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Abstract. In this article we study the centralizer of a minimal aperiodic ac-

tion of a countable group on the Cantor set (an aperiodic minimal Cantor

system). We show that any countable residually finite group is the subgroup
of the centralizer of some minimal Z action on the Cantor set, and that any

countable group is the subgroup of the normalizer of a minimal aperiodic ac-

tion of an abelian countable free group on the Cantor set. On the other hand
we show that for any countable group G, the centralizer of any minimal aperi-

odic G-action on the Cantor set is a subgroup of the centralizer of a minimal
Z-action.

1. Introduction. An automorphism of the topological dynamical system (X,T,Γ)
given by the continuous action T : Γ × X → X of a countable group Γ on the
(compact) topological space X, is a self-homeomorphism of X commuting with
each transformation T (g, ·). A classical question in dynamics is to understand the
algebraic properties of the group of all the automorphisms, also called centralizer, of
a prescribed dynamical system and their relationships with the dynamical properties
of the system. In this paper we focus on the case when the space X is a Cantor
set. One of the reasons for this choice is that the topology of the Cantor set does
not restrict the algebraic properties of the groups of homeomorphisms because any
countable group Γ acts faithfully on the Cantor set. This situation is very different
in other spaces like manifolds. For instance, only extensions of orderable group
can act faithfully on the circle [24]. For higher dimensional compact manifolds, the
restrictions of diffeomorphisms groups fall in the scope of R. J. Zimmer’s conjectures.
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The dynamical properties determine important restrictions on the groups of au-
tomorphisms that can be realized. For instance, Hedlund observed that the auto-
morphism group of the dynamical systems given by an expansive action is always
countable.

The subsets which are invariant by the dynamics can also restrict the automor-
phism group [23]. For instance, in the case of irreducible Z-subshift of finite type,
every automorphism preserves the finite set of periodic points of a given period and
since the periodic points are dense, their restrictions separate the automorphisms
implying that the group of automorphisms is residually finite [3]. To avoid such
limitations, we will focus on dynamical systems which are minimal, i.e, systems
without proper invariant closed subsets. In this case, none of the former restric-
tions appears: the centralizer can be uncountable as in the odometer action, or
not residually finite as it was shown in [3], where the authors construct a minimal
subshift whose centralizer contains a group isomorphic to the rationals Q. It ap-
pears from recent works that the centralizers of zero entropy minimal subshifts are
very limited [2, 7, 8, 9, 10, 11, 12, 13]. However the size of the centralizer does not
restrict the complexity function. Indeed there are positive entropy subshifts with
trivial centralizer (see e.g. [4, 13] for Z-minimal subshifts and [22] for Zd-minimal
subshifts).

Another motivation to focus our attention on the centralizer of a minimal Can-
tor system comes from the study of (topological) full groups. From the work of
Juschenko and Monod [18], it is known that the topological full group of a Z Can-
tor minimal system is a countable amenable group. Thanks to this result together
with those shown in [20] by Matui, the commutator of the topological full groups
of minimal Z-subshifts become the first known examples of infinite groups which
are amenable, simple and finitely generated. On the other hand, Giordano, Put-
nam, and Skau [15], and Medynets [21] prove that abstract isomorphisms between
full groups of Cantor minimal systems have a topological realization. More pre-
cisely, they show the outer automorphism group of a topological full group (of a Z
Cantor minimal system (X,T,Z)) is isomorphic to the normalizer of transforma-
tions T (n, ·), n ∈ Z. Since the centralizer is a normal subgroup of the normalizer,
the study of automorphisms provides informations about the outer automorphism
group of full groups.

In this paper we study realization properties of the centralizer of aperiodic Cantor
minimal system (X,T,Γ), i.e, when X is a Cantor set and the action of the group
Γ on X is continuous, free and minimal (any countable group Γ admits such an
action, see [17] or [1] for an expansive action).

After recalling necessary background on automorphisms and Cantor minimal
systems that we call generalized subshift, we prove in Section 3 that any countable
group may appear in the normalizer of a Cantor minimal aperiodic action of a
free abelian group. The main result of Section 4 shows that the centralizer of any
aperiodic Cantor minimal system given by the action of a countable group is a
subgroup of the centralizer of a Z minimal Cantor system.

We prove it is possible to realize any residually finite group, possibly infinitely
generated, as a subgroup of the centralizer of a Z Cantor minimal system (Propo-
sition 3). Recently and independently of our work, Glasner, Tsankov, Weiss and
Zucker extend this result by proving that any countable subgroup G of a compact
topological group embeds into the centralizer of an aperiodic minimal Cantor system
[16, Theorem 11.5].
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2. Definitions and background. We say that (X,T,Γ) is a Cantor system if
T : Γ ×X → X is a continuous action on the Cantor set X. For every γ ∈ Γ, we
let T γ : X → X denote the homeomorphism given by T γ(x) = T (γ, x), for every
x ∈ X. The action is said faithful when the map γ 7→ T γ is injective. We say
that the Cantor system is aperiodic if the action T is free, i.e, T γ(x) = x implies
γ = 1Γ for any x ∈ X. The Cantor system is minimal if for every x ∈ X, its
orbit oT (x) = {T γ(x) : γ ∈ Γ} is dense in X. The group generated by a collection
of homeomorphisms {Ti}i∈I is denoted 〈Ti : i ∈ I〉 and the one generated by the
homeomorphisms of a T action is simply denoted 〈T 〉.

For a group G, we let Aut(G) denote the group of automorphisms of G. If Γ is
another group, Γ ≤ G means that Γ is a subgroup of G or isomorphic to a subgroup
of G. Recall that a (semi-)group Γ is residually finite if for any γ 6= γ′ ∈ Γ there
exists a homomorphism π from Γ to a finite (semi-)group H such that π(γ) 6= π(γ′).
A result of Mal’cev ensures that any finitely generated subgroup of GL(k,C) is
residually finite.

2.1. Group of automorphisms. Let (X,T,Γ) be an aperiodic Cantor system.
The normalizer group of (X,T,Γ), denoted Norm(T,Γ), is defined as the subgroup
of all self-homeomorphism h of X such that h〈T 〉h−1 = 〈T 〉, or equivalently, there
exists αh ∈ Aut(Γ) such that h ◦ T g = Tαh(g) ◦ h, for every g ∈ Γ.

By the aperiodicity of the action, for any element h ∈ Norm(T,Γ) the associated
automorphism αh ∈ Aut(Γ) is unique. Thus we can define

Aut(T,Γ) = {h ∈ Norm(T,Γ) : αh = id}.

It is direct to check that Aut(T,Γ) is a normal subgroup of Norm(T,Γ) and is the
set of automorphisms of (X,T,Γ). More precisely, we have the following lemma.

Lemma 2.1. For an aperiodic minimal Cantor system (X,T,Γ) we have the fol-
lowing exact sequence

{1} // Aut(T,Γ)
Id // Norm(T,Γ)

α // Aut(Γ),

where α is the map h 7→ αh.

Proof. It is enough and straightforward to check that the aperiodicity of the action
implies that the map α is a group morphism.

It follows that the quotient group Norm(T,Γ)/Aut(T,Γ) is isomorphic to a sub-
group of Aut(Γ). Thus, since Aut(Z) is isomorphic to Z/2Z, for a minimal Cantor
system (X,T,Z), the group Aut(T,Z) is a subgroup of Norm(T,Z) of index at most
two. For abelian group of higher rank, the normalizer may capture non-trivial
(geometric) symmetries of the system which are not catched by the centralizer (see
[2]).

Lemma 2.2. Let (X,T,Γ) be a minimal system. Then the natural action of
Aut(T,Γ) on X is free.

Proof. It is enough to observe that for an element φ ∈ Aut(T,Γ), its set of fixed
points is a closed T -invariant subset of X. By minimality, if not empty, this set is
all X and φ is the identity.

We will use this lemma to identify the automorphisms of a given minimal action.
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2.2. Generalized subshifts. We introduce some notations and systems coming
from symbolic dynamics, we will use several times in this paper. An alphabet A is
a compact (not necessarily finite) space with a metric distA. A word of length ` is
a sequence x1 . . . x` of ` letters in A, and the set of such words is denoted A`. The
length of a word u is denoted by |u|. Any word can be interpreted as an element
of the free monoid A∗ endowed with the operation of concatenation. For a word
w = u.v that is the concatenation of two words u and v, the words u and v are
respectively a prefix and a suffix of w. For an integer ` ∈ N and a word u, the
concatenation of ` times the word u is denoted u` and uω is the bi infinite sequence
(xn)n∈Z such that xk|u| . . . x(k+1)|u|−1 = u for each integer k ∈ Z. The set AZ is the
collection of two sided infinite sequences (xn)n∈Z. This last set is a compact space
for the product topology endowed with a metric

Dist((xn)n, (yn)n) :=
∑
n∈Z

2−|n|distA(xn, yn).

Note that if A is a Cantor set then, AZ also is a Cantor set.
Let A+ =

⋃
n≥1An denote the set of all words on A. A pseudometric distA+ on

A+ is defined by distA+(u, v) = max{distA(ui, vi) : i ≤ min(|u|, |v|)}.
For a sequence x = (xn)n, possibly infinite in A∗ ∪AZ, we will use the notation

x[i, j] to denote the word xixi+1 . . . xj belonging to Aj−i+1. We say that the index
i is an occurrence of the word x[i, j] in x. For an integer ` > 0, let L`(x) denote
the set of words of length `, {x[i, i+ `− 1], i ∈ Z} and set the language of x to be
the collection of words L(x) := ∪`>0L`(x).

We let σ denote the shift map, that is the self-homeomorphism of AZ such that
σ((xn)n∈Z) = (xn+1)n∈Z. A generalized subshift is a topological dynamical system
(X,σ) where X is a closed σ-invariant subset of AZ. The language of X is the set
L(X) := ∪`>0L`(X) where L`(X) := ∪x∈XL`(x) is the set of words of length `
occurring in some element of X.

3. Realization of countable groups as subgroups of a normalizer. We show
in this section that any countable group can be realized as a subgroup of the central-
izer of a minimal aperiodic system given by the action of a countable free abelian
group on the Cantor set.

Lemma 3.1. Let Γ be a countable group. There exist an aperiodic Cantor system
(X,T,Γ) and f ∈ Aut(T,Γ) such that (X, f) is also aperiodic.

Proof. Let Γ be a countable group. Since Γ ⊕ Z is still a countable group, there
exists an aperiodic Cantor system (X,φ,Γ⊕ Z) (see [1, 17]).

Let f : X → X be the homeomorphism induced by the action of (1Γ, 1) ∈ Γ⊕Z on
X, i.e, f = φ(1Γ,1). For every g ∈ Γ, let T g : X → X be the homeomorphism induced
by the action of (g, 0) on X, i.e, T g = φ(g,0). The new Cantor system (X,T,Γ) is
also aperiodic, and since (1Γ, 1) is in the center of Γ ⊕ Z, we have f ∈ Aut(T,Γ).
Furthermore, since φ is aperiodic, we get fn(x) = x implies n = 0.

Proposition 1. Let G be a countable group. Then there exist a countable subgroup
Γ ≤

⊕
N Z (a countable free abelian group) and an aperiodic minimal Cantor system

(X,S,Γ), such that G ≤ Norm(S,Γ).

Proof. Let (X,T,G) be a Cantor aperiodic system and f ∈ Aut(T,G) as in Lemma
3.1. Since (X, f) is aperiodic, if Y ⊆ X is a minimal component of (X, f) then Y is
a Cantor set. Observe that T g(Y ) is also a minimal component of (X, f), for every
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g ∈ G. Consider the group StabG(Y ) = {g ∈ G : T g(Y ) = Y } and a collection
{gi : i ∈ I} of elements of G containing one and only one representative element of
each class in the set of left cosets G/StabG(Y ). We set

Ỹ =
∏
i∈I

T gi(Y ).

With the product topology Ỹ is a Cantor set.
Set Γ to be the group

⊕
I Z, namely

Γ = {(ni)i∈I ∈ ZI : ni = 0, for all but a finite number of index i ∈ I}.

Notice that Γ is a countable free abelian group (if StabG(Y ) is of finite index in G
then Γ is finitely generated).

Given n = (ni)i∈I ∈ Γ and y = (yi)i∈I ∈ Ỹ , we define

Sn(y) = (fni(yi))i∈I .

Since each T gi(Y ) is invariant by f , we have that Sn : Ỹ → Ỹ is well defined and is

a homeomorphism. We call S the action of Γ on Ỹ induced by the Sn maps. It is
straightforward to show that (Ỹ , S,Γ) is aperiodic. Since every T gi(Y ) is a minimal

component of (X, f), the system (Ỹ , S,Γ) is also minimal.
For every, g ∈ G let define σg : I → I such that ggσg(i) ∈ giStabG(Y ). We have

that σg is a permutation. Moreover, σg induces the isomorphism αg : Γ→ Γ given
by

αg((ni)i∈I) = (nσg(i))i∈I .

For g ∈ G we set

T̃ g(y) = (ỹi)i∈I ,

where

ỹi = T g(yσg(i)) for every i ∈ I.

Since T g(yσg(i)) ∈ T gi(Y ), we have that T̃ g : Ỹ → Ỹ is well defined.
We have

T̃ g ◦ Sn((yi)i∈I) = T̃ g((fni(yi))i∈I)

= (T g(fnσg(i)(yσg(i))))i∈I

= (fnσg(i)(T g(yσg(i))))i∈I

On the other hand,

Sαg(n) ◦ T̃ g((yi)i∈I) = Sαg(n) ◦ ((T g(yσg(i)))i∈I)

= (fnσg(i)(T g(yσg(i))))i∈I

This shows that T̃ g ∈ Norm(S,Γ), and since g 7→ T̃ g is an injective homomor-
phism, we get G ≤ Norm(S,Γ).

4. Subgroups of the centralizer of a Z minimal Cantor system. We study
the class of subgroups of automorphisms of a Z Cantor minimal system. We start
by showing that this class contains the centralizer of any aperiodic Cantor minimal
system of a countable group. From this we deduce that this class is stable under
taking direct products and contains any countable residually finite group.
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4.1. Realization of subgroups of the centralizer.

Proposition 2. Let (X,T,Γ) be a Cantor aperiodic minimal system where Γ is
a countable group. Then there exists a Cantor minimal system (Y, S,Z) such that
Aut(T,Γ) ≤ Aut(S,Z).

To prove Proposition 2, we first define the Cantor minimal system. Using the
notion of generalized subshift introduced in Section 2.2, we will consider a S-adic
subshift over the infinite alphabet X thanks the notion of generalized substitution
introduced in [14]. To show that the generated system is a Cantor minimal system
we will need to use similar results of [14] but adapted in the S-adic case. The
proofs are just small modifications of the original arguments. We set them for
completeness.

Let Γ be a countable group and let {Sn}n be a nested sequence of finite and
symmetric sets of elements Sn = S−1

n = {s1, . . . , sdn} such that the union
⋃
n Sn

generates the group Γ, where s1 is the identity and d0 ≥ 1. When Γ is finitely
generated, this sequence is stationary. Let (X,T,Γ) be a Cantor aperiodic minimal
system.

Let us recall the definition of generalized substitution on an alphabet space X.
We need to deal with several topological considerations that are trivial in the case
where the alphabet is finite. For a word w ∈ X∗ and 1 ≤ j ≤ |w|, let πj(w) denote
the jth letter of w. We say that τ : X → X∗ is a generalized substitution on X
if a 7→ |τ(a)| is continuous and the projection map πj ◦ τ is continuous on the set
{a ∈ X : |τ(a)| ≥ j}. The words τ(z), z ∈ X, are called τ -words. A substitution τ
can be extended by concatenation on all the words on X and on all the sequences
in XZ by a map still denoted τ . More precisely, for x = (xi)i∈Z ∈ XZ,

τ(x) = · · · τ(x−1).τ(x0)τ(x1) · · · .
Consider, for each integer n ≥ 0 the substitution τn on X defined by

τn : x 7→ T s1(x)T s2(x) . . . T sdn (x)

where we recall that {s1, . . . , sdn} = Sn. When Γ is finitely generated, the sequence
(τn)n is stationary.

Set τ̄ to be the sequence of substitutions (τn)n. We shall consider L(τ̄) the
language generated by τ̄ , again a trickier notion to define than in the classical case.
Fix a letter a in the alphabet space X. By the language generated by a, denoted
L(τ̄ , a), we mean the set of words w ∈ X∗ such that w is a subword of τ0 ◦ · · · ◦τj(a)
for some j ∈ N, or w is the limit in Xn of such words. We set L(τ̄) = ∪aL(τ̄ , a).
We also define Xτ̄ ⊂ XZ to be set of sequences x ∈ XZ such that x[−n, n] ∈ L(τ̄)
for all n ≥ 0. It follows that Xτ̄ is a generalized subshift, i.e., a closed, σ-invariant
subset of XZ.

As in the classical case, our generalized S-adic system τ̄ is primitive in the
following sense.

Lemma 4.1. Given any non-empty open set V ⊂ K, there is an n ∈ N such that for
any letter a ∈ X and any k ≥ n and any i ≥ 0, one of the letters of τi ◦ · · · ◦ τk+i(a)
is in the set V .

Proof. From a well known result of Auslander, for the minimal Γ-action there exists
a finite set K ⊂ Γ such that for any x ∈ X, the set of “return times” RV (x) :=
{g ∈ Γ : T g(x) ∈ V } is K-syndetic, meaning that Γ = KRV (x) = {kg : k ∈ K, g ∈
RV (x)}.
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Also observe that for any finite set K ⊂ Γ, there exists an integer n such that for
any x ∈ X, the letters T g(x), g ∈ K−1 occur in τ0 ◦ · · · ◦ τn(x). Since the sets Sn
are nested, each word τn(x) is a prefix of τm(x) for m ≥ n, and the letters T g(x),
g ∈ K−1 occur in τj ◦ · · · ◦ τn+j(x) for any j ≥ 0. Theses two facts imply the
primitivity of τ̄ .

As in the case of primitive generalized substitution [14, Proposition 19], the
assumption of primitivity simplifies the definition of the language.

Lemma 4.2. For any two letters a, b ∈ X, L(τ̄ , a) = L(τ̄ , b).

This enables us to denote L(τ̄) := L(τ̄ , a) independently of the letter a ∈ X.

Proof. Let w ∈ L(τ̄ , b) and suppose ε > 0 is given. Then, there are integers k, i, j ≥
0 such that the distance between τ0◦· · ·◦τk(b)[i, j] and w is less than ε/2 in the X |w|-
metric. By the continuity of the action T , there is a δ > 0 such that distX(b, b′) < δ
implies the distance from τ0 ◦ · · · ◦ τk(b)[i, j] and τ0 ◦ · · · ◦ τk(b′)[i, j] is less than ε/2.

By the primitivity of τ̄ , there is an integer n and a b′ at distance smaller than δ
of b such that b′ occurs in τk+1 ◦ · · · ◦ τk+n+1(a). It follows that there are integers
i′, j′ ≥ 0 such that the distance from τ0 ◦ · · · ◦ τk+n+1(a)[i′, j′] to w is less than ε.
Thus, w belongs to L(τ̄ , a) and L(τ̄ , b) is included in L(τ̄ , a).

Similarly, L(τ̄ , a) ⊂ L(τ̄ , b).

The next lemma shows that the subshift Xτ̄ is not empty and provides a dense
orbit.

Lemma 4.3. Let a ∈ X and let x be any point in XZ with x−1 = T s1(a) ∈
X and x0 = T s2(a) ∈ X. Then, for any accumulation point z of the sequence
(τ0 ◦ · · · ◦ τn(x))n, Xτ̄ is the closure of the σ-orbit of z.

Proof. Suppose z is the limit of sequences τ0◦· · ·◦τki(x) for some increasing integer
sequence (ki)i. Fix m ∈ N and let ε > 0 be given. Then, there is an i ≥ 1 such that
the word z[−m,m] is within ε of a subword of τ0 ◦ · · · ◦ τki(x−1x0). Since x−1x0 is a
prefix of τki+1(a), z[−m,m] is within ε of a subword of τ0 ◦· · ·◦τki+1(a). Therefore,
z[−m,m] ∈ L(τ̄ , a) ⊂ L(τ̄). This shows that z belongs to Xτ̄ . But because Xτ̄ is

closed and shift-invariant, the orbit closure {σn(z) : n ∈ Z} is included in Xτ̄ .
Conversely, fix an y ∈ Xτ̄ and an ε′ > 0. Let us fix an integer n ≥ 0, such that

Dist(y,y′) < ε′ when distX+(y[−n, n],y′[−n, n]) is less than ε′/2. Since y[−n, n] ∈
L(τ̄) = L(τ̄ , x0), there are integers k, i such that distX+(τ0 ◦ · · · ◦ τk(x0)[i − n, i +
n],y[−n, n]) is less than ε′/4.

By continuity, there exists a neighborhood U of x0 such that the words τ0 ◦ · · · ◦
τk(x0) and τ0 ◦ · · · ◦ τk(x′) are within ε′/4 whenever x′ ∈ U .

The primitivity of τ̄ implies there is a ` such that for any letter b ∈ X, a point
in U occurs in the word τk+1 ◦ · · · ◦ τk+`(b). Set R = |τ0 ◦ · · · ◦ τk+`(b)| for some
(all) b ∈ X. Using the compacity of the space of letters X, it is standard to check
the word z[R − 1, 2R − 1] is of the form τ0 ◦ · · · ◦ τk+`(b) for some b ∈ X. Finally,
we get the word y[−n, n] is within ε′/2 of a subword of z[R− 1, 2R− 1]. Since ε′ is

arbitrary, it follows that y ∈ {Sn(z) : n ∈ Z}.

Lemma 4.4. The system (Xτ̄ , σ) is a minimal Cantor system.

Proof. Let x ∈ XZ where x−1x0 is a prefix of τ0(a) for a fixed a ∈ X. Let z be an
accumulation point of the sequence (τ0 ◦ · · · ◦ τn(x))n. Thus, from Lemma 4.3, the
σ-orbit closure of z is Xτ̄ .
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To show the minimality it is enough to prove that for every open set U in Xτ̄

containing z, there is an R > 0 such that for any j ∈ Z, there is a 0 ≤ i < R such
that σj+i(z) ∈ U . Notice that there are n ∈ N and ε > 0 such that σi(z) is in U
whenever the distance from z[−n, n] to z[i− n, i+ n] is less than ε.

Moreover, from the continuity of the action T and the very definition of z, there
are a δ > 0 and a k > 0 such that distX(a, a′) < δ implies that a word occurs in
τ0 ◦ · · · ◦ τk(a′) which is within ε of z[−n, n].

By the primitivity of τ̄ , there is an m such that for any b ∈ X, τk+1◦· · ·◦τm+k(b)
contains a letter within δ of a. Accordingly, any τ0◦· · ·◦τm+k word τ0◦· · ·◦τm+k(b)
contains a word within ε of z[−n, n].

Now observe that z = limi→∞ τ0 ◦ · · · ◦ τki(x). Let y be an accumulation point
of the sequence (τm+k+1 ◦ · · · ◦ τki(x))i. The continuity of the substitutions implies
that z = τ0 ◦ · · · ◦ τm+k(y) so that z is a concatenation of τ0 ◦ · · · ◦ τm+k-words.
Since all τ0 ◦ · · · ◦ τm+k-words have the same length, say R , it follows from the first
part of the proof that for any j ∈ Z, there is a 0 ≤ i < R such that σj+i(z) ∈ U .

To show the aperiodicity of the system, notice that the language L(z) ⊂ L(τ)
contains infinitely many letters. This together with the minimality of the system
imply the aperiodicity.

Proof of Proposition 2. Let (Xτ̄ , σ) be the generalized subshift defined above. Let
φ be in Aut(T,Γ), that is φ : X → X continuous and φ ◦ T γ(x) = T γ ◦ φ(x) for all
x ∈ X, γ ∈ Γ. We can associate to φ a transformation φ̄ on Xn, by coordinate wise
composition

φ̄((xi)i) := (φ(xi))i. (4.1)

This defines by concatenation a continuous bijective map on the whole space
XZ, still denoted φ̄, that commutes with the shift. Observe moreover that, for
every x ∈ X, and every integer n

τn(φ(x)) = φ̄(τn(x)). (4.2)

It follows that the map φ̄ preserves the subshift Xτ̄ . It is then straightforward to
check, with Lemma 2.2, that the map φ ∈ Aut(T,Γ) 7→ φ̄ ∈ Aut(σ,Z) is an injective
homomorphism.

A first consequence of Proposition 2 is that the automorphisms group of a Cantor
minimal Z system may be uncountable.

Corollary 1. Let G be a topological group homeomorphic to a Cantor set. Then
there exists a Cantor minimal Z system (X,S,Z) such that G ≤ Aut(S,Z).

Proof. The group G is separable so the (countable) group Γ ≤ G generated by
a dense countable subset is dense in G. For every γ ∈ Γ, and g ∈ G, we set
T γ(g) = γg. Thus (G, T,Γ) is the minimal aperiodic Cantor system induced by the
left translations of Γ on G. The group G acts by right translations on itself. This
action is transitive and commutes with the one of Γ so by Lemma 2.2, Aut(T,Γ) is
isomorphic to G. Finally Proposition 2 provides the result.

If Γ is a finitely generated residually finite group, it is isomorphic to a dense
subgroup of any Γ-odometers (see [6]), which is a topological group homeomorphic
to the Cantor set. The application of Corollary 1 to a Γ-odometer gives a Z Cantor
minimal system with Γ a subgroup of its centralizer. Actually the same result is
true for countable residually finite group that might be infinitely generated and with
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non-equicontinuous action. We provide here a direct proof based on a Lindenstrauss-
Weiss idea [19, Proposition 3.5].

Proposition 3. Let Γ be a countable residually finite group. Then there exists a
Cantor minimal system (X,S,Z) such that Γ ≤ Aut(S,Z).

Proof. Recall that a countable residually finite group Γ always admits a faithful
action on the Cantor set X where the set of points with a finite orbit is dense [5,
Theorem 2.7.1]. We will construct a generalized subshift on the alphabet X (see
Section 2.2).

For each n ≥ 1 and γ ∈ Γ let γn : Xn → Xn be the homeomorphism defined as
γn(x1, . . . , xn) = (γ(x1), . . . , γ(xn)), and let γω : XZ → XZ be the homeomorphism
defined as γω((xn)n) = (γ(xn))n. This provides Γ-actions on Xn and XZ.

It follows that the shift map σ : XZ → XZ and γω commute. We have to construct
now the specific minimal generalized subshift.

Set B1 as the collection of all the words of length 1, in the alphabet X. Fix n ≥ 2
and suppose that at the step n− 1 we have defined a collection of words Bn−1 such
that:

• All of its elements have the same length `n−1.
• The set Bn−1 is closed on X`n−1 and preserved by each map γ`n−1

.
• The set of points with a finite Γ-orbit is dense in Bn−1.

Let {x1,n, . . . , xkn,n} ⊂ Bn−1Bn−1 be a finite Γ-invariant set that is 1/n-dense in
Bn−1Bn−1 ⊂ X2`n−1 . Of course, each xi,n has a finite Γ-orbit. Set Bn to be the
collection of all the words w that are a concatenation of words in Bn−1 of the form

w = w1 . . . wnxs(1),n . . . xs(kn),n,

where w1, . . . , wn are words in Bn−1 and s is a permutation of {1, . . . , kn}. It is
clear that each word in Bn is of length (n + 2kn)`n−1 =: `n, each map γ`n , with
γ ∈ Γ, preserves the set Bn and that the points with a finite Γ-orbit are dense in
the closed set Bn ⊂ X`n−1 .

Let Xn be the subshift whose any element is a concatenation of words in Bn
and let X∞ be the subshift X∞ =

⋂
n≥1Xn. The minimality follows from the next

claim.

Claim. For each n ≥ 1, for any x ∈ Xn+1 and y ∈ Xn, there exists an integer
|`| ≤ `n such that Dist(σ`(x), y) ≤ 1/n+ 3/2`n−1 .

For two words w1, w2 ∈ Bn, there exists a xi,n+1 such that the word w1w2 is
at distance less than 1/(n + 1) from xi,n+1 in X2`n . Since y is a concatenation
of words in Bn and since any word xi,n+1 appears in each word of Bn+1, a direct
computation provides the claim.

Clearly X∞ is invariant by every γw. It remains to check that Γ acts faithfully
on X∞. Let γ ∈ Γ be such that γw has a fixed point x ∈ X∞, then γ fixes each
letter of x. A direct induction proves that the set of letters occurring in the words
xi,n, n ≥ 1 is dense in X. Hence in particular, γ fixes a dense set of points in X, so
γ is the identity.

Of independent interest, we also deduce that the property “to be a subgroup of
automorphism of an aperiodic minimal Cantor system” is stable under taking direct
products.
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Corollary 2. Let (X,T,G) and (X,S,H) be two aperiodic Cantor minimal systems
for two countable groups G and H. Then there exists a Z Cantor minimal system
(X,R,Z) such that Aut(T,G)⊕Aut(S,H) ≤ Aut(R,Z).

Proof. Observe that the direct product Aut(T,G)⊕Aut(S,H) is a subgroup of the
centralizer of the product system on the space X × X for the product action of
G⊕H. This action is aperiodic and minimal so a direct application of Proposition
2 gives the conclusion.

Acknowledgments. The authors thank an anonymous referee for his careful read-
ing and pointing out mistakes in the initial version of this paper.
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