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Abstract. Every symbolic system supports a Borel measure that is invariant

under the shift, but it is not known if every such systems supports a measure
that is invariant under all of its automorphisms; known as a characteristic

measure. We give sufficient conditions to find a characteristic measure, addi-

tionally showing when it can be taken to be a measure of maximal entropy.
The class of systems to which these sufficient conditions apply is large, con-

taining a dense Gδ set in the space of all shifts on a given alphabet, and is also

large in the sense that it is closed under taking factors. We also investigate
natural systems to which these sufficient conditions apply.

1. Introduction

By the Kryloff-Bogoliouboff Theorem [16], any topological dynamical systems
(X,T ) supports a T -invariant Borel probability measure. A natural question is
when such a system supports a measure, called characteristic by Frisch and Tamuz [13],
that is invariant under the symmetries associated to the system, namely invariant
under every automorphism of the system. We note that this question is topological
in nature. Given a topological system and a given Borel measure, the property of
being a characteristic measure is not a measure theoretic isomorphism invariant:
the Jewett-Krieger Theorem implies that any ergodic measure preserving system
is measure theoretically isomorphic to a uniquely ergodic topological system, and
hence to a system having a characteristic measure.

Frisch and Tamuz [13] proved that every zero entropy symbolic system (on a
finite alphabet) has such a measure, while also observing that not every topolog-
ical dynamical system does. Specifically, the identity map acting on the Cantor
set does not. Symbolic systems, however, have special features not shared by all
topological systems and results in the literature show that symbolic systems often
have a characteristic measure: any mixing shift of finite type does [17], any shift
with zero entropy does [13], and any shift that contains periodic points supports
such a measure as well. With these observations in mind, Frisch and Tamuz asked
if every symbolic system has a characteristic measure [13]. The goal of the present
work is to make progress on this problem.

In an approach to the characteristic measures problem, a new class of shifts, the
language stable shifts, is defined in [11], where it was shown that each such shift
supports a characteristic measure of maximal entropy. The class of language stable
shifts is large in the sense that it forms a dense Gδ in the space of all shifts on a
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fixed alphabet, as well as in the subspace of shifts whose entropy is bounded from
below by some h ≥ 0. It also contains all shifts of finite type. One might ask for
other senses in which the class of language stable shifts is large and, specifically
we consider if this class is closed under taking factors, and a first result proved in
Section 3 shows that it is not.

Theorem 1.1. Any shift that is both language stable and is sofic is a shift of finite
type.

Thus any sofic shift that is not a shift of finite type is not language stable, but
is a factor of a language stable shift. This motivates our introduction in Section 4
of a class of shifts that are sufficiently well approximated by shifts of finite type in
order that properties of characteristic measures are preserved.

Returning to the characteristic measures question we note that sofic shifts are
known to have such measures for other reasons (for example, because they have pe-
riodic points or, in the irreducible case, because they are intrinsically ergodic). But
these properties are not shared by all factors of language stable shifts, and even lan-
guage stable shifts themselves need not have periodic points or only finitely many
ergodic measures of maximal entropy. This naturally leads us to the question of
whether every subshift factor of a language stable shift has a characteristic mea-
sure and whether this measure can be taken to be a measure of maximal entropy.
To investigate these questions, in Section 4 we define a notion that we call well-
approximable language stable shifts, quantifying how well the shift can be approx-
imated by shifts of finite type, loosely analogous to how well a real number can be
approximated by rationals of a given denominator. We show that well-approximable
language stable shifts remain a large set, in the sense that they continue to contain
a dense Gδ in the space of all shifts (see Proposition 4.14), and that symbolic factors
of such shifts have characteristic measures of maximal entropy (see Theorem 4.6
for the precise statement).

Theorem 1.2. Every subshift factor of a well-approximable language stable shift
has a characteristic measure that is a measure of maximal entropy.

We give an effective rate of approximation by subshifts of finite type that guar-
antees the existence of a characteristic measure (but not necessarily a characteristic
measure of maximal entropy) in Theorem 4.6. We also give a faster (and ineffective)
rate of approximation that guarantees the existence of a characteristic measure of
maximal entropy in Proposition 4.12.

If every shift were a factor of a well-approximable language stable shift, we
would then be able to conclude that every symbolic system supports a characteristic
measure. Although we do not rule this possibility out entirely, in Section 4.3,
we construct an example of a shift that is not a factor of any sufficiently well-
approximable language stable shift. However, we do not answer the question if
every subshift factor of a language stable shift has a characteristic measure.

We conclude in Section 5 by showing that the class of language stable shifts is
closed under several natural operations, such as passing to a power of the shift
or more generally passing to any speed-up. We continue the section by exhibiting
language stable shifts in other well-studied classes of shifts, and include a charac-
terization of which β-shifts are language stable. In Section 6, we show that any
aperiodic linear complexity shift is language stable.
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This leaves open numerous questions about language stable shifts and their char-
acterizations, including Question 6.4 on the complexity threshold for a shift that is
not language stable and questions in Section 4.4 on quantitative bounds for well-
approximable shifts.

2. Classes of shifts and their properties

2.1. Symbolic systems and subshifts. Assume that A is a finite set, the alpha-
bet, and we denote x ∈ AZ by x = (xn)n∈Z. The space AZ is a compact metric
space when endowed with the metric d defined by

d
(
(xn), (yn)

)
= 2− inf{|n|:xn 6=yn}.

The left shift σ : AZ → AZ defined as (σx)n = xn+1 for all n ∈ Z is a homeomor-
phism of AZ. If X ⊂ AZ is a (non-empty) closed and σ-invariant, then the pair
(X,σ) is a shift, sometimes also referred to as a subshift. We also sometimes omit
the transformation σ from the notation and refer to X as a shift.

The cylinder sets, meaning the sets where finitely many coordinates are deter-
mined, form a basis for the topology on the space X.

2.2. Presenting a shift via its language. If A is a finite alphabet, A∗ denotes
all finite words in the alphabet A. The concatenation of two words u, v ∈ A∗ is
denoted by uv and the word u is called a prefix of uv and the word v is a suffix of
uv. If u is nonempty, then we say that it is a strict prefix, and similarly when v is
nonempty it is a strict suffix. We say that the word v occurs in the finite word uv
and use the same terminology in infinite words. For u ∈ A∗, we let |u| denote the
length of the word u, and for n ≥ 1, the word un denotes the word of length n|u|
obtained by concatenating u with itself n times.

If F ⊂ A∗, then the shift XF associated to the collection F of forbidden words
is defined by

XF = {x ∈ AZ : no subword of x belongs to F}.

Conversely, any shift X is defined by a collection of forbidden words: if

F(X) := {w ∈ A∗ : w does not occur in any element of X}

then X = XF(X).
For the shift (X,σ), the set of all allowable words is the language of the shift

and is denoted by L(X). The word w ∈ L(X) is left special if there exist distinct
letters a, b ∈ A such that both aw, bw ∈ L(X), and similarly if there exist distinct
letters a, b ∈ A such that wa,wb ∈ L(X), we say that it is right special. A word is
bispecial if it is both left and right special.

We write Ln(X) for the words of length n in the language L(X), meaning that
Ln(X) = L(X)∩An. The complexity of a shift X is defined to be function pX : N→
N given by pX(n) = |Ln(X)| and the exponential growth rate of pX(n) is the
(topological) entropy of the shift (X,σ) and is denoted by htop(X).

Any word w /∈ L(X) is said to be not allowed in X. When the set F of forbidden
words is finite, the shift (XF , σ) is known as a shift of finite type.

Given a shift (X,σ), define Fn := F(X) ∩ An (the forbidden words in X with
length at most n) and let Xn := XFn be the shift of finite type defined by the set
of forbidden words Fn. Then we can write X =

⋂∞
n=1Xn as the intersection of a

canonical, descending chain of nested shifts of finite type and we call the sequence
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of shifts (Xn)n∈N the SFT cover of X. Note that X is a shift of finite type if and
only if X = Xn for all sufficiently large n ∈ N.

For a word w ∈ L(X), we let [w] denote the cylinder set determined by the
word w = w1 · · ·w|w|, meaning the collection of all x ∈ X such that xi = wi for all
1 ≤ i ≤ |w|.

2.3. Language stable shifts. We recall a notion introduced in [4]. If X is a shift
with forbidden words F(X), let

M(X) = {w ∈ F(X) : no proper subword of w lies in F(X)}
denote the minimal forbidden words in the language L(X) of the shift X. We note
that L(X) = A∗ \ A∗M(X)A∗, meaning that the allowed words are all the words
that do not contain a minimal forbidden word. So the sets F(X) andM(X) define
the same shift, meaning that XF(X) = XM(X).

We note that if a, b ∈ A and the word aub is a minimal forbidden word of X,
then the word u is bispecial (see [4, Remark 3]).

For each n > 0, set Mn(X) = M(X) ∩ An to be the set of minimal forbidden
word of length n. A shift (X,σ) is language stable if the set of lengths

(1) LS(X) = {n ∈ N : Mn(X) 6= ∅}
has zero lower uniform density, meaning that

lim
k→∞

inf
n∈N

|LS(X) ∩ [n+ 1, n+ k]|
k

= 0.

Equivalently, if X is a shift and (Xn)n∈N is its SFT cover, then X is language stable
if and only if for all k ∈ N there exists n ∈ N with Xn = Xn+k.

We introduce a new definition to quantify the relationship between the parame-
ters n and k in the definition of language stable.

Definition 2.1. Suppose α : N→ N is non-decreasing and unbounded. A shift X,
with SFT cover (Xn)n∈N is well-approximable at rate α if there are infinitely many
n such that Xn = Xn+α(n).

Thus the set of language stable shifts is the union over all non-decreasing and un-
bounded functions α of the shifts that are well-approximable at rate α. In theorems
about well-approximable shifts, we are explicit about the rate α, but when speaking
more informally about results we sometimes just call a shift well-approximable with
the understanding that it is well-approximable at some (typically fast) rate.

We include an example showing that this notion of well-approximable is not
vacuous, as up to finitely many elements, any set of lengths LS(X) arises.

Example 2.2. For any set L ⊂ N, there is a subshift X such that the set of lengths
of its minimal forbidden words LS(X) is all but finitely many elements of L. To
check this, it suffices to consider the subshift on 3 letters {0, 1, 2} with words of the
form {01n0 : n ∈ L∩ 2N}∪ {02n0 : n ∈ L∩ (2N+ 1)} forbidden. Since the words of
the form 01n0 for odd n are allowed, such words with even n are minimal forbidden
words; the analogous property holds for words of the form 02n0.

2.4. Topological properties of shifts and automorphisms. The shift (Y, σ) is
a factor of the shift (X,σ) if there exists a surjective and continuous map π : X → Y
satisfying π ◦ σ = σ ◦ π, and if additionally the map π is injective, we say that the
systems are conjugate. A shift is sofic if it is a factor of a shift of finite type.
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The shift (X,σ) is mixing if for all words u, v ∈ L(X), there exists some N ∈ N
such that for all n ≥ N , there is some w ∈ Ln(X) such that uwv ∈ L(X).

An automorphism of the shift (X,σ) is a self conjugacy of the system and we
denote the group of all automorphisms of the system by Aut(X,σ), or just Aut(X)
when the shift is clear from the context. The classic theorem of Curtis, Hedlund,
and Lyndon (see [14]) states that any factor φ of a shift (X,σ) is a block code of
some range R for some R ∈ N, meaning that for all x ∈ X, the symbol that φ(x)
assigns to 0 is determined by the word x−R · · ·xR in x = (xn)n∈Z. A block code
of range R is a block code of range S for any S > R. The same holds for any
automorphism, and without loss we assume throughout that the range of any block
code arising from an automorphism φ is also the range for φ−1, and we refer to
such a range as being symmetric.

2.5. Invariant measures. By the Kryloff-Bogoliouboff Theorem [16], there is al-
ways an invariant measure on a shift (X,σ). If the entropy of this measure is equal
to the topological entropy of the system, then this is a measure of maximal entropy.

A measure that is invariant under the full automorphism group Aut(X,σ) is said
to be a characteristic measure.

3. Strictly sofic shifts are not language stable

It is shown in [11] that every language stable shift has a characteristic measure
of maximal entropy. This motivates the question of which shifts are not language
stable, as these are the shifts for which the characteristic measures problem remains
open. Our first result shows that the familiar class of sofic shifts is comprised almost
entirely of shifts that are not language stable. More precisely, we show that the
intersection of the classes of sofic shifts and language stable shifts is exactly the
shifts of finite type.

Proof of Theorem 1.1. Let F ⊂ A∗ be the list of forbidden words defining the sofic
shift (X,σ). Since (X,σ) is sofic, the set F is rational, meaning that the collection
is recognized by a finite state deterministic automaton. For contradiction, assume
that (X,σ) is not a shift of finite type. Then for any ` > 0, there is some word w ∈ F
of length at least `+ 1 that does not contain some word in F as a subword. Thus
we can pick some such word w whose length is greater than the number of states of
the finite state deterministic automaton. The word w corresponds to some vertex
path v0, . . . , v`, starting with some initial vertex v0 and ending with the vertex v`,
and by choice of the length of the word it passes at least twice through some vertex.
Thus there exist i 6= j such that vi = vj . However, no vk is an accepting state of
the automaton, since the word v0 · · · vk−1 is not one of the forbidden words in the
collection F . Similarly, the path associated to the word v1 · · · vk does not end in
an accepting state. It follows that for any n ≥ 0, the edge path associated the path
v0, . . . , vi−1, (vi, . . . , vj)

n, vj+1, . . . , v` belongs to F but no subword belongs to F .
In other words, the lengths of minimal forbidden words has positive density and so
the shift (X,σ) is not language stable. �
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4. Characteristic measures for well-approximable language stable
shifts

4.1. Obtaining a characteristic measure using periodic points. The goal of
this section is to show that factors of well-approximable shifts have characteristic
measures, provided the shifts are well-approximable at a sufficiently fast rate.

Definition 4.1. Let a, f ∈ N and let Xa,f denote the set of all subshifts of finite
type X ⊆ {0, 1, . . . , a − 1}Z that can be defined using only forbidden words of
length at most f . Let R ∈ N and let Ya,f,R denote the set of all sofic shifts
Y ⊆ {0, 1, . . . , a− 1}Z for which there exist X ∈ Xa,f and a factor map ϕ : X → Y
that can be implemented using a block code of range at most R.

It follows immediately from the definitions that up to renaming the letters of the
alphabet, every shift of finite type is an element of Xa,f for some choice of a, f ∈ N.
We check that the same holds for any sofic shift.

Lemma 4.2. Up to renaming the letters of the alphabet, for any sofic shift Y there
exist a, f,R ∈ N such that Y ∈ Ya,f,R.

Proof. By renaming the letters of the alphabet if necessary, we can assume that Y ⊆
{0, 1, . . . , aY −1}Z for some aY ∈ N. Since Y is sofic, there exists a shift of finite type
X and a factor map ϕ : X → Y . Fixing some finite set of forbidden words such that
X is the shift of finite type obtained by forbidding these words, define f to be the
maximal length of the words in this set. Again renaming the letters of the alphabet
if necessary, we can choose aX ∈ N such that X ⊆ {0, 1, . . . , aX − 1}Z. Setting
a := max{aX , aY }, we have that X,Y ⊆ {0, 1, . . . , a − 1}Z. Then, by the Curtis-
Hedlund-Lyndon Theorem, there exists R ∈ N such that ϕ can be implemented by
a range R block code and so Y ∈ Ya,f,R. �

Note that Ya,f,R ⊆ Ya′,f ′,R′ provided a ≤ a′, f ≤ f ′, and R ≤ R′. Combining
this and Lemma 4.2, it follows that the set

⋃∞
n=1 Yn,n,n contains an isomorphic copy

of every sofic shift (where the isomorphism only changes the names of the letters
in the alphabet).

Notation 4.3. For a subshift Y and p ∈ N, let

Perp(Y ) = {y ∈ Y : σpy = y}
denote the set of all periodic points in Y of (not necessarily minimal) period p. Let

Per≤p(Y ) :=

p⋃
q=1

Perq(Y )

denote the set of all periodic points in Y of minimal period at most p.

We check that if two sofic shifts have the same language up to some large scale,
then they have the same periodic points of small period.

Lemma 4.4. Fix p ∈ N. Suppose that Y1, Y2 ⊆ Ya,f,R for some a, f,R ∈ N
and that there exists N > p · amax{f,2R+1} such that LN (Y1) = LN (Y2). Then
Per≤p(Y1) = Per≤p(Y2).

Proof. For i = 1, 2, choose shifts of finite type Xi ∈ Xa,f and factor maps ϕi : Xi →
Yi. Let Φi be a range R block code that implements ϕi, meaning that

ϕi(x)t = Φi(xt−R, . . . , xt, . . . , xt+R)
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for all t ∈ Z. Let R̃ = max{d(f − 1)/2e, R} and let Φ̃i be a range R̃ block code
that also implements ϕi (only making use of (xt−R, . . . , xt+R) in the case that
(f − 1)/2 > R).

We prove Per≤p(Y1) ⊆ Per≤p(Y2), the other case being analogous. Let y ∈
Per≤p(Y1) and find q ≤ p such that σqy = y. Since N > q · a2R̃+1 and LN (Y2) =
LN (Y1), we can find x ∈ X2 such that ϕ2(x) satisfies

(2) yt = ϕ2(x)t for all 0 ≤ t ≤ q · a2R̃+1.

For each 0 ≤ k ≤ a2R̃+1, set

wk := (xqk−R̃, . . . , xqk, . . . , xqk+R̃).

It follows from Equation (2) that Φ̃2(wk) = yqk for all 0 ≤ k ≤ a2R̃+1. By definition

of R̃, we have that |wk| ≥ f . Since |L2R̃+1(X2)| ≤ a2R̃+1, there exist 0 ≤ k1 <

k2 ≤ a2R̃+1 such that wk1 = wk2 . Since X2 can be defined using a set of forbidden
words that all have length at most f , there is a periodic point z ∈ X2 of period
q(k2 − k1) such that

zt = xt for all qk1 − R̃ ≤ t ≤ qk2 − R̃.

Note that this automatically also holds for qk2−R̃ < t ≤ qk2+R̃ in z by periodicity,
and in x since wk1 = wk2 . Therefore, it follows that

(3) ϕ2(z)t = ϕ2(x)t for all qk1 ≤ t ≤ qk2.

Thus ϕ2(z) is periodic, with (not necessarily minimal) period q(k2−k1), and because
ϕ2(x) is a periodic word with period q, Equation (3) implies that ϕ2(z) is also
periodic with period q. It follows that y = ϕ2(z) ∈ Perq(Y2) ⊆ Per≤p(Y2). Since
y ∈ Per≤p(Y1) is arbitrary, it follows that Per≤p(Y1) ⊆ Per≤p(Y2). �

For a sofic shift Y , we are interested in constructing a measure supported on the
periodic orbits of small period. Of course Y might not have any periodic points of
very low period, and we use a lemma to provide an upper bound on the smallest
period of any periodic point in Y .

Lemma 4.5. Let Y ∈ Ya,f,R for some a, f,R ∈ N. There exists p ≤ 1 + af such
that Perp(Y ) 6= ∅.

Proof. Find X ∈ Xa,f and a factor map ϕ : X → Y . Since |Lf (X)| ≤ af , for any
allowed word x1 · · ·xaf+f ∈ Laf+f (X) there exist 0 ≤ i < j ≤ af such that

xi · · ·xi+f−1 = xj · · ·xj+f−1.

Since X can be defined using minimal forbidden words that all have length at
most f , there is a periodic point y ∈ X of period j − i such that xt = yt for all
i ≤ t ≤ j + f . It follows that ϕ(y) ∈ Y is a periodic point of period dividing j − i.
In particular, Y has a periodic point of period at most 1 + af . �

Theorem 4.6. Let X be a shift and (Xn)n∈N be its SFT cover. Let Y be a factor
of X and ϕ : X → Y a factor map. If there exist infinitely many n ∈ N such
that Xn = Xn+τ(n) for the function τ(n) = 2n + (1 + nn) · n4n+1, then Y has a
characteristic measure.
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We have not made any effort to optimize the growth rate τ(n), as this does not
lead to stronger results in our setting. We note that this result gives a direct proof
that any sofic shift admits a characteristic measure.

Proof. Let Rϕ be a range for ϕ and let Φ be a range Rϕ block code that implements
it. The domain of Φ naturally extends to any shift Z satisfying L2Rϕ+1(Z) =
L2Rϕ+1(X). In particular, it extends to Xn for all n ≥ 2Rϕ + 1. Making a small
abuse of notation, we use ϕ to denote the map determined by Φ on each such Xn.
For n ≥ 2Rϕ + 1, define Yn := ϕ(Xn). It follows immediately from the definitions
that Lk(Yn) = Lk(Y ) for all k ≤ n− 2Rϕ.

Let β ∈ Aut(Y ) and let Rβ be a symmetric range for β. Again, the domain
of β naturally extends to any shift Z satisfying L2Rβ+1(Z) = L2Rβ+1(Y ). In
particular, the domain extends to Yn for all n ≥ 2Rϕ + 2Rβ + 1 (recall that we
assume that the range of β is symmetric). For such n, since β(Y ) = Y it follows
that Lk(β(Yn)) = Lk(Y ) for all k ≤ n− 2Rβ . Thus, the domain of the block code
implementing β−1 extends naturally to β(Yn) for all n ≥ 4Rβ + 1, provided n is
also at least 2Rϕ + 2Rβ + 1 so that Yn is defined. Composing the block codes
implementing β and β−1, the resulting block code of range 2Rβ implements the
identity map on any shift Z satisfying L4Rβ+1(Z) = L4Rβ+1(Y ). In particular, these
block codes implement the identity map on Yn for all n ≥ 2Rβ+max{2Rϕ, 2Rβ}+1.
It follows that, for such n, the map β is a topological conjugacy between Yn and
β(Yn). Moreover, for all such n,

(4) Lk(Y ) = Lk(Yn) = Lk(β(Yn)) for all k ≤ n− 2Rβ .

Finally we observe that Yn is a factor of Xn implemented by some factor map of
range Rϕ and β(Yn) is a factor of Xn implemented by some factor map of range
Rϕ + Rβ . Setting a = max{|L1(X)|, |L1(Y )|} we have, up to renaming the letters
of the alphabets in X and Y , that both Yn and β(Yn) are in Ya,n,Rϕ+Rβ .

Suppose T, n ∈ N are such that Xn = Xn+T (and thus we also have that Yn =
Yn+T ). Then applying Equation (4) to Yn+T , it follows that

(5) Lk(Y ) = Lk(Yn) = Lk(β(Yn)) for all k ≤ n+ T − 2Rβ .

Note that we have written Yn instead of Yn+T and β(Yn) instead of β(Yn+T ).
Applying Lemma 4.4, we have that Per≤p(Yn) = Per≤p(β(Yn)) for any p such that

n+ T − 2Rβ ≥ p · amax{n,2Rϕ+2Rβ+1}. In other words, this holds so long as

T ≥ 2Rβ + p · amax{n,2Rϕ+2Rβ+1} − n.

Moreover, by Lemma 4.5, we have that Per≤p(Yn) 6= ∅ so long as p ≥ 1 + an.
Summarizing, if n, T ∈ N are such that Xn = Xn+T and

T ≥ 2Rβ + (1 + an) · amax{n,2Rϕ+2Rβ+1} − n

then there exists p ≤ 1 + an such that Per≤p(Yn) = Per≤p(β(Yn)) and these sets
are nonempty. It follows that in this case we have

(6) β
(
Per≤(1+an)(Yn)

)
= Per≤(1+an)(β(Yn))

and so β preserves the measure

νa,n,Rβ ,Rϕ =
1

|Per≤(1+an)(Yn)|
∑

z∈Per≤(1+an)(Yn)

δz.
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In fact, this measure is preserved by any automorphism in Aut(Y ) of range at
most Rβ . But by the assumption on the SFT cover of X, there are infinitely many

n ∈ N for which Yn = Yn+τ(n) and τ(n) ≥ 2Rβ + (1 + an) · amax{n,2Rϕ+2Rβ+1} − n
for all but finitely many such n. Therefore, for all but finitely many such n, the
measure νn,n,n,n is preserved by any automorphism of Y whose range is at most
Rβ . Since β ∈ Aut(Y ), and hence Rβ , is arbitrary, the measure νn,n,n,n is preserved
by any automorphism of Y . Any weak* limit of the sequence {νn,n,n,n}∞n=1 must
be Aut(Y )-invariant and since Y =

⋂∞
n=1 Yn, the limiting measure is supported on

Y . Thus the factor Y has a characteristic measure. �

It does not follow from the proof of Theorem 4.6 that the resulting characteristic
measure is necessarily a measure of maximal entropy. Moreover, even though the
set of measures of maximal entropy is compact, convex and invariant under all
automorphisms, as the automorphism group of a shift need not be amenable, it is
not clear a priori that there exists a measure of maximal entropy invariant under
any automorphism. However, we show that with further assumptions on the growth
of τ(n), we can guarantee this condition as well. To help us do this, we need to
better understand the measures of maximal entropy on a (not necessarily transitive)
sofic shift Y and this is carried out in the next section.

4.2. Obtaining a characteristic measure that is of maximal entropy. A
shift (X,σ) is forward transitive if for some x ∈ X, the forward orbit {σnx : n ∈ N}
is dense in X.

Lemma 4.7. Let Y ∈ Ya,f,R for some a, f,R ∈ N, f > 2R + 1. There exists a
forward transitive sofic shift Z ⊆ Y such that Z ∈ Ya,f,R and htop(Z) = htop(Y ).
Moreover, if X ∈ Xa,f and ϕ : X → Y is a range R block code, then there exists
X ′ ⊆ X such that X ′ ∈ Xa,f , X ′ is forward transitive and Z = ϕ(X ′). In addition,
if µY is any ergodic measure of maximal entropy on Y , then Z can be chosen such
that Z contains the support of µY .

Proof. Let X ∈ Xa,f and let ϕ : X → Y be a factor map that can be implemented
by a range R block code. Since Y is sofic, it has an ergodic measure of maximal
entropy µY . By the pointwise ergodic theorem, for µY -almost every y ∈ Y we have

lim
n→∞

1

n

n−1∑
k=0

ψ(σky) =

∫
Y

ψ dµY

for all ψ ∈ L1(µY ). Fix one such y ∈ Y and observe that µY is supported on
the ω-limit set ω(y) ⊆ Y . In particular, htop(ω(y)) ≥ hµY (σ) = htop(Y ) and thus
htop(ω(y)) = htop(Y ).

Choose x ∈ X such that y = ϕ(x). Define

Wx := {w ∈ Lf (X) : σk(x) ∈ [w] for infinitely many k ∈ N}

and Fx := {0, 1, . . . , a − 1}f \ Wx. Let X ′ be the shift of finite type defined by
forbidding the words in Fx. So we have that X ′ ∈ Xa,f and X ′ ⊂ X. Since
they are only finitely many words of length f , ultimately, the sequence x is a
concatenation of words in Wx. More precisely, there is some k0 ∈ N such that
xkxk+1 · · ·xk+f−1 ∈ Lf (X ′) for all k ≥ k0. Hence any word w ∈ Wx occurs in an
infinite sequence in X ′ and a word w ∈ L(X) with |w| ≥ f is in the language L(X ′)
if and only if all of its subwords of length f are in the language Lf (X ′).
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Since X ′ is defined by forbidden words of length f and for any u, v ∈ Lf (X ′)
there exists w ∈ L(X ′) such that σk(x) ∈ [uwv] for some k ≥ k0, it follows that
X ′ is forward transitive. Setting Z := ϕ(X ′) ∈ Ya,f,R, we have that Z is a forward
transitive sofic shift in Y . Furthermore, since X ′ contains the ω-limit set of x, it
follows that ω(y) ⊆ Z. Thus we have that htop(Y ) = htop(ω(y)) ≤ htop(Z), which
implies that htop(Z) = htop(Y ). �

Recall that any forward transitive sofic shift has a unique measure of maximal
entropy [20] and is entropy minimal [12], meaning that all proper subshifts have
strictly lower entropy.

Lemma 4.8. Let Y ∈ Ya,f,R for some a, f,R ∈ N, and f > 2R + 1. There exist
k ∈ N and sofic subshifts Y1, . . . , Yk ⊆ Y such that

(1) For i = 1, . . . , k, each shift Yi ∈ Ya,f,R;
(2) For i = 1, . . . , k, each shift Yi is forward transitive;
(3) For i = 1, . . . , k, we have htop(Yi) = htop(Y );
(4) Every ergodic measure of maximal entropy supported on Y is supported on⋃k

i=1 Yi;

(5) For any α ∈ Aut(Y ), we have α(
⋃k
i=1 Yi) =

⋃k
i=1 Yi.

Proof. Let X ∈ Xa,f and ϕ : X → Y a factor map that can be implemented by a
range R block code. By Lemma 4.7, for any ergodic measure of maximal entropy
µ on Y , there exists a forward transitive shift Xµ ⊆ X such that Xµ ∈ Xa,f
and µ is supported on the forward transitive sofic shift Yµ := ϕ(Xµ) ∈ Ya,f,R
which satisfies htop(Yµ) = htop(Y ). Since a forward transitive sofic shift is entropy
minimal, it follows that Yµ is actually equal to the support of µ. Since Xa,f is
finite, there are only finitely many distinct shifts Xµ and only finitely many distinct
shifts Yµ. Enumerate the collection of all shifts that arise as Yµ, for some ergodic
measure of maximal entropy µ, as Y1, . . . , Yk. If α ∈ Aut(X), then α permutes the
ergodic measures of maximal entropy supported on Y , and therefore permutes the

associated supports. Therefore α permutes Y1, . . . , Yk and so preserves
⋃k
i=1 Yi. �

Theorem 4.9. For any a, f,R ∈ N and Y ∈ Ya,f,R, the subshift Y has a character-
istic measure of maximal entropy that is a weak* limit of the sequence of measures
{νn}∞n=1 where

νn :=
1

|Per≤n(Y )|
∑

z∈Per≤n(Y )

δz.

Moreover, if S ⊆ N is infinite, there is a characteristic measure of maximal entropy
that is obtained as the weak* limit along a subsequence of elements of S.

In particular, this result shows that every accumulation point in the weak* topol-
ogy of the set of measures {νn}∞n=1 is characteristic and is the measure of maximal
entropy.

Proof. Let Y ∈ Ya,f,R and let Y1, . . . , Yk ⊆ Y be as in Lemma 4.8. Suppose S ⊆ N
is given. For each i = 1, . . . , k let µi be the unique measure of maximal entropy
supported on Yi. We first show any measure of the form

µ :=

k∑
i=1

c̃iµi
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is a characteristic measure on Y , provided c̃i ∈ [0, 1] for all i = 1, . . . , k,
∑
ci = 1,

and whenever Yi and Yj are topologically conjugate we have c̃i = c̃j .
Any α ∈ Aut(Y ) permutes Y1, . . . , Yk and so permutes the measures µ1, . . . , µk,

as each µi is the unique measure of maximal entropy on Yi for all = 1, . . . , ki.
Note that if this permutation sends µi to µj then Yi is topologically conjugate to
Yj and so c̃i = c̃j . Therefore α∗µ = µ. Since α ∈ Aut(Y ) is arbitrary, µ is an
Aut(Y )-characteristic measure.

Next, find a sequence {nt}∞t=1 of elements of S along which

ci := lim
t→∞

|Per≤nt(Yi)|∣∣∣⋃kj=1 Per≤nt(Yj)
∣∣∣

exists for all i = 1, . . . , k. Note that ci ∈ [0, 1] for all i = 1, . . . , k. Entropy
minimality of Yi implies that for any i < j, we have that htop(Yi ∩ Yj) < htop(Yi).
Thus it follows that

lim
n→∞

|Per≤n(Yi ∩ Yj)|
|Per≤n(Yi)|

= 0.

Defining Pn(Yi) := Per≤n(Yi) \
(⋃

j 6=i Per≤n(Yj)
)

, we have that

(7) lim
n→∞

|Pn(Yi)|
|Per≤n(Yi)|

= 1

and so

(8) ci = lim
t→∞

|Pnt(Yi)|∣∣∣⋃kj=1 Pnt(Yj)
∣∣∣ .

Finally note that if Yi is topologically conjugate to Yj then |Per≤nt(Yi)| = |Per≤nt(Yj)|
for all t, so ci = cj . It follows that

µY :=

k∑
i=1

ciµi

is an Aut(Y )-characteristic measure.
We next show that µY is the weak* limit of the sequence {νnt}∞t=1. Combining

the results of Bowen [5, Theorem 34] and [6, Corollary 6.7], the periodic points
are equidistributed with respect to the measure of maximal entropy in any forward
transitive subshift. Thus since Yi is a forward transitive sofic shift for each i =
1, . . . , k, we have that

1

|Per≤nt(Yi)|
∑

z∈Per≤nt (Yi)

δz −−−→
t→∞

µi.

Combining this with Equation (7) we have that

1

|Pnt(Yi)|
∑

z∈Pnt (Yi)

δz −−−→
t→∞

µi.

Therefore, µY is the weak* limit

lim
t→∞

k∑
i=1

|Pnt(Yi)|∣∣∣⋃kj=1 Pnt(Yj)
∣∣∣ · 1

|Pnt(Yi)|
∑

z∈Pnt (Yi)

δz = lim
t→∞

1∣∣∣⋃kj=1 Pnt(Yj)
∣∣∣

∑
z∈

⋃k
j=1 Pnt (Yj)

δz.
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Therefore, again using from (7), it follows that µY is the weak-* limit of the sequence

1∣∣∣Per≤nt

(⋃k
i=1 Yi

)∣∣∣
∑

z∈Per≤nt(
⋃k
i=1 Yi)

δz.

Finally, let X ∈ Xa,f and let ϕ : X → Y be a factor map that can be implemented
by a range R block code. For each periodic point y ∈ Y , there is a periodic point
x ∈ X such that y = ϕ(x). Let X ′ ⊆ X be the shift of finite type obtained by
forbidding all words of length f that do not appear in the point x. Note that
X ′ ∈ Xa,f , X ′ is forward transitive, and x ∈ X ′. Therefore y ∈ ϕ(X ′). It follows
that every periodic point in Y lies in ϕ(X ′) for some X ′ ⊆ X with X ′ ∈ Xa,f . Since
there are only finitely many such subshifts and all subshifts with entropy htop(Y )
already appear in the enumeration Y1, . . . , Yk, it follows that all periodic points in

Y \
(⋃k

i=1 Yi

)
are in the union of a finite number of shifts of the form ϕ(Z), where

Z ∈ Xa,f and htop(ϕ(Z)) < htop(Y ). Therefore

lim
n→∞

∣∣∣Per≤n

(⋃k
i=1 Yi

)∣∣∣
|Per≤n(Y )|

= 1

and so µY is the weak* limit of the sequence

1

|Per≤nt(Y )|
∑

z∈Per≤nt (Y )

δz. �

Lemma 4.10. There exists an infinite subset S ⊆ N such that for all a, f,R ∈ N
and all Y ∈ Ya,f,R, the weak* limit

(9) µY := lim
s∈S,s→∞

1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz

exists and is a characteristic measure of maximal entropy on Y .

Proof. Note that
∞⋃
a=1

∞⋃
f=1

∞⋃
R=1

Ya,f,R =

∞⋃
n=1

Yn,n,n

and so it suffices to ensure sure that the limit in (9) exists for all Y ∈
⋃∞
n=1 Yn,n,n.

We construct S iteratively using a diagonalization argument. Enumerate the el-
ements (of the finite set) Y1,1,1 as Y1, . . . , Yr. Begin by setting S0 := N. By
Theorem 4.9, there exists a sequence {nt}∞t=1 along which

lim
t→∞

1

|Per≤nt(Y1)|
∑

z∈Per≤nt (Y1)

δz

exists and is a characteristic measure of maximal entropy on Y1. Set S1 := {1} ∪
{nt : t ∈ N}. Suppose we have constructed nested infinite sets

S0 ⊇ S1 ⊇ · · · ⊇ Su
such that Su contains the v+ 1 smallest elements of Sv for all v < u and such that

lim
s∈Sv,s→∞

1

|Per≤s(Yv)|
∑

z∈Per≤s(Yv)

δz
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exists and is a characteristic measure of maximal entropy on Yv for all 0 < v ≤ u. If
u = r this part of the construction ends and we move onto the next step. Otherwise,
use Theorem 4.9 with the infinite set Su to find a subsequence {nt}∞t=1 of elements
of Su for which

lim
t→∞

1

|Per≤nt(Yu+1)|
∑

z∈Per≤nt (Yu+1)

δz

exists and is a characteristic measure on Yu+1. Define the set Su+1 to be the union
of {nt : t ∈ N} with the u smallest elements of Su. This part of the construction
terminates when we construct Sr. For convenience in the next step, we define
S(1) := Sr.

Suppose we have defined a nested sequence of infinite sets

S(1) ⊇ S(2) ⊇ · · · ⊇ S(j)

such that for all Y ∈ Yj,j,j the weak* limit

lim
s∈S(j),s→∞

1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz

exists and is a characteristic measure of maximal entropy on Y . Suppose further
that S(j) contains the i smallest elements of S(i) for all i < j. Proceed as in the
construction of S(1), but using S(j) in place of S0 at the start, to build an infinite
set S(j+1) ⊆ S(j) that contains the j smallest elements of S(j) and for which

lim
s∈S(j+1),s→∞

1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz

exists and is a characteristic measure of maximal entropy on Y for all Y ∈ Yj+1,j+1,j+1.
Continuing inductively, we construct an infinite sequence of nested, infinite sets

S(1) ⊇ S(2) ⊇ · · · ⊇ S(j) ⊇ · · ·
such that for any i < j the set S(j) contains the i smallest elements of S(i) and
such that for any Y ∈ Yj,j,j the weak* limit

lim
s∈S(j),s→∞

1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz

exists and is a characteristic measure of maximal entropy on Y . We define the
(nonempty by construction) set S :=

⋂∞
j=1 S(j). �

We use this to motivate the relevant class of shifts and approximations.

Definition 4.11. Let S ⊆ N be the set constructed in Lemma 4.10. For a, f,R ∈ N
and Y ∈ Ya,f,R, let

µY := lim
s∈S,s→∞

1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz.

For k,m ∈ N, define A(a, f,R, k,m) ∈ N to be the least element of S such that for
all Y ∈ Ya,f,R and all w ∈

⋃m
i=1 Li(Y ) we have∣∣∣∣∣∣µY ([w])− 1

|Per≤s(Y )|
∑

z∈Per≤s(Y )

δz([w])

∣∣∣∣∣∣ < 1

k
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for all s ∈ S with s ≥ A(a, f,R, k,m).
For n ∈ N, let m = m(n) be

m := inf{S \ {1, 2, . . . , n}}.
Define ω : N→ N by

(10) ω(n) := −n+ 2m+A(m,m,m,m,m) ·m2m+1

We are now ready to formulate a version of Theorem 4.6 that relies on a stronger
assumption on how well-approximable the shift is to obtain the stronger conclusion
that the resulting characteristic measure is a measure of maximal entropy.

Proposition 4.12. Let X be a shift and (Xn)n∈N its SFT cover. If there are
infinitely many n ∈ N such that Xn = Xn+ω(n) for the function ω(n) defined
in (10), then every subshift factor of X has a characteristic measure which is a
measure of maximal entropy.

We note that Example 2.2 shows that the class of shifts verifying this condition
is larger than that of shifts of finite type.

Proof. Let

τ(n) := A(n, n, n, n, n) · n2n+1 + n

and note that, by definition of ω, for any n ∈ N such that Xn = Xn+ω(n), there
exists m ≥ n with m ∈ S and such that Xm = Xm+τ(m). Therefore our assumption
that there are infinitely many n such that Xn = Xn+ω(n) implies that there exist
infinitely many m ∈ S such that Xm = Xm+τ(m). To avoid unnecessary confusion,
we make a small abuse of notation and simply state that

(11) there are infinitely many n ∈ S such that Xn = Xn+τ(n).

Let Y be a subshift factor of X and let ϕ : X → Y be a factor map with range
Rϕ. Setting a := max{|L1(X)|, |L1(Y )|}, without loss of generality (renaming the
letters of the alphabets if necessary) we can assume that X,Y ⊆ {0, 1, . . . , a− 1}Z.
Since Xn is defined by forbidding only words of length n, we have that Xn ∈ Xa,n
for all n ∈ N.

We begin as in the proof of Theorem 4.6. For each n ≥ 2Rϕ + 1, define Yn :=
ϕ(Xn) and observe that Lk(Yn) = Lk(Y ) for all k ≤ n − 2Rϕ. For all such n, we
have that Yn ∈ Ya,n,Rϕ . Let β ∈ Aut(Y ) and let Rβ be a symmetric range for β. For
any n ≥ 2Rϕ + 2Rβ + 1 and any k ≤ n − 2Rβ , we have that Lk(β(Yn)) = Lk(Y ).
Provided that n ≥ 2Rβ + max{2Rϕ, 2Rβ} + 1, we have that β is a topological
conjugacy between Yn and β(Yn) and that

Lk(Y ) = Lk(Yn) = Lk(β(Yn)) for all k ≤ n− 2Rβ .

It follows immediately that β(Yn) ∈ Ya,n,Rϕ+Rβ for all such n and that Yn ∈
Ya,n,Rϕ ⊆ Ya,n,Rϕ+Rβ . For any n such that Xn = Xn+T (meaning we also have
that Yn = Yn+T ), we have that

Lk(Y ) = Lk(Yn) = Lk(β(Yn)) for all k ≤ n+ T − 2Rβ .

For such n, using the parameters a, f := n, R := Rϕ + Rβ , and N := n + T −
2Rβ in Lemma 4.4, it follows that Per≤p(Yn) = Per≤p(β(Yn)) so long as T >

p · amax{n,2Rϕ+2Rβ+1} + 2Rβ − n. In particular, when

T > A(n, n, n, n, n) · amax{n,2Rϕ+2Rβ+1} + 2Rβ − n,
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it follows that

(12) Per≤A(n,n,n,n,n)(Yn) = Per≤A(n,n,n,n,n)(β(Yn)).

For fixed ϕ and β, by Equation (11), there are infinitely many n ∈ S for which
Xn = Xn+τ(n) where

τ(n) = A(n, n, n, n, n) · n2n+1 + n > A(n, n, n, n, n) · amax{n,2Rϕ+2Rβ+1} + 2Rβ − n

(since n > max{Rϕ + Rβ , a} for all but finitely many n). For any such n, re-
call that we have Yn, β(Yn) ∈ Ya,n,Rϕ+Rβ ⊆ Yn,n,n. Therefore, by definition of
A(n, n, n, n, n) and Theorem 4.9, for any w ∈ Ln(Yn) we have (for convenience, we
write A(n) = A(n, n, n, n, n) in this calculation)

|µYn([w])− µβ(Yn)([w])| ≤
∣∣∣µYn([w])− 1

|Per≤A(n)(Yn)|
∑

z∈Per≤A(n)(Yn)

δz([w])
∣∣∣

+
∣∣∣µβ(Yn)([w])− 1

|Per≤A(n)(Yn)|
∑

z∈Per≤A(n)(Yn)

δz([w])
∣∣∣

=
∣∣∣µYn([w])− 1

|Per≤A(n)(Yn)|
∑

z∈Per≤A(n)(Yn)

δz([w])
∣∣∣

+
∣∣∣µβ(Yn)([w])− 1

|Per≤A(n)(β(Yn))|
∑

z∈Per≤A(n)(β(Yn))

δz([w])
∣∣∣,

where we use Equation (12) to make the change from Yn to β(Yn). By definition
of A(n, n, n, n, n) and the fact that Yn, β(Yn) ∈ Yn,n,n, it follows that for any
w ∈ Ln(Yn) = Ln(β(Yn)) we have that

(13) |µYn([w])− µβ(Yn)([w])| ≤ 2

n
.

By Theorem 4.9, the measure µYn is the average of all ergodic measures of maximal
entropy on Yn and µβ(Yn) is the average of all ergodic measures of maximal entropy
on β(Yn). Since β is a topological conjugacy between Yn and β(Yn), it follows that
β∗µYn = µβ(Yn). Combining this with Equation (13), if µ is any weak* limit of the
sequence {µYn}∞n=1, then β∗µ = µ. Since β ∈ Aut(Y ) is arbitrary, any such weak*
limit is an Aut(Y )-characteristic measure supported on Y =

⋂∞
n=1 Yn. Finally, note

that hµYn (σ) = htop(Yn) ≥ htop(Y ) for all n ∈ N and so any weak* limit point is
also a measure of maximal entropy on Y . �

4.3. Not every shift is a factor of a well-approximable language stable
shift. Suppose (an)n∈N is a non-decreasing sequence of positive integers such that
limn an = ∞. Define Z(an) to be the set of all shifts (X,σ) such that X has no
minimal forbidden words of length between n and n+an for infinitely many n ∈ N.
Taking all choices of such sequences (an)n∈N, we obtain all of the language stable
shifts, and we show that there is some shift that is not a factor of Z(an) for some
particular choice of sequence.

Proposition 4.13. There exists a non-decreasing sequence of positive integers
(an)n∈N and a subshift B ⊆ {0, 1}Z such that B is not a factor of any element
of Z(an).
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Proof. We construct the shift B recursively, constructing a nested sequence of sub-
shifts and then defining B to be their intersection.

Let A0 := {0, 1}. For each t ∈ N, let B0,t denote the subshift of all possible
bi-infinite concatenations of the words 0(12t) and 0(12t+1). Note that

(14) L4t+3(B0,t) ∩ L4t+3(B0,t′) = ∅ for all t < t′,

since every element of L4t+3 contains either 012t0 or 012t+10 as a subword whereas
no element of L4t+3(B0,t′) does. Observe that L1(B0,t) = {0, 1} for all t ∈ N. Find
some t0 > |Y1,1,1| such that

L4|Y1,1,1|+3(B0,t0) 6= L4|Y1,1,1|+3(Y ) for all Y ∈ Y1,1,1

which is possible by (14). Let u0 ∈ L(B0,t0) be such that u0 is a concatenation
of the words 012t0 and 012t0+1 and every element of L4|Y1,1,1|+3(B0,t0) occurs as
a subword of u0. We define two words w0,0 and w1,0 which play the role of the
alphabet in the next stage of our construction, meaning that every element of the
shift we construct at this stage is a bi-infinite concatenation of these words. Set
w0,0 := u0(012t0)(2t0+2)|u0|(4|Y1,1,1|+3) and w1,0 = u0(012t0+1)(2t0+1)|u0|(4|Y1,1,1|+3).
The words w0,0 and w1,0 have the following properties:

(1) |w0,0| = |w1,0|;
(2) every element of L4|Y1,1,1|+3(B0,t0) occurs as a subword of w0,0 and w1,0;
(3) any Z-coloring that can be written as a bi-infinite concatenation of w0,0

and w1,0 can be written uniquely in this way (this is done by identifying
where the word u0 occurs);

(4) for any a, b ∈ {0, 1}, we have wa,0wb,0 ∈ L(B0,t0).

Inductively, suppose we have constructed words w0,r and w1,r which have the
same lengths and the property that any Z-coloring that can be written as a bi-
infinite concatenation of w0,r and w1,r can be written uniquely in this way. Further
suppose we have constructed an integer tr and a subshift Br,tr such that

L4|Yr,r,r|+3(Br,tr ) 6= L4|Y1,1,1|+3(Y ) for all Y ∈ Yr,r,r

and that every element of L4|Yr,r,r|+3(Br,tr ) occurs as a subword of both w0,r and
w1,r. Also suppose |w0,r|, |w1,r| > 4|Yr,r,r| + 3. Finally suppose that for any
a, b ∈ {0, 1} we have wa,rwb,r ∈ L(Br,tr ). We now mimic the construction of
B0,t0 with w0,r and w1,r playing the role of an alphabet. For each t ∈ N, let Br+1,t

be the subshift of all possible bi-infinite concatenations of the words w0,r(w
2t
1,r)

and w0,r(w
2t+1
1,r ). Note that L4|Yr,r,r|+3(Br+1,t) = L4|Yr,r,r|+3(Br,tr ) because every

element of L4|Yr,r,r|+3(Br,tr ) occurs as a subword of both w0,r and w1,r. Moreover,
we have that

(15) L(4t+4)|w0,r|(Br+1,t) ∩ L(4t+4)|w0,r|(Br+1,t) = ∅ for all t < t′

because every element of L(4t+4)|w0,r|(Br+1,t) contains either the word w0,rw
2t
1,rw0,r

or the word w0,rw
2t+1
1,r w0,r as a subword, whereas no element of L(4t+4)|w0,r|(Br+1,t′)

does (note the change from 4t+3, used in the first stage of the construction, to 4t+4
used now, which accounts for the fact that the words w0,r and w1,r can now be par-
tially overlapped at the ends of words). Choose some tr+1 > max{|Yr+1,r+1,r+1|, tr}
such that

L(4t+4)|w0,r|(Br+1,t) 6= L(4t+4)|w0,r|(Y ) for any Y ∈ Yr+1,r+1,r+1,
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which is possible by (15) and the fact that Yr+1,r+1,r+1 is finite. Let ur+1 ∈
L(Br+1,tr+1) be such that ur+1 is a concatenation of the words w0,r(w

2t
1,r) and

w0,r(w
2t+1
1,r ) and every element of L(4|Yr+1,r+1,r+1|+4)|w0,r|(Br+1,tr+1

) occurs as a
subword of ur+1. Define words

w0,r+1 := ur+1(w0,rw
2tr+1

1,r )(2tr+1+2)|ur+1|(4|Yr+1,r+1,r+1|+4)

w1,r+1 := ur+1(w0,rw
1+2tr+1

1,r )(2tr+1+1)|ur+1|(4|Yr+1,r+1,r+1|+4)

These words have the following features:

(1) |w0,r+1| = |w1,r+1|;
(2) every element of L(4|Yr+1,r+1,r+1|+4)|w0,r|(Br+1,tr+1

) occurs as a subword of
w0,r+1 and w1,r+1;

(3) any Z-coloring that can be written as a bi-infinite concatenation of w0,r+1

and w1,r+1 can be written uniquely in this way, by identifying where the
word ur+1 occurs;

(4) for any a, b ∈ {0, 1}, we have wa,r+1wb,r+1 ∈ L(Br+1,tr+1
).

Therefore this procedure inductively defines the shift Br,tr for all r ∈ N. By con-
struction, for any r < r′ we have tgat

L(4|Yr,r,r|+4)|w0,r|(Br,tr ) = L(4|Yr,r,r|+4)|w0,r|(Br′,tr′ ).

Furthermore, Br+1,tr+1 ⊆ Br,tr for all r ∈ N. Define the shift

B :=

∞⋂
r=1

Br,tr .

Then for any r ∈ N, we have that

(16) L(4|Yr,r,r|+4)|w0,r|(B) 6= L(4|Yr,r,r|+4)|w0,r|(Y ) for any Y ∈ Yr,r,r.

We next show that B is not a factor of any element of Z(an), where the the
sequence (an) is defined by

an := 2 · (4|Yn,n,n|+ 4)|w0,n|.

For contradiction, suppose B is a factor of some shift X ∈ Z(an). Let ϕ : X → B be
a factor map and let R be its (symmetric) range. Find some n > max{R, |L1(X)|}
such thatX has no minimal forbidden words of lengths between n and n+2(4|Yn,n,n|+
4)|w0,n|. If Xn is the nth term in the SFT cover of X, then we have that

L(4|Yn,n,n|+4)|w0,n|(B) = L(4|Yn,n,n|+4)|w0,n|(ϕ(Xn)).

But ϕ(Xn) ∈ Yn,n,n and so L(4|Yn,n,n|+4)|w0,n|(ϕ(Xn)) is the language of an element
of Yn,n,n, meaning that L(4|Yn,n,n|+4)|w0,n|(B) is also the language of an element of
Yn,n,n. However, this contradicts Equation (16), and so no such shift X or factor
map ϕ can exist. �

We note that the sequence (an)n∈N in Proposition 4.13 is computable. For
instance, from the proof it follows that one may define this sequence as

an := 2 · (4|Yn,n,n|+ 4)|w0,n|,

where |Yn,n,n| is the number of sofic shifts on an n letter alphabet that can be
written as range n block codes of a shift of finite type, also on an n letter alphabet

(and thus is less than 2n
2n+1

) and defined with minimal forbidden words of length
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at most n. The number |w0,n| is recursively defined and depends on |Yr,r,r| for
r ≤ n.

We conclude this section by showing that Z(an) is a large set, in a sense made
precise in the next proposition. The result of the proposition, with Z(an) replaced
with the set of all language stable shifts, appeared in [11, Corollary 5.2] with essen-
tially the same proof. As the proof is short and needs a small amount of adapting
to apply to Z(an), we include it here for completeness.

Proposition 4.14. Let (an)n∈N be a sequence of positive integers and fix a ∈ N.
For any 0 ≤ h ≤ log(a), the set

Th := {Y ∈ Z(an) : L1(Y ) ⊆ {0, 1, . . . , a− 1} and htop(Y ) ≥ h}
is a dense Gδ subset, with respect to the Hausdorff metric, of the space of all
subshifts of {0, 1, . . . , a− 1}Z that have entropy at least h.

Proof. Fix 0 ≤ h ≤ log(a). Let S ⊆ {0, 1, . . . , a − 1}Z be a shift with entropy
at least h. Let (Sk)k∈N be the SFT cover of S. Note that Sk ∈ Z(an) for all k
since Sk has only finitely many minimal forbidden words. Moreover, htop(Sk) ≥
htop(S) for all k. Finally, with respect to the Hausdorff metric, d(S, Sk) ≤ 2−k

because Lk(S) = Lk(Sk). Therefore S is a limit point of the set of all subshifts of
{0, 1, . . . , a − 1}Z that have entropy at least h. It follows that Th is the set of all
subshifts of {0, 1, . . . , a− 1}Z that have entropy at least h.

We are left with checking that Th is a Gδ set. Note that if T0 is a Gδ subset of
the space of all subshifts of {0, 1, . . . , a − 1}Z, then Th is a Gδ subset of the space
of all subshifts of {0, 1, . . . , a− 1}Z that have entropy at least h. Thus it suffices to
prove the claim for T0. To do so, recall that Xa,n denotes the set of shifts of finite
type on the alphabet {0, 1, . . . , a − 1}Z that can be defined using forbidden words
of length at most n. For each X ∈ Xa,n, let

U(X) := {Y ⊆ {0, 1, . . . , a− 1}Z : Ln+an(Y ) = Ln+an(X)},
which is open with respect to the Hausdorff metric. Then we have that

T0 =

∞⋂
n=1

 ∞⋃
m=n

⋃
X∈Xa,m

U(X)


and so T0 is a Gδ set. �

4.4. Questions about well approximable shifts. It is natural to expect that
there are some effective bounds for which language stable shifts are well approx-
imable.

Question 4.15. Are there effective bounds on the function A(n,n,n,n) from Defini-
tion 4.11?

It is shown in [11] that every language stable shift has a characteristic measure
that is a measure of maximal entropy, and in Theorem 4.6 we showed that the
same holds for any symbolic factor of a well-approximable language stable shifts.
However, we do not know how general this result is, and so we ask the following
question.

Question 4.16. Does every subshift factor of a language stable shift have a char-
acteristic measure of maximal entropy?
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More generally, we can ask if the same holds for any shift, but we still do not
know if every shift even has a characteristic measure. This brings us to a related
question about construction of characteristic measures.

Question 4.17. Assume that X is a mixing subshift and let ϕ ∈ Aut(X) be an
automorphism. Let (Xn)n∈N be the SFT cover of X and let µn be the unique
measure of maximal entropy on Xn. If µ is a weak* limit point of (µn)∞n=1, is
ϕ∗µ = µ?

Note that this question is particularly relevant for shifts that are not necessarily
language stable.

5. Largeness of the class of language stable shifts

5.1. Language stable shifts are closed under bounded speedups. While
language stable shifts are not closed under passage to factors, they are closed under
other operations. In particular, we show that language stability is preserved by
speeding up the transformation.

The classic speedup is given by taking a power of the transformation, for example
(X,σn) is a bounded speedup of (X,σ) for any n ∈ N. We consider the more general
setting and for a shift (X,σ), define a bounded speedup is a self-homeomorphism S
of X of the form

S(x) = σρ(x)(x)

for some bounded function ρ : X → N∗.
The power map ρ in a bounded speed in an aperiodic system must be continuous

(see [1, Proposition 2.2]), and it is known that bounded speedups preserve many
properties of the initial system. For example, a bounded speedup of a subshift
is expansive, and hence is also a subshift, and similarly the bounded speedup of
a substitution subshift is also a substitution (see [1] for these results and more
background on such systems). We give a result in this spirit in Theorem 5.2: a
bounded speedup of a language stable shift, and more generally of an induced map
on a clopen set of a minimal language stable shift, is itself language stable.

We start with an elementary lemma used to bound the lengths of minimal for-
bidden words.

Lemma 5.1. Let X be a shift. If u, v, s are words such that uv, vs ∈ L(X) but uvs
is a forbidden word in X, then the word uvs contains a minimal forbidden word of
length at least |v|.

Proof. If f is a subword of uvs that is of minimal length and is forbidden in X and
contains v as a subword, then f is a minimal forbidden word. �

Theorem 5.2. Let X ⊂ AZ be a shift and let ρ : U → N∗ be a continuous function
such that the map S(·) = σρ(·)(·) is a homeomorphism on a clopen set U ⊂ X.
Then (X,σ) is language stable if and only if (U, S) is.

It follows that for a minimal language stable shift, any induced map τ(·) =
σinf{n>0: σn(·)∈U}(·) on a clopen set U is language stable. Furthermore, using an
argument similar to that in [1, Proposition 2.2], we can relax the hypothesis of
continuity on ρ to only require that it is bounded on an aperiodic subshift.
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Proof. To simplify notation, we make a small abuse of notation and let ρ : Z×U → Z
denote the cocycle associated to ρ, meaning that

ρ(n, x) =


∑n−1
i=0 ρ(Six) for n > 0

0 for n = 0

−
∑−n−1
i=0 ρ(Si+nx) for n < 0.

Hence for any integer n and x ∈ X, we have that Snx = σρ(n,x)(x).
Since ρ is a continuous function on U ⊂ X, it is locally constant. Choose an

integer N > supx∈U |ρ(x)| such that ρ is constant on any cylinder defined by a
word of length N . To simplify notation, for the remainder of this proof we let
J(N) denote the interval [−N,N ] and for q ∈ Z we write q+ J(N) for the interval
[−N + q,N + q], and use analogous notation for translates of intervals I, J . We
claim that for sufficiently large N , the map from φ : U → (A2N+1)Z given by

(17) φ
(
(xn)n∈Z

)
= (xρ(n,x)+J(N))n∈Z

defines a conjugacy between the induced system (U, S) and the shift (X,σ). To
check this, note that since the sequence (ρ(n, x))n∈Z is increasing and the distance
between two consecutive terms is uniformly bounded, the map is a homeomorphism
for any sufficiently large N . Furthermore, a direct computation shows that the map
φ intertwines the action of S(·) = σρ(·)(·) and the shift map. Let (Y, σ) denote the
image of the shift (X,σ) under φ.

Assume first that (X,σ) is language stable. Let f = f0 . . . f`−1 be a minimal
forbidden word for Y of length `, where ` satisfies infx∈U ρ(`, x) > 2N . This means
that there exist x, y ∈ U such that

xJ(N) = f0 yJ(N) = f1

xρ(x)+J(N) = f1 yρ(y)+J(N) = f2

...
...

xρ(`−2,x)+J(N) = f`−2 yρ(`−2,y)+J(N) = f`−1

xρ(`−1,x)+J(N) 6= f`−1 yρ(−1,y)+J(N) 6= f0.

For i = 0, 1 and j = ` − 1, ` − 2, ` − 3, let Ii,j(x) denote the interval Ii,j(x) =⋃j
k=i ρ(k, x)+J(N), and define the interval Ii,j(y) analogously. Note that ρ(i, x) =

ρ(i − 1, y) + ρ(x) for each 0 < i < ` − 1 and xI1,`−2(x) = yI0,`−3(y). Moreover
the interval J(N) is not a subset of I1,`−2(x), because ρ takes only positive values.
Similarly the interval ρ(`−1, x)+J(N) is not a subset of I1,`−2(x). Let I denote the
interval J(N)\I1,`−2(x), and let J denote the interval (ρ(`−1, x)+J(N))\I1,`−2(x).
Since ` is sufficiently large, the intervals I and J are disjoint.

Choose w to be the word such that

wI = xI ,

wI1,`−2(x) = xI1,`−2(x),

wJ = yJ+ρ(x).

By construction, we have that wρ(i,x)+[−N,N ] = fi for each 0 ≤ i < `. Since f is
forbidden in Y , the word w is forbidden in X. It follows from Lemma 5.1 that
w contains a minimal forbidden word for X of length f(`) between |I1,`−2(x)| =
2N + ρ(` − 2, x) − ρ(x) + 1 and |I0,`−1(x)| = 2N + ρ(` − 1, x) + 1. Thus for two



STRONG APPROXIMATIONS OF SHIFTS 21

distinct lengths `1 < `2 of minimal forbidden words, we have that

f(`2)− f(`1) ≤ ρ(`2 − 1, x)− (ρ(`1 − 2, x)− ρ(x))

=

`2−2∑
i=`1−2

ρ(Six) + ρ(x) ≤ (`2 − `1 + 2) max
x∈U

ρ(x).

It follows that when there are arbitrary large gaps between consecutive lengths
of minimal forbidden words in X, the same holds for Y . In particular, if (X,σ) is
language stable then so is (Y, σ), and thus so is the induced map (U, S).

Conversely, assume that (U, S) is language stable and thus so is the system (Y, σ),
where again (Y, σ) is the system defined to be the image of the (X,σ) under the
map φ defined in (17). Let w be a minimal forbidden word for X of length `, with
this length to be determined. For x ∈ U and integers i < j, let Ii,j(x) denote the

interval
⋃j
k=i ρ(k, x) + J(N). Define n` to be the integer

n` = sup{n ≥ 0: there exists x ∈ U such that xI0,n(x) is a subword of w}.

By definition, for any ` > 2N + 1, the set in this definition is nonempty. Let
x∗ ∈ U be some point associated to n`. As any subword of x∗ has shorter length,
it follows that

2N + 1 + n` min
x∈U

ρ(x) ≤ |I0,n`(x∗)| ≤ `− 1.(18)

Since n` is maximal, it also follows that

` < (n` + 1) max
x∈U

ρ(x) + 2N + 1.(19)

Since n` is maximal, neither x∗I−1,n`
(x∗) or x∗I0,n`+1(x∗)

can be a subword of w. It

follows from inequalities (18) and (19) that for any sufficiently large `, the intervals
I−1,n`(x

∗) \ I0,n`(x∗) and I0,n`+1(x∗) \ I0,n`(x∗) are disjoint.
Let u, s ∈ A∗ be two words such that w = ux∗I0,n` (x∗)

s. The length of I0,n`+1(x∗)

is greater than |x∗I0,n` (x∗)s|, as otherwise we can find x ∈ U such that xI0,n`+1(x) is

a subword of w, a contradiction of the maximality of n`. Similarly the length of
I−1,n`(x

∗) is greater than |ux∗I0,n` (x∗)|.
Since w is forbidden, the words s and u can not be both empty. Since the

words ux∗I0,n` (x∗)
and x∗I0,n` (x∗)

s are allowable words in the language of X, there

exist words u− and s+ in A∗ such that the words u−ux∗I0,n` (x∗)
and x∗I0,n` (x∗)

ss+

are allowed in X and |u−ws+| = |I−1,n`+1(x∗)|. Finally set ws (respectively, wu)
to be the suffix (respectively, prefix) of length 2N + 1 of the word u−ws+. Let
f = f−1 · · · fn`+1 be the word in (A2N+1)n`+3 defined by

fi = x∗ρ(i,x∗)+J(N) for 0 ≤ i ≤ n`,
fn`+1 = ws, and f−1 = wu.

This defines a forbidden word for Y , as otherwise the word u−ws+ occurs X. By
construction, the word f0 . . . fn` is allowed in Y . Because the words u−ux∗I0,n` (x∗)
and x∗I0,n` (x∗)

ss+ are allowed in X, it is also straightforward to check that the

words f−1 · · · fn` and f0 · · · fn`+1 are allowed in U . This means that f is a minimal
forbidden word of Y with length g(`) = n` + 3.
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By Inequalities (18) and (19), as in the first part of the proof, there are arbitrary
gaps between consecutive lengths of minimal forbidden words of X when this holds
for Y , and language stability follows. �

5.2. Many language stable shifts are β-shifts. We describe how the class of
language subshifts interacts with a well-known family parameterized by the reals,
the β-shifts. We start with a brief summary of the properties of β-shifts, and refer
to the survey [3] for further background.

Let β > 1 be real number. Set

d(1, β) = (bβTn−1β (1)c)n≥1, where Tβ(x) = βx− bβxc.

When the expansion d(1, β) is finite, meaning that d(1, β) = d0 . . . dk00 . . . for some
finitely many nonzero integers d0, . . . , dk, set

d∗(1, β) = d0 · · · dk−1(dk − 1)d0 · · · dk−1(dk − 1) · · ·
to be the periodic expansion. For the remainder of this section, given any finite
expansion we consider the associated infinite periodic one d∗(1, β) instead of d(1, β).
Note that d(1, β) starts with bβc, the greatest letter of the alphabet.

Letting <lex be the lexicographic ordering, the expansions d(1, β) are character-
ized in the following way:

Proposition 5.3 (see, for example, [3]). A sequence d ∈ {0, . . . , bβc}N is the
expansion of some number β > 1 if and only if

σsd <lex d, for all s ≥ 1.

The associated subshift Sβ , called a β-shift, is defined by

Sβ = {(sn)n∈Z ∈ {0, . . . , bβc}Z : sn · · · sm ≤lex d(1, β) for all n < m}.
Another equivalent way to define this subshift is by taking bi-infinite edge paths
in the graph whose edges are labeled by the integers 0, 1, 2, . . ., with an edge from
the vertex i to i + 1 labelled by di and when di > 0, there are edges between the
vertices i to 0 labelled by di − 1, . . ., 0.

The arithmetic properties of the real β and the dynamical properties of the shift
Sβ are connected. For example, the class of β such that Sβ is sofic contains all Pisot
numbers and is a subset of the Perron numbers. Surprisingly, Sβ is a shift of finite

type for (1 +
√

5)/2 but not for (3 +
√

5)/2. Furthermore, the shifts Sβ depend
continuously on the real parameter β in the Hausdorff topology. It follows that for
a generic set of parameters β, the subshift Sβ is language stable, We give a more
precise characterization of which β-shifts are language stable. To do so, we consider
the combinatorial properties of the associated expansion sequences, making use of
a characterization of the associated language.

Proposition 5.4 (see, for example, [3]). The language of a β-shift Sβ is defined
by concatenations of all words in the set

Y = {wb : w is a prefix of d(1, β), b < d|w|}.

We make use of this to describe the minimal forbidden words of a β-shift.

Lemma 5.5. For the β-shift Sβ, the set of the minimal forbidden words M(Sβ) is
the set

{wb : w is a prefix of d(1, β), b > d|w|, for any strict suffix w′ of w,w′b ≤ d(1, β)}.
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Proof. By definition of the subshift Sβ , any word of the form wb with w a prefix of
d(1, β), b > d|w| is forbidden. If w′b ≤ d(1, β) for any strict suffix of w, then wb is
minimal forbidden.

Conversely, assume that u ∈ L(Sβ) is a word such that ub 6∈ L(Sβ) is a minimal
forbidden word for some letter b. By Proposition 5.4, it follows that u can be
written as a concatenation of the form

u = w0b0w1b1 · · ·w`b`

where wi are prefixes of d(1, β), bni < d|wi|, and b` ≤ d|w`|. Since ub is not an
allowable word and d0 = bβc ≥ b, these imply that b` = d|w`| and b > d|w`|+1. It
follows that w`b`b 6∈ L(Sβ). Moreover since any strict suffix of ub is allowable, we
obtain the desired inclusion. �

We give a sufficient condition to ensure the existence of a minimal forbidden
word with certain bounds on the length.

Lemma 5.6. Assume that any i ∈ {i1 + 1, , i1 + 2, . . . , i2}, satisfies di < d0. Then
for any i1 < n < i2, there exists a minimal forbidden word of length between n− i1
and n+ 2.

Proof. Consider the word d0 · · · dn ∈ L(Sβ). Since dn+1 < d0, the word d0 · · · dnd0
is forbidden. However it follows from Proposition 5.4 that di1+1 · · · dnd0 ∈ L(Sβ),
as each dj < d0 for i1 < j ≤ n. Thus it follows from Proposition 5.1 that the word
d0 · · · dnd0 contains a minimal forbidden word of length at least n− i1. �

Corollary 5.7. For a β-shift, if the set {i ∈ N : di = d0} is finite, then the set of
lengths of minimal forbidden words is relatively dense.

In particular the subshift Sβ is not language stable.

Proof. Assume that for any index i greater than D, di < d0. Lemma 5.6 ensures
there exists a length of a minimal forbidden word at distance at most max(D, 2) of
any integer n > D. �

It follows from Corollary 5.7 that we can restrict our focus to expansion sequences
of β-shifts where the letter d0 occurs infinitely many times.

Lemma 5.8. For a β-shift, if some nonempty word w is the prefix and suffix of
some word d0 · · · dn, then there is no minimal forbidden word of length n+ 1.

Proof. The word w is of the form w = d0 · · · d`. By contradiction, assume there
is a minimal forbidden word of length n + 1. By Lemma 5.5, this word has the
form d0d1 · · · dn−1b for someb > dn = d`. Since any strict suffix of this word is
allowable, the word d0d1 · · · d`−1b is also allowable. But this is a contradiction,
since b > d`. �

When d0 · · · dn−1 = w · · ·w, the words w is said to occur in d(1, β) and the index
n−|w| is called an occurence of w. In this case, any prefix of w also occurs in d(1, β),
and so we can apply Lemma 5.8 for each length of the prefix w. This means that
there is no minimal forbidden word of length n−(i−1) for any 0 ≤ i < |w|, providing
gaps in the complement of lengths of minimal forbidden words. Summarizing this,
we have the following corollary:
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Corollary 5.9. For a β-shift, the complement of the set of lengths of minimal
forbidden words contains the set⋃

w prefix of d(1,β)

{n+ |w| : n is an occurrence of w in d(1, β)}.

In particular, if every prefix of d(1, β) occurs at least twice in d(1, β), then Sβ is
language stable.

Schmeling [18] shows that the sequence d(1, β) is generic for the measure of
maximal entropy in Sβ for Lebesgue almost every β ∈ R. In particular, any prefix
of d(1, β) occurs in d(1, β) on a set of indices of positive density. Combining this
result with Corollary 5.9, we conclude that the set of β-shifts is large.

Corollary 5.10. The set

{β > 1 : Sβ is language stable }

is a dense Gδ in (1,+∞) of full Lebesgue measure.

Hofbauer [15] and Walters [19] show that any β-shift admits a unique measure of
maximal entropy, and hence has a characteristic measure. Moreover, Climenhaga
and Thompson [9] show that the same holds for any factor of a β-shift, and so any
factor of a β-shift also has a characteristic measure.

We conclude with a particular example that goes beyond shifts of finite type
(see [9] for the precise definitions).

Example 5.11 (A specified/synchronized β-shift that is language stable). We de-
fine an expansion sequence by induction using 2 sequences of words. Consider the
alphabet {0, 1, 2} and set w0 = 222 and u0 = 111. Define wn+1 = wnunwn and fix
some word un+1 ∈ {0, 1}∗ that is smaller (in lexicogarphic order) than unwn. In
particular, the length of this word is smaller than that of unwn. Taking the limit
of the worsd wn, we obtain an infinite word w in {0, 1, 2}N

By construction, the sequence w satisfies σsw <lex w for any s ≥ 1. Hence, by
Proposition 5.3, the sequence w is the expansion of some number β > 1. Moreover,
by construction, any prefix of w occurs infinitely many times. It follows from
Corollary 5.9, the associated subshift Sβ is language stable.

Additionally, at each step n, we can choose un to be a power of 1. Then no
0 occurs in the sequence and so the subshift Sβ is specified (see [2] or [3]). In
particular if the sequence of powers of 1 is increasing, then the sequence w is not
ultimately periodic and the subshift Sβ is not sofic.

Similarly, if un is taken to be an increasing sequence of strings of 0’s, the word
111 never occurs in w but is allowable in the subshift. Then the subshift Sβ is
synchronizing but not specified (again, see [2] or [3]).

6. Aperiodic linear complexity shifts are language stable

We start with a general result on sufficiently low complexity shifts that is useful
for checking language stability.

Theorem 6.1. Assume that (X,σ) is an aperiodic shift.

(1) If the complexity pX of (X,σ) satisfies pX(n) = O(n), then the upper uni-
form density of the set of lengths of the bispecial words is zero.
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(2) If the complexity of the shift (X,σ) satisfies

lim inf
n→∞

(
pX(n+ 1)− pX(n)

)
<∞,

then the lower density of the set of lengths of bispecial words is zero.

Proof. To prove Part (1), by Cassaigne’s Theorem [7], a shift (X,σ) satisfies pX(n) =
O(n) if and only if there exists some K ∈ N such that pX(n + 1) − pX(n) ≤ K
for all n ∈ N. It follows that for each n ∈ N, there are at most K right special
(respectively, left special) words of length n.

We proceed by contradiction. Assume that the set F of lengths of the bispecial
words of X has upper uniform density α for some α > 0. Choose k ∈ N such
that kα/2 > K2. Since X is aperiodic, there is some power p > 0 such that for
any word u of length at most k, the word up is forbidden. By assumption, we can
choose sufficiently large n ∈ N, in particular greater than (p + 1)k, such that the
interval [n + 1, n + k] contains at least kα/2 different lengths of bispecial words.
Let f1, . . . , fbkα/2c denote these bispecial words.

By construction, each prefix and each suffix of each fi is a special word. Thus
by the Pigeonhole Principle, there are two indices 0 < i < j ≤ K2 + 1 such that fi
and fj share the same prefix p and share the same suffix s of length n. It follows
that the suffixes of p of lengths 2n− |fi| and 2n− |fi| are both prefixes of s. Thus,
by the Fine-Wilf Theorem [10], the largest of these prefixes, of length at least n−k,
is of the form u`u′ where u and u′ are words such that |u| = ||fj | − |fi||(≤ k),
|u′| < ||fj | − |fi||, and

` ≥ b(n− k)/||fj | − |fi||c ≥ (n− k)/k.

However, this contradicts the choice of n.
By the assumption in Part (2), the set A = {n : pX(n + 1) − pX(n) ≤ K} is

infinite for some K ∈ N. Hence there are at most K right special words of length
n ∈ A, and the same bound holds for the number of left special words. Again, we
proceed by contradiction, assuming that the set F of lengths of the bispecial words
of X has lower density α for some α > 0. We choose k ∈ N as in Part (1), and note
that again there exist arbitrarily large integers n ∈ A, and in particular larger than
(p+ 1)k, such that the interval [n, n+ k] contains at least kα/2 different lengths of
bispecial words. We then continue exactly as in Part (1). �

Corollary 6.2. Any aperiodic shift with complexity satisfying

lim inf
n→∞

(pX(n+ 1)− pX(n)) <∞,

is language stable.

It follows immediately that any aperiodic shift with linear complexity is language
stable.

Proof. A minimal forbidden word has the form awb for some letters a, b in the
alphabet and some bispecial word w in the language. By Theorem 6.1, the set of
lengths of bispecial words has lower density zero, and language stability follows. �

We note that the assumption of aperiodicity in Corollary 6.2 is necessary, as can
be seen by considering the closure under the shift of the sequence with a single 1
and all other entries 0 (note that this system contains the fixed point of all 0s).
The complexity of this system satisfies p(n) = n+ 1 for all n ∈ N, while the words
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10m1 are minimal forbidden words for all m ∈ N and so the system is not language
stable.

Example 6.3 (An aperiodic non-language stable shift with subquadratic complex-
ity). Let τ be the substitution defined by 0 7→ 010 and 1 7→ 11, and let (X,σ) be
the associated shift defined by x ∈ X if every word in x is a subword of τn(0) for
some n ≥ 0. As we consider the fixed point of 0, this shift is aperiodic, and the
complexity of the shift is approximately n log2 log2 n. Cassaigne [8, Section 4.4]
shows that for any ` with ` ≥ 3 not a power of 2, this shift contains a minimal
forbidden word of length ` (precisely a non-strict bispecial word) and so this shift
is not language stable.

We note that the shift defined in this example is not minimal. This leads to a
natural question, namely if every minimal shift is language stable. However, we
believe that this is unlikely to hold, and so we ask:

Question 6.4. Assuming that not every minimal shift is language stable, what is
the complexity threshold for the existence of a minimal shift that is not language
stable?
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