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Abstract. Dimension groups are complete invariants of strong orbit
equivalence for minimal Cantor systems. This paper studies a natural
family of minimal Cantor systems having a finitely generated dimension
group, namely the primitive unimodular proper S-adic subshifts. They
are generated by iterating sequences of substitutions. Proper substitu-
tions are such that the images of letters start with a same letter, and
similarly end with a same letter. This family includes various classes of
subshifts such as Brun subshifts or dendric subshifts, that in turn in-
clude Arnoux-Rauzy subshifts and natural coding of interval exchange
transformations. We compute their dimension group and investigate
the relation between the triviality of the infinitesimal subgroup and ra-
tional independence of letter measures. We also introduce the notion
of balanced functions and provide a topological characterization of bal-
ancedness for primitive unimodular proper S-adic subshifts.

1. Introduction

Two dynamical systems are topologically orbit equivalent if there is a
homeomorphism between them preserving the orbits. Originally, the notion
of orbit equivalence was studied in the measurable context (see for instance
[Dye59, OW80]), motivated by the classification of von Neumann algebras.
In contrast with the measurable case, Giordano, Putnam and Skau showed
that, in the topological setting, uncountably many classes appear by provid-
ing a dimension group as a complete invariant of strong orbit equivalence
[GPS95]. Dimension groups are ordered direct limit groups defined by se-
quences of positive homomorphisms (θn : Zdn → Zdn+1)n and were defined
by Elliott [Ell76] to study almost finite dimensional C∗-algebras. In fact, an
ordered group is a dimension group if and only if it is a Riesz group [EHS80].
They have been widely studied in the late 70’s and at the beginning of the
80’s [Eff81], in particular when the dimension group is a direct limit given
by unimodular matrices [ES79, ES80, ES81, Rie81b, Rie81a].
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The present paper studies dynamical and ergodic properties of subshifts
having dimension groups with a group part of the form Zd. We focus on
the class of primitive unimodular proper S-adic subshifts. Such subshifts
are generated by iterating sequences of substitutions. They have recently
attracted much attention in symbolic dynamics [BD14] and in tiling theory
[GM13, FS14]. Proper substitutions are such that images of letters start
with a same letter and also end with a same letter. Proper minimal proper
S-adic systems have played an important role for the characterization of
linearly recurrent subshifts [Dur00, Dur03]. The term unimodular refers to
the unimodularity of the incidence matrices of the associated substitutions.

Sturmian subshifts, subshifts generated by natural codings of interval
exchange transformations or Arnoux-Rauzy subshifts are prominent exam-
ples of unimodular proper S-adic subshifts. They also belong to a re-
cently defined family of subshifts, called dendric subshifts, and considered
in [BDFD+15b, BDFD+15c, BDFD+15d, BDFD+15a, BDD+18] (see also
Section 3.2). In this series of papers, their elements have been studied un-
der the name of tree words. We have chosen to use the terminology dendric
subshift in order to avoid any ambiguity with respect to shifts defined on
trees (see, e.g., [AB12]) and also to avoid the puzzling term “tree word”.

Minimal dendric subshifts are defined with respect to combinatorial prop-
erties of their language expressed in terms of extension graphs. For precise
definitions, see Section 3.2. In particular, they have linear factor complexity.
Focusing on extension properties of factors is a combinatorial viewpoint that
allows to highlight the common features shared by dendric subshifts, even
if the corresponding symbolic systems have very distinct dynamical, ergodic
and spectral properties. For instance, a coding of a generic interval exchange
is topologically weakly mixing for irreducible permutations not of rotation
class [NR97], whereas an Arnoux-Rauzy subshift is generically not topolog-
ically weakly mixing [CFM08, BST19]. Even though one can disprove, in
some cases, whether two given minimal dendric subshifts are topologically
conjugate by using e.g. asymptotic pairs (see for instance Section 6.4), the
question of orbit equivalence is more subtle and is one of the motivations
for the present work.

The aim of this paper is to study topological orbit equivalence and strong
orbit equivalence for minimal unimodular proper S-adic subshifts. Let
(X,S) be such a subshift over a d-letter alphabet A and letM(X,S) stand
for its set of shift-invariant probability measures. One of our main results
states that any continuous integer-valued function defined on X is cohomol-
ogous to some integer linear combination of characteristic functions of letter
cylinders (Theorem 4.1). This relies on the fact that such subshifts being
aperiodic (see Proposition 3.5) and recognizable by [BSTY18], they have a
sequence of Kakutani-Rohlin tower partitions with suitable topological prop-
erties. We then deduce an explicit computation of their dimension group
(Theorem 4.5). Indeed, the dimension group K0(X,S) with ordered unit
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is isomorphic to
(
Zd, {x ∈ Zd | 〈x,µ〉 > 0 for all µ ∈M(X,S)} ∪ {0}, 1

)
,

where µ denotes the vector of measures of letter cylinders.
In other words, strong orbit equivalence can be characterized by means of

letter measures, i.e., by measures of letter cylinders. In particular, two shift-
invariant probability measures on (X,S) coinciding on the letter cylinders
are proved to be equal (see Corollary 4.2). This result extends a statement
initially proved for interval exchanges in [FZ08]; see also [Put89, Put92,
GJ02]. Moreover, two primitive unimodular proper S-adic subshifts are
proved to be strong orbit equivalent if and only if their simplexes of letter
measures coincide up to a unimodular matrix (see Corollary 4.7), with the
simplex of letter measures being the d-simplex generated by the vectors
(ν[a])a∈A, for ν in M(X,S).

We also investigate in Section 5 the triviality of the infinitesimal subgroup
and relate it to the notion of balance. We provide a characterization of the
triviality of the infinitesimal subgroup for minimal unimodular proper S-
adic subshifts in terms of rational independence of measures of letters (see
Proposition 5.1). Inspired by the classical notion of balance in word com-
binatorics (see e.g. references in [BCB19]), we also introduce the notion of
balanced functions and provide a topological characterization of balanced-
ness for primitive unimodular proper S-adic subshifts (see Corollary 5.5).

We briefly describe the contents of this paper. Definitions and basic
notions are recalled in Section 2, including, in particular, the notions of di-
mension group and orbit equivalence in Section 2.3, and of image subgroup
in Section 2.4. Primitive unimodular S-adic subshifts are introduced in Sec-
tion 3, with dendric subshifts being discussed in more details in Section 3.2.
Their dimension groups are studied in Section 4. Section 5 is devoted to
the study of infinitesimals and their connections with the notion of balance.
Some examples are handled in Section 6.

Acknowledgements. We would like to thank M. I. Cortez and F. Dolce
for stimulating discussions.

2. First definitions and background

2.1. Topological dynamical systems. By a topological dynamical system,
we mean a pair (X,T ) where X is a compact metric space and T : X → X
is a homeomorphism. It is a Cantor system when X is a Cantor space, that
is, X has a countable basis of its topology which consists of closed and open
sets (clopen sets) and does not have isolated points. This system is aperiodic
if it does not have periodic points, i.e., points x such that Tn(x) = x for
some n > 0. It is minimal if it does not contain any non-empty proper
closed T -invariant subset. Any minimal Cantor system is aperiodic. Two
topological dynamical systems (X1, T1), (X2, T2) are conjugate when there
is a conjugacy between them, i.e., a homeomorphism ϕ : X1 → X2 such that
ϕ ◦ T1 = T2 ◦ ϕ.
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A complex number λ is a continuous eigenvalue of (X,T ) if there exists a
non-zero continuous function f : X → C such that f ◦ T = λf . An additive
eigenvalue is a real number α such that exp(2iπα) is a continuous eigenvalue.
Let E(X,T ) be the (additive) group of additive eigenvalues of (X,T ). We
consider its rank over Q, i.e., the maximal number of rationally independent
elements of E(X,T ). Note that 1 is always an additive eigenvalue and thus
Z is included in E(X,T ).

A probability measure µ on X is said to be T -invariant if µ(T−1A) = µ(A)
for every measurable subset A of X. Let M(X,T ) be the set of all T -
invariant probability measures on (X,T ). It is a convex set and any extremal
point is called an ergodic T -invariant measure. It is well known that any
topological dynamical system admits an ergodic invariant measure. The set
of ergodic T -invariant probability measures is denoted Me(X,T ). Observe
that if (X,T ) is a minimal Cantor system, then for all clopen E and all
T -invariant probability measures µ, one has µ(E) > 0. The topological dy-
namical system (X,T ) is uniquely ergodic if there exists a unique T -invariant
probability measure on X. It is said to be strictly ergodic if it is minimal
and uniquely ergodic.

The notation χE stands for the characteristic function of E; N stands for
the set of non-negative integers (0 ∈ N).

2.2. Subshifts. Let A be a finite alphabet of cardinality d ≥ 2. Let us
denote by ε the empty word of the free monoid A∗ (endowed with concate-
nation), and by AZ the set of bi-infinite words over A. For a bi-infinite word
x ∈ AZ, and for i, j ∈ Z with i ≤ j, the notation x[i,j) (resp., x[i,j]) stands
for xi · · ·xj−1 (resp., xi · · ·xj) with the convention x[i,i) = ε. For a word

w = w1 · · ·w` ∈ A`, its length is denoted |w| and equals `. We say that a
word u is a factor of a word w if there exist words p, s such that w = pus.
If p = ε (resp., s = ε) we say that u is a prefix (resp., suffix) of w. For a
word u ∈ A∗, an index 1 ≤ j ≤ ` such that wj · · ·wj+|u|−1 = u is called an

occurence of u in w and we use the same term for bi-infinite word in AZ.
The number of occurrences of a word u ∈ A∗ in a finite word w is denoted
as |w|u.

The set AZ endowed with the product topology of the discrete topology
on each copy of A is topologically a Cantor set. The shift map S defined by
S ((xn)n∈Z) = (xn+1)n∈Z is a homeomorphism of AZ. A subshift is a pair
(X,S) where X is a closed shift-invariant subset of some AZ. It is thus a
topological dynamical system. Observe that a minimal subshift is aperiodic
whenever it is infinite.

The set of factors of a sequence x ∈ AZ is denoted L(x). For a subshift
(X,S) its language L(X) is ∪x∈XL(x). The factor complexity pX of the
subshift (X,S) is the function that with n ∈ N associates the number pX(n)
of factors of length n in L(X).
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Let w−, w+ be two words. The cylinder [w−.w+] is defined as the set
{x ∈ X | x[−|w−|,|w+|) = w−w+}. It is a clopen set. When w− is the empty

word ε, we set [ε.w+] = [w+].
For µ a S-invariant probability measure, the measure of a factor w ∈ L(X)

is defined as the measure of the cylinder [w]. The notation µ stands for the
vector (µ([a])a∈A ∈ RA. The simplex of letter measures is defined as the
d-simplex consisting in all the vectors µ with µ ∈ M(X,S), i.e., it consists
of all the convex combinations of the vectors µ with µ ∈Me(X,S).

2.3. Dimension groups and orbit equivalence. Two minimal Cantor
systems (X1, T1) and (X2, T2) are orbit equivalent if there exists a homeo-
morphism Φ: X1 → X2 mapping orbits onto orbits, i.e., for all x ∈ X1, one
has

Φ({Tn1 x | n ∈ Z}) = {Tn2 Φ(x) | n ∈ Z}.
This implies that there exist two maps n1 : X1 → Z and n2 : X2 → Z
(uniquely defined by aperiodicity) such that, for all x ∈ X1,

Φ ◦ T1(x) = T
n1(x)
2 ◦ Φ(x) and Φ ◦ Tn2(x)

1 (x) = T2 ◦ Φ(x).

The minimal Cantor systems (X1, T1) and (X2, T2) are strongly orbit equiv-
alent if n1 and n2 both have at most one point of discontinuity. For more
on the subject, see e.g. [GPS95].

There is a powerful and convenient way to characterize orbit and strong
orbit equivalence in terms of ordered groups and dimension groups due to
[GPS95]. An ordered group is a pair (G,G+), where G is a countable abelian
group and G+ is a subset of G, called the positive cone, satisfying

G+ +G+ ⊂ G+, G+ ∩ (−G+) = {0}, G+ −G+ = G.

We write a ≤ b if b − a ∈ G+, and a < b if b − a ∈ G+ and b 6= a. An
order ideal J of an ordered group (G,G+) is a subgroup J of G such that
J = J+ − J+ (with J+ = J ∩ G+) and such that 0 ≤ a ≤ b ∈ J implies
a ∈ J . An ordered group is simple if it has no nonzero proper order ideals.

An element u in G+ such that, for all a in G, there exists some non-
negative integer n with a ≤ nu is called an order unit for (G,G+) . Two
ordered groups with order unit (G1, G

+
1 , u1) and (G2, G

+
2 , u2) are isomorphic

when there exists a group isomorphism φ : G1 → G2 such that φ(G+
1 ) = G+

2
and φ(u1) = u2.

We say that an ordered group is unperforated if for all a ∈ G, if na ∈ G+

for some n ∈ N \ {0}, then a ∈ G+. Observe that this implies in particular
thatG has no torsion element. A dimension group is an unperforated ordered
group with order unit (G,G+, u) satisfying the Riesz interpolation property:
given a1, a2, b1, b2 ∈ G with ai ≤ bj (i, j = 1, 2), there exists c ∈ G with
ai ≤ c ≤ bj .

Most examples of dimension groups we will deal with in this paper are of
the following type: (G,G+, u) = (Zd, {x ∈ Zd | θi(x) > 0, 1 ≤ i ≤ e}, u),
where the θi’s are independent linear forms such that θi(u) = 1.
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Let (X,T ) be a Cantor system. Let C(X,R) and C(X,Z) respectively
stand for the group of continuous functions from X to R and Z, and let
C(X,N) stand for the monoid of continuous functions from X to N, with
the group and monoid operation being the addition. Let

β : C(X,Z) → C(X,Z)
f 7→ f ◦ T − f.

A map f is called a coboundary (resp., a real coboundary) if there exists a
map g in C(X,Z) (resp. in C(X,R)) such that f = g ◦ T − g. Two maps
f, g ∈ C(X,Z) are said to be cohomologous whenever f − g is a coboundary.

We consider the quotient group H(X,T ) = C(X,Z)/βC(X,Z). We
denote [f ] the class of a function f in H, and π the natural projection
π : C(X,Z) → H(X,T ). We define H+(X,T ) = π(C(X,N)) as the set of
classes of functions in C(X,N). The ordered group with order unit

K0(X,T ) := (H(X,T ), H+(X,T ), [1]),

where 1 stands for the one constant valued function, is a dimension group
according to [Put89], called the dynamical dimension group of (X,T ). We
will use in this paper the short version dimension group of (X,T ). The next
result shows that any dimension group can be realized as the dimension
group of a minimal Cantor system.

Theorem 2.1. [HPS92, Corollary 6.3] Let (G,G+, u) be an ordered group
with order unit. It is simple if and only if there exists a minimal Cantor
system (X,T ) such that (G,G+, u) is isomorphic to K0(X,T ).

We also define the set of infinitesimals of K0(X,T ) as

Inf(K0(X,T )) =

{
[f ] ∈ H(X,T ) :

∫
fdµ = 0 for all µ ∈M(X,T )

}
.

Note that H(X,T )/Inf(K0(X,T )) with the induced order also determines a
dimension group [GPS95]. We denote it K0(X,T )/Inf(K0(X,T )).

The dimension groups K0(X,T ) and K0(X,T )/Inf(K0(X,T )) are com-
plete invariants of strong orbit equivalence and orbit equivalence, respec-
tively.

Theorem 2.2. [GPS95] Let (X1, T1) and (X2, T2) be two minimal Cantor
systems. The following are equivalent:

• (X1, T1) and (X2, T2) are strong orbit equivalent;
• K0(X1, T1) and K0(X2, T2) are isomorphic.

Similarly, the following are equivalent:

• (X1, T1) and (X2, T2) are orbit equivalent;
• K0(X1, T1)/Inf(K0(X1, T1)) and K0(X2, T2)/Inf(K0(X2, T2)) are

isomorphic.
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2.4. Image subgroup. A trace of a dimension group (G,G+, u) is a group
homomorphism p : G → R such that p is non-negative (p(G+) ≥ 0) and
p(u) = 1. The collection of all traces of (G,G+, u) is denoted by T (G,G+, u).
It is known [Eff81] that T (G,G+, u) completely determines the order on G.
In fact, one has

G+ = {a ∈ G : p(a) > 0, ∀p ∈ T (G,G+, u)} ∪ {0}.
For more on the subject, see e.g. [Eff81].

Let (X,T ) be a Cantor system. Given µ ∈ M(X,T ), we define the
trace τµ on K0(X,T ) as τµ([f ]) :=

∫
fdµ. It is shown in [HPS92] that

the correspondence µ 7→ τµ is an affine isomorphism from M(X,T ) onto
T (K0(X,T )). Thus its sends the extremal points of M(X,T ), i.e., the
ergodic measures, to the extremal points of T (K0(X,T )), called pure traces.

The image subgroup of K0(X,T ) is defined as the ordered group with
order unit

(I(X,T ), I(X,T ) ∩ R+, 1),

where

I(X,T ) =
⋂

µ∈M(X,T )

{∫
fdµ : f ∈ C(X,Z)

}
.

Actually, E(X,T ) is a subgroup of I(X,T ) (see [CDP16, Proposition 11]
and also [GHH18, Corollary 3.7].

If (X,T ) is uniquely ergodic with unique T -invariant probability measure
µ, then K0(X,T )/Inf(K0(X,T )) is isomorphic to (I(X,T ), I(X,T )∩R+, 1),
via the correspondence

[f ] + Inf(K0(X,T )) 7→
∫
fdµ.

One can even obtain a more explicit description of the set I(X,S) for
minimal subshifts. Recall that for a family of real numbers {αi}i∈J , 〈{αi}〉
denotes the abelian additive group generated by these real numbers.

Proposition 2.3. Let (X,S) be a minimal subshift. Then,

I(X,S) =
⋂

µ∈M(X,S)

〈{µ([w]) : w ∈ L(X)}〉 .

In particular, if (X,S) is uniquely ergodic with µ its unique S-invariant
probability measure, then I(X,S) = 〈{µ([w]) : w ∈ L(X)}〉 .

Proof. The proof is a direct consequence of the fact that every function
belonging to C(X,Z) is cohomologous to some cylinder function in C(X,Z),
i.e., to some function h in C(X,Z) for which there exists n > 0 such that
for all x ∈ X, h(x) depends only on x[0,n). Indeed, let f ∈ C(X,Z). Since
f is integer-valued, it is locally constant, and by compactness of X, there
exists k ∈ N such that for all x ∈ X, f(x) depends only on x[−k,k]. Therefore,

g(x) = f◦Sk(x) belongs to C(X,Z) and depends only on x[0,2k] for all x ∈ X.

Finally, f−g = f−f ◦Sk(x) = f−f ◦S+f ◦S−f ◦S2+· · ·+f ◦Sk−1(x)+f ◦



8V. BERTHÉ, P. CECCHI BERNALES, F. DURAND, J. LEROY, D. PERRIN, AND S. PETITE

Sk(x) is a coboundary. Hence,
∫
fdµ =

∫
gdµ. Since g is a cylinder function,

g can be written as a finite sum of the form g =
∑
`uχ[u], u ∈ L(X) and

`u ∈ Z. Thus,
∫
fdµ =

∑
`uµ([u]) ∈ 〈{µ([w]) : w ∈ L(X)}〉 . �

3. Primitive unimodular proper S-adic subshifts

In this section we first recall the notion of primitive unimodular proper
S-adic subshift in Section 3.1. We then illustrate it with the class of minimal
dendric subshifts in Section 3.2.

3.1. S-adic subshifts. Let A, B be finite alphabets and let τ : A∗ → B∗
be a non-erasing morphism (also called a substitution if A = B). By non-
erasing, we mean that the image of any letter is a non-empty word. We stress
the fact that all morphisms are assumed to be non-erasing in the following.
Using concatenation, we extend σ to AN and AZ. With a morphism τ :
A∗ → B∗, where A and B are finite alphabets, we classically associate an
incidence matrix Mτ indexed by B×A such that for every (b, a) ∈ B×A, its
entry at position (b, a) is the number of occurrences of b in τ(a). Alphabets
are always assumed to have cardinality at least 2. The morphism τ is said
to be left proper (resp. right proper) when there exist a letter b ∈ B such
that for all a ∈ A, τ(a) starts with b (resp., ends with b). It is said to be
proper if it is both left and right proper.

We recall the definition of an S-adic subshift as stated in [BSTY18], see
also [BD14] for more on S-adic subshifts. Let τ = (τn : A∗n+1 → A∗n)n≥1 be
a sequence of morphisms such that maxa∈An |τ1◦· · ·◦τn−1(a)| goes to infinity
when n increases. For 1 ≤ n < N , we define τ[n,N) = τn ◦ τn+1 ◦ · · · ◦ τN−1

and τ[n,N ] = τn ◦ τn+1 ◦ · · · ◦ τN . For n ≥ 1, the language L(n)(τ ) of level n
associated with τ is defined by

L(n)(τ ) =
{
w ∈ A∗n | w occurs in τ[n,N)(a) for some a ∈ AN and N > n

}
.

As maxa∈An |τ[1,n)(a)| goes to infinity when n increases, L(n)(τ ) defines

a non-empty subshift X
(n)
τ that we call the subshift generated by L(n)(τ ).

More precisely, X
(n)
τ is the set of points x ∈ AZ

n such that L(x) ⊆ L(n)(τ ).

Note that it may happen that L(X
(n)
τ ) is strictly contained in L(n)(τ ). We

set L(τ ) = L(1)(τ ),Xτ = X
(1)
τ and call (Xτ , S) the S-adic subshift generated

by the directive sequence τ .
We say that τ is primitive if, for any n ≥ 1, there exists N > n such that

Mτ[n,N)
> 0, i.e., for all a ∈ AN , τ[n,N)(a) contains occurrences of all letters

of An. Of course, Mτ[n,N)
is equal to MτnMτn+1 · · ·MτN−1 . Observe that if

τ is primitive, then mina∈An |τ[1,n)(a)| goes to infinity when n increases. In

the primitive case L(X
(n)
τ ) = L(n)(τ ), and X

(n)
τ is a minimal subshift (see

for instance [Dur00, Lemma 7]).
We say that τ is (left, right) proper whenever each morphism τn is (left,

right) proper. We also say that τ is unimodular whenever, for all n ≥ 1,



ON THE DIMENSION GROUP OF UNIMODULAR S-ADIC SUBSHIFTS 9

An+1 = An and the matrix Mτn has determinant of absolute value 1. By
abuse of language, we say that a subshift is a (unimodular, left or right
proper, primitive) S-adic subshift if there exists a (unimodular, left or right
proper, primitive) sequence of morphism τ such that X = Xτ .

Let us give another way to define Xτ when τ is primitive and proper. For

an endomorphism τ of A∗, let Ω(τ) =
⋃
k∈Z S

kτ(AZ).

Lemma 3.1. Let τ = (τn : A∗n+1 → A∗n)n≥1 be a sequence of morphisms
such that mina∈An |τ[1,n)(a)| goes to infinity when n increases. Then,

Xτ ⊂
⋂
n∈N

Ω(τ[1,n]).

Furthermore, when τ is primitive and proper, then the equality Xτ =⋂
n∈N Ω(τ[1,n]) holds.

Proof. The proof is left to the reader. �

Observe that both primitiveness and properness cannot be dropped in
the previous statement. Indeed, take for directive sequence τ the constant
sequence equal to τ , defined by τ(0) = 101, τ(1) = 121 and τ(2) = 1.
It is proper but not primitive and the word x = · · · 11.11 · · · belongs to⋂
n∈N Ω(τ[1,n]). However, as 1111 does not belong to L(τ ), x is not an

element of Xτ . In the case of the primitive but non-proper constant directive
sequence given by τ with τ(0) = 0100 and τ(1) = 101, the word x =
limn→∞ τ

n(· · · 11.11 · · · ) belongs to
⋂
n∈N Ω(τ[1,n]). However, as x[−1,0] = 11

and 11 /∈ L(τ ), x is not an element of Xτ .
With a left proper morphism σ : A∗ → B∗ such that b ∈ B is the first

letter of all images σ(a), a ∈ A, we associate the right proper morphism
σ : A∗ → B∗ defined by bσ(a) = σ(a)b for all a ∈ A. For all x ∈ AZ, we thus
have σ̄(x) = Sσ(x). The next result is a weaker version of [DL12, Corollary
2.3].

Lemma 3.2. Let (X,S) be an S-adic subshift generated by the primitive
and left proper directive sequence τ = (τn : A∗n+1 → A∗n)n≥1. Then (X,S) is
also generated by the primitive and proper directive sequence τ̃ = (τ̃n)n≥1,
where for all n, τ̃n = τ2n−1τ2n. In particular, if τ is unimodular, then so is
τ̃ .

Proof. Each morphism τ̃n is trivially proper. It is also clear that the uni-
modularity and the primitiveness of τ are preserved in this process. Using
the relation σ̄(x) = Sσ(x) and Lemma 3.1, we then get

Xτ ⊂
⋂
n∈N

Ω(τ[1,n]) =
⋂
n∈N

Ω(τ̃[1,n]) = Xτ̃ .

Since both τ and τ̃ are primitive, the subshifts Xτ and Xτ̃ are minimal,
hence they are equal. �

Lemma 3.3. All primitive unimodular proper S-adic subshifts are aperiodic.
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Proof. Let τ be a primitive unimodular proper directive sequence on the
alphabet A of cardinality d ≥ 2. Suppose that it has a periodic point x
of period p, where p is the smallest period of x (p > 0). By primitiveness,
all letters of A occur in x, so p ≥ d. We have x = · · ·uu.uu · · · for some
word u with |u| = p. There exists some n such that, for all a, one has

τ[1,n](a) = s(a)uq(a)p(a), where s(a), p(a) are a strict prefix and a strict
suffix of u and q(a) > 1. Let b ∈ A and set τn+1(b) = b0b1 · · · bk. As the

directive sequence τ is proper, b0b1 · · · bkb0 is also a word in L(n+1)(τ ). By
a classical argument due to Fine and Wilf [FW65], one has p(b0)s(b1) =
p(bi)s(bi+1) = p(bk)s(b0) = u for 1 ≤ i ≤ k − 1. Hence

|τ1 · · · τn+1(b)| ≡ |s(c)p(c)s(b1)p(b1) · · · s(bk)p(bk)| ≡ 0 modulo |u|,
which contradicts the unimodularity of τ . �

The next two results will be important for the computation of the dimen-
sion group of primitive unimodular proper S-adic subshifs. The first one is
a weaker version of [BSTY18, Theorem 3.1].

Theorem 3.4 ([BSTY18]). Let τ : A∗ → B∗ be such that its incidence
matrix Mτ is unimodular. Then, for any aperiodic y ∈ BZ, there exists at
most one (k, x) ∈ N×AZ such that y = Skτ(x), with 0 ≤ k < |σ(x0)|.

Proposition 3.5. Let τ = (τn : A∗ → A∗)n≥1 be a unimodular proper
sequence of morphisms such that maxa∈A |τ[1,n)(a)| goes to infinity when
n increases. Then (Xτ , S) is aperiodic and minimal if and only if τ is
primitive.

Proof. Recall that any S-adic subshift with a primitive directive sequence
is minimal (see, e.g. [Dur00, Lemma 7]) and that aperiodicity is proved in
Lemma 3.3.

We only have to show that the condition is necessary. We assume that

(Xτ , S) is aperiodic and minimal. For all n ≥ 1, (X
(n)
τ , S) is trivially aperi-

odic. Let us show that it is minimal.
Assume by contradiction that for some n ≥ 1, (X

(n)
τ , S) is minimal, but

not (X
(n+1)
τ , S). There exist u ∈ L(X

(n+1)
τ ) and x ∈ X

(n+1)
τ such that u

does not occur in x. By Theorem 3.4, {τn([v]) | v ∈ L(X
(n+1)
τ ) ∩ A|u|} is

a finite clopen partition of τn(X
(n+1)
τ ). Thus, considering y = τn(x), by

minimality of (X
(n)
τ , S), there exists k ≥ 0 such that Sky is in τn([u]). Take

z ∈ [u] such that Sky = τn(z). Since y is aperiodic and since we also have

Sky = Sk
′
τn(S`x) for some ` ∈ N and 0 ≤ k′ < |τn(x`)|, we obtain that

τn(z) = Sk
′
τn(S`x) with z ∈ [u], S`x /∈ [u] and 0 ≤ k′ < |τn(x`)|; this

contradicts Theorem 3.4.
We now show that limn→+∞mina∈A |τ[1,n)(a)| = +∞. We again proceed

by contradiction, assuming that (mina∈A |τ[1,n)(a)|)n≥1 is bounded. Then
there exists N > 0 and a sequence (an)n≥N of letters in A such that for
all n ≥ N , τn(an+1) = an. We claim that there are arbitrary long words
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of the form akN in L(X
(N)
τ ) which contradicts the fact that (X

(N)
τ , S) is

minimal and aperiodic. Since τ is proper, for all n ≥ N and all b ∈ A, τn(b)
starts and ends with an. As maxa∈A |τ[1,n)(a)| goes to infinity, there exists
a sequence (bn)n≥N of letters in A such that |τ[N,n)(bn)| goes to infinity and
for all n ≥ N , bn occurs in τn(bn+1). This implies that there exists M ≥ N
such that for all n ≥ M , bn 6= an and, consequently, that τn(bn+1) = anun
for some word un containing bn. It is then easily seen that, for all k ≥ 1,
akM is a prefix of τ[M,M+k)(bM+k), which proves the claim.

We finally show that τ is primitive. If not, there exist N ≥ 1 and a
sequence (an)n≥N of letters in A such that for all n > N , aN does not
occur in τ[N,n)(an). As (|τ[N,n)(an)|)n goes to infinity, this shows that there

are arbitrarily long words in L(X
(N)
τ ) in which aN does not occur. Since

τ is unimodular, there is also a sequence (a′n)n≥N of letters in A such that
aN = a′N and for all n ≥ N , a′n occurs in τn(a′n+1). Again using the fact

that |τ[N,n)(a
′
n)| goes to infinity, this shows that aN belongs to L(X

(N)
τ ). We

conclude that (X
(N)
τ , S) is not minimal, a contradiction. �

3.2. Dendric subshifts. We now describe a subclass of the family of
primitive unimodular proper S-adic subshifts, namely the class of den-
dric subshifts, that encompasses Sturmian subshifts, Arnoux-Rauzy sub-
shifts (see Section 6.2), as well as subshifts generated by interval exchanges
(see [BDFD+15b]). The ternary words generated by the Cassaigne-Selmer
multidimensional continued fraction algorithm also provide dendric sub-
shifts [AL18, CLL17]. The factor complexity of a minimal dendric subshift
over a d-letter alphabet is (d−1)n+1 (see [BDFD+15a]), and on a two-letter
alphabet, the minimal dendric subshifts are the Sturmian subshifts.

Dendric subshifts are defined with respect to combinatorial properties of
their language expressed in terms of extension graphs. We recall the no-
tion of dendric words and subshifts, studied in [BDFD+15b, BDFD+15c,
BDFD+15d, BDFD+15a, BDD+18]. Let (X,S) be a minimal subshift de-
fined on the alphabet A. For w ∈ LX , let

L(w) = {a ∈ A | aw ∈ LX}, `(w) = Card(L(w)),
R(w) = {a ∈ A | wa ∈ LX}, r(w) = Card(R(w)).

A word w ∈ LX is said to be right special (resp. left special) if r(w) ≥ 2
(resp. `(w) ≥ 2). It is bispecial if it is both left and right special.

For a word w ∈ L(X), we consider the undirected bipartite graph E(w)
called its extension graph with respect to X and defined as follows: its set
of vertices is the disjoint union of L(w) and R(w) and its edges are the
pairs (a, b) ∈ L(w) × R(w) such that awb ∈ L(X). For an illustration, see
Example 3.6 below. We then say that a subshift X is a dendric subshift if,
for every word w ∈ L(X), the graph E(w) is a tree. Note that the extension
graph associated with every non-bispecial word is trivially a tree. We will
consider here only minimal dendric subshifts.
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Example 3.6. Let σ be the Fibonacci substitution defined over the alphabet
{a, b} by σ : a 7→ ab, b 7→ a and consider the subshift generated by σ (i.e.,
the set of bi-infinite words over A whose factors belong to some σn(a)).
The extension graphs of the empty word and of the two letters a and b are
represented in Figure 1.

E(ε)

a

b

a

b

E(a)

a

b

a

b

E(b)

a a

Figure 1. The extension graphs of ε (on the left), a (on the
center) and b (on the right) are trees.

The following theorem states a structure theorem for return words of
minimal dendric subshifts, from which a description as primitive unimodular
proper S-adic subshifts can be deduced (Proposition 3.8 below). Let (X,S)
be a minimal subshift over the alphabet A and let w ∈ L(X). A return
word to w is a word v in L(X) such that w is a prefix of vw and vw contains
exactly two occurrences of w.

Theorem 3.7 ([BDFD+15a], Theorem 4.5). Let (X,S) be a minimal den-
dric subshift defined on the alphabet A. Then, for any w ∈ L(X), the set of
return words to w is a basis of the free group on A.

In particular, dendric subshifts have bounded topological rank. The
next result shows that minimal dendric subshifts are primitive unimodular
proper S-adic subshifts. Similar results are proved with the same method
in [BDFD+15d, BDD+18, BSTY18] but not highlighting all the properties
stated below, so we provide a proof for the sake of self-containedness. It
relies on S-adic representations built from return words [Dur00, Dur03] to-
gether with the remarkable property of return words of dendric subshifts
stated in Theorem 3.7. We also provide in Section 6.5 an example of a
primitive unimodular proper subshift which is not dendric and whose strong
orbit equivalence class contains no dendric subshift.

Proposition 3.8. Minimal dendric subshifts are primitive unimodular
proper S-adic subshifts. In particular, they are aperiodic.

Proof. Let (X,S) be a minimal dendric subshift over the alphabet A =
{1, 2, . . . , d} and take any x ∈ X. For every n ≥ 1, let Vn(x) :=
{v1,n, · · · , vd,n} be the set of return words to x[0,n) and V0(x) = A. We stress
the fact that Vn(x) has cardinality d for all n, according to Theorem 3.7.
Let (ni)i≥1 be a strictly increasing integer sequence such that n1 = 1 and
such that each vj,nix[0,ni) occurs in x[0,ni+1) and in each vk,ni+1

. Let θi be



ON THE DIMENSION GROUP OF UNIMODULAR S-ADIC SUBSHIFTS 13

an endomorphism of A∗ such that θi(A) = Vni(x). Since x[0,ni) is a prefix
of x[0,ni+1), any vj,ni+1 ∈ Vni+1(x) has a unique decomposition as a concate-
nation of elements vk,ni ∈ Vni(x). More precisely, for any vj,ni+1 ∈ Vni+1(x),
there is a unique sequence (vkj(1),ni , vkj(2),ni , . . . , vkj(`j),ni) of elements of

Vni(x) such that vkj(1),ni · · · vkj(`j),ni = vj,ni+1 and for all m ∈ {1, . . . , `j},
vkj(1),ni · · · vkj(m),nix[0,ni) is a prefix of vj,ni+1x[0,ni+1). This induces a unique
endomorphism λi of A∗ defined by θi+1 = θi ◦λi. From the choice of the se-
quence (ni)i≥1, the matrices Mλi have positive coefficients, so the sequence
of morphisms (λi)i≥1 is primitive. Furthermore, as x[0,ni+1] is prefix of each
vj,ni+1x[0,ni+1)

, there exists some v ∈ Vni(x) such that vkj(1) = v for all j. In

other words, the morphisms λi are left proper. Finally, from Theorem 3.7,
the matrices Mλi are unimodular. Hence (X,S) is S-adic generated by
the primitive directive sequence of unimodular left proper endomorphisms
λ = (λi)i≥1. We deduce from Lemma 3.2 that minimal dendric subshifts
are primitive unimodular proper S-adic subshifts. Lastly, aperiodicity comes
from Lemma 3.3. �

4. Dimension groups of primitive unimodular proper S-adic
subshifts

In this section we first prove a key result of this paper, namely Theorem
4.1, which states that H(X,T ) = C(X,Z)/βC(X,Z) is generated as an ad-
ditive group by the classes of the characteristic functions of letter cylinders.
We then deduce a simple expression for the dimension group of primitive
unimodular proper S-adic subshifts.

4.1. From letters to factors. We recall that χU stands for the character-
istic function of the set U .

Theorem 4.1. Let (X,S) be a primitive unimodular proper S-adic subshift.
Any function f ∈ C(X,Z) is cohomologuous to some integer linear combi-
nation of the form

∑
a∈A αaχ[a] ∈ C(X,Z). Moreover, the classes [χ[a]],

a ∈ A, are Q-independent.

Proof. Let τ = (τn : A∗ → A∗)n≥1 be a primitive unimodular proper direc-
tive sequence of (X,S), hence X = Xτ . Using Proposition 3.5, all subshifts

(X
(n)
τ , S) are minimal and aperiodic and mina∈A |τ[1,n)(a)| goes to infinity

when n increases.
Let us show that the group H(X,S) = C(X,Z)/βC(X,Z) is spanned by

the set of classes of characteristic functions of letter cylinders {[χ[a]] | a ∈ A}.
From Theorem 3.4 and using the fact that (X,S) is minimal and aperiodic,
one has, for all positive integer n, that

Pn = {Skτ[1,n]([a]) | 0 ≤ k < |τ[1,n](a)|, a ∈ A}

is a finite partition of X into clopen sets. This provides a family of nested
Kakutani-Rohlin tower partitions.
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We first claim that H(X,S) is spanned by the set of classes ∪nΩn, where

Ωn = {[χτ[1,n]([a])] | a ∈ A} n ≥ 1.

In other words, H(X,S) is spanned by the set of classes of characteristic
functions of bases of the sequence of partitions (P)n. It suffices to check
that, for all u−u+ ∈ L(X), the class [χ[u−.u+]] is a linear integer combination
of elements belonging to some Ωn.

Let us check this assertion. Let u−u+ belong to L(X). Since
mina∈A |τ[1,n)(a)| goes to infinity, there exists n such that |u−|, |u+| <
mina∈A |τ[1,n)(a)|. The directive sequence τ being proper, there exist words

w,w′ with respective lengths |w| = |u−| and |w′| = |u+| such that all images
τ[1,n](a) start with w and end with w′.

Let x ∈ [u−.u+]. Let a ∈ A and k ∈ N, 0 ≤ k < |τ[1,n](a)|, such that

x belongs to the atom Skτ[1,n]([a]). Observing that τ[1,n]([a]) is included

in [w′.τ[1,n](a)w], this implies that the full atom Skτ[1,n]([a]) is included in

[u−.u+]. Consequently [u−.u+] is a finite union of atoms in Pn. But each
characteristic function of an atom of the form Skτ[1,n]([a]) is cohomologous
to χτ[1,n]([a]). The proof works as in the proof of Proposition 2.3. This thus

proves the claim.
Now we claim that each element of Ωn is a linear integer combination of

elements in {[χ[a]] | a ∈ A}. More precisely, let us show that χτ[1,n]([b]) is

cohomologous to ∑
a∈A

(M−1
τ[1,n]

)b,aχ[a].

Let a ∈ A and n ≥ 1. One has [a] = ∪B∈Pn(B ∩ [a]) and thus χ[a] is
cohomologous to the map∑

b∈A
(Mτ[1,n])a,bχτ[1,n]([b]),

by using the fact that the maps χSkτ[1,n]([a]) are cohomologous to χτ[1,n]([a]).

This means that for U = ([χ[a]])a∈A ∈ H(X,S)A and V = ([χτ[1,n]([a])])a∈A ∈
H(X,S)A, one has

U = Mτ[1,n]V

and as a consequence V = M−1
τ[1,n]

U . This proves the claim and the first part

of the theorem.
To show the independence, suppose that there exists some row vector α =

(αa)a∈A ∈ ZA such that
∑

a αa[χ[a]] = 0. Hence there is some f ∈ C(X,Z)
such that

∑
a αaχ[a] = f ◦ S − f . The morphisms of the directive sequence

τ being proper, for all n, there are letters an, bn such that all images τn(c),
c ∈ A, start with an and end with bn. From this, it is classical to check
that (Pn)n generates the topology of X (the proof is the same as [DHS99,
Proposition 14] that is concerned with the particular case τn+1 = τn for all
n).
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We now fix some n for which f is constant on each atom of Pn. Observe

that for all x ∈ X and all k ∈ N, one has f(Skx) − f(x) =
∑k−1

j=0 αxj .

Let c ∈ A and x ∈ τ[1,n+1]([c]). Then, x and S|τ[1,n+1](c)|(x) belong to

τ[1,n]([an+1]). Hence, f(S|τ[1,n+1](c)|x)− f(x) = 0, and thus

(αMτ[1,n])c =

|τ[1,n+1](c)|−1∑
j=0

αxj = 0.

This holds for all c, hence αMτ[1,n] = 0, which yields α = 0, by invertibility
of the matrix Mτ[1,n] . �

Observe that in the previous result, we can relax the assumption of
minimality. Indeed, one checks that the same proof works if we assume
that (X,S) is aperiodic (recognizability then holds by [BSTY18]) and that
mina∈A |τ[1,n)(a)| goes to infinity.

We now derive two corollaries from Theorem 4.1 dealing respectively with
invariant measures and with the image subgroup.

Corollary 4.2. Let (X,S) be a primitive unimodular proper S-adic subshift
over the alphabet A and let µ, µ′ ∈ M(X,S). If µ and µ′ coincide on the
letters, then they are equal, that is, if µ([a]) = µ′([a]) for all a in A, then
µ(U) = µ′(U), for any clopen subset U of X.

Note that Corollary 4.2 extends a statement initially proved for interval
exchanges [FZ08].

Corollary 4.3. Let (X,S) be a primitive unimodular proper S-adic subshift
over the alphabet A. The image subgroup of (X,S) satisfies

I(X,S) =
⋂

µ∈M(X,S)

{∑
a∈A

Zµ([a])

}
.

In both corollaries, the assumption of being proper can be dropped. The
proof then uses the measure-theoretical Bratteli-Vershik representation of
the primitive unimodular S-adic subshift given in [BSTY18, Theorem 6.5].

4.2. An explicit description of the dimension group. Theorem 4.1
allows a precise description of the dimension group of primitive unimodular
proper S-adic subshifts. Note that in the case of interval exchanges, one
recovers the results obtained in [Put89]; see also [Put92, GJ02].

We first need the following Gottschalk-Hedlund type statement [GH55].

Lemma 4.4 ([Hos95], Lemma 2, [DP18], Proposition 4.2.4). Let (X,T ) be
a minimal Cantor system and let f ∈ C(X,Z). There exists g ∈ C(X,N)
that is cohomologous to f if and only if for every x ∈ X, the sequence(∑n

k=0 f ◦ T k(x)
)
n≥0

is bounded from below.

We now can deduce one of our main statement.
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Theorem 4.5. Let (X,S) be a primitive unimodular proper S-adic subshift
over a d-letter alphabet. The linear map Φ : H(X,S) → Zd defined by
Φ([χ[a]]) = ea, where {ea | a ∈ A} is the canonical base of Zd, defines an

isomorphism of dimension groups from K0(X,S) onto(
Zd, {x ∈ Zd | 〈x,µ〉 > 0 for all µ ∈M(X,S)} ∪ {0}, 1

)
,(1)

where the entries of 1 are equal to 1.

Proof. From Theorem 4.1, Φ is well defined and is a group isomorphism
from H(X,S) onto Zd. We obviously have Φ([1]) = Φ(

∑
a∈A[χ[a]]) = 1 and

it remains to show that

Φ(H+(X,S)) = {x ∈ Zd | 〈x,µ〉 > 0 for all µ ∈M(X,S)} ∪ {0}.

Any element of H+(X,S) is of the form [f ] for some f ∈ C(X,N). From
Theorem 4.1, there exists a unique vector x = (xa)a∈A such that [f ] =∑

a∈A xa[χ[a]]. As f is non-negative, we have, for any µ ∈M(X,S),

〈Φ([f ]),µ〉 =
∑
a∈A

xaµ([a]) =

∫
fdµ ≥ 0,

with equality if and only if f = 0 (in which case x = 0).
For the other inclusion, assume that x = (xa)a∈A ∈ Zd satisfies 〈x,µ〉 >

0 for all µ ∈ M(X,S) (the case x = 0 is trivial). We consider the function
f =

∑
a∈A xaχ[a]. According to Lemma 4.4, the existence of f ′ ∈ [f ] such

that f ′ is non-negative is equivalent to the existence of a lower bound for
ergodic sums. Assume by contradiction that there exists a point x ∈ X such
that the sequence

(∑n
k=0 f ◦ Sk(x)

)
n≥0

is not bounded from below. Thus

there is a an increasing sequence of positive integers (ni)i≥0 such that

lim
i→+∞

ni−1∑
k=0

f ◦ Sk(x) = −∞.

Extracting a subsequence (mi)i≥0 of (ni)i≥0 if necessary, there exists µ ∈
M(X,S) satisfying

〈x,µ〉 =

∫
fdµ = lim

i→+∞

1

mi

mi−1∑
k=0

f ◦ Sk(x) ≤ 0,

which contradicts our hypothesis. The sequence
(∑n

k=0 f ◦ Sk(x)
)
n≥0

is thus

bounded from below and we conclude by using Lemma 4.4. �

Remark 4.6. We cannot remove the hypothesis of being left or right proper
in Theorem 4.5. Consider indeed the subshift (X,S) defined by the prim-
itive unimodular non-proper substitution τ defined over {a, b}∗ as τ : a 7→
aab, b 7→ ba. According to [Dur96, p.114], the dimension group of (X,S) is

isomorphic to
(
Z3,
{
x ∈ Z3 : 〈x,v〉 > 0

}
, (2, 0,−1)

)
where v = (1+

√
5

2 , 2, 1).
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4.3. Ergodic measures. We now focus on further consequences of Theo-
rem 4.1 for invariant measures of primitive unimodular proper S-adic sub-
shifts.

Corollary 4.7. Two primitive unimodular proper S-adic subshifts (X1, S)
and (X2, S) are strong orbit equivalent if and only if there is a unimodular
matrix M such that M1 = 1 and

{ν | ν ∈M(X2, S)} = {MTµ | µ ∈M(X1, S)}.

In particular, (X1, S) and (X2, S) are defined on alphabets with the same
cardinality.

Proof. For i = 1, 2, let Φi : H(Xi, S) → Zdi be the map given in Theo-
rem 4.5, where di is the cardinality of the alphabets Ai of Xi. Let us also
write 1i the vector of dimension di only consisting in 1’s and

Ci = Φi(H
+(Xi, S)) = {x ∈ Zdi | 〈x,µ〉 > 0 for all µ ∈M(Xi, S)} ∪ {0},

so that Φi defines an isomorphism of dimension groups from K0(Xi, S) onto
(Zdi , Ci,1i).

First assume that (X1, S) and (X2, S) are strong orbit equivalent. The-
orem 2.2 implies that there is an isomorphism of dimension group from
(Zd2 , C2,12) onto (Zd1 , C1,11). Hence d1 = d2 = d and this isomorphism is
given by a unimodular matrix M of dimension d satisfying M1 = 1 (where
1 = 11 = 12) and MC2 = C1. We also denote by M the map x ∈ Zd 7→Mx.

Recall from Section 2.4 that the map

µ ∈M(Xi, S) 7→
(
τµ : [f ] ∈ H(Xi, S) 7→

∫
fdµ

)
is an affine isomorphism from M(Xi, S) to T (K0(Xi, S)). Observing that
for all µ ∈M(X1, S), τµ ◦Φ−1

1 ◦M ◦Φ2 is a trace of K0(X2, S), it defines an
affine isomorphism µ ∈ M(X1, S) 7→ ν ∈ M(X2, S), where ν is such that
τν = τµ ◦ Φ−1

1 ◦M ◦ Φ2. Since µ = (τµ([χ[a]]))a∈A1 , we have, for all a ∈ A2,

ν([a]) = τν([χ[a]]) = τµ ◦ Φ−1
1 ◦M ◦ Φ2([χ[a]]) = µTMea = eT

aM
Tµ,

so that ν = MTµ.
Now assume that we are given a unimodular matrix M satisfying M1 = 1

and

{ν | ν ∈M(X2, S)} = {MTµ | µ ∈M(X1, S)}.

In particular, this implies that d1 = d2 = d. Let us show that the map
M : x ∈ Zd 7→ Mx defines an isomorphism of dimension groups from
(Zd, C1,1) to (Zd, C2,1). We only need to show that MC1 = C2. The
matrix M being unimodular, we have Mx = 0 if and only if x = 0. For
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x 6= 0, we have

x ∈ C2 ⇔ 〈x,ν〉 > 0 for all ν ∈M(X2, S)

⇔ 〈x,MTµ〉 > 0 for all µ ∈M(X1, S)

⇔ 〈Mx,µ〉 > 0 for all µ ∈M(X1, S)

⇔Mx ∈ C1,

which ends the proof. �

According to Theorem 4.5, dimension groups of primitive unimodular
proper subshifts have rank d. This implies that the number e of ergodic
measures satisfies e ≤ d. In fact, we have even more from the following
result.

Proposition 4.8. [ES81, Proposition 2.4] Finitely generated simple dimen-
sion groups of rank d have at most d− 1 pure traces.

Dimension groups of minimal Cantor systems (X,T ) are simple dimension
groups (Theorem 2.1) and, since the Choquet simplex of traces is affinely
isomorphic to the simplex of ergodic measures, we derive the following.

Corollary 4.9. Primitive unimodular proper S-adic subshifts over a d-letter
alphabet have at most d− 1 ergodic measures.

If the primitive unimodular proper S-adic subshift (X,S) has some ex-
tra combinatorial properties, then the number of ergodic measures can be
smaller. Suppose indeed that (X,S) is a minimal dendric subshift on a d-
letter alphabet. As its factor complexity equals (d−1)n+1, one has a priori
e ≤ d− 2 for d ≥ 3 according to [BR10, Theorem 7.3.4]. One can even have
more as a direct consequence of [DF19] and [DP19]. Note that this statement
encompasses the case of interval exchanges handled in [Kat73, Vee78].

Theorem 4.10. Let (X,S) be a minimal dendric subshift over a d-letter
alphabet. One has

Card(Me(X,S)) ≤ d

2
.

Proof. According to [DF19], a minimal subshift is said to satisfy the regular
bispecial condition if any large enough bispecial word w has only one left
extension aw ∈ L(X), a ∈ A, that is right special and only one right ex-
tension wa ∈ L(X), a ∈ A, that is left special. Now we use the fact that
minimal dendric subshifts satisfy the regular bispecial condition according
to [DP19]. We conclude by using the upper bound on the number ergodic
measures from [DF19]. �

5. Infinitesimals and balancedness

When the infinitesimal subgroup Inf(K0(X,T )) of a minimal Cantor sys-
tem (X,T ) is trivial, the system is called saturated. This property is proved
in [AR16] to hold for primitive, aperiodic, irreducible substitutions for which
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images of letters have a common prefix. At the opposite, an example of a
dendric subshift with non-trivial infinitesimal subgroup is provided in Exam-
ple 6.3. A formulation of saturation in terms of the topological full group is
given in [BK00]. Recall also that for saturated systems, the quotient group
I(X,T )/E(X,T ) is torsion-free by [CDP16, Theorem 1] (see also [GHH18]).

We first state a characterization of the triviality of the infinitesimal sub-
group Inf(K0(X,S)) for minimal unimodular proper S-adic subshifts (see
Proposition 5.1). We then relate the saturation property with a combina-
torial notion called balancedness and we provide a topological characteriza-
tion of primitive unimodular proper S-adic subshifts that are balanced (see
Corollary 5.5).

Proposition 5.1. Let (X,S) be a minimal unimodular proper S-adic sub-
shift on a d-letter alphabet A. The infinitesimal subgroup Inf(K0(X,S)) is
non-trivial if and only if there is a non-zero vector x ∈ Zd orthogonal to any
element of the simplex of letter measures.
In particular, if there exists some invariant measure µ ∈M(X,S) for which
the frequencies of letters µ([a]), a ∈ A, are rationally independent, then the
infinitesimal subgroup Inf(K0(X,S)) is trivial.

Proof. According to Theorem 4.5, the elements of Inf(K0(X,S)) are the
classes of functions that are represented by vectors x ∈ Zd such that 〈x,µ〉 =
0 for every µ ∈ M(X,S). Recall also that coboundaries are represented by
the vector 0. Hence Inf(K0(X,S)) is not trivial if and only if there exists
x ∈ Zd, with x 6= 0, such that 〈x,µ〉 = 0, for every µ ∈M(X,S). �

See Example 6.3 for an example of a dendric subshift with non-trivial
infinitesimals.

We now introduce a notion of balancedness for functions. Let (X,T ) be
a minimal Cantor system. We say that f ∈ C(X,R) is balanced for (X,T )
whenever there exists a constant Cf > 0 such that

|
n∑
i=0

f(T ix)− f(T iy)| ≤ Cf for all x, y ∈ X and for all n.

Note that this property does not hold up to conjugacy.
Balancedness is usually expressed for letters and factors (see for instance

[BCB19]). Indeed a minimal subshift (X,S) is said to be balanced on the
factor v ∈ L(X) if χ[v] : X → {0, 1} is balanced, or, equivalently, if there
exists a constant Cv such that for all w,w′ in LX with |w| = |w′|, then
||w|v − |w′|v| ≤ Cv. It is balanced on letters if it is balanced on each letter,
and it is balanced on factors if it is balanced on all its factors.

More generally, we say that a system (X,T ) is balanced on a subset
H ⊂ C(X,R) whenever it is balanced for all f in H. It is standard to check
that any system (X,T ) is balanced on the (real) coboundaries. Of course,
a subshift (X,S) is balanced on a generating set of C(X,Z) if and only if it
is balanced on factors or, equivalently, if every f ∈ C(X,Z) is balanced.
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Next proposition will be useful to characterize balanced functions of a
system (X,T ).

Proposition 5.2. Let (X,T ) be a minimal dynamical system. An integer
valued continuous function f ∈ C(X,Z) is balanced for (X,T ) if and only
if there exists α ∈ R such that the map f − α is a real coboundary. In this
case, α =

∫
fdµ, for any T -invariant probability measure µ in X.

Proof. If the function f −α is a real coboundary, one easily checks that f is
balanced. Moreover, the integral with respect to any T -invariant probability
measure is zero, providing the last claim.

Assume that f ∈ C(X,R) is balanced for (X,T ). Let C > 0 be a constant
such that |

∑n
i=0 f ◦ T i(x)− f ◦ T i(y)| ≤ C holds uniformly in x, y ∈ X for

all n ≥ 0. Thus, for any non-negative integer p ∈ N, there exists Np such
that, for any x ∈ X, one has the following inequalities:

Np ≤
p∑
i=0

f ◦ T i(x) ≤ Np + C.

Moreover, one checks that, for any p, q ∈ N:

qNp ≤
pq∑
i=0

f ◦ T i(x) ≤ qNp + qC and pNq ≤
pq∑
i=0

f ◦ T i(x) ≤ pNq + pC.

It follows that −qC ≤ qNp − pNq ≤ pC and thus −C/p ≤ Np/p −
Nq/q ≤ C/q. Hence the sequence (Np/p)p is a Cauchy sequence. Let
α = limp→∞Np/p. By letting q going to infinity, we get −C ≤ Np−pα ≤ 0,
so that −C ≤

∑p
i=0 f ◦ T i(x) − pα ≤ C for any x ∈ X. By the clas-

sical Gottschalk–Hedlund’s Theorem [GH55], the function f − α is a real
coboundary. �

As a corollary, we deduce that a minimal Cantor system (X,T ) balanced
on C(X,Z) is uniquely ergodic. It also follows that for a minimal sub-
shift (X,S) balanced on the factor v, the frequency µv ∈ R+ of v exists,

i.e., for any x ∈ X, limn→∞
|x−n···x0···xn|v

2n+1 = µv, and even, the quantity

supn∈N ||x−n · · ·x0 · · ·xn|v − (2n+ 1)µv| is finite (see also [BT02]).
Actually, integer-valued continuous functions that are balanced for a min-

imal Cantor system (X,T ) are related to the continuous eigenvalues of the
system as illustrated by the following folklore lemma. We recall that E(X,T )
stands for the set of additive continuous eigenvalues.

Lemma 5.3. Let (X,T ) be a minimal Cantor system and let µ be a T -
invariant measure. If f ∈ C(X,Z) is balanced for (X,T ), then

∫
fdµ belongs

to E(X,T ).

Proof. If f ∈ C(X,Z) is balanced for (X,T ), then so is −f and there
exists g ∈ C(X,R) such that −f +

∫
fdµ = g ◦ T − g (by Proposition

5.2). This yields exp(2iπg ◦ T ) = exp(2iπ
∫
fdµ) exp(2iπg) by noticing that



ON THE DIMENSION GROUP OF UNIMODULAR S-ADIC SUBSHIFTS 21

exp(−2iπf(x)) = 1 for any x ∈ X. Hence exp(2iπg) is a continuous eigen-
function associated with the additive eigenvalue

∫
fdµ. �

We first give a statement valid for any minimal Cantor system that will
then be applied below to primitive unimodular proper S-adic subshifts. We
recall from [GHH18, Theorem 3.2, Corollary 3.6] that there exists a one-to-
one homomorphism Θ from I(X,T ) to K0(X,T ) such that, for α ∈ (0, 1) ∩
E(X,T ), Θ(α) = [χUα ] where Uα is a clopen set, sucht that µ(Uα) = α for
every invariant measure µ, and χUα − µ(Uα) is a real coboundary. Hence
χUα is balanced for (X,T ) (by Proposition 5.2).

Proposition 5.4. Let (X,T ) be a minimal Cantor system. The following
are equivalent:

(1) (X,T ) is balanced on some H ⊂ C(X,Z) and {[h] : h ∈ H} generates
K0(X,T ),

(2) (X,T ) is balanced on C(X,Z),
(3) Θ(E(X,T )) generates K0(X,T ).

In this case (X,T ) is uniquely ergodic, I(X,T ) = E(X,T ) and InfK0(X,T )
is trivial.

Proof. Let us prove that (1) implies (2). Let f ∈ C(X,Z). One has [f ] =∑n
i=1 zi[hi] for some integers zi and some functions hi ∈ H. Hence f =

g ◦T −g+
∑n

i=1 zihi for some g ∈ C(X,Z) and f is balanced. Consequently,
(X,T ) is balanced on C(X,Z). It is immediate that (3) implies (1).

Let us show that (2) implies (3). Unique ergodicity holds by Proposi-
tion 5.2. Let µ be the unique shift invariant probability measure of (X,T ).
For any f ∈ C(X,Z), there are clopen sets Ui and integers zi such that
f =

∑n
i=1 ziχUi . From Lemma 5.3 the values µ(Ui) ∈ I(X,T ) are ad-

ditive continuous eigenvalues in E(X,T ). We get [χUi ] = Θ(µ(Ui)) and
[f ] =

∑n
i=1 ziΘ(µ(Ui)). This shows the claim (3).

Assume that one of the three equivalent conditions holds. Let µ denote the
unique shift invariant probability measure. Then, any map f −

∫
fdµ, with

f ∈ C(X,Z), is a real coboundary (by Proposition 5.2). Hence, since any
integer valued continuous function that is a real coboundary is a cobound-
ary ([Orm00, Proposition 4.1]), the infinitesimal subgroup Inf(K0(X,T )) is
trivial. Moreover, Lemma 5.3 implies that I(X,T ) ⊂ E(X,T ). The reverse
implication E(X,T ) ⊂ I(X,T ) comes from [CDP16, Proposition 11], see
also [GHH18, Corollary 3.7]. �

Observe that when (X,S) is a minimal subshift, by taking H to be the set
of classes of characteristic functions of cylinder sets, the balance property is
equivalent to the algebraic condition (3) of Proposition 5.4.

We now provide a topological proof of the fact that balancedness on let-
ters implies balancedness on factors for primitive unimodular proper S-adic
subshifts. For minimal dendric subshifts, this was already proved in [BCB19,
Theorem 1.1] using a combinatorial proof.
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Corollary 5.5. Let (X,S) be a primitive unimodular proper S-adic subshift
on a d-letter alphabet. The following are equivalent:

(1) (X,S) is balanced for all integer valued continuous maps in C(X,Z),
(2) (X,S) is balanced on factors,
(3) (X,S) is balanced on letters,
(4) rank(E(X,S)) = d,

and in this case (X,S) is uniquely ergodic, I(X,S) = E(X,S) and Inf(X,S)
is trivial.

Proof. The implications (1) ⇒ (2) ⇒ (3) are immediate. Let us prove the
implication (3)⇒ (4). We deduce from Theorem 4.1, by taking H to be the
set of classes of characteristic functions of cylinder sets, that the conditions
of Proposition 5.4 hold. We deduce from Proposition 5.1 that (4) holds.

It remains to prove the implication (4)⇒ (1). Suppose that E(X,S) has
rank d. Let α1, . . . , αd ∈ E(X,S) be rationally independent. There is no
restriction to assume that they are all in (0, 1). Consider, for i = 1 · · · , d,
Θ(αi) = [χUαi ] where Uαi is a clopen set such that µ(Uαi) = αi for any S-

invariant measure µ ∈M(X,S) and χUαi is balanced for (X,S). The classes

Θ(αi)’s are rationally independent because the image of Θ(αi) by any trace is
αi and these values are assumed to be rationally independent. As K0(X,S)
has rank d, by Theorem 4.1, and since it has no torsion (as recalled in
Section 2.3), any element [f ] ∈ K0(X,S) is a rational linear combination of
the Θ(αi)’s. By Proposition 5.4, any f ∈ C(X,Z) is balanced for (X,S). �

We deduce that primitive unimodular proper S-adic subshifts that are
balanced on letters have the maximal continuous eigenvalue group property
[DFM19], i.e., E(X,S) = I(X,S). This implies in particular that non-
trivial additive eigenvalues are irrational. The fact that non-trivial additive
eigenvalues are irrational hold more generally for minimal dendric subshifts
(even without the balancedness property) [BDD+18]. Note also that the
triviality of Inf(K0(X,S)) says nothing about balancedness (see Example
6.4), but the existence of non-trivial infinitesimals indicates that some letter
is not balanced. Lastly, the Thue–Morse substitution σ : a 7→ ab, b 7→ ab
generates a subshift that is balanced on letters but not on factors [BCB19].
This substitution is neither unimodular, nor proper.

6. Examples and observations

6.1. Brun subshifts. We provide a family of primitive unimodular proper
S-adic subshifts which are not dendric. We consider the set of endomor-
phisms SBr = {βab | a ∈ A, b ∈ A \ {a}} over d letters defined by

βab : b 7→ ab, c 7→ c for c ∈ A \ {b}.

A subshift (X,S) is a Brun subshift if it is generated by a primitive
directive sequence τ = (τn)n ∈ SN

Br such that for all n the endomorphism
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τnτn+1 belongs to{
βabβab | a ∈ A, b ∈ A \ {a}

}
∪
{
βabβbc | a ∈ A, b ∈ A \ {a}, c ∈ A \ {b}

}
.

Observe that primitiveness of τ is equivalent to the fact that for each a ∈ A
there is b ∈ A such that βab occurs infinitely often in τ . Brun subshifts are
not dendric in general: on a three-letter alphabet, they may contain strong
and weak bispecial factors, hence that have an extension graph which is not
a tree [LL16]. However, we show below that they are primitive unimodular
proper S-adic subshifts.

Lemma 6.1. Let A be a finite alphabet and γab : A → A, a 6= b, be
the letter-to-letter map defined by γab(a) = γab(b) = a and γab(c) = c for
c ∈ A \ {a, b}. Let (an)1≤n≤N be such that {an | 1 ≤ n ≤ N} = A. Then,
γa1a2γa2a3 · · · γaN−1aN is constant.

Proof. It suffices to observe that δamam+1δam+1am+2 · · · δan−1an identifies the
letters am, am+1, am+2 . . . , an to am. �

Lemma 6.2. Brun subshifts are primitive unimodular proper S-adic sub-
shifts.

Proof. Let (X,S) be a Brun subshift over the alphabet A, generated by the
directive sequence β = (βanbn)n≥1 ∈ SN

Br. With each endomorphism βab one
can associate the map γ : A → A defined by γ(c) = β(c)0. Clearly γ is equal
to γab.

By primitiveness, there exists an increasing sequence of integers (nk)k,
with n0 = 0, such that {ai | nk ≤ i < nk+1} = A for all k. Hence from
Lemma 6.1 the morphisms β[nk,nk+1) are left proper. We conclude by using
Lemma 3.2. �

As a corollary, we recover the following result (which also follows
from [BD14, Theorem 5.7]).

Proposition 6.3. Brun subshifts are uniquely ergodic.

Proof. This follows from Corollary 4.2 and from the fact that Brun subshifts
have a simplex of letter measures generated by a single vector (see [Bre81,
Theorem 3.5]). �

Brun subshifts have been introduced in [BST19] in order to provide sym-
bolic models for two-dimensional toral translations. In particular, they are
proved to have generically pure discrete spectrum in [BST19].

6.2. Arnoux-Rauzy subshifts. A minimal subshift (X,S) over A =
{1, 2, . . . , d} is an Arnoux-Rauzy subshift if for all n it has (d − 1)n + 1
factors of length n, with exactly one left special and one right special factor
of length n. Consider the following set of endomorphisms defined on the
alphabet A = {1, . . . , d}, namely SAR = {αa | a ∈ A} with

αa : a 7→ a, b 7→ ab for b ∈ A \ {a}.
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A subshift (X,S) generated by a primitive directive sequence τ ∈ SN
AR is

called an Arnoux-Rauzy subshift. It is standard to check that primitiveness
of α is equivalent to the fact that each morphism αa occurs infinitely often
in α. Arnoux-Rauzy subshifts being dendric subshifts, they are in partic-
ular primitive unimodular proper S-adic subshifts. We similarly recover,
as in Proposition 6.3, that Arnoux-Rauzy subshifts are uniquely ergodic
(see [DHS13, Lemma 2] for the fact that Arnoux-Rauzy subshifts have a
simplex of letter measures generated by a single vector).

6.3. A dendric subshift with non-trivial infinitesimals. Let us pro-
vide an example of a minimal dendric subshift with non-trivial infinitesimal
subgroup, and thus with rationally dependent letter measures according to
Proposition 5.1. We take the interval exchange T with permutation (1, 3, 2)
with intervals [0, 1−2α), [1−2α, 1−α), and [1−α, 1), with α = (3−

√
5)/2.

The transformation T is represented in Figure 2, with I1 = [0, 1 − 2α),
I2 = [1−2α, 1−α), I3 = [1−α, 1) and J1 = [0, α), J2 = [α, 2α), J3 = [2α, 1).

I1 I2 I3

J1 J2 J3

T

Figure 2. The transformation T .

Measures of letters are rationally dependent and the natural coding of this
interval exchange is a strictly ergodic dendric subshift (X,S, µ) by Theorem
4.10. It is actually a representation on 3 intervals of the rotation of angle 2α
(the point 1−α is a separation point which is not a singularity of this interval
exchange). One has µ([2]) = µ([3]). The class of the function χ[2] − χ[3] is
thus a non-trivial infinitesimal, according to Theorem 4.1.

6.4. Dendric subshifts having the same dimension group and dif-
ferent spectral properties. It is well known that within any given class of
strong orbit equivalence (i.e., by Theorem 2.2, within any family of minimal
Cantor systems sharing the same dimension group (G,G+, u)), all minimal
Cantor systems share the same set of rational additive continuous eigenval-
ues E(X,T )∩Q [Orm97]. When this set is reduced to {0}, then, in the strong
orbit equivalence class of (X,T ), there are many weakly mixing systems, see
[Orm97, Theorem 6.1], [GHH18, Theorem 5.4] or [DFM19, Corollary 23].

We provide here an example of a strong orbit equivalence class that
contains two minimal dendric subshifts, one being weakly mixing and the
other one having pure discrete spectrum. Both systems are saturated (they
have no non-trivial infinitesimals) but they have different balance proper-
ties. They are defined on a three-letter alphabet and have factor complexity
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2n+ 1. According to Theorem 4.10, they are uniquely ergodic. From Corol-
lary 4.7, two minimal dendric subshifts on a three-letter alphabet are strong
orbit equivalent if and only if there is a unimodular row-stochastic matrix M
sending the vector of letter measures of one subshift to the vector of letter
measures of the other. In particular, any Arnoux-Rauzy subshift is strong
orbit equivalent to any natural coding of an i.d.o.c. exchange of three inter-
vals for which the length of the intervals are given by the letter measures of
the Arnoux-Rauzy subshift (recall that an interval exchange transformation
satisfies the infinite distinct orbit condition, i.d.o.c. for short, if the neg-
ative trajectories of the discontinuity points are infinite disjoint sets; this
condition implies minimality [Kea75]). We thus consider the subshift (X,S)
generated by the Tribonacci substitution σ : a 7→ ab, b 7→ ac, c 7→ a which
is uniquely ergodic, dendric, balanced and has discrete spectrum [Rau82].
Let µ be its unique invariant measure. We also consider the natural cod-
ing (Y, S) of the three-letter interval exchange defined on intervals of length
µ[a], µ[b], µ[c] with permutation (13)(2). It is uniquely ergodic, topologi-
cally weakly mixing [KS67, FHZ04] and strong orbit equivalent to (X,S)
by Proposition 3.8. Hence, for spectral reasons, (X,S) and (Y, S) are not
topologically conjugate, even if they are strong orbit equivalent.

We provide a further proof of non-conjugacy for the systems (X,S) and
(Y, S) based on asymptotic pairs. We first recall a few definitions. Two
points x, y in a given subshift are said to be right asymptotic if they have a
common tail, i.e., there exists n such that (xk)k≥n = (yk)k≥n. This defines an
equivalence relation on the collection of orbits: two S-orbits OS(x) = {Snx |
n ∈ Z} and OS(y) are asymptotically equivalent if for any x′ ∈ OS(x), there
is y′ ∈ OS(y) that is right asymptotic to x′. We call asymptotic component
any equivalence class under the asymptotic equivalence. We say that it is
non-trivial whenever it is not reduced to one orbit.

An Arnoux-Rauzy subshift (X,S) has a unique non-trivial asymptotic
component formed of three distincts orbits as, for all n, there is a unique
word w of length n such that `(w) ≥ 2 and this word is such that `(w) = 3
(see Section 3.2 for the notation). On the other side, any i.d.o.c. exchange
of three-intervals (Y, S) has 2 asymptotic components and thus cannot be
conjugated to (X,S). Indeed, suppose that it has a unique non-trivial as-
ymptotic component. As a natural coding of an i.d.o.c interval exchange
transformation has two left special factors for each large enough length, this
component should contain three sequences x′x, x′′ux and x′′′ux belonging
to Y where u is a non-empty word. This would imply that the interval
exchange transformation is not i.d.o.c.

Next statement illustrates the variety of spectral behaviours within strong
orbit equivalence classes of dendric subshifts.

Proposition 6.4. For Lebesgue a.e. probability vector µ in R3
+, there ex-

ist two strictly ergodic proper unimodular S-adic subshifts, one with pure
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discrete spectrum and another one which is weakly mixing, both having the
same dimension group

(
Z3, {x ∈ Z3 | 〈x,µ〉 > 0} ∪ {0}, 1

)
.

Proof. Brun subshifts such as introduced in Section 6.1 are proved to have
generically pure discrete spectrum in [BST19]. See [KS67, FHZ04] for the
genericity of weak mixing for subshifts generated by three-letter interval
exchanges. �

6.5. Dendric vs. primitive unimodular proper S-adic subshifts. In
this section, we give an example of a primitive unimodular proper S-adic
subshift whose strong orbit equivalence class contains no minimal dendric
subshift. Theorem 4.5 provides a description of the dimension group of any
primitive unimodular proper S-adic subshift. It is natural to ask whether
a strong orbit equivalence class represented by such a dimension group in-
cludes a primitive unimodular proper S-adic subshift. This was conjectured
in different terms in [ES79]. It was shown to be true when the dimension
group has a unique trace [Rie81a] (or, equivalently, when all minimal systems
in this class are uniquely ergodic) but shown to be false in general [Rie81b].
In the same spirit, one may ask if the strong orbit equivalence class of any
primitive unimodular proper S-adic subshift contains a dendric subshift.
Inspired from [ES79], we negatively answer to that question below.

Indeed, this example provides a family of examples of primitive unimod-
ular S-adic subshifts on a three-letter alphabet with two ergodic invariant
probability measures. They thus cannot be dendric by Theorem 4.10 and
their strong orbit equivalence class contains no minimal dendric subshift.

Let A = {1, 2, 3} and consider the directive sequence τ = (τn : A∗ →
A∗)n≥1 defined by

τ2n : 1 7→ 2an3, 2 7→ 1, 3 7→ 2

τ2n+1 : 1 7→ 32an , 2 7→ 1, 3 7→ 2

where (an)n≥1 is an increasing sequence of positive integers satisfying∑
n≥1 1/an < 1. The incidence matrix of each morphism τn is the uni-

modular matrix

An =

 0 1 0
an 0 1
1 0 0

 .

It is easily checked that any morphism τ[n,n+5) is proper and has an inci-
dence matrix with positive entries. Therefore, the S-adic subshift (Xτ , S) is
primitive, unimodular and proper. Let us show that (Xτ , S) has two ergodic
measures. In fact, we prove that (Xτ , S) has at least two ergodic measures.
This will imply that it has exactly two ergodic measures by Theorem 4.8.

For all n ≥ 1, let Cn be the first column vector of A[1,n] = A1 · · ·An and
Jn = Cn/‖Cn‖1 where ‖ · ‖1 stands for the L1-norm. If (Xτ , S) had only
one ergodic measure µ, then (Jn)n≥1 would converge to µ. Hence it suffices
to show that (Jn)n≥1 does not converge.
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Observe that, using the shape of the matrices An, that for n ≥ 1, and
setting C0 = e1, C−1 = e2, C−2 = e3, one has

Cn = anCn−2 + Cn−3,

where e1, e2, e3 are the canonical vectors. Hence we have Jn = bnJn−2 +

cnJn−3 with bn = an
‖Cn−2‖1
‖Cn‖1 and cn = ‖Cn−3‖1

‖Cn‖1 . In particular, bn + cn = 1.

As (‖Cn‖1)n is non-decreasing, we have 1 ≥ bn ≥ ancn and thus cn ≤ a−1
n .

Moreover, we have

‖Jn − Jn−2‖1 = ‖(bn − 1)Jn−2 − cnJn−3‖1 = cn‖Jn−2 − Jn−3‖1 ≤
2

an
,

hence, for 0 ≤ m ≤ n,

‖J2n − J2m‖1 ≤ 2

n∑
k=m+1

1

a2k
.

This shows that (J2n)n≥1 is a Cauchy sequence. Let β stand for its limit.
For n ≥ m = 0, we obtain ‖J2n − e1‖1 ≤ 2

∑n
k=1

1
a2k

and thus ‖β − e1‖1 ≤
2
∑∞

k=1
1
a2k

.

We similarly show that (J2n+1)n≥1 is a Cauchy sequence. Let α stand for
its limit. We have ‖α− e2‖1 ≤ 2

∑∞
k=0

1
a2k+1

. Consequently,

‖α− β‖1 = ‖(α− e2) + (e1 − β) + e2 − e1‖1 ≥ 2− 2
∞∑
k=1

1

ak

and (Jn)n≥1 does not converge. Consequently, (Xτ , S) has exactly two er-
godic measures.

7. Questions and further works

According to [Rie81b] (see also Section 6.5), not all strong orbit equiva-
lence classes represented by dimension groups of the type (1) in Theorem 4.5
contain primitive unimodular proper S-adic subshifts. The description of the
dynamical dimension group in Theorem 4.5 is not precise enough to explain
the restrictions that occur for instance for the measures, so that a complete
characterization of the dynamical dimension groups of primitive unimodular
proper S-adic subshifts is still missing.

Similarly, we address the question of characterizing the strong orbit equiv-
alence classes containing minimal dendric subshifts. The combinatorial
properties of these subshifts imply constraints, especially for the invariant
measures, such as stated in Theorem 4.10. For example, the question arises
as to whether dimension groups of rank d having at most d/2 extremal traces
are dimension groups of minimal dendric subshifts.

Another question is about the properness assumption. For dendric or
Brun subshifts, we were able to find a primitive unimodular proper S-adic
representation. One can easily define S-adic subshifts by a primitive uni-
modular directive sequence that is not proper. The question now is whether
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a primitive unimodular proper S-adic representation (up to conjugacy) of
this subshift can be found. Even in the substitutive case, we do not know
whether such a representation exists.

The factor complexity of dendric subshifts is affine. It is well
known [BH94, Orm97, Sug03] that inside the strong orbit equivalence class
of any minimal Cantor system one can find another minimal Cantor sys-
tems with any other prescribed topological entropy (except the maximal
one). Primitive unimodular proper S-adic subshifts being of finite topolog-
ical rank, they have zero topological entropy. It would be interesting to
exhibit a variety of asymptotic behaviours for complexity functions within
a strong orbit equivalence class.
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[AB12] N. Aubrun and M.-P. Béal. Tree-shifts of finite type. Theoret. Comput. Sci.,
459:16–25, 2012.
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[BCB19] V. Berthé and P. Cecchi Bernales. Balancedness and coboundaries in sym-
bolic systems. Theoret. Comput. Sci., 777:93–110, 2019.
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