hörner’s method, m = n · (n · (n · · · (αk−1 + nαk) + αk−2) + · · · + α1) + α0, which
implies am = bkaαkb−1aαk−1b−1 · · · b−1aα0 and `S(am) ≤ k + n(k + 1) + k = O(logm).

We show (Corollary 3.10) that BS(1, n) does not embed in any shift of zero entropy.
An example of Hochman [11] gives a subshift of polynomial complexity with an

automorphism of infinite order that is (polynomially) range distorted but the full
automorphism group of the shift constructed is not explicit and so it is unknown (to
us) if this automorphism is group distorted.

3.2. Entropy obstructions to embedding. For a subgroup G of Aut(X) con-
taining an element φ with logarithmic distortion, the two quantities RS and CS(φ)
determine a lower bound on the possible entropy of the shift (X, σ).

Theorem 3.8. Let (X, σ) be a subshift and φ ∈ Aut(X) an element of infinite order
such that for some constant R > 0, range(φm) ≤ R log(m) for each m ≥ 1. Then

htop(σ) ≥ 1

2R
.

Proof. Consider the φ-spacetime U (see the definition in Section 2.1) and let V be
the vertical segment {0} × {0, · · · , 2n − 1} ⊂ Z2 of length 2n for n ≥ 1.

We claim that V is coded by a horizontal segment. To prove this, recall that
by definition of the range, if x, y ∈ X satisfy x[i] = y[i] whenever |i| ≤ range(φk),
then φk(x)[0] = φk(y)[0]. So, if r(n) = sup0≤m≤2n range(φm), the horizontal segment
H = {−r(n), · · · , r(n)} × {0} of length 2r(n) + 1 codes the vertical segment V .
Recalling the definition of coding, this means that if η, θ ∈ U and η|H = θ|H , then
η|V = θ|V .

Since range(φm) ≤ R log(m) for all m > 0, it follows that if 1 ≤ m ≤ 2n and
C0 = R log(2), we have that

range(φm) ≤ R log(m) ≤ R log(2n) = C0n.

Thus the horizontal segment of length 2bC0nc+ 1 centered at (0, 0) codes the vertical
segment V . We deduce that the number of distinct vertical words of height 2n that
occur in U is at most PX(2bC0nc+ 1).

Suppose for contradiction that PX(2bC0nc+ 1) ≤ 2n for some n ∈ N. Then, by the
Morse-Hedlund Theorem [22] each vertical columns is periodic with period at most
2n. This in turn implies that φ has finite order, a contradiction of the hypothesis.
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Thus we have PX(2bC0nc+ 1) > 2n and hence

htop(σ) = lim
n→∞

log(PX(n))

n
= lim

n→∞

log(PX(2bC0nc+ 1))

2bC0nc+ 1
≥ lim

n→∞

log(2n)

2C0n+ 1
=

log(2)

2C0

.

Since C0 = R log(2), we conclude that

htop(σ) ≥ 1

2R
. �

Remark 3.9. Recall that for a finite set S of generators for a subgroup G ⊂ Aut(X),
the range, RS, of S is defined to be RS = maxg∈S range(g). Also we defined CS(φ) to
be the smallest C such that `S(φm) ≤ C log(m), for all m > 0.

For all g1, g2 ∈ Aut(X), the range satisfies range(g1g2) ≤ range(g1) + range(g2). It
follows that for all m ∈ N,

range(gm) ≤ `S(gm)RS ≤ RSCS(φ) log(m).

Hence the number R := RSCS(φ) satisfies the hypothesis of Theorem 3.8 and we
conclude that

htop(σ) ≥ 1

2RSCS(φ)
.

The quantity CS(φ) depends only on the algebraic properties of the abstract group
G and not on the realizations of these automorphisms as sliding block codes, whereas
RS depends only on the range of the sliding block code generators of S.

In a private communication, Hochman indicated how to modify the construction
in [11] to obtain an infinite order, logarithmically range distorted automorphism.

Recall that a group G is almost simple if every normal subgroup is either finite
or has finite index. The Margulis normal subgroups theorem (see [20]) implies that
many Lie group lattices are almost simple (including for example SL(n,Z) for n ≥ 3).

Corollary 3.10. Let (X, σ) be a shift with zero entropy. Suppose G is group and
some element g ∈ G has logarithmic distortion. Then if Φ: G→ Aut(X) is a homo-
morphism, the element Φ(g) ∈ Aut(X) has finite order.
Moreover, if G is almost simple, then Φ(G) is a finite group.

Proof. If φ = Φ(g) is not of finite order, then it is an element with logarithmic
distortion in the subgroup Φ(G) of Aut(X). Moreover, since the range is subadditive,
there are a finite set S ⊂ Φ(G) and positive constants RS, CS, such that range(φk) ≤
RSCS log(k) for each k ≥ 1. (See Remark 3.9.) This assumption would contradict
Theorem 3.8.

Suppose now that G is an almost simple group and Φ: G→ Aut(X) is a homomor-
phism. If g ∈ G has logarithmic distortion then, as above, φ = Φ(g) has finite order.
So the kernel K of Φ contains infinitely many distinct powers of g and, in particular,
K is infinite. But since G is almost simple, this implies K has finite index and we
conclude that Φ(G) ∼= G/K is finite. �

Since SL(k,Z), k ≥ 3 and the Baumslag-Solitar group BS(1, n) have elements which
are logarithmically distorted, Corollary 3.10 implies they are examples of finitely
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generated groups that do not embed into the automorphism group of any shift with
zero entropy. In particular, this provides an answer Question 6.1 of [7]. However, we
are unable to give a positive entropy shift for which SL(k,Z), k ≥ 3 or BS(1, n) do
not embed.

On a related note, if m > 1 and n > m, then BS(m,n) is not residually finite [19].
Thus if X is a mixing shift of finite type, then BS(m,n) does not embed in Aut(X).

4. Torsion free nilpotent groups

4.1. Periodicity in two dimensions. We recall some results about two-dimensional
shifts which we then use to describe properties of the automorphism group of a one-
dimensional shift.

Theorem 4.1 (Cyr & Kra [4]). Let η : Z2 → Σ and suppose there exist n, k ∈ N such
that Pη(n, k) ≤ nk

2
. Then there exists (i, j) ∈ Z2 \ {(0, 0)} such that η(x+ i, y + j) =

η(x, y) for all (x, y) ∈ Z2.

Lemma 4.2. Let (X, σ,Z2) be a two-dimensional subshift such that each element is
vertically periodic. Then there exists a constant T > 0 such that each element of X
is fixed by σ(0,T ).

Proof. Let Z be the collection of all the sequences along the vertical columns of
elements in X. The set Z defines a one-dimensional subshift where each sequence is
periodic.

If the subshift Z is infinite, its language contains arbitrarily long right special
words. Taking an accumulation point, there exist two different sequences x, y ∈ Z
sharing the same past. This is impossible because x and y are both periodic. Hence
the set Z is finite. So a power T of the shift map is the identity on Z. This shows
the lemma.

�

4.2. Complexity obstructions to embedding. In this section, we show a subshift
with an infinite order polynomially range distorted automorphism cannot have a sub-
polynomial complexity. Then we deduce a restriction on the complexity of a shift
which contains a nilpotent group in its automorphism group.

We start with a sufficient condition for an automorphism to be non-distorted:

Lemma 4.3. Let (X, σ) be a (one-dimensional) shift and let φ ∈ Aut(X). If there
exist i, j ∈ Z \ {0} and an aperiodic x ∈ X such that φi(x) = σj(x), then

range(φim) ≥ |j| ·m
for all m ∈ N. In particular φ is not range distorted.

Proof. Since φ and σ commute, if φi(x) = σj(x) then φi(σkx) = σi(σkx) for all k ∈ Z
and so by continuity we get φi = σj on O(x), the orbit closure under σ of x. The

map φi preserves O(x) and by aperiodicity, it is infinite. For each m ≥ 1, there is

a left special word in wm ∈ L(O(x)) of length 2|j|m − 1, meaning there exist a 6= b

such that awm, bwm ∈ L(O(x)). If y, z ∈ O(x) are such that y[−|j|m+ 1] . . . y[|j|m−
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1] = z[−|j|m + 1] . . . z[|j|m − 1] = wm but y[−|j|m] = a and z[−|j|m] = b then
(σ|j|my)[0] = a 6= b = (σ|j|mz)[0]. This implies that range(σjm) ≥ |j|m, proving the
lemma. �

Theorem 4.4. Suppose (X, σ) is a shift such that there is an automorphism φ of
infinite order with range(φn) = O(n1/d). Then

lim inf
n→∞

PX(n)

nd+1
> 0.

Recall that [11] provides an example of a subshift with polynomial complexity
and an infinite order automorphism polynomially range distorted. Furthermore, the
exponent may be arbitrairly small.

Proof. Let C0 be a constant such that for any n ∈ N and all integers k ≤ nd,
range(φk) ≤ C0n.

Consider the φ-spacetime U and let V be a rectangle of height nd and width 2n+ 1
in Z2, with the horizontal base of V centered at (0, 0). Recall that an horizontal
segment of length 2 range(φk) + 1 centered at the origin codes the point {(0, k)}.

Let r(n) = sup0≤k≤nd 2 range(φk) + 2n + 1. So, the horizontal segment of length
r(n) centered at (0, 0) codes V .

Since range(φk) ≤ C0n, we have that r(n) ≤ 2C0n + 2n + 1 ≤ Cn, where C =
b2C0 + 2c+ 2. We conclude that there are at most PX(Cn) possible colorings of the
rectangle V .

Again letting PU(k, n) denote the complexity of the k × n rectangle in U , this
remark implies that PU(n, nd) ≤ PX(Cn). We proceed by contradiction and assume
that lim infn PX(n)/nd+1 = 0. Since for each n, PX(Cbn/Cc) ≤ PX(n), we also have
lim infn PU(n, nd)/nd+1 = 0. It follows that PU(n, nd) < nd+1/2 for infinitely many
n ∈ N. By Theorem 4.1, we conclude that if x0 ∈ X is a fixed aperiodic element of
X, then φi(x0) = σj(x0) for some i > 0 and j ∈ Z.

By Lemma 4.3, range(φim) ≥ |j| ·m for all m ∈ N. One the other hand, since φ
is distorted we also have that lim range(φk)/k = 0. These two properties can only
be simultaneously true if j = 0. Therefore, for any aperiodic x0 ∈ X, there exists
ix0 ∈ N such that φix0 (x0) = x0. Hence, the map φ is periodic on each aperiodic
sequence of X.

Since the set of periodic sequences of a given period is finite and the automor-
phism φ has to preserves this set, the map φ is also periodic on each periodic se-
quence. By Lemma 4.2 applied to the φ-spacetime U , the automorphism φ has a
finite order. But since φ ∈ G has infinite order, this contradicts the assumption that
lim infn PX(n)/nd+1 = 0. �

Let us recall some basics on nilpotent groups. If G is a group and A,B ⊂ G,
let [A,B] denote the commutator subgroup, meaning the subgroup generated by
{a−1b−1ab : a ∈ A, b ∈ B}. Given a group G, we inductively define the lower central
series by setting G1 = G and Gk+1 = [G,Gk] for k > 0. If d is the least integer such
that Gd+1 is the trivial group {e}, then we say that G is d-step nilpotent, and we say
that G is nilpotent if it is d-step nilpotent for some d ≥ 1.
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We use a few standard facts about nilpotent groups:

(1) Any subgroup of a finitely generated nilpotent group G is finitely generated.
(2) The set of elements of finite order in a nilpotent group form a normal subgroup

T , called the torsion subgroup.
(3) A finitely generated torsion subgroup of a nilpotent group is finite.

We also use the following standard fact about commutators in any group (see 2.3b
of [24] for a more general statement and further references):

Proposition 4.5. For any group G, if mi,mj ≥ 1 and gi ∈ Gi, and gj ∈ Gj then

[gmi
i , g

mj

j ] = [gi, gj]
mimj mod (Gi+j+1)

Lemma 4.6. Suppose G is a finitely generated nilpotent group with torsion subgroup
T and assume that the quotient G/T is d-step nilpotent with d ≥ 2. Then there exists
an element z ∈ Gd of infinite order that is polynomially distorted. More precisely,
there exists a finite set S ⊂ G such that

`S(zn) = O(n
1
d ).

Proof. We first claim that it suffices to prove the result when T is trivial. Namely,
since T is normal and finite, for any z ∈ G,

`S(zn) ≤ `S0((zT )n) +K,

where S0 is a set of generators for G/T , K is the order of T , and S is a set of generators
of G containing T and a representative of each coset in S0. Hence it suffices to show
that the torsion free group G/T , there is an element zT ∈ (G/T )d such that

`S0((zT )n) = O(n
1
d ).

Moreover the element z ∈ G has infinite order as soon as zT is not T .
Thus we now assume that H = G/T is torsion free and d-step nilpotent. In particu-

lar, the groupHd is nontrivial. Since it is generated by the elements [a1, [a2, . . . , [ad−1, ad] . . . ]],
there exist a1, . . . , ad in H such that

z = [a1, [a2, . . . , [ad−1, ad] . . . ]]

is not trivial.
By Proposition 4.5, for any m1, . . . ,md ∈ N,

[am1
1 , [am2

2 , [am3
3 , [. . . amd

n ] . . . ]]] = zΠd
i=1mi .

In particular, for any integers 1 ≤ q, 0 ≤ α ≤ q and 0 ≤ i < d,

zαq
i

= [aq1, [a
q
2, [. . . [a

q
i , [a

α
i+1, [ai+2, [. . . , ad] . . . ]]] . . . ]].

Letting S0 denote the finite set {a1, . . . , ad}, the word length of the right-hand side
of this equation is

(4.1) `S0(z
αqi) ≤ 1 +

i∑
j=1

2jq + 2i+1α +
d∑

j=i+2

2j ≤ 2d+1q.
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For an integer n ≥ 1, let q be the smallest integer such that q > n
1
d . Write n in

base q as

n =
d−1∑
i=0

αiq
i,

where 0 ≤ αi < q. Since `S0(ab) ≤ `S0(a) + `S0(b) for every a, b ∈ H, the inequality
in (4.1) leads to

`S0(z
n) ≤

d−1∑
i=0

`S0(z
αiq

i

) ≤ d2d+1q ≤ d2d+1(n
1
d + 1). �

We deduce the following corollary

Corollary 4.7. Suppose (X, σ) is a shift and that G is a finitely generated nilpotent
subgroup of Aut(X) with torsion subgroup T . If G/T is d-step nilpotent with d ≥ 2,
then

lim inf
n→∞

PX(n)

nd+1
> 0.

Proof. Let z ∈ G be the element guaranteed to exist by Lemma 4.6. If S ⊂ G is a
finite set, for all n ∈ N we have

range(zn) ≤ `S(zn) max
g∈S

range(g).

The result follows from Theorem 4.4. �

4.3. The automorphism group for subshifts whose complexity is subpoly-
nomial. For minimal shifts of polynomial growth, there are strong constraints on
the automorphism group:

Theorem 4.8 (Cyr & Kra [6]). Suppose (X, σ) is a minimal shift and there exists
` ∈ N such that PX(n) = o(n`+1). Then any finitely generated, torsion-free subgroup
of Aut(X) is a group of polynomial growth of degree at most `.

For instance, if the Heisenberg group is embedded into the automorphism group of a
minimal shift (X, σ), we must have at least lim supn PX(n)/n4 > 0. Using distortion,
we obtain a better bound, and we start with an algebraic lemma on the growth rate
of nilpotent group:

Lemma 4.9. If G is a finitely generated, torsion free d-step nilpotent group for some
d ≥ 2, then G has polynomial growth rate of degree at least d(d+ 1)/2 + 1.

Proof. Letting Z(H) denote the center of the group H, we inductively define a se-
quence of normal subgroups. Set Z0(G) = {1}. Given Zi(G), let πi : G → G/Zi(G)
denote the quotient map and define

Zi+1(G) := π−1
i (Z(G/Zi(G))).

By induction on i, it is easy to check that Gd+1−i is a subgroup of Zi(G). By a result
of Mal′cev [16, 17], each quotient Zi+1(G)/Zi(G) is torsion free. Hence, each group
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Gd−i/Gd−i+1 is torsion free, as it embeds into Zi+1(G)/Zi(G). In particular, the rank
of of each Gd−i/Gd−i+1 is at least 1.

We next check that the rank of G/G2 is at least 2. Let Ḡ denote the group G/G3.
It is a nilpotent group of step at most 2 and the group Ḡ/Ḡ2 is abelian. We claim
that Ḡ/Ḡ2 is not cyclic. If not, then Ḡ/Ḡ2 is generated by the coset xḠ2 and so Ḡ
is generated by Ḡ2 and x. Since the generators commute (recall that Ḡ2 lies in the
center of Ḡ), it follows that Ḡ is abelian. However, this contradicts the assumption
that G is d-step for some d ≥ 2. Therefore, G/G2 has at least two independent
generators, and so its rank is at least 2.

By the Bass-Guivarc’h formula [1, 9], G has polynomial growth rate of degree

(4.2)
∑
k≥1

k rank(Gk/Gk+1),

where rank(Gk/Gk+1) is the torsion free rank of the abelian group Gk/Gk+1. Since
the rank of each Gk/Gk+1, 1 ≤ k ≤ d is positive and rank(G1/G2) ≥ 2, the lemma
follows. �

Recall that a group G is virtually nilpotent (of degree d) if it contains a finite index
(d-step) nilpotent subgroup.

Theorem 4.10. Let (X, σ) be an infinite minimal shift such that for some d ≥ 1 we
have PX(n) = o(n(d+1)(d+2)/2+2). Then any finitely generated, torsion-free subgroup of
Aut(X) is virtually nilpotent of step at most d.

In particular, for an aperiodic minimal shift such that PX(n) = o(n5), any finitely
generated, torsion-free subgroup of Aut(X) is virtually abelian.

Proof. Let G < Aut(X) be a finitely generated, torsion-free subgroup of Aut(X).
Theorem 4.8 ensures that G has a polynomial growth of degree at most (d + 1)(d +
2)/2 + 1. By Gromov’s Theorem [8], G contains a nilpotent subgroup H with finite
index. We proceed by contradiction and assume that H is a k-step nilpotent group
for some k > d.

Assume first that 〈σ〉 ∩H = {1}. Then the group Aut(X) contains 〈σ〉 ⊕H, and
by Lemma 4.9, this group has polynomial growth of degree at least k(k + 1)/2 + 2.
But this is a contradiction of Theorem 4.8.

Otherwise, we assume that 〈σ〉 ∩ H is not trivial. Then the group H/(〈σ〉 ∩ H)
is nilpotent. Let z ∈ Hk be the element given by Lemma 4.6. Thus z is distorted
and z 6∈ 〈σ〉 ∩ H, since any element in 〈σ〉 is not distorted (see the computations
in Section 3). It follows that H/(〈σ〉 ∩ H) is k′-step nilpotent for some k′ ≥ k. By
Lemma 4.9, this group has polynomial growth of degree at least k(k+ 1)/2 + 1. Since
〈σ〉 ∩ H is an infinite, finitely generated group, H has polynomial growth rate of
degree at least k(k+ 1)/2 + 2 (see [18, Proposition 2.5 (d)] for instance). Again, this
contradicts Theorem 4.8. �

In fact one can extract from the proof a more general, but more technical, state-
ment, relating the homogeneous dimension given by (4.2) to the step of any finitely
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generated, torsion-free subgroup of the automorphism group for an infinite minimal
shift.

5. Open questions

Question 5.1. Does the discrete Heisenberg group embed into the automorphism
group of a one-dimensional shift? More generally, does the automorphism group of a
one-dimensional shift have a distorted element of infinite order?

Interest in the Heisenberg group in particular arises from Theorem 4.8. Conse-
quently, Question 5.1 becomes most interesting if X is assumed to be minimal and
have PX(n) = O(nd) as we then have a dichotomy in the possible behaviors. If there
exists a subshift such that the Heisenberg group embeds in its automorphism group,
then Question 5.1 is resolved affirmatively. If no such system (X, σ) exists, then
by Theorem 4.8 any finitely generated, torsion-free subgroup of Aut(X) is virtually
abelian, as the Heisenberg group is a subgroup of any finitely generated, torsion-free,
nonabelian nilpotent group, resolving Question 5.1 negatively.

More generally we have the same question for higher dimensions:

Question 5.2. Does the discrete Heisenberg group, or more generally a finitely gen-
erated group with a distorted element of infinite order, embed into the automorphism
group of a shift of dimension greater than one?

Question 5.3. Does a group with logarithmically distorted elements, for example
SL(3,Z) or the Baumslag-Solitar group BS(1, n), embed into the automorphism group
of some positive entropy shift?

By Corollary 3.10, these groups do not embed into Aut(X) for any shift X with
entropy zero. We note that if BS(1, p) embeds in Aut(X, σ) for some subshift of
finite type σ and some prime p, this would answer both questions 3.4 and 3.5 of [2]
which ask if some some automorphism of infinite order has an infinite chain of pth

roots. If G ∼= BS(1, p) is a subgroup of Aut(X) and has generators a, b with relation
b−1ab = ap, then it is straightforward to show that ck := bkab−k, k ≥ 0 satisfies
cpk = ck−1 and c0 = a, and so a has an infinite chain of pth roots.
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