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Abstract. A minimal Cantor system is said to be self-induced whenever it

is conjugate to one of its induced systems. Substitution subshifts and some

odometers are classical examples, and we show that these are the only exam-
ples in the equicontinuous or expansive case. Nevertheless, we exhibit a zero

entropy self-induced system that is neither equicontinuous nor expansive. We

also provide non-uniquely ergodic self-induced systems with infinite entropy.
Moreover, we give a characterization of self-induced minimal Cantor systems

in terms of substitutions on finite or infinite alphabets.

1. Introduction

From the Poincaré’s recurrence theorem one can define the notion of a first return
map on a set of positive measure and, as a consequence, what is now named an
induced dynamical system. In the 1940’s S. Kakutani initiated, in the measurable
framework, the study of such systems. Intensive studies of the induction structures
for fifty years contributed to a better understanding of the orbital structures of
dynamical systems, see for example [34, 27, 39, 8, 16]. However, in the topological
context this notion has been less studied despite the powerful strategy it provides
as shown in [22] (see also [25]).

Since, it has been observed in several well-known families of dynamical systems
the phenomenon of self-induction, that is, systems being conjugate to one of its
induced systems.

For interval exchange transformations (IETs), where induction plays a crucial
role through the so-called Rauzy-Veech induction [40, 37], a stationary behaviour
my appear in the scheme of successive inductions. The IETs whose interval lengths
lie in a quadratic number field, as quadratic rotations, are conjugate to an induced
system on a subinterval [4]. Let us point out this is not particular to the quadratic
fields since there are IETs defined on cubic fields that are self-induced on canonical
intervals [3, 2, 19, 5, 26] and even for some algebraic fields of arbitrary degree [1].

Let us also mention that there exist self-induced exchanges of domains like for
the Rauzy fractal [38] where the conjugacy is given by a similarity. A last example is
given by the Pascal adic transformation [31] that can be proven to be self-induced.
In most of the former papers the self-induction property comes from a measure
theoretical conjugacy to a substitution subshift. This observation was enlightened
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in [2] where it is shown that any system with a σ-structure, that is a sequence of
finite partitions having specific properties, is conjugate to a substitution subshift.

The self-induction property is sensitive to the class of sets on which the induc-
tion is made. For instance, inducing on measurable sets instead of intervals, each
irrational rotation on the torus is an induced system of any other irrational rotation
[34], thus all rotations are self-induced (in the measure theoretical framework). A
similar phenomena arises in the topological context. Indeed, we show in Section
6 that given two minimal systems (X,T ) and (Y, S), on Cantor sets, there always
exists a closed set C ⊂ X such that the induced map TC is well-defined and (C, TC)
is topologically conjugate to (Y, S) (Theorem 35). This incidentally proves that all
such systems are self-induced on some proper closed subsets.

In this paper we focus on minimal topological dynamical systems (X,T ) with a
self-induced behaviour: that is topological dynamical systems that are conjugate
to one of their induced systems on proper open (and necessarily closed) sets. The
minimality of the system ensures the induced systems are well defined. Since a self-
induced system has closed and open sets, called clopen sets, it is natural to consider
dynamics on Cantor sets, called Cantor systems. From the Abramov formula for
the entropy of induced systems, the self-induced property implies that the entropy
is 0 or +∞ (see Proposition 5). Among zero entropy systems, it is a folklore result
that p-odometers (i.e., addition of 1 in the set Zp of p-adic integers) or minimal
substitution subshifts [36] are self-induced (see propositions 11 and 13).

The goal of this paper is to characterize self-induced minimal Cantor systems.
In Section 2, we give preliminary results on such systems. Among them, we show
that the clopen set on which the system is self-induced can be taken inside any
open set.

The next section is devoted to the characterization of self-induced systems in the
equicontinuous and expansive cases. For the equicontinuous case (i.e., odometers)
we prove: an odometer is self-induced if and only if it factorizes onto a p-odometer
(Proposition 11). Hence, the odometer built as the inverse limit of (Z/p1 · · · pnZ),
where (pi)i is the sequence of primes, is not self-induced whereas the 2-odometer
(thus, on Z2) is. For expansive minimal Cantor system (i.e., minimal subshift) it is
equivalent to be conjugate to a minimal substitution subshift (Proposition 13 and
Theorem 14).

We provide in Section 4 two examples of self-induced minimal Cantor systems
that are neither equicontinuous nor expansive. One example has zero entropy and
the other +∞. Moreover this last example is not uniquely ergodic.

In Section 5, we characterize self-induced minimal Cantor systems by means of
generalized substitution subshifts i.e., systems generated by substitution maps on
a compact zero-dimensional (but not necessarily finite) alphabet (theorems 32 and
33).

In the last section, we define the notion of Poincaré sections and we prove The-
orem 35.

2. Preliminaries

2.1. Dynamical systems. For us a topological dynamical system, or just a dy-
namical system, is a couple (X,T ) where X is a compact metric space X and T is
a homeomorphism T : X → X. A dynamical system is minimal if every orbit is
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dense in X, or equivalently if the only non empty closed invariant set is X. We call
(X,T ) a Cantor system if X is a Cantor set, that is, if X is a compact metric space
with a countable basis of closed and open sets and no isolated points. We recall
that any such space is homeomorphic to the standard Cantor ternary set. When X
is a subset of AZ where A is a finite set and S is the shift map S(x)n = xn+1, the
Cantor system (X,S) is called a subshift. The system (X,T ) is said to be aperi-
odic if T has no periodic points. Observe that minimal Cantor systems are always
aperiodic.

Let (X1, T1) and (X2, T2) be two dynamical systems. We say (X2, T2) is a factor
of (X1, T1) if there is a continuous and onto map ϕ : X1 → X2 such that ϕ ◦ T1 =
T2 ◦ ϕ. Then, ϕ is called factor map. If ϕ is one-to-one we say it is a conjugacy,
and (X1, T1) and (X2, T2) are conjugate.

For a minimal system (X,T ) and for any open set U ⊂ X, we can define the
return time function rU : X → N by

rU : x 7→ inf{n > 0 : Tn(x) ∈ U}.

It is well known that for a minimal Cantor system and A ⊂ X a clopen set, the
function rA is locally constant hence continuous. The induced map TA : A → A is
then defined by

TA : x 7→ T rA(x)(x).

Such a map TA : A → A is a homeomorphism and the Cantor system (A, TA) is
called the induced system on A. If the system (X,T ) is minimal and A ⊂ X is
clopen then, (A, TA) is also minimal.

Conversely, let (X,T ) be a Cantor system and r : X → Z+ a continuous map, the

exduced system (X̃r, T̃ ) is the dynamical system defined by the set X̃r = {(x, i) :

x ∈ X, 0 ≤ i < r(x)} and the map T̃ : X̃r → X̃r defined by

(x, i) 7→

{
(x, i+ 1) if 0 ≤ i < r(x)− 1

(Tx, 0) if i = r(x).

It is plain to check that the exduced system of (X,T ) is a minimal Cantor system

if (X,T ) is. Moreover, the induced system of (X̃r, T̃ ) on the clopen set X × {0}
is conjugate to the system (X,T ). More precisely, if (X,T ) is a minimal Cantor
system, U a clopen set of X and rU the associated return function then, (x, i) 7→ T ix

is a conjugacy between the systems (ŨrU , T̃ ) and (X,T ).

Definition 1. A minimal Cantor system (X,T ) is self-induced if there exists a
non-empty clopen proper subset U ⊂ X such that the induced system (U, TU ) is
conjugate to the system (X,T ).

While we work within the topological category in our study of self-induced sys-
tems, it will be relevant to consider invariant Borel probability measures. By
the Bogoliouboff-Krylov theorem, associated to any topological dynamical system
(X,T ) there is a nonempty compact, convex space M(X,T ) of T -invariant Borel
probability measures [28], see also [35]. When M(X,T ) is a singleton set, as is the
case for minimal substitution subshifts and odometer systems, we say that (X,T )
is uniquely ergodic. The proposition below is well-known and describes the relation
between M(X,T ) and the space of measures for an induced system of (X,T ).
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Proposition 2. Let (X,T ) be a minimal Cantor system and suppose U ⊂ X is
clopen. Let F : M(X,T )→M(U, TU ) be the function where F (µ) is the measure ν

on U defined by ν(B) = µ(B)
µ(U) where B ⊂ U is a Borel set. Then, F is a bijection.

Proof. First note that any such measure ν = 1
µ(U)µ defines a Borel probability

measure on U . Also, for any Borel set B ⊂ U ,

ν(T−1U B) =
µ(T−1U B)

µ(U)
=
µ(B)

µ(U)
= ν(B).

Thus, the map F is well-defined.
We will prove that F is bijective. To this end, let Uk = {x ∈ U : rU (x) = k}.

Then, Uk is clopen for all k, and for some K, U is a disjoint union of U1, U2, . . . , UK .
It follows that the collection {T iUk : 0 ≤ i < k, 1 ≤ k ≤ K} forms a clopen partition
of X.

Suppose there exist two measures µ, µ′ inM(X,T ) such that F (µ)(B) = F (µ′)(B)
for every measurable subset B of U . Set r = µ(U)/µ′(U). Then, for every subset
B of U , µ(B) = rµ′(B) and

1 = µ(X) =
∑
k

kµ(Uk) =
∑
k

krµ′(Uk) = r
∑
k

kµ′(Uk) = rµ′(X) = r.

Then, there is a clopen set B such that µ(B) 6= µ′(B). But

µ(B) =

K∑
k=1

k−1∑
j=0

µ(B ∩ T jUk) =

K∑
k=1

k−1∑
j=0

µ(T−jB ∩ Uk).

Therefore, µ(T−jB ∩ Uk) 6= µ′(T−jB ∩ Uk) for some j, k. So we get F (µ)(T−jB ∩
Uk) 6= F (µ′)(T−jB ∩ Uk), a contradiction. Hence F is injective.

Let ν be a TU -invariant Borel probability measure on U . Let ρ =
∑K
k=1 kν(Uk).

For a Borel set B ⊂ X, define the T -invariant measure

µ(B) =
1

ρ

K∑
k=1

k−1∑
j=0

ν(T−jB ∩ Uk).

We wish to see that F (µ) = ν. Notice that for B ⊂ U a Borel set

µ(B) =
1

ρ

K∑
k=1

ν(B ∩ Uk) =
ν(B)

ρ
.

So, for B = U , we get µ(U) = 1/ρ and ν(B) = µ(B)
µ(U) = F (µ)(B). Therefore, F

is onto. �

2.2. Observations about self-induced systems. We will make a series of ob-
servations about self-induced systems. We see that Abramov’s Formula and the
Variational Principle imply that the topological entropy, denoted htop(T ), of any
self-induced minimal Cantor system (X,T ) is either 0 or ∞. See [35] for an intro-
duction to entropy and these results.

Suppose (X,T ) is a self-induced minimal Cantor system. We note that the
conjugacy to an induced system may be iterated.

Proposition 3. Suppose (X,T ) is a minimal Cantor system conjugate via ϕ to
the induced system (U, TU ) where U ( X is clopen. Then, ϕ|ϕk(X) is a conjugacy
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from the induced system (ϕk(X), Tϕk(X)) to (ϕk+1(X), Tϕk+1(X)) for any k ≥ 0.

In particular (X,T ) and (ϕk(X), Tϕk(X)) are conjugate by ϕk.

Proof. The induced system of (X,T ) on a clopen set ϕk(X), is conjugate by ϕ to
the induced system of (U, TU ) on ϕk+1(X). We have just to notice that this induced
system is the induced system of (X,T ) on ϕk+1(X). �

Using the above, we can show that (X,T ) is conjugate to an induced map TU
on a clopen set U where U ⊂ X is an arbitrarily small set, where the smallness is
expressed in terms of the invariant measures.

Proposition 4. Let (X,T ) be a minimal Cantor system conjugate via ϕ to the in-
duced system (U, TU ) where U ( X is clopen, then, limn supµ∈M(X,T ) µ (ϕn(X)) =

0. In particular,
⋂
n∈N ϕ

n(X) has measure 0 with respect to any T -invariant Borel
measure µ.

Proof. Since U c is clopen and nonempty, µ(U) < 1 for all µ ∈ M(X,T ), and by
compactness of M(X,T ), supµ∈M(X,T ) µ(U) < 1. Let r = supµ∈M(X,T ) µ(U).

Since ϕ : X → U is a conjugacy, every measure in M(U, TU ) is of the form
ν ◦ ϕ−1 for some ν ∈ M(X,T ). Therefore, by Proposition 2, 1

µ(U)µ = ν ◦ ϕ−1 for

some ν ∈M(X,T ). In particular,

r ≥ ν(U) = ν ◦ ϕ−1(ϕ(U)) =
µ(ϕ(U))

µ(U)
.

So µ(ϕ(U)) ≤ rµ(U) ≤ r2. It follows by induction that µ(ϕk(U)) ≤ rk+1 for all
k ≥ 1. This ends the proof. �

Proposition 5. The topological entropy of any self-induced minimal Cantor system
is 0 or ∞.

Proof. Suppose (X,T ) is a minimal Cantor system and U ( X is a clopen set such
that (U, TU ) is conjugate to (X,T ). Let 1 > ε > 0. From propositions 3 and 4, one
can take U such that µ(U) ≤ ε for all µ ∈M(X,T ).

For µ ∈ M(X,T ) we set µU = 1
µ(U)µ. It is a probability measure defined on

the Borel sets of U . Abramov’s formula relates the measure-theoretic entropy of
the systems (X,T, µ) and (U, TU , µU ) as follows: hµ(T ) = µ(U)hµU (TU ). From the
variational principle one gets

htop(T ) = sup
µ∈M(X,T )

hµ(T ) = sup
µ∈M(X,T )

µ(U)hµU (TU )

≤ ε sup
µ∈M(X,T )

hµU (TU ) = εhtop(TU ),

where the last equality comes from Proposition 2. Since (U, TU ) is conjugate to
(X,T ), we have htop(TU ) = htop(T ), which ends the proof. �

2.3. Bratteli-Vershik representations. In this section, we discuss the Bratteli-
Vershik representation for a minimal Cantor system; every minimal Cantor system
admits such a representation. We give a brief outline of such constructions empha-
sizing the notations used in this paper. The reader can find for more details on this
theory in [25] (see also [22] and [13]). Such representations will be very helpful in
many proofs or remarks below thanks to Proposition 6.
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2.3.1. Bratteli diagrams. A Bratteli diagram is given by ((Vk)k≥0, (Ek)k≥1) where
for each k ≥ 1 Vk−1 is a finite set of vertices and Ek is a finite set of oriented edges
from Vk−1 to Vk. The set V0 is a singleton {v0}, and for k ≥ 1, Vk = {1, . . . , C(k)}.
For the purposes of non-degeneracy, we require that every vertex in Vk is the “end-
point” of some edge in Ek for k ≥ 1 and an “initial-point” of some edge in Ek+1

for k ≥ 0.
The level k of the diagram is the subgraph consisting of the vertices in Vk∪Vk+1

and the edges Ek+1 between these vertices. We describe the edge set Ek using a Vk×
Vk−1 matrix M(k) over Z+ which is the adjacency matrix of the level k subgraph.
The (i, j)–entry of M(k) is the number of distinct edges in Ek joining vertex j ∈
Vk−1 with vertex i ∈ Vk. For 1 ≤ k ≤ l one defines P (l, k) = M(l) · · ·M(k + 1)
with P (k, k) = I; where I is the identity map.

If for every k, P (k + 1, k) is positive, we say that the diagram (V,E) is simple.

2.3.2. Ordered Bratteli diagrams. We call a range located order (RL-order for short)
on a graph (V,E) a partial order on its set of edges E such that two edges e, e′

are comparable if and only if they have the same end-point. An ordered Bratteli
diagram is a triple B = ((Vk), (Ek), (�k)) where ((Vk), (Ek)) is a Bratteli diagram
and each �k is an RL-order on the subgraph of level k.

Let 1 ≤ k ≤ l and let Ek,l be the set of all paths in the graph joining vertices of
Vk−1 with vertices of Vl. The orders �k, . . . ,�l induce an order on Ek,l given by
(ek, . . . , el) �k,l (fk, . . . , fl) if and only if there is k ≤ i ≤ l such that ej = fj for
i < j ≤ l and ei �i fi. Notice it is an RL-order on the graph (Vk ∪ Vl, Ek,l).

Given a strictly increasing sequence of integers (mk)k≥0 with m0 = 0 one defines

the contraction of B = ((Vk), (Ek), (�k)) (with respect to (mk)k≥0) as(
(Vmk)k≥0 ,

(
Emk+1,mk+1

)
k≥0 , (�mk+1,mk+1

)k≥0

)
.

The inverse operation is called miscroscoping (see [25] for more details).
Given an ordered Bratteli diagram B = ((Vk), (Ek), (�k)) one defines XB as the

set of infinite paths (x1, x2, . . .) starting in v0 such that for all k ≥ 1 the end-point
of xk ∈ Ek is the initial-point of xk+1 ∈ Ek+1. We topologize XB by postulating a
basis of open sets, namely the family of cylinder sets

[e1, e2, . . . , el]B = {(x1, x2, . . .) ∈ XB : xi = ei, for 1 ≤ i ≤ l } .
Each [e1, e2, . . . , el]B is also closed, as is easily seen, and so we observe that XB is
a compact, totally disconnected metrizable space.

When there is a unique x = (x1, x2, . . .) ∈ XB such that xi is maximal for any
i ≥ 1 and a unique y = (y1, y2, . . .) ∈ XB such that yi is minimal for all i ≥ 1, one
says that B is a properly ordered Bratteli diagram. Call these particular points xmax

and xmin respectively. In this case one defines a homeomorphism VB : XB → XB

called the Vershik map as follows. Let x = (x1, x2, . . .) ∈ XB \ {xmax} and let
k ≥ 1 be the smallest integer so that xk is not a maximal edge. Let yk be the
successor of xk and (y1, . . . , yk−1) be the unique minimal path in E1,k−1 connecting
v0 with the initial vertex of yk. One sets VB (x) = (y1, . . . , yk−1, yk, xk+1, . . .) and
VB (xmax) = xmin.

The dynamical system (XB , VB) is called the Bratteli-Vershik system generated
by B. In [25] it is proved that any minimal Cantor system (X,T ) is conjugate to a
Bratteli-Vershik system (XB , VB) on a simple, properly ordered Bratteli diagram.
One says that (XB , VB) is a Bratteli-Vershik representation of (X,T ). In what
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follows we identify a minimal Cantor system (X,T ) with any of its Bratteli-Vershik
representations.

A minimal Cantor system is of (topological) finite rank if it admits a Bratteli-
Vershik representation such that the number of vertices per level #Vn is uniformly
bounded by some integer d. The minimal such d is called the topological rank
of the system. We observe that topological and measure theoretical finite rank
are completely different notions. For instance, systems of topological rank one
correspond only to odometers whereas the Chacon subshift has measure theoretical
rank one (see [17]).

2.3.3. Induction and Bratteli-Vershik representations. Let us show that the induc-
tion process can be easily “observed” through Bratteli diagrams, as enlightened in
[22].

Let U be a clopen set of (XB , VB). It is a finite union of cylinder sets. We can
suppose they all have the same length i.e., for some n, U = ∪p∈P[p]B where P is a
set of paths from V0 to Vn. Since the diagram is simple, we may assume that every
vertex in Vn is the end-point for a path in P. Thus, we may define a contraction B̂
of B where levels 1 through n are contracted to level 1. To obtain a Bratteli-Vershik
representation of the induced system on U it suffices to take the properly ordered
Bratteli diagram B′ which on level 1 consists of all edges in B̂ corresponding to a
path in P, and is otherwise the same as the diagram B̂, where the new order �′1 is

induced by the one of B̂. It is not too much work to prove that the induced system
on U is conjugate to (XB′ , VB′). To summarize we get the following, where the
proof can be found in that of Theorem 3.8 in [22].

Proposition 6. Let (XB , VB) be the Bratteli-Vershik dynamical system associated
with a simple properly ordered Bratteli diagram B = ((Vn), (En), (�n)). Let P be a
set of paths from V0 to Vn0

. Then, a Bratteli-Vershik representation of the induced
system of (XB , VB) on the clopen set U = ∪p∈P[p]B is defined by the following
Bratteli diagram ((V ′n), (E′n), (�′n)), where:

• The set of end-points of paths in P is V ′1 ;
• The paths P are the edges from V ′0 = V0 to V ′1 ;
• The set of edges in En0+1 with initial-points in V ′1 is E′2;
• for n ≥ 2, V ′n = Vn−1+n0

and E′n+1 = En+n0
with the induced order.

We say a Bratteli diagram ((Vn), (En), (�)) is stationary whenever the sequences
(Vn), (En) and (�n) are constant. Minimal Cantor systems having such a repre-
sentation are exactly substitution subshifts or odometers with constant base (see
Section 3 or [15]). A straightforward consequence of Proposition 6 shows these
systems are self-induced.

Below we make use of the Bratteli-Vershik representation to prove a technical
lemma which will be useful later in the paper.

Proposition 7. Let (X,T ) be a self-induced minimal Cantor system and let W ⊂
X be clopen, nonempty. Then, (X,T ) is conjugate to an induced system (U, TU )
where U ⊂W .

Proof. Let (X,T ) be a self-induced minimal Cantor system and let W ⊂ X be a
nonempty clopen set. By iterating the self-induction conjugacy ϕ sufficiently many
times, Proposition 4 implies that (X,T ) is conjugate to an induced map (U, TU )
where µ(U) < µ(W ) for all µ in M(X,T ).
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For large enough n, there exist sets, PU and PW , of paths ending at level n
satisfying U = ∪p∈PU [p]B and W = ∪p∈PW [p]B . Since µ(U) < µ(W ) for all µ in
M(X,T ), taking n sufficiently large, we may assume that for each vertex v ∈ Vn,
the number of paths in PU which end at v is less than the number of paths in PW
which end at v (This is not a trivial fact, but is rather standard by now. It follows
from the simplicity of the diagram and the Ergodic Theorem. For example see
proof of Lemma 2.5 in [24]).

For every vertex v in Vn, let u(v) equal the number of PU -paths ending at v and
w(v) the number of PW -paths ending at v. By assumption u(v) < w(v) for each v.

Define a set W ′ ⊂ W which is the union over v ∈ Vn of the union of cylinder
sets of the first u(v) PW -paths ending at v. Then, we have Bratteli-Vershik rep-
resentations of the induced map on U and the induced map on W ′ on diagrams
which both have exactly u(v) edges from v0 to v ∈ V1 and are identical below level
n. Thus, (U, TU ) is conjugate to (W ′, TW ′) where W ′ ⊂W . �

3. Equicontinuous and expansive cases

We recall that, from the previous section, to be self-induced it is necessary to
have zero entropy or infinite entropy. Among zero entropy dynamical systems is
the family of those having finite topological rank. A result of Downarowicz and
Maass [10] asserts that in this family the Cantor systems are either equicontinuous,
that is odometers, or expansive, that is subshifts. Here we treat these both cases
characterizing the self-induced Cantor systems of finite topological rank.

3.1. Equicontinuous case: the odometers. Let (qn)n≥1 be a integer sequence
such that qn ≥ 2. We set pn = qn · · · q2q1. The set of (qn)-adic integers is the
inverse limit

Z(qn) =

{
(xn) ∈

∞∏
n=1

Z/pnZ : xn ≡ xn+1 mod pn

}
.

We endow
∏∞
n=1 Z/pnZ with the product topology of the discrete topologies. The

set of (qn)-adic integers Z(qn) endowed with the induced topology forms a Cantor
set. It is a topological group (Exercise). The dual group of Z(qn) (i.e., the group
of continuous characters) is conjugate to the group of (qn)n-adic rationals

Q(qn) =

{
j

pn
: j ∈ Z, n ≥ 1

}
.

A base of the topology of Z(qn) is given by the sets

[a1, a2, . . . , an] = {(xn) ∈ Z(qn) : xi = ai, 1 ≤ i ≤ n},
with ai ∈ Z/piZ, i = 1, . . . , n.

When pn = pn for all n, it defines the classical ring of p-adic integers Zp. Let
R : Z(qn) → Z(qn) be the map x 7→ x + 1. As it will always be clear from the
context these maps will be denoted by R for any sequence (qn). The Cantor system
(Z(qn), R) is called odometer in base (pn) or with characteristic sequence (qn). This
system is minimal and aperiodic.

Following the notation of Section 2.3, a Bratteli-Vershik representation of the
odometer (Z(qn), R) is obtained taking a single vertex at each level, #Vn = 1,
n ≥ 0, and setting qn+1 edges in En+1. As there is a unique vertex at each level,
the ordering on the En’s is arbitrary. Consequently, odometers are of topological
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rank 1 and it is easy to prove that rank one Cantor systems are odometers. See
[13] for more details. We say it is a one-vertex Bratteli diagram.

Let us recall that a minimal Cantor system (X,T ) which is equicontinuous (i.e.,
the family of maps {Tn}n∈Z is equicontinuous) is conjugate to an odometer, and,
the two following well known results (see [29]).

Lemma 8. The following are equivalent :

(1) The odometer (Z(q′n)
, R) is a factor of the odometer (Z(qn), R);

(2) Q(q′n)
is included in Q(qn);

(3) For all n there exists k such that p′n divides pk.

Lemma 9. The following are equivalent.

(1) (Z(q′n)
, R) and (Z(qn), R) are conjugate.

(2) Q(q′n)
= Q(qn).

This last condition is true if and only if for all prime number p we have

lim
n

max
{
k : pk divides pn

}
= lim

n
max

{
k : pk divides p′n

}
.(1)

As a corollary, we obtain the following. The proof is left to the reader.

Corollary 10. Let (Z(qn), R) be an odometer.

(1) Any permutation of the elements of the characteristic sequence will define
the same odometer, up to conjugacy.

(2) (Z(qn), R) is conjugate to the odometer with characteristic sequence (sn)
where sn are prime numbers such that pi+1/pi = snisni+1 · · · sni+1−1 for
some strictly increasing sequence (ni) with n0 = 1.

Thanks to these results we deduce a characterization of self induced odometers.
The proof will use Bratteli diagrams. One can also prove this using the periodic
structure of Z(qn). This would be, in some sense, easier if one is more familiar
with (qn)-adic groups than Bratteli diagrams. However, we want to emphasize how
useful Bratteli diagrams can be when studying Poincaré recurrence problems.

Proposition 11. Let (Z(qn), R) be an odometer. The following are equivalent.

(1) (Z(qn), R) is self-induced.
(2) There exists a prime number q dividing infinitely many qn, with qn =

pn+1/pn, i.e., limn max
{
k : qk divides pn

}
=∞.

(3) There is a homomorphism from Z(qn) to Zp for some prime number p.
(4) (Zp, R) is a factor of (Z(qn), R).

Proof. We leave as an exercise to prove that (2), (3) and (4) are equivalent. We
prove (2) and (1) are equivalent.

(2) =⇒ (1) Again using Corollary 10, we may assume p1 = q1 = q. Then,
Lemma 9 together with Equality (1) imply that the odometer with characteris-
tic sequence (qn)n≥1 is conjugate to the odometer with characteristic sequence
(qn+1)n≥1.

Let B be the one-vertex Bratteli diagram with qn edges in En for n ≥ 1. Select
a single edge e from E1 and let U = [e] (i.e., the clopen set of infinite paths starting
with e). Proposition 6 gives us that the induced system on U is conjugate to an
odometer with characteristic sequence (qn+1). Thus, (Z(qn), R) is self-induced.
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(1) =⇒ (2) Suppose (Z(qn), R) is self-induced. There exists a proper clopen set
U such that (U,RU ) is conjugate to (Z(qn), R). Since (U,RU ) is an induced sys-
tem of (Z(qn), R), Proposition 6 implies (U,RU ) is an odometer with characteristic
sequence (q′n) where, for all n ≥ 2, q′n = qn+n0−1, for some n0, and q′1 < q1q2 · · · qn0 .

By contradiction, let us assume that there is no prime number p such that
limn max

{
k : pk divides q1q2 · · · qn

}
= ∞. Then, from Lemma 9, for all prime

numbers p, we should have

lim
n

max
{
k : pk divides q1q2 · · · qn

}
= lim

n
max

{
k : pk divides q′1qn0+1 · · · qn+n0−1

}
<∞.

This is in contradiction with the fact that q′1 is strictly less than q1q2 · · · qn0
. �

3.2. Expansive case: the substitution subshifts. In this section we prove
that a self-induced minimal Cantor system (X,T ) is expansive if and only if it is
conjugate to a substitution subshift on a finite alphabet. This result may be of
interest on its own, it generalizes a similar result in the case where the induced
map is of the form T k for some fixed k [11].

Recall that a homeomorphism T : X → X on a compact metric space (X, d) is
expansive if there exists a constant δ > 0 such that given any x, y ∈ X, x 6= y,
there exists an n ∈ Z such that d(Tnx, Tny) > δ. A classical theorem states that if
X is a Cantor space and (X,T ) is an expansive dynamical system then, (X,T ) is
conjugate to a subshift.

3.2.1. Subshifts and induction. Let A be an alphabet, that is, a finite set. We endow
AZ with the infinite product of the discrete topology and consider the shift map
S : AZ → AZ. That is, for a sequence x = (xi) ∈ AZ, S(x) is the sequence defined
by S(x)i = xi+1. By a subshift on A we shall mean a couple (X,S) where X ⊂ AZ

is closed and shift-invariant (S(X) = X). See [30] for a thorough introduction to
subshifts.

A word is an element of the free monoid A∗ generated by A where the neutral
element is denoted by ε and is called the empty word. For w = w1 . . . wn ∈ A∗,
wi ∈ A, we use |w| to denote the length of w, that is |w| = n. We denote by An
the set of words of length n. We set A+ = A∗ \ {ε}.

For a point x = (xi) ∈ AZ, and i, j ∈ Z with i ≤ j let x[i, j] denote the word
x[i, j] = xi . . . xj . We say i is an occurrence of the word u in x if u = x[i, i+ |u|−1].
We keep the same notation for finite words.

For a subshift (X,S), we call language of X the subset of A∗ defined by L(X) =
{x[i, j] : x ∈ X, i ≤ j}. We set Lk(X) = {x[i, i+ k − 1] : x ∈ X, i ∈ Z}. A base for
the subspace topology on X consists of the family of the sets

[w.v]X = {x ∈ X : x[−|w|, |v| − 1] = wv},

where w, v ∈ A∗. These sets [w.v]X are called cylinders. When it will not create
confusion we will write [w.v] instead of [w.v]X . We set [v] = [ε.v], where ε is the
empty word of A∗.

Every shift commuting continuous function F : X → Y between two subshifts is
given by a sliding block code [30]. That is, a map f from the set of words of length
2r+ 1 in X to letters appearing in elements of Y such that for all x ∈ X and i ∈ Z,
F (x)i = f(x[i− r, i+ r]).
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Suppose X ⊂ AZ is a subshift. The k-block presentation of X is the subshift

X [k] with alphabet Ak defined as the set of the sequences (wi) ∈
(
Ak
)Z

such that

(1) each wi = wi,1wi,2 . . . wi,k is in Lk(X),
(2) wi,2 . . . wi,k = wi+1,1 . . . wi+1,k−1 for all i ∈ Z,
(3) the sequence (wi,1) is in X.

It is well-known that the shift map on the k-block presentation of X is conjugate
to the shift map on X [30].

Let us explain a way to see the induction process via words in minimal subshifts.
Let (X,S) be a minimal subshift defined on the alphabetA and U be a clopen subset
of X. Then, there exist words u−1 , . . . , u

−
n , u

+
1 , . . . u

+
n such that U = ∪ni=1[u−i .u

+
i ].

Observe that these words can be chosen of equal lengths.
Let RX,U ⊂ L(X) be the set of return words to U , that is, the set of words

x[i, j − 1], with x ∈ X and i < j, where

(1) Six belongs to U ;
(2) Sjx belongs to U ;
(3) there is no integer k, with i < k < j, such that Skx belongs to U .

Since the subshift (X,S) is minimal then, the length of the return words to U is
finite and the set of return words to U is also finite.

When U consists of a single word and u− is the empty word, then we recover
the classical notion of return words (see [11, 20, 12]). In this situation, U = [ε.u+],
the return words w are characterized by the fact that u+ is a prefix and a suffix of
wu+, and, wu+ has no other occurrence of u+ than these two (see [15]).

The general situation is a bit different. We should keep the information of
which u±i precedes and follows a return word w, for each occurrences of w: u−i wu

+
j

and u−k wu
+
l could belong to L(X) for different i, j, k, l. Thus, this return word w

represents two different “returns” to U (because it returns to different cylinders
describing U). To this end we set

R̃X,U = {(u−, w, u+) : u−wu+ ∈ L(X), w ∈ RX,U , u− ∈ U−, u+ ∈ U+},

where U− = {u−1 , . . . , u−n } and U+ = {u+1 , . . . , u+n }.
Let θ be the morphism from R̃∗X,U to A∗ defined by θ(u−, w, u+) = w. As usual,

we extend by concatenation θ to a map, also denoted θ, from R̃Z
X,U to AZ. It is

easy to check that for each x ∈ U there is a unique y ∈ R̃Z
X,U such that x = θ(y).

Let Y be the set of all these y. It is invariant under the shift and hence (Y, S) is a

subshift on the alphabet R̃X,U .
We left as an exercise to prove that θ : (Y, S) → (U, SU ) is a conjugacy map.

For the ideas to use we refer to [15] where this is treated when U = [u−.u+].

3.2.2. Substitutive and primitive substitution subshifts. We recall here a small am-
ount of the background necessary for this section on minimal substitution subshifts.
For a much more in depth introduction see [15, 21, 36].

Suppose we have an alphabet A and a map σ : A → A+. As usual, a substi-
tution σ on an alphabet space A can be extended to functions σ : A+ → A+ by
concatenation, and therefore iterated.

Because we wish to focus on minimal systems, we will assume that all of our
substitutions are primitive i.e., the following two properties hold.
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• there is an n ∈ N such that for any two letters a, b ∈ A, the letter b appears
in the word σn(a),
• there is an a ∈ A such that limk→∞ |σk(a)| =∞.

Given a primitive substitution σ, let Xσ denote the set of sequences x in AZ

with the property that every word that appears in x is a subword of σk(a) for some
a ∈ A and k. This set is S-invariant. As it will not create confusion, we continue
to denote by S the restriction of S to Xσ. The couple (Xσ, S) is called primitive
substitution subshift (see [36] for more details on these subshifts).

In the literature one can find less restrictive definitions of substitution subshifts
that are, up to conjugacy, irrelevant in the minimal context as shown by Proposition
12 below. For instance, let us present a general definition of substitutive subshifts.
Let σ be an endomorphism of the free monoid A∗ and let φ : A∗ → B∗, for some
finite alphabet B. Let X be the set of infinite sequences x in BZ with the property
that every word that appears in x is a subword of φ ◦ σk(a) for some a ∈ A and
k. It could happen that X is empty but it is a closed S-invariant subset of BZ.
We say (X,S) is a substitutive subshift. Within the category of minimal subshifts,
the following result shows that our primitiveness hypothesis on the substitution is
not restrictive. In fact, it proves that if you are given a non-primitive substitution
generating a minimal subshift (X,S) then, there is a primitive substitution whose
subshift is conjugate to (X,S).

Proposition 12. [15, 14] Let (X,S) be a minimal subshift. The following are
equivalent.

(1) (X,S) is conjugate to a substitutive subshift.
(2) (X,S) is conjugate to a primitive substitution subshift.

For example the Chacon substitution 0 7→ 0010, 1 7→ 1 is not primitive but its
subshift (X,S) is minimal and it is conjugate to a primitive substitution subshift
(see [11]).

The following is well-known, e.g. see [15, Cor 12]. It is a direct consequence of
Mossé’s result on recognizability (see [32, 33]).

Proposition 13. Aperiodic primitive substitution subshifts are self-induced mini-
mal Cantor systems.

Our goal here is to prove the converse, that expansive self-induced minimal
Cantor systems must be substitution subshifts. Observe that self-induced minimal
Cantor systems are necessarily aperiodic.

Theorem 14. Let (X,S) be a self-induced expansive minimal Cantor system.
Then, it is conjugate to a substitution subshift.

Proof. Assume that (X,S) is an expansive minimal Cantor system (hence a subshift
on some alphabet A, up to conjugacy) that is self-induced. This means there is
a clopen set U ( X such that (X,S) and (U, SU ) are conjugate. We set U =
∪Ni=1[u−i .u

+
i ] for some words u±i . Without loss of generality we can suppose that

|u+i | = |u
−
j |, for all i, j.

Taking the notations of Section 3.2.1 and the observation we made, (U, SU ) is

isomorphic to some subshift (Y, S) defined on the alphabet R = R̃X,U . Notice that
the map θ defined in this section is such that the length |θ(a)| is greater or equal
to 1 for all a ∈ R.
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Let f : A2r+1 → R be a sliding block code defining a conjugacy from (X,S) to
(Y, S). We claim there exists an integer l such that

|θ(y1 . . . yl)| ≥ r + l(2)

for all words y1 . . . yl of L(Y ). Indeed, (Y, S) being minimal it suffices to show there
exists a letter a ∈ R such that |θ(a)| ≥ 2. Suppose it is not the case. This means
that Skx belongs to U for all k and x ∈ X. Thus, from the minimality of (X,S),
we obtain that U = X which contradicts the choice of U .

For all n, let An be the alphabet

{(x−n . . . x−1x0x1 . . . xn) : x−n . . . x−1x0x1 . . . xn is a word of X}.
Recall that X [2n+1] denote the (2n+ 1)-block presentation of X, that is

X [2n+1] = {((xk−n . . . xk−1xkxk+1 . . . xk+n))k : (xk)k ∈ X}.
Of course the subshift (X,S) is conjugate to (X [2n+1], S), by the sliding block

code hn : A2n+1 → An defined as hn(x−n . . . xn) = (x−n . . . xn). In the same way
we can define Rn and Y [2n+1]. The map f naturally defines a sliding block code
g : Al+r → Rl asserting

g((x−(l+r) . . . x−1x0x1 . . . xl+r)) =(f(x−(l+r) . . . x−1x0x1 . . . xl+r))

=(y−l . . . y−1y0y1 . . . yl).

This provides a conjugacy from (X [2(r+l)+1], S) to (Y [2l+1], S). To conclude, it
suffices to prove that (Y [2l+1], S) is a substitution subshift. For this, let us construct
a morphism τ : R∗l → A∗l+r.

For each b = (y−l . . . y−1y0y1 . . . yl) in Rl, we set, for −l ≤ k ≤ l, θ(yk) =

x
(k)
0 . . . x

(k)
|θ(yk)|−1 ∈ A

∗. So we have

θ(y−l . . . y−1y0y1 . . . yl) = x
(−l)
0 . . . x

(−l)
|θ(y−l)|−1 . . . x

(l)
0 . . . x

(l)
|θ(yl)|−1.

Observe that by (2), the length of the word θ(y−l . . . y−1y0y1 . . . yl),
∑l
k=−l |θ(yk)|

is greater than 2(r + l) + 1. Let p (resp. s) be the prefix (resp. the suffix) of

θ(y−l . . . y−1y0y1 . . . yl) of respective lengths
∑−1
k=−l |θ(yk)|−l−r and

∑l
k=1 |θ(yk)|−

l−r. Let w be the word of length |θ(y0)|+2(l+r) such that θ(y−l . . . y0 . . . yl) = pws.
Finally we define

τ(b) = hl+r(w) ∈ A∗l+r,
where hl+r denote the sliding block code A2(l+r)+1 → Al+r .

It is plain to check that for every word yi−lyi−l+1 . . . yj+l in L(Y ), with i ≤ j,
the word τ((yi−l . . . yi . . . yi+l)(yi−l+1 . . . yi+l+1) . . . (yi−l . . . yj . . . yj+l)) is a factor
of the word hl+r(θ(yi−lyi−l+1 . . . yj+l)).

Consequently τ sends words of L(Y [2l+1]) to words of L(X [2(r+l)+1]) and g ◦ τ
defines an endomorphism of A∗l preserving the langage L(Y [2l+1]).

We claim that for some a ∈ Rl the sequence of lengths (|(g ◦ τ)n(a)|)n goes to
infinity. This claim enables us to conclude because it implies that g ◦ τ defines
a non-empty substitution subshift included in Y [2l+1]. From the minimality of
(Y [2l+1], S), both subshifts coincide and we prove the theorem using Proposition
12.

Let us prove the claim by contradiction. Thus, for all words w ∈ R∗l the sequence
(|(g ◦ τ)n(w)|)n is bounded. Let a be a letter of R satisfying |θ(a)| ≥ 2 and
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b = (y−l . . . y−1y0y1 . . . yl) ∈ Rl where y0 = a. The system (Y [2l+1], S) being
minimal, there exists a constant K such that any word w ∈ R∗l of length K has
an occurrence of b. Let w be such a word. It has an occurrence of b and any other
letter c appearing in w satisfies |θ(c)| ≥ 1. Thus, |g ◦ τ(w)| ≥ |w| + 1 > K and
consequently for all n ≥ 1, |(g ◦ τ)n(w)| ≥ |w|+ n. We get a contradiction and this
shows the claim. �

3.3. The finite topological rank case. We recall that the topological rank of a
minimal Cantor system (X,T ) is the minimum over all its Bratteli-Vershik represen-
tations B = ((Vn), (En), (�n)) of the quantity supn #Vn. For example odometers
have topological rank 1, Sturmian subshifts have topological rank 2 (see [6]), mini-
mal substitution subshifts all have a finite topological rank (see [15]), as the Cantor
version of interval echange transformations (see [23]). It is well-known minimal
Cantor systems with finite topological rank always have zero entropy. Let us men-
tion that Toeplitz subshifts can have finite or infinite topological rank as some are
substitution subshifts and some have positive topological entropy.

In [10] the authors proved the following nice result.

Theorem 15. [10] A minimal Cantor systems with finite topological rank is nec-
essarily expansive or equicontinuous.

Thus, from the previous sections we deduce the following result.

Corollary 16. A minimal Cantor systems with finite topological rank is self-
induced if and only if it is a minimal substitution subshift or an odometer fulfilling
Property (2) of Proposition 11.

4. Self-induced examples that are neither equicontinuous nor
expansive

In this section, we provide examples of self-induced minimal Cantor systems
that are non-expansive and non-equicontinuous. The first one has zero topological
entropy whereas the second has an infinite topological entropy. To present them,
we first recall the notion of Toeplitz subshift.

4.1. Toeplitz subshift. A Toeplitz sequence on a finite alphabet A is a sequence
(xn)n∈Z ∈ AZ such that

∀n ∈ Z,∃p ∈ Z such that xn+kp = xn,∀k ∈ Z.

A subshift (X,S) is Toeplitz when X = {Si(x) : i ∈ Z} for a Toeplitz sequence x.
Let us recall some properties we need. We refer to [9] for a survey on Toeplitz
subshifts. Any Toeplitz subshift is minimal and any aperiodic Toeplitz subshift
(X,S) is an almost one-to-one extension of an odometer: i.e., there exists a point
with a unique preimage. Hence this odometer is the maximal equicontinuous factor
of (X,S), meaning that any equicontinuous factor of (X,S) is a factor of this
odometer.

4.2. Self induced example with zero entropy. Our example is a product of a
substitution subshift and an odometer. Let σ be the substitution defined on the
alphabet {0, 1} by

σ(0) = 01 and σ(1) = 00.
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Let (Xσ, S) be the subshift it generates. From a well-known result of Dekking
[7], this is a minimal Cantor system and its maximal equicontinuous factor is the
odometer defined on Z2.

Let consider the Cantor system (Xσ × Z3, T ) defined by

T : Xσ × Z3 → Xσ × Z3

(x, z) 7→ (Sx, z + 1).

Property 17. The system (Xσ × Z3, T ) is minimal.

Even if it can be checked by using the very regular structure of the systems, we
use a general result on Toeplitz systems in [9] to prove it.

Proof. From Lemma 12.1 in [9] and since (Xσ, S) does not have a topological pe-
riodic factor of period 3, we deduce that the (Xσ, S) and (Z3, z 7→ z + 1) are
measurably disjoint. Hence the product system has the product measure as unique
invariant probability measure, implying the minimality of the system. �

Property 18. The system (Xσ × Z3, T ) is neither expansive nor equicontinuous.

Proof. Let d1 and d2 be two distances defining the topologies of Xσ and Z3, respec-
tively. The action of T is not equicontinuous as it has an expansive factor, namely
(Xσ, S).

Let us show it is not expansive. Let ε > 0 be arbitrary, it is enough to construct
two points (x, z) 6= (x′, z′) ∈ Xσ×Z3 such that d1(Snx, Snx′) < ε and d2(z+n, z′+
n) < ε for all integer n. Because the odometer Z3 is an isometry, we simply select
any x = x′ and any z 6= z′ with d2(z, z′) < ε. �

Notice that the two previous claims also hold for the product of an odometer
(Zq, z 7→ z+1) with a Toeplitz subshift having (Zp, z 7→ z+1) as maximal equicon-
tinuous factor, when p and q are coprime.

Property 19. The minimal Cantor system (Xσ × Z3, T ) is self-induced.

Proof. Define ϕ : Xσ × Z3 → σ(Xσ)× Z3 by

ϕ(x, z) = (σ(x), 2z).

The map σ from Xσ onto its image satisfies S2 ◦ σ = σ ◦ S. Moreover, since the
substitution is injective on the letters and of constant length, the map σ : Xσ →
σ(Xσ) is one-to-one. Thus, the return time for the map S to the clopen set σ(Xσ)
is constant and equal to 2. Let U be the clopen set U = σ(Xσ) × Z3. Then, the
induced map is

TU : (x, z) 7→ (S2x, z + 2).

Furthermore, we have

TU ◦ ϕ(x) = TU (σ(x), 2z) = (S2(σ(x)), 2z + 2)

and

ϕ ◦ T (x) = ϕ(S(x), z + 1) = (σ(S(x)), 2(z + 1)) = (S2(σ(x)), 2z + 2).

Hence, TU ◦ϕ = ϕ◦T , and ϕ is a conjugacy and (Xσ×Z3, T ) is self-induced. �
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4.3. Self-induced example of infinite entropy. In this second example, we
show that self-induced systems need not be uniquely ergodic, and need not be zero
entropy.

The key ingredients will be that there exist Toeplitz subshifts that have a binary
odometer as a factor, and that such systems can have positive entropy and can have
multiple ergodic measures (see [41] or [9]).

Let (K0, S0) be any Toeplitz subshift with the odometer Z2 as a factor. The
system (K0, S0) is the orbit closure of a Toeplitz sequence z ∈ K0 that is regularly
recurrent i.e., for any open neighborhood U of z, there is a m ≥ 0 such that
Smn0 (z) ∈ U for all n ∈ Z. Because (K0, S0) has Z2 as a factor, there is a sequence
of factor maps πn : (K0, S0)→ (Z/2nZ, x 7→ x+ 1) such that πn(z) = 0.

For each integer n ≥ 0, let Kn := π−1n (0). We get that K0 ⊃ K1 ⊃ K2 ⊃ · · ·
and for each n, {Kn, S0(Kn), . . . , S2n−1

0 (Kn)} forms a clopen partition of K0.
For n ≥ 1, let Sn denote the induced map of S0 on Kn, Sn : Kn → Kn. So Sn

is equal to S2n

0 = S2
n−1 on Kn for all n ≥ 1.

For n < 0, we recursively define a sequence of spaces K0 ↪→ K−1 ↪→ K−2 ↪→ · · ·
and maps Sn : Kn → Kn so that (Kn−1, Sn−1) is an exduced system of (Kn, Sn) for
the constant function 2. In other words, Kn−1 = Kn×{0, 1}, Sn−1 : (x, 0) 7→ (x, 1),
and Sn−1 : (x, 1) 7→ (Snx, 0). We also observe S2

n−1(Kn × {0}) = Kn × {0} and
S2
n−1 : (x, 0) 7→ (Snx, 0).

Consider K =
∏
n∈ZKn, and let z denote the sequence (zn)n where zn = z for

all n ≥ 0 and zn−1 = (zn, 0) for n ≤ 0. Note that for all n, the point zn is regularly
recurrent for the system (Kn, Sn).

Define T : K→ K, the map which takes the sequence (xn)n to (Sn(xn))n. The
map T is a homeomorphism since each Sn is a homeomorphism. Consider X ⊂ K,
the orbit closure of z under T.

Property 20. The system (X,T) is a minimal Cantor system.

Proof. It suffices to show that z is regularly recurrent for T. Consider an open set
U ⊂ K containing z. Without loss of generality, we may assume U is a basic set of
the form U =

∏
Un where Un = Kn for all |n| ≥ N .

For each |n| < N , because zn ∈ Kn is regularly recurrent for Sn, there is a pn
such that Skpnn (zn) ∈ Un for all k ∈ Z. Let p =

∏N
n=−N pn. Then, for all k ∈ Z,

Tkp(z) ∈ U . Therefore, z is regularly recurrent for T. �

Property 21. The system (X,T) is self-induced.

Proof. Notice that there is a natural embedding ϕn : Kn+1 ↪→ Kn for all n ∈ Z:
For n ≥ 0, ϕn is just inclusion, for n ≤ 0, ϕn(xn+1) = (xn+1, 0), xn+1 ∈ Kn+1. For
all n ∈ Z we have the relation

ϕn ◦ Sn+1 = S2
n ◦ ϕn.

Consider the homeomorphism ϕ on the product space for which ϕ(x)n = ϕn(xn+1)
for all integer n where x = (xn)n. Then, we have

ϕ ◦T = T2 ◦ ϕ.(3)

We claim that X is the disjoint union of ϕ(X) and T(ϕ(X)). To prove this,
observe that ϕ(X)∪T(ϕ(X)) is a closed and T2-invariant set by Equation (3). So,
by minimality, we get ϕ(X) ∪T(ϕ(X)) = X. Then, notice that ϕ(X) ⊂ {(xn)n ∈
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X : x0 ∈ K1} and T(ϕ(X)) ⊂ {(xn)n ∈ X : x0 ∈ S0(K1)}. Hence these two sets
are disjoint.

It follows that ϕ(X) is a clopen proper subset of X and the induced map on
ϕ(X) is the map T2. Finally Equation (3) enables to conclude the system (X,T)
is self-induced. �

From here we observe that the projection map from (X,T) onto the zero-th
coordinate yields a factor map from (X,T) onto (K0, S0). By selecting (K0, S0) in
a particular way, we obtain self-induced examples with infinite entropy and which
are not uniquely ergodic.

Proposition 22. There exists a self-induced Cantor system with infinite entropy.

Proof. There exists a Toeplitz subshift (K0, S0) with a binary odometer factor
which have positive entropy [9, 41]. We may use the above construction to produce
a self-induced Cantor system (X,T) with (K0, S0) as a factor. Since self-induced
systems can only have entropy 0 or ∞, and the entropy of (X,T) is greater than
that of (K0, S0), it must be infinite. �

Proposition 23. There exists a self-induced Cantor system which is not uniquely
ergodic.

Proof. There exist Toeplitz subshifts (K0, S0) with a binary odometer factor which
have several ergodic measures [9, 41]. We may use the above construction to produce
a self-induced Cantor system (X,T) with (K0, S0) as a factor. Such a map must
induce a surjection from the set of ergodic measures for (X,T) onto the ergodic
measures for (K0, S0). �

5. Self-Induced Systems as Generalized Substitutions

We wish to give a characterization of all self-induced minimal Cantor systems
as generalized substitution subshifts. The term generalized here refers to the fact
that our substitutions may be defined on an infinite (compact zero dimensional)
alphabet. In this section we define generalized substitutions and show that a min-
imal Cantor system is self-induced if and only if it is conjugate to a generalized
substitution subshift.

5.1. Generalized Subshifts. We say that a topological space K is an alphabet
space if it is a compact zero-dimensional metric space with at least two points. We
will refer to the elements of an alphabet space as letters. A helpful example to keep
in mind will be one where K = N0 = {0, 1, . . . ,∞}, the one-point compactification
of N0. We will continue to develop this example throughout this section.

Let Kn denote the set of words of length n on K, which we will write as
u1u2 . . . un as opposed to the ordered n-tuple (u1, u2, . . . , un), but the topology
is the same. Let K+ =

⋃
n≥1K

n denote the set of all words on K. If u ∈ K+, let

|u| denote the length of u, that is, |u| = n if u belongs to Kn. If dK is a distance for
K, then dK+ will be the distance on K+ defined by dK+(u, v) = max{dK(ui, vi) :
i ≤ min(|u|, |v|)}.

Elements of the product space KZ, endowed with the product topology, are bi-
infinite sequences in the alphabet space K. For a sequence x = (xi) in KZ, we will
use the notation x[i, j] to denote the word xixi+1 . . . xj belonging to Kj−i+1. We
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may consider the action of the shift map S on the space of all sequences in KZ,
S(x)i = xi+1 for every x = (xi) ∈ KZ.

A generalized subshift is a couple (Ω, S) where Ω is a closed S-invariant subset
of KZ.

Note that if X is a Cantor set then, XZ is also a Cantor set. Moreover, every
continuous action of a Cantor set T : X → X is topologically conjugate to a
generalized subshift via the conjugacy h : X → XZ where

h : x 7→ . . . T−2xT−1x.xTxT 2x . . . .

5.2. Generalized Substitutions. In order to reasonably define a substitution on
an alphabet space K, we need to deal with several topological considerations that
are trivial in the case where K is finite (and discrete). For a word w ∈ K+ and
1 ≤ j ≤ |w|, let πj(w) denote the jth letter of w. We say that σ : K → K+ is a
generalized substitution on K if a 7→ |σ(a)| is continuous and the projection map
πj ◦ σ is continuous on the set {a ∈ K : |σ(a)| ≥ j}. The words σ(z), z ∈ K, are
called σ-words.

For instance, we may define a generalized substitution ξ on N0 by

ξ : j 7→ 0(j + 1), ξ :∞ 7→ 0∞.
S. Ferenczi [18] observed that the system it generates is minimal, uniquely ergodic

and measure theoretically conjugate to the odometer on Z2. More generally, in this
paper substitutions on countable alphabets are investigated.

As in the case of a finite alphabet, a generalized substitution σ on an alphabet
space K can be extended to a function σ : K+ → K+ by concatenation, and
therefore iterated. Observe that σk is again a generalized substitution for any k.
The generalized substitution map σ also extends to a function σ : KZ → KZ in
a similar manner. For x ∈ KZ, the image σ(x) is the sequence formed by the
concatenation of σ(xi) for all i, with σ(x0) starting at the origin

σ : . . . x−2x−1.x0x1x2 . . . 7→ . . . σ(x−2)σ(x−1).σ(x0)σ(x1)σ(x2) . . .

Lemma 24. Let K be an alphabet space and σ : K → K+ a generalized substitution
on K. Then, σ : KZ → KZ is continuous.

Proof. Fix x = (xi) ∈ KZ and let ε > 0 be given.
Since the topology on KZ is given by the product topology, there is an ε1 > 0

and an N > 0 such that given y = (yi),y
′ = (y′i) ∈ KZ, d(yi, y

′
i) < ε1 for |i| < N

implies d(y,y′) < ε, where d is a distance defining the topology of KZ.
Since z 7→ |σ(z)| is a continuous function from K to N, it is uniformly continuous.

Similarly, each πj ◦σ is uniformly continuous. As such there is a δ1 > 0 such that for
any z, z′ ∈ K with dK(z, z′) < δ1 we have |σ(z)| = |σ(z′)| and dK+(πj ◦ σ(z), πj ◦
σ(z′)) < ε1 for all j with 1 ≤ j ≤ |σ(z)|.

Again by the nature of the product topology, there is a δ > 0 so that d((xi), (x
′
i)) <

δ implies dK(xi, x
′
i) < δ1 for |i| < N . Therefore, as d((xi), (x

′
i)) < δ we deduce

dK(xi, x
′
i) < δ1 for all i with |i| < N , and, thus, dK(σ(x)i, σ(x′)i) < ε1 for all i

with |i| < N . Therefore, we finally obtain d(σ((xi)), σ((x′i))) < ε. �

Given a generalized substitution σ on an alphabet space K, we shall consider
L(σ) the language generated by σ, again a trickier notion to define than in the
classical case. Fix a letter a in the alphabet space K. By the language generated
by a, denoted L(σ, a), we mean the set of words w ∈ K+ such that w is a subword
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of σj(a) for some j ∈ N, or w is the limit in Kn of such words. We set L(σ) =
∪aL(σ, a).

Returning to our example ξ, one can check that the word ∞0 is not a subword
of ξk(j) for any j ∈ N0. However, it is a limit of such words since (n− 1)0 occurs
as a subword of ξn(0) for every n ≥ 2. Thus, ∞0 is in L(ξ, 0).

As in the classical case we wish to assume that our generalized substitution is
primitive in the following sense.

Definition 25. Let σ : K → K+ be a generalized substitution on an alphabet space
K. We say σ is primitive if given any non-empty open set V ⊂ K, there is an
j ∈ N such that for any letter a ∈ K and any k ≥ j, one of the letters of σk(a) is
in the set V .

With the assumption of primitivity and that #K > 1, we see that |σn(a)| → ∞
for any a ∈ K.

One can check that our example ξ is primitive (recall that in this context open
sets are complementary of finite sets in N0).

Proposition 26. Let K be an alphabet space and let σ : K → K+ be a primitive
generalized substitution. Given any a ∈ K, limn→∞ |σn(a)| =∞.

Proof. By our axioms, K contains at least two nonequal letters a, b. Let U, V be
two non-intersecting open sets containing a and b, respectively. By primitivity, for
any x ∈ K, there is a k such that σk(x) contains a point in U and a point in V , so
in particular |σk(x)| ≥ 2. It follows from the continuity of the functions πj ◦ σ and
x 7→ |σ(x)|, and, the compactness of K that there is a j such that |σj(x)| ≥ 2 for
all x ∈ K.

Inductively, we see that |σjn(x)| ≥ 2n for all x ∈ K, completing the proof. �

The assumption of primitivity also simplifies the definition of the language of a
generalized substitution to be the language generated by a for any a ∈ K: L(σ) =
L(σ, a). These are all the same as the following proposition shows.

Proposition 27. Suppose σ : K → K+ is a primitive generalized substitution on
an alphabet space K. Then, for any two letters a, b ∈ K, L(σ, a) = L(σ, b) = L(σ).

Proof. Let w ∈ L(σ, b) and suppose ε > 0 is given. Then, there are integers
k, i, j ≥ 0 such that the distance between σk(b)[i, j] and w is less than ε/2 in
the K |w|-metric. By the continuity condition on σk, there is a δ > 0 such that
dK(b, b′) < δ implies the distance from σk(b)[i, j] and σk(b′)[i, j] is less than ε/2.

Let U be the ball of radius δ around b in K. By the primitivity of σ, there is
an integer n and a b′ ∈ U such that b′ occurs in σn(a). It follows that there are
integers i′, j′ ≥ 0 such that the distance from σk+n(a)[i′, j′] to w is less than ε.
Thus, w belongs to L(σ, a) and L(σ, b) is included in L(σ, a).

Similarly, L(σ, a) ⊂ L(σ, b). �

For a primitive generalized substitution σ : K → K+, define Xσ ⊂ KZ to be set
of sequences x ∈ KZ such that x[−n, n] ∈ L(σ) for all n ≥ 0. It follows that Xσ is
a generalized subshift, i.e., a closed, S-invariant subset of KZ.

When σ is a primitive substitution, we need to explicitly rule out the possibility
that Xσ contains periodic points, an assumption that again is necessary even in the
classical case. In such a situation we will say that σ is aperiodic.
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Our example ξ being primitive, its language L(ξ) contains infinitely many letters
and thus is aperiodic.

Because we wish to focus on self-induced minimal Cantor systems we shall re-
quire additional properties for our generalized substitutions, that they be primitive
and aperiodic. Below, we establish an equivalent description of Xσ under these
assumptions. This equivalent description is more or less the analogous technique
to finding a fixed point for σ in the classical substitution case and taking its orbit
closure.

For x ∈ KZ we denote by ωσ(x) the omega-limit set of x under the map σ:

ωσ(x) =
⋂
n∈N {σm(x) : m ≥ n}.

Proposition 28. Suppose K is an alphabet space and σ : K → K+ is a primitive
generalized substitution, and let a ∈ K. Suppose bc appears in σj(a) for some j > 0
and let x be any point in KZ with x−1 = b ∈ K and x0 = c ∈ K. Then, for
z ∈ ωσ(x), Xσ is equal to the closure of the S-orbit of z.

Proof. Suppose z ∈ ωσ(x). Then, z = limi→∞ σki(x). Fix m ∈ N and let ε > 0 be
given. Then, there is an i ≥ 1 such that the word z[−m,m] is within ε of a subword
of σki(bc), which implies z[−m,m] is within ε of a subword of σki+j(a). Therefore,
z[−m,m] ∈ L(σ, a) = L(σ). This shows that z belongs to Xσ. But because Xσ is

closed and shift-invariant, we see that {Sn(z) : n ∈ Z} is included in Xσ.
Conversely, fix an y ∈ Xσ and an ε′ > 0. Let us fix an integer n ≥ 0, such

that d(y,y′) < ε′ when dK+(y[−n, n],y′[−n, n]) is less than ε′/2. Since y[−n, n] ∈
L(σ) = L(σ, c), there are integers k, i such that dK+(σk(c)[i− n, i+ n],y[−n, n]) is
less than ε′/4.

Note that there is a δ > 0 such that if dK(c, c′) < δ then, the words σk(c) and
σk(c′) are within ε′/4. Set U equal to the dK-ball of radius δ around c. By the
primitivity of σ, we can find a point in U in the word σl(c) for all l large enough.
Thus, there is an integer i(l) such that dK+(σl+k(c)[i(l) − n, i(l) + n],y[−n, n]) is

less than ε′/2. Since ε′ and l are arbitrary, it follows that y ∈ {Sn(z) : n ∈ Z}. �

Once again returning to our example ξ, letting x be any sequence in N0 with
x−1 = 0 and x0 = 1, we see that the omega-limit set of x is simply the point

z = . . . 0102010∞.0102010301 . . .

Note z is a fixed point for ξ̂. The set Xξ is the S-orbit closure of this point.

Proposition 29. Suppose K is an alphabet space and σ : K → K+ is a prim-
itive generalized substitution. For z ∈ Xσ and any k ∈ N, the sequence z is a
concatenation of σk-words and z = Siσk(y) for some i ≥ 0 and y ∈ Xσ.

Proof. First let z ∈ ωσ(x) for some x ∈ KZ. Then, z = limk→∞ σnk(x). From
Proposition 28 one can suppose x belongs to Xσ. Consider the sequence (σnk−1(x)).
By compactness a subsequence converges, say to a point y belonging to Xσ. By
continuity of σ, it follows that σ(y) = z. A similar argument shows that for any
k ∈ N, z = σk(y′), for some y′ ∈ Xσ.

By continuity and compactness, the maximal length of σk-words is bounded.
Furthermore observe that

⋃
0≤i<maxa∈K |σk(a)| S

iσk(Xσ) is a closed S-invariant set.

By Proposition 28 and the first part of the proof, this set also contains Xσ. This
proves the proposition. �
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This leaves us with the issue of recognizability in Xσ, namely the uniqueness
of the decomposition of a sequence in Xσ into σk-words. It was proven by Mossé
that a condition equivalent to our definition of recognizability below follows from
primitivity and aperiodicity in the case of a classical substitution [32, 33]. We do
not yet know if this theorem holds in the case of generalized substitutions, so we
will assume recognizability as a separate axiom.

Definition 30. Let σ : K → K+ be a generalized substitution on an alphabet space
K. We say σ is recognizable if for every z ∈ Xσ, there is a unique set of integers
{nk : k ∈ Z} and unique x ∈ Xσ such that σ(xk) = z[nk, nk+1 − 1] for all k ∈ Z.

The generalized substitution ξ in our example is recognizable. For z ∈ Xξ, since
0 appears in the image of each letter exclusively at the initial position, so either we
have (nk) = (2k) or (nk) = (2k + 1). Moreover, ξ being injective on the letters, it
follows immediately that ξ is recognizable.

Proposition 31. Suppose σ is recognizable and suppose z = σ(x) with x ∈ Xσ .
Then, the first return time to σ(Xσ) of z with respect to the shift map is |σ(x0)|.

Proof. Let r = |σ(x0)|. Then, Sr(z) = σ(S(x)) ∈ σ(Xσ). However, if Sj(z) = σ(y)
for 0 < j < r where y ∈ Xσ then, this violates the uniqueness conditions in
recognizability. �

5.3. Self-Induced Systems and Generalized Substitutions. With all of these
notions established for generalized substitutions, we are prepared to proceed in
showing that a minimal Cantor system is self-induced if and only if it is conjugate
to a recognizable, primitive, aperiodic generalized substitution subshift.

Theorem 32. Let (Xσ, S) be generated by a primitive generalized substitution σ :
K → K+ then:

(1) (Xσ, S) is minimal;
(2) If σ is recognizable and aperiodic then, (Xσ, S) is a self-induced minimal

Cantor system, where σ is a conjugacy from (Xσ, S) to the induced system
(σ(Xσ), Sσ(Xσ)).

Proof. (1) (Xσ, S) is a minimal Cantor system. Let x ∈ KZ where x−1x0 is
a subword of σl(a) for a fixed a ∈ K and l > 0. Let z ∈ ωσ(x). Thus, from
Proposition 28, the S-orbit closure of z is Xσ. To show the minimality it is enough
to prove that for every open set U in Xσ containing z, there is an R > 0 such that
for any j ∈ Z, there is a 0 ≤ i < R such that Sj+i(z) ∈ U . Notice that there are
an n ∈ N and an ε > 0 such that Si(z) in U whenever the distance from z[−n, n]
to z[i− n, i+ n] is less than ε.

Moreover, from the continuity of σ and the very definition of z, there are a δ > 0
and a k > 0 such that dK(a, a′) < δ implies that a word appears in σk(a′) which is
within ε of z[−n, n].

By the primitivity of σ, there is an m such that for any b ∈ K, σm(b) contains
a letter within δ of a. Accordingly, σm+k(b) contains a word within ε of z[−n, n].

Let R be equal to supb∈K |σk+m(b)|. It is finite from the compactness and
the continuity assumption. The sequence z being a concatenation of σm+k-words
(Proposition 29), for any j ∈ Z, there is a 0 ≤ i < R such that Sj+i(z) ∈ U .

(2) (Xσ, S) is self-induced. Because the system is aperiodic, it is a minimal
Cantor system. The map σ : Xσ → Xσ is continuous by assumption, thus, the
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image set U = σ(Xσ) is compact (closed) in Xσ. Furthermore, it is injective
because σ is recognizable. Consequently, every point in Xσ can be decomposed
into σ-words and every point in Xσ is in Si(U) for some i ∈ Z.

Set Xi = {x ∈ Xσ : |σ(x0)| = i} and Ui = σ(Xi). Since the Xi’s are disjoint and
σ is injective, so are the Ui’s. Proposition 31 ensures the return time to U on Ui
is i. So we have that {Sk(Ui) : 0 ≤ k < i, 1 ≤ i ≤ maxb∈K |σ(b)|} forms a disjoint
collection of sets which covers Xσ. Thus, each Sk(Ui) is clopen and U is clopen.

Let x ∈ Xσ, and set r = |σ(x0)|. Then, again from Proposition 31, r is the
return time of σ(x) to the set U and Sr(σ(x)) = σ(S(x)) ∈ U . �

We now establish the reverse direction, that is to show that any self-induced min-
imal Cantor system is conjugate to a system generated by a primitive, recognizable,
aperiodic generalized substitution.

Theorem 33. Suppose (X,T ) is a self-induced minimal Cantor system. Then,
(X,T ) is conjugate to a recognizable, primitive, aperiodic, generalized substitution
subshift (Xσ, S).

Proof. Suppose U ⊂ X is clopen and (X,T ) is self-induced via a conjugacy ϕ :
(X,T ) → (U, TU ). Recall that in Proposition 7 we showed that without loss of
generality we may assume U ∩ TU = ∅.

Set K = X, define σ : K → K+ by

σ(x) = ϕ(x)T (ϕ(x))T 2(ϕ(x)) · · ·T rU (ϕ(x))−1(ϕ(x)),

where rU (ϕ(x)) is the return time of ϕ(x) to U = ϕ(X).

σ is a generalized substitution. To see that m : x 7→ |σ(x)| is continuous,
we simply note that |σ(x)| = rU (ϕ(x)) and that rU ◦ ϕ is continuous. That πj ◦ σ
is continuous follows from observing πj ◦ σ(x) = T j−1 ◦ ϕ(x) if 1 ≤ j ≤ rU (ϕ(x)).

σ is primitive. We will show by induction on n ≥ 1 that, for each x ∈ X,

σn(x) = ϕn(x)T (ϕn(x))T 2(ϕn(x)) · · ·T rϕn(X)(ϕ
n(x))−1(ϕn(x)).(4)

Suppose it is true for n. For 0 ≤ i ≤ rϕn(X)(ϕ
n(x))− 1 we have

σ(T iϕn(x)) = (ϕT iϕn(x))(Tϕ(T iϕn(x))) · · ·T rU (ϕ(T iϕn(x)))−1ϕ(T iϕn(x)).

Since ϕ is a conjugacy map between (X,T ) and (U, TU ), we get ϕ(T iϕn(x)) =
T iUϕ

n+1(x), so that for 0 ≤ j ≤ rU (ϕT iϕn(x))− 1 = rU (T iUϕ
n+1(x))− 1, we have

T jϕ(T iϕn(x)) = T jT iUϕ
n+1(x) and

T rU (T iU (ϕn+1(x)))−1ϕ(T iϕn(x)) = T−1T i+1
U ϕn+1(x).

Then, to finish the proof of the induction, it remains to show that the last letter
of σ(T rϕn(x)(ϕ

n(x))−1ϕn(x)) is the correct one, that is

T rϕn+1(X)(ϕ
n+1(x))−1ϕn+1(x) = T−1T

rϕn(X)(ϕ
n(x))

U ϕn+1(x).

This last equality actually comes from

T
rϕn(X)(ϕ

n(x))

U ϕn+1(x) = ϕ(T rϕn(X)(ϕ
n(x))ϕn(x))

= ϕ(Tϕn(X)ϕ
n(x))

= Tϕn+1(X)ϕ
n+1(x),

where the last equality is provided by Proposition 3.
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Since (X,T ) is minimal, for any open set V ⊂ X there is an R > 0 such that for
any point z ∈ X, {z, T (z), . . . , TR(z)} ∩ V 6= ∅. Thus, primitivity will follow from
Formula (4) by showing that the return time to ϕn(U) must go to infinity with n.

Because U ∩ TU = ∅, for all x ∈ X the T -return time for x to U is at least 2.
Similarly, the TU -return time for a point x ∈ ϕ(U) to ϕ(U) is at least 2, which
implies the T -return time for a point x ∈ ϕ(U) to ϕ(U) is at least 4. Accordingly,
the T -return time to ϕn(U) is at least 2n, and primitivity follows.

σ is recognizable. Recall that any word w in the langage L(σ) is a limit
of subwords of words σn(an), that is, by Formula (4), w is a limit of words
xnTxn . . . T

|w|−1xn for some points xn ∈ X. The compactness of the space together
with the continuity of the map T ensure the word w is of the form xTx · · ·T |w|−1x
for a point x ∈ X. Let z be any sequence in Xσ. So any word z[−n, n], n ≥ 0 is in
L(σ), thus by the former remark, and applying a classical diagonal extraction, we
obtain that z is of the form z = . . . T−2xT−1x.xTxT 2x . . . for some point x ∈ X.
Moreover notice that this x is unique.

Let n0 ≥ 0 be the smallest non negative index j such that zj = T jx ∈ U . By
the surjectivity of ϕ, there is a y ∈ X such that zn0 = ϕ(y). It follows, from the
definitions of σ and ϕ, that Sn0z = σ(. . . T−2yT−1y.yTyT 2y . . .).

Inductively define n0 < n1 < n2 < · · · and n0 > n−1 > n−2 > · · · so that zj ∈ U
if and only if j = nk for some k. Then, for all k, z[nk, nk+1) = σ(T ky).

To prove the recognizability, observe that a σ-word has a letter in U if and only
if it is its first letter. Consequently, the sequence (nk) is uniquely defined. Since
the substitution σ is injective on the letters, we get σ is recognizable.

(Xσ, S) is conjugate to (X,T ).
We wish to show that there is a homeomorphism h : X → Xσ for which h ◦ T =

S ◦ h. Note that the map h : X → XZ given by

h : x 7→ . . . T−2(x)T−1(x).xT (x)T 2(x) · · ·

gives a conjugacy from (X,T ) onto its image with the shift map. It is left to show
that h(X) = Xσ. The substitution σ being recognizable (see above), the system
(Xσ, S) is minimal from Theorem 32. Consequently, it suffices to show that h(X)
is a subset of Xσ.

To that end, let x ∈ X and consider the sequence h(x). Let I be the infinite set
{i ∈ Z : T i(x) ∈ U}. Since ϕ is bijective, for each i ∈ I, there is a unique yi ∈ X
such that T i(x) = ϕ(yi). Notice that

T i(x)T i+1(x) · · ·T i+rU (T i(x))−1(x) = ϕ(yi)T (ϕ(yi)) · · ·T rU (ϕ(yi))−1(ϕ(yi))

= σ(yi).

Thus, the sequence h(x) is a concatenation of σ-words σ(yi).
By applying the same arguments to the generalized substitution σk for each

integer k ≥ 1, associated with the set ϕk−1(U) and the return times to that set
(see Formula (4)), we obtain that h(x) is a concatenation of σk-words for all k.
Therefore, h(x) ∈ Xσ. �

6. Poincaré sections

We end with a note about the situation where we expand our notion of induced
maps to return maps on closed, but not necessarily clopen, sets. Let (X,B, µ, T )
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be a measure theoretical dynamical system. Due to Poincaré Recurrence Theorem
(see [35] for example), once we have U ∈ B with µ(U) > 0 then, one can induce on
U to define the induced dynamical system (U,B ∩ U, µU , TU ), where TU (x) is the
first return of x in U . But it can happen that the induced map on a Borel set U
is well defined even if µ(U) = 0. For example, consider the full-shift ({0, 1}Z, S)
and U the set of sequences . . . w−1.w0w1 . . . where the w2iw2i+1 belongs to {00, 11}
for all i. Observe the return time to U of each element of U is well-defined and
equals 2. Then, the induced map SU : U → U is an homeomorphism and (X,S) is
conjugate to (U, SU ). This suggests the following definition.

Definition 34. Let (X,T ) be a minimal Cantor system. We say that a nonempty
closed set C is a Poincaré section if the induced map TC : C → C is a well-
defined homeomorphism. We say that (X,T ) is weakly self-induced if there exists
a Poincaré section C such that (X,T ) is conjugate to (C, TC).

The main result in this section is the following.

Theorem 35. Let (X,T ) and (Y,R) be two minimal Cantor systems. There exists
a Poincaré section C in (Y,R) such that (C,RC) is conjugate to (X,T ).

Before proving it, we need a technical lemma on embedding of ordered graphs.
If G1 = (V1, E1) G2 = (V2, E2) are two graphs with respective orders �1, �2 on
the edges, we say that (G1,�1) and (G2,�2) are isomorphic if there is a graph
isomorphism i : G1 → G2 that is order preserving i.e., for all e, f ∈ E1

e �1 f if and only if i(e) �2 i(f).

We refer to Section 2.3 for the definitions involve in the notion of Bratteli dia-
grams.

Lemma 36. Let B = ((Vn), (En), (�n)) be a simple ordered Bratteli diagram such
that the sequence (#Vn) is increasing. Let V be a subset of Vn0

for some level
n0 and let K = (V, V ′, E) be a bipartite graph with a RL-order �K on E. Then
there exists an integer k such that (Vn0 , Vn0+k, En0+1,n0+k) contains a subgraph
(V, V ”, E′) isomorphic to (K,�K) for the order �n0+1,n0+k restricted to E′.

Proof. For a fixed set V ⊂ Vn0 , we show by induction on n ≥ 1 that for every
ordered bipartite graph K = (V, V ′, E) with n edges and with order �K , there
exist an integer k and a subgraph (V, V ”, E′) of (Vn0

, Vn0+k, En0+1,n0+k) such that
((V, V ”, E′),�n0+1,n0+k) is isomorphic to (K,�K).

The result is obvious if n = 1. Assume that n > 1 and that the result is
true for n − 1. Let ((V, V ′, E),�K) be an ordered bipartite graph with n edges
and let e = (xe, ye) ∈ E be a maximal element for the order �K . Without loss of
generality, we may assume thanks the induction hypothesis, that (V, V ′, E\{e}) is a
subgraph of (Vn0

, Vn0+k, En0+1,n0+k) for some integer k, and the order �K coincides
with �n0+1,n0+k on E \ {e}. Since the diagram B is simple, there is an injection
i : V ′ → Vn0+k+2. By concatenating any edge (x, y) of E\{e} with the minimal path
from y to i(y), we obtain a subgraph of (Vn0 , Vn0+k+2, En0+1,n0+k+2) isomorphic
to ((V, V ′, E \ {e}),�K) for the restriction of �n0+1,n0+k+2. Then we identify the
edge e with a maximal edge from xe ∈ V to i(ye) ∈ Vn0+k+2 in En0+1,n0+k+2. Since
they are at least two paths from each vertex of Vn0+k to each vertex of Vn0+k+2,
the maximal paths differ from the minimal ones. Hence we obtain a subgraph of
(Vn0

, Vn0+k+2, En0+1,n0+k+2) isomorphic to ((V, V ′, E),�K). �
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The strategy to prove Theorem 35 is the following: we start fixing a Bratteli
diagram B representing (X,T ). Then by microscoping and contracting a Bratteli

diagram associated to (Y,R), we obtain one that contains a copy B̃ of B. The

Bratteli-Vershik system associated to B̃ is then conjugated to (X,T ) and an induced
system of (Y,R).

Proof of Theorem 35. Take a Bratteli-Vershik representation (XB , VB) of (X,T )
given by the ordered Bratteli diagram B = ((Vn), (En), (�n)). Contracting and
microscoping sufficiently a Bratteli diagram representing (Y,R), we obtain an or-
dered Bratteli diagram B′ = ((V ′n), (E′n), (�′n)) where (#V ′n) is increasing and for
each level n, #V ′n ≥ #Vn. We inductively use Lemma 36 to get a contraction
B′′ = ((V ′′n ), (E′′n), (�′′n)) of B′ such that, for each level n, the bipartite ordered

graph ((Vn, Vn+1, En+1),�n+1) is isomorphic to ((Ṽn, Ṽn+1, Ẽn+1),�′′n+1) a sub-

graph of (V ′′n , V
′′
n+1, E

′′
n+1). It follows that B̃ = ((Ṽn), (Ẽn), (�′′n)), is a subdiagram

of B′′ and the associated Bratteli-Vershik system (XB̃ , VB̃), with XB̃ ⊂ XB′′ , is a
new representation of (X,T ). Observe XB̃ is a non empty closed set being a de-
creasing intersection of closed sets. Since the induced orders coincide, the induced
system of (XB”, VB”) on XB̃ is conjugate to (X,T ). �

Corollary 37. Every minimal Cantor system is weakly self-induced.
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