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Abstract. In this paper, we consider the Frenkel-Kontorova model of a one

dimensional chain of atoms submitted to a potential. This potential splits

into an interaction potential and a potential induced by an underlying sub-
strate which is a quasicrystal. Under standard hypotheses, we show that every

minimal configuration has a rotation number, that the rotation number varies
continuously with the minimal configuration, and that every non negative real

number is the rotation number of a minimal configuration. This generalizes

well known results obtained by S. Aubry and P.Y. le Daeron in the case of a
crystalline substrate.
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1. Introduction

The Frenkel-Kontorova model [FK] describes the physical situation of a layer of
a material over a substrate of other material (see for instance [BK]). In the one
dimensional case, the layer of material is described by the configurations of a bi-
infinite chain of particles on the real line. These configurations are parametrized by
a bi-infinite non decreasing sequence (θn)n∈Z of real numbers, where θn represents
the position of the particle labeled by n.
The potential energy of the chain reads:

E((θn)n∈Z) =
∑
n∈Z

U(θn − θn+1) + V (θn),

where U describes the interaction between particles (only interactions with the
nearest neighbors are considered), and V is a potential induced by the substrate
and depends on its nature.
The following standard extra asumptions are made on U and V :

• Smoothness: the functions U and V : R → R are C2;
• Convexity: U ′′(x) > 0, ∀x ∈ R;

• Behavior at ∞: lim
x→±∞

U(x)
|x|

= +∞.

Even if the above sum is only formal, it is possible to look for equilibrium con-
figurations which minimize locally the energy (ground states). More precisely let
us consider the function H : R× R → R defined by:

H(θ, θ′) = U(θ − θ′) + V (θ).

For a configuration (θn)n∈Z, let us set:

Hp(θi, θi+1, . . . , θi+p) =
j=p−1∑

j=0

H(θi+j , θi+j+1).

We say that the segment (θi, θi+1, . . . , θi+p) of the configuration (θn)n∈Z is minimal
if

Hp(θi, θi+1, . . . , θi+p) ≤ Hp(θ′i, θ
′
i+1, . . . , θ

′
i+p),

for any other segment (θ′i, θ
′
i+1, . . . , θ

′
i+p) such that θ′i = θi and θ′i+p = θi+p. A

configuration (θn)n∈Z is minimal if all its segments are minimal.
The substrate is a crystal when the configuration of the chain of atoms it is made

of, is an increasing sequence QC = (sn)n∈Z such that there exists q ∈ Z+ and L > 0
verifying:

sn+q = sn + L, ∀ n ∈ Z.

In this case it is natural to consider that a potential V associated with the crystal
QC is a periodic C2-function with period L:

V (θ + L) = V (θ), ∀ θ ∈ R.

This situation when the substrate potential is periodic has been described by S.
Aubry and P. Y. Le Dearon. Their seminal work [AD], together with the indepen-
dent approach of J. Mather [M], gave rise to the so called Aubry-Mather theory,
which yields in particular a good understanding of minimal configurations.
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Let ρ ∈ R, a configuration (θn)n∈Z has a rotation number equal to ρ if the limit:

lim
n→±∞

θn

n
= ρ.

Let us remark that the inverse of the rotation number can be interpreted as a
particle density.
Aubry and le Daeron proved in particular that any minimal configuration has a
rotation number, that the rotation number is a continuous function when defined
on the set of minimal configurations equipped with the product topology, and that
any positive real number is the rotation number for some minimal configuration1.

The aim of this paper is to consider the case when the substrate is a quasicrystal
in order to derive, in this more general setting, a similar description of the set of
minimal configurations.

To fix notations and definitions, let us consider a bi-infinite substrate chain of
atoms represented by its configuration (sn)n∈Z. Two segments (sn, . . . , sn+p) and
(sq, . . . , sq+p) are said equivalent if there exists τ ∈ R such that:

sq+i = sn+i + τ, ∀ i = 0, . . . , p.

The chainQC = (sn)n∈Z is a quasicrystal if the following properties are satisfied2(see
for instance [LP]):

• Finite local complexity
For any M > 0, the chain possesses only finitely many equivalence classes
of segments with diameters smaller than M .

• Repetitivity
For any segment S in the chain, there exists R > 0 such that any ball with
radius R contains a segment equivalent to S.

• Uniform pattern distribution
For any segment S in the chain, and for any point x ∈ R, the quantity

n(S, x, M)
M

converges when M → +∞ uniformly in x to a limit ν(S) that does not
depend on x, where n(S, x, M) denotes the number of segments equivalent
to S in the interval [x, x + M ].

Notice that a crystal (with period L) is a quasicrystal and in this particular case,
for each segment S in QC, one has:

ν(S) =
p(S)
L

,

where p(S) stands for the number of segments equivalent to S in a period L.
For any R > 0, a function VQC : R → R is a potential with range R associated

with a quasicrystal QC if for each pair of points x and y in R such that

QC ∩BR(x) − x = QC ∩BR(y) − y,

we have:
VQC(x) = VQC(y),

1Actually Aubry-Mather theory says much more about the combinatorics of minimal configu-

rations when projected on a circle with length L.
2See Proposition 2.1 for a dynamical interpretation.
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Figure 1. Construction of the Fibonacci chain

where BM (z) stands for the ball with center z and radius M . Whenever QC is a
crystal with period L, it is clear that a potential with range R > 0 associated with
this crystal is a periodic potential with period L.
We call short range potential associated with a quasicrystal QC a potential with
range R, for some R > 0.
Example: A standard example of quasicrystal is given by the Fibonacci sequence.
Consider the set G of configurations (sn)n such that:

• s0 is located at 0;
• the lengths of the intervals [sn, sn+1] have two possible sizes: either large

and equal to L or small and equal to S.
The substitution: {

L → LS
S → L

induces a map Ψ on G defined as follows:
For a sequence (sn)n in G, consider the sequence of lengths (ln)n ∈ {L, S}∞ defined
by ln = sn+1 − sn, ∀n ∈ Z. Applying to each ln the substitution rule we get a new
sequence (l′n)n ∈ {L, S}∞. The new configuration (s′n)n = Ψ((sn)n) is obtained by
setting:

• s′0 = 0;
• s′n+1 = s′n + l′n, ∀n ∈ Z.

Starting with the equidistributed configuration (s0
n)n, where sn+1−sn = L,∀n ∈ Z,

it is easy to check that the sequence of configuration (Ψk((s0
n)n))k converges when

k → +∞ (for the product topology) to a configuration (s∞n )n . This configuration
is on the one hand a quasicrystal and on the other hand a periodic point with period
2 of the operator Ψ. This quasicrystal is called the Fibonacci chain (See Figure 1).

There are several ways to construct a short range potential associated with
the Fibonacci chain. A simple one consists in choosing two real valued smooth
functions, vL,L, and vS,L with compact support on the interval (−I, I) where
0 < 2I < S(< L). A potential VFib with range 2L, can be defined as follows
(see Figure 2):

• for each n ∈ Z and for each θ ∈ (s∞n − I, s∞n + I):
– VFib(θ) = vL,L(θ−s∞n ) if both intervals [s∞n−1, s

∞
n ] and [s∞n , s∞n+1] have

the same length L;
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Figure 2. A short range potential associated with the Fibonacci chain

– VFib(θ) = vS,L(θ − s∞n ) if the intervals [s∞n−1, s
∞
n ] and [s∞n , s∞n+1] have

different lengths.
• for θ /∈ ∪n∈Z(s′n − I, s′n + I), VFib(θ) = 0.

The main result of this paper is the following theorem:

Theorem 1.1. 3

For the Frenkel-Kontorova model with a short range potential associated with a
quasicrystal:

(i) any minimal configuration has a rotation number;
(ii) the rotation number is a continuous function when defined on the set of

minimal configurations equipped with the product topology;
(iii) for any ρ ≥ 0, there exists a minimal configuration with rotation number ρ.

It turns out that, once the appropriate objects have been defined, the proof of
Theorem 1.1 has the same structure as the modern proof for crystals that can be
found for instance in [B] or [C]. More precisely, in the crystal case, a periodic poten-
tial factorizes through a real valued function defined on a circle. In the quasicrystal
case, a short range potential factorizes through a real valued function defined on a
more sophisticated compact metric space called the hull of the quasicrystal. This
hull possesses locally the product structure of an interval by a Cantor set i.e it is
a solenoid. This solenoid can be seen as the suspension of the action of a minimal
homeomorphism on the Cantor set.
Minimal homeomorphisms on the Cantor set have been extensively studied in
topological dynamics and possess a powerful combinatorial description in terms
of Kakutani-Rohlin towers (see for instance [GPS]). The aim of Section 2, which
is devoted to the substrate, is to rephrase these well known results in our specific
context, namely for a suspension, in order to see the hull as an inverse limit of one
dimensional branched manifolds. These branched manifolds will play a central role
in the proof.
In the crystal case, when projecting a minimal configuration on the circle, the
Aubry-Mather theory shows that it wraps around the circle in a very special way,
namely it is ordered as the orbit of a degree one homeomorphism of circle. In
the quasicrystal case, there exists also some combinatorial obstructions, they are

3From a more physical point of view, it is straightforward but interesting to rephrase Theorem
1.1 in terms of particle density of minimal configurations.
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described and analyzed in Section 3 which is devoted to the ground states of the
overlying layer.
Section 4 is devoted to the proof of Theorem 1.1. First, as for the crystal case,
we show, using the inverse limit structure of the hull given in Section 2 and the
combinatorial obstructions gotten in Section 3, that minimal configurations have
a rotation number (point (i)). Then we prove (again as in the crystal case) the
continuity of the rotation number (point (ii)). The proof of point (iii) of Theorem
1.1 in the crystal case is done first by constructing periodic minimal configurations
for any positive rational rotation number and then to use the continuity of the
rotation number to get a minimal configuration for any prescribed positive rotation
number. In the quasicrystal case, the scheme is exactly the same, but the set of
rational numbers needs to be replaced by another dense subset of the positive reals.
More precisely when the rotation number is not 0, its inverse has to be a finite
linear combination with positive integer coefficients of the densities of patches of
the quasicrystal.
This paper ends with two final remarks developed in Section 5, the first one con-
cerns dynamical systems. In the case of a crystal, minimal configurations for the
Frenkel-Kontorova model are orbits of a twist map on an open annulus. Similarly,
in the quasicrystal case, these minimal configurations are also orbits of a dynamical
system that we describe. The second one consists in giving the bases of a possible
extension of the theory to quasicrystals in higher dimension.

Remark: It should be pointed out that one can find in the literature several studies
on the the Frenkel-Kontorova model with a quasi-periodic potential, for instance a
potential which is the sum of two periodic potentials with incommensurable periods
(see for instance [EFRJ]). Such potential cannot arise naturally from an underly-
ing one dimensional substrate. Actually, the underlying object which organizes the
minimal configurations and which was a circle in the crystal case and a solenoid in
the quasicrystal case, becomes a 2-torus. More precisely the real line is immersed as
a line with irrational slope in the 2-torus. Actually, this is a situation more complex
than the one we are dealing with in this paper which essentially uses dimension 1
objects, and this explains the lack of exact results in this quasi-periodic case.

Nota Bene: To avoid an unnecessary dichotomy and unless explicitly specified, the
quasicrystals that appear in the sequel will not be crystals.

2. The hull of a quasicrystal

In this section, we recall some background results concerning quasicrystals. Most
of these results are true in any dimension and they are presented here in the par-
ticular case of the dimension 1. Material for Subsections 2.1 and 2.2 can be found
in [KP], [BBG] and [BG]. For Subsections 2.4 and 2.5 a discrete approach can be
found in [HPS] and we refer again to [BBG], [BG] and [S] for a more geometrical
point of view.

2.1. The hull as a dynamical system. Consider a chain of atoms whose con-
figuration is a quasicrystal QC = (sn)n∈Z. It is clear that each translated copy
QC − u = (sn − u)n∈Z, u ∈ R, of QC is again a quasicrystal.
The set of translated copiesQC+R of a quasicrystal can be equipped with a topology
that, roughly speaking, says that two quasicrystal configurations are close one to
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the other if in a big ball centered at 0 in R, the segments of both configurations
inside the ball are equivalent and equal up to a small translation. Such a topology
is metrizable and an associated metric can be defined as follows (see [RW] for more
details):
Consider two quasicrystal configurations QC − u1 and QC − u2 in QC + R. Let A
denote the set of ε ∈]0, 1[ for which there exists u with |u| < ε, such that QC − u1

and QC − u2 + u coincide in B1/ε(0). Then

δ(QC − u1, QC − u2) = inf A if A 6= ∅
δ(QC − u1, QC − u2) = 1 if A = ∅ .

Hence the diameter of QC + R is bounded by 1 and the R-action on QC + R is
continuous. The continuous hull Ω(QC) of the quasicrystal QC is the completion of
the metric space (QC + R, δ).
As a direct consequence of the finite local complexity property, it is easy to check
(see for instance [RW]) that Ω(QC) is a compact metric space and that any element
in Ω(QC) is a quasicrystal whose segments are equivalent to segments in QC. The
translation group R acts on Ω(QC) and the dynamical system (Ω(QC), R) possesses
(by construction) a dense orbit (namely the orbit QC + R). On the one hand, the
repetitivity property is equivalent to the minimality of the action i.e all its orbits
are dense, (see [KP]) and, on the other hand, the uniform pattern distribution is
equivalent to the unique ergodicity i.e the R-action possesses a unique invariant
probability measure (see[BG]). These results yield the following proposition.

Proposition 2.1. Let QC be a quasicrystal, then the dynamical system (Ω(QC), R)
is minimal and uniquely ergodic.

In the sequel, we will denote by µ the unique probability measure on Ω(QC) which
is invariant under the R-action.

2.2. The canonical transversal. The canonical transversal, Ω0(QC), of the hull
Ω(QC) of a quasicrystal QC is the collection of quasicrystals in Ω(QC) which contain
0 (i.e. such that one atom in the chain is located at 0).

Proposition 2.2. (see [KP]) The canonical transversal of a quasicrystal is either
a finite set when QC is a crystal or a Cantor set when not.

It follows that when the quasicrystal QC is a crystal, Ω(QC) is homeomorphic to a
circle and when not Ω(QC) has a solenoidal structure, i.e. it is locally the product
of a Cantor set by an interval.
The return time function L : Ω0(QC) → R+ is defined by:

L(T ) = inf{t > 0 | T − t ∈ Ω0(QC)} ∀ T ∈ Ω0(QC).

The finite local complexity implies that the function L is locally constant, it takes
finitely many distinct values L1, . . . , Lp and the clopen (closed open) sets Ci =
L−1(Li) for i = 1, . . . , p form a partition of Ω0(QC)4 (see Figure 3).
The first return map τ : Ω0(QC) → Ω0(QC) is defined by:

τ(T ) = T − L(T ) ∀ T ∈ Ω(QC).

The unique invariant probability measure µ of the R-action on Ω(QC) induces a
finite measure ν on Ω0(QC) which is τ -invariant.

4Recall that clopen sets form a countable basis for the topology of a totally disconnected set.
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Figure 3. The time return function

For any i = 1, . . . , p and for any clopen set C in Ci, the measure ν satisfies:

ν(C) =
1
Li

µ({(T − u) T ∈ C, u ∈ [0, Li]}).

The subsets of Ω(QC) which read C − u where C is a clopen set in one of the Ci’s
and u ∈ [0, Li[ are called verticals.
The following lemma is a direct byproduct of the above definition:

Lemma 2.3. For any S > 0, there exists a positive constant εQC(S) such that, for
any vertical V with diameter smaller that εQC(S) and any pair of configurations
QC − x and QC − y in V, we have:

QC ∩BS(x) − x = QC ∩BS(y) − y.

2.3. Potentials on the hull. The following result shows that a short range po-
tential associated with a quasicrystal QC, factorizes through a function on Ω(QC).

Lemma 2.4. Let QC be a quasicrystal, and let VQC be a continuous short range
potential associated with QC. Then, there exists a unique continuous function V̄QC :
Ω(QC) → R such that:

VQC(x) = V̄QC(QC − x), ∀x ∈ R.

Furthermore, when VQC has range R > 0, there exists a positive constant εQC(R)
such that V̄QC is constant on each vertical with diameter smaller than εQC(R).

Remark: Notice that when QC is a crystal, Lemma 2.4 simply means that for any
continuous periodic function g : R → R with period L, there exists a continuous
function G : R/L.Z → R such that g = G◦π, where π : R → R/L.Z is the standard
projection.
Proof of Lemma 2.4: Assume that VQC is a potential with range R > 0. Applying
Lemma 2.3, for any vertical V with diameter smaller than εQC(R) and any pair
QC − x and QC − y in V , we have:

QC ∩BR(x) − x = QC ∩BR(y) − y,
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and thus:
VQC(x) = VQC(y).

Since the set QC + R ∩ V is dense in V , it follows that a continuous function V̄QC
which satisfies VQC(x) = V̄QC(QC−x), ∀x ∈ R, must be constant on V and equal
to VQC(y) for any real number y such that QC−y ∈ V . Conversely the function V̄QC
defined this way is clearly continuous, satisfies VQC(x) = V̄QC(QC − x), ∀x ∈ R,
and is constant on verticals with diameters smaller than εQC(R). �

2.4. Kakutani-Rohlin towers. The following construction, which has been de-
veloped for the study of minimal dynamics on the Cantor set, will be useful all
along this paper. It is often referred to as Kakutani-Rohlin towers (see [HPS]).
Choose S > 0 and fix a clopen set C in one of the Ci’s with diameter smaller than
εQC(S).
Consider the first return time function LC associated with this clopen set (which
is constructed exactly as the first return time function in Ω0(QC)). The finite
local complexity hypothesis implies that the function LC is locally constant and
takes finitely many values LC,1, . . . , LC,p(C). The clopen sets DC,i = L−1

C (LC,i) for
i = 1, . . . , p(C) form a partition of C. Again because of the finite local complexity
hypothesis, there exists a finite partition of C in clopen sets Ej , j = 1, . . . r such that
for each j ∈ {1, . . . , r}, there exists i ∈ {1, . . . p(C)} so that the following properties
are satisfied:

• Ej ⊂ DC,i;
• for each u ∈ [0, LC,i[, Ej−u is a vertical with diameter smaller that εQC(S).

For j = 1, . . . , r, the set:

{Ej − u, ∀u ∈ [0, LC,i[},

is called a tower with height LC,i. The union of all these towers realizes a partition
of Ω(QC) and the data (QC, S, C, {Ej}j∈{1,...,r}) is called a Kakutani-Rohlin towers
system with size S.

For j = 1, . . . , r, consider the set Ej ⊂ DC,i and for each u ∈ [0, LC,i[, we call
floor of the tower Ej × [0, LC,i[, the vertical Ej − u. By identifying all the points in
this vertical, each tower projects on a semi-open interval and the whole hull Ω(QC)
projects onto a smooth branched one-dimensional manifold which is a collection of
r of circles γ1, . . . , γr tangent at a single point. This branched manifold is called the
skeleton of the Kakutani-Rohlin tower system (QC, S, C, {Ej}j∈{1,...,r}). It inherits
a natural orientation, a differentiable structure and a natural metric respectively
issued from the orientation, the differentiable structure and the Euclidean metric
of the real line R (see Figure 4). We denote it B and call π : Ω(QC) → B the above
identification.
The proof of the following lemma is plain.

Lemma 2.5. Let R > 0 and VQC a continuous potential associated with QC with
range R > 0. Consider a Kakutani-Rohlin towers system with size S and let B be
its skeleton.
Assume that S ≥ R, then the function V̄QC : Ω(QC) → R induced by VQC descends
to a continuous function V̂QC : B → R:

V̂QC ◦ π = V̄QC .
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Figure 4. A towers system and its skeleton

Whenever the function VQC is Cr-smooth for some 0 ≤ r ≤ ∞, then the function
V̂QC is also Cr-smooth.

2.5. Inverse limits. Let us choose an increasing sequence (Sn)n≥0 going to +∞
with n and let us construct inductively an infinite sequence of Kakutani-Rohlin
towers system as follows (see [HPS]):

• Fix a point x0 in Ω0(QC).
• Choose a clopen set C0 containing x0, with diameter smaller than εQC(S0)

and construct a Kakutani-Rohlin towers system (QC, S0, C0, {E0,j}j∈{1,...,r0})
with size S0. Up to a renaming of the indices, we can assume that x0

belongs to E0,1. We denote by B0 the corresponding skeleton and call
π0 : Ω(QC) → B0 the standard projection.

• We choose a clopen set C1 ⊂ E0,1 which contains x0 with a diameter
small enough so that we can construct a Kakutani-Rohlin towers system
(QC, S1, C1, {E1,j}j∈{1,...,r1}) with size S1 such that each of its towers inter-
sects all the towers of the previous system. Up to a renaming of the indices,
we can assume that x0 belongs to E1,1. We denote by B1 the corresponding
skeleton and call π1 : Ω(QC) → B1 the standard projection.

• Assume we have constructed a sequence of nested clopen sets Cn ⊂ Cn−1 ⊂
. . . C1 ⊂ C0 containing x0 and, for each p = 0, . . . , n, a Kakutani-Rohlin
towers system (QC, Sp, Cp, {Ep,j}j∈{1,...,rp}) with size Sp such that each of
its towers intersects all the towers of the system associated with p− 1, and
such that x0 belongs to Ep,1 . We iterate the procedure by choosing a clopen
set Cn+1 ⊂ En,1 which contains x0 small enough so that we can construct a
Kakutani-Rohlin towers system (QC, Sn+1, Cn+1, {En+1,j}j∈{1,...,rn+1}) with
size Sn+1 such that each of its towers intersects all the towers of the system
associated with n. Up to a renaming of the indices, we can assume that x0

belongs to En+1,1. We denote by Bn+1 the corresponding skeleton and call
πn : Ω(QC) → Bn the standard projection.

For each n ≥ 0, fix a point y in Bn+1. The set π−1
n+1(y) is included in a floor of a

tower of the tower system (QC, Sp, Cp, {Ep,j}j∈{1,...,rp}), and thus descends through
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πn to a single point on Bn. We have defined this way a continuous surjection:

τn : Bn+1 → Bn.

The inverse limit:

lim
←τn

Bn = {(xn)n≥0 |xn ∈ Bn and τn(xn+1) = xn, ∀n ≥ 0},

gives a re-interpretation of the hull Ω(QC):

Proposition 2.6. [BG] When equipped with the product topology the set lim
←τn

Bn is

homeomorphic to Ω(QC).

Notice that the map τn : Bn+1 → Bn induces a pn × pn+1 homology matrix
Mn whose integer coefficient mn,i,j is the number of times the loop γn+1,j in Bn+1

covers the loop γn,i of Bn under the action of the map τn. We remark that the
construction of the sequences of towers systems we made insures that, for all n ≥ 0,
the matrix Mn has positive coefficients. These matrices carry information about
the invariant measure ν on the Cantor set through the following lemma (see for
instance [GPS]):

Lemma 2.7.

νn,i =
j=pn+1∑

j=1

mn,i,jνn+1,j , ∀i ∈ {1, . . . , p(n)},

where νn,i is the measure of the clopen set En,i.

Again the following lemma is plain:

Lemma 2.8. Let R > 0 and VQC be a continuous potential associated with QC
with range R > 0 and choose an increasing sequence (Sn)n≥0 going to +∞, such
that R ≤ S0. Then, for each n ≥ 0, the function VQC induces on each branched
manifold Bn a function V̂QC,n which satisfies:

V̂QC,n ◦ τn = V̂QC,n+1.

3. Combinatorics of minimal configurations

In this section, we consider the minimal segments for a short range potential
with range R associated with QC.

Lemma 3.1. Let I and J = I + u be two disjoint intervals in R such that for each
θ in I:

BR(θ) ∩QC + u = BR(θ + u) ∩QC,

and let (θ1, . . . , θn) be a minimal segment such that [θ1, θn] contains I and J . For
any pair of consecutive atoms θm and θm+1 in I∩QC, the interval [θm+u, θm+1+u]
contains at most two atoms of the minimal segment.

Proof. The proof works by contradiction. Assume that there exists a pair of atoms
θm and θm+1 in I ∩ QC, such that the interval [θm + u, θm+1 + u] contains three
consecutive atoms of the minimal segment, say θl, θl+1, and θl+2:

[θl, θl+2] ⊂ [θm + u, θm+1 + u].
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We consider the new segment obtained by taking the atom in position θl+1 and
assigning to it the new position θl+1 − u (Figure 5). When u > 0 (what we can
assume without loss of generality) this segment reads:

(θ1, . . . , θi, . . . , θm, θl+1 − u, θm+1, . . . , θl, θl+2, . . . , θn).

To get a contradiction we are going to show that the potential energy of this new
segment is smaller than the potential energy of the first one. On the one hand,
since BR(θl+1) ∩ QC − u = BR(θl+1 − u) ∩ QC, the potential energy induced by
the substrate on the atom that changed its position, keeps the same value:

VQC(θl+1) = VQC(θl+1 − u).

Thus, the sum of the potential energy induced by the substrate on the whole seg-
ment is not affected by this change of position.
On the other hand, the difference of the potential energy of interaction between the
new segment and the former one is given by:

∆U = (U(θm − θl+1 + u) + U(θl+1 − u− θm+1)− U(θm − θm+1))

−(U(θl − θl+1) + U(θl+1 − θl+2)− U(θl − θl+2)).
Let us introduce the new variables:

X = θm − θl+1 + u, Y = θl+1 − u− θm+1,

X ′ = θl − θl+1, Y ′ = θl+1 − θl+2.

We have:
X ≤ X ′ < 0 and Y ≤ Y ′ < 0,

and:

∆U = (U(X) + U(Y )− U(X + Y ))− (U(X ′) + U(Y ′)− U(X ′ + Y ′)).

For t ∈ [0, 1], let us consider the function:

G(t) = U(tX + (1− t)X ′) + U(tY + (1− t)Y ′) − U(t(X + Y ) + (1− t)(X ′+ Y ′)).

We have:
∆U = G(1) − G(0),

and

G′(t) = U ′(tX + (1− t)X ′)(X −X ′) + U ′(tY + (1− t)Y ′)(Y − Y ′)
− U ′(t(X + Y ) + (1− t)(X ′ + Y ′))(X + Y −X ′ − Y ′)

= (U ′(tX + (1− t)X ′) − U ′(t(X + Y ) + (1− t)(X ′ + Y ′)))(X −X ′)
+ (U ′(tY + (1− t)Y ′) − U ′(t(X + Y ) + (1− t)(X ′ + Y ′)))(Y − Y ′).

Observe that for t ∈ [0, 1]:

tX + (1− t)X ′ ≥ t(X + Y ) + (1− t)(X ′ + Y ′)

and
tY + (1− t)Y ′ ≥ t(X + Y ) + (1− t)(X ′ + Y ′).

Using the convexity of U , more precisely the fact that U ′ is an increasing function
we get that:

∆U ≤ 0,

and this inequality is strict as long as θm 6= θl − u and θm+1 6= θl+2 − u. In this
case, we get the desired contradiction.
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Figure 5. Move of a single atom in a segment

In the situation when θm = θl − u and θm+1 = θl+2 − u, we remark that both
segments (θm, θl+1 − u, θ − m + 1) and (θl−1, θl, θl+2) are not minimal and thus
the new configuration we constructed is not minimal. The corresponding minimal
segment (by fixing the extremities θ1 and θn) has an energy which is strictly smaller,
a contradiction. �

The following lemma shows that there are actually more obstructions than the
ones described in Lemma 3.1.

Lemma 3.2. With the same hypotheses and notations as in Lemma 3.1, consider
two disjoint pairs of successive atoms θm < θm+1 < θm′ < θm′+1 in I ∩ QC, such
that at least one of the four points θm + u < θm+1 + u < θm′ + u < θm′+1 + u does
not belong to the minimal segment. Concerning the two intervals [θm +u, θm+1 +u]
and [θm′ +u, θm′+1+u], none of the following three situations is possible (see Figure
6):

(i) both intervals contain two atoms of the minimal segment;
(ii) both intervals do not contain atoms of the minimal segment in their interi-

ors;
(iii) one of the interval contains two atoms of the minimal segment and the other

does not contain atoms in its interior.

Proof. As for Lemma 3.1, we are going to reach a contradiction assuming that
situation (i) occurs. The proof for the other two cases works exactly along the
same lines. Let θl < θl+1 < θl′ < θl′+1 be atoms of the minimal segment such that:

[θl, θl+1] ⊂ [θm + u, θm+1 + u]

and
[θl′ , θl′+1] ⊂ [θm′ + u, θm′+1 + u].

Assuming again that u > 0, let us move some atoms of the minimal configuration
to reach the following new configuration:

(θ1, . . . , θm, θl+1 − u, . . . , θl′ − u, θm′+1, . . . , θl, θm+1 + u, . . . θm′ + u, θl′+1, . . . , θn).

Since for each θ in I:

BR(θ) ∩QC + u = BR(θ + u) ∩QC,

the potential energy induced by the substrate on the atoms did not change even
if the atoms have changed their positions. Thus, the sum of the potential energy
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Figure 6. The forbidden 3 situations

induced by the substrate on the whole segment is not affected by this change of
position.
On the other hand, the difference of the potential energy of interaction between the
new segment and the old one is given by:

∆U = ∆U1 + ∆U2,

where

∆U1 = (U(θm − θl+1 + u) + U(θl − θm+1 − u))− (U(θm − θm+1) + U(θl − θl+1)),

and

∆U2 = (U(θl′−u−θm′+1)+U(θm′ +u−θl′+1))−(U(θm′−θm′+1)+U(θl′−θl′+1)).

Let us introduce the new variables:

X0 = θm X1 = θl+1 − u and Y0 = θl − u Y1 = θm+1.

We have:

∆U1 = (U(X0 −X1) + U(Y0 − Y1))− (U(X0 − Y1) + U(Y0 −X1)).

This yields:

∆U1 = −
∫ Y0

X0

(∫ Y1

X1

U ′′(v − u)du

)
dv.

Since U is convex, X0 ≤ Y0 and X1 ≤ Y1 and at least one of these inequalities is
strict, we get:

∆U1 < 0,

and for the same reason
∆U2 < 0.

This yields a contradiction. �
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From the previous two lemmas, we deduce that the quantity of atoms of the
minimal segments which belong to I and to I + u differ by an integer smaller than
2. This is summarized in the following proposition that will be our main tool in
the sequel of this paper.

Proposition 3.3. Let (θ1, . . . , θn) be a minimal segment and let I be an interval
in [θ1, θn], then there exists an integer N ∈ Z+ such that for any pair of disjoint
intervals I1 = I + u1 and I2 = I + u2 in [θ1, θn] which satisfy that for each θ in I
and k = 1, 2:

BR(θ) ∩QC + uk = BR(θ + uk) ∩QC,

each interval Ik contains either N , N + 1 or N + 2 atoms of the minimal segment.

4. Proof of Theorem 1.1

4.1. Existence of a rotation number. In this subsection, we consider a mini-
mal configuration for a potential with range R associated with QC. Let us con-
sider an increasing sequence (Sl)l≥0 going to +∞ with l and such that S0 >
R and consider also an associated sequence of Kakutani-Rohlin towers systems
(QC, Sl, Cl, {El,j}j∈{1,...,rl})l≥0

and the corresponding sequence of skeletons (Bn)n≥0

as constructed in Subsection 2.5.
The identification

I : x ∈ R 7→ QC − x ∈ Ω(QC)

induces an immersion of the real line in QC and the image of a configuration (θn)n

through this immersion is an element (θ̄n)n in Ω(QC)Z where θ̄n = QC − θn, for
all n ∈ Z . In turn, for any l ≥ 0, the projection πl : Ω(X) → Bl transforms this
sequence in an element (θ̂l

n)n in BZ
l where θ̂l

n = πl(θ̄n) = πl ◦ I(θn), for all n ∈ Z.
Furthermore we have:

V̂QC,l(θ̂n) = V̄QC(θ̄n) = VQC(θn).

The following lemma is a direct consequence of Proposition 3.3:

Lemma 4.1. Let (θn)n be a minimal configuration such that lim
n→+∞

θn = +∞ and

lim
n→−∞

θn = −∞ (resp. let (θp, . . . , θq) be a minimal segment). Then, for any l ≥ 0

and any j ∈ {1, . . . , rl}, there exists an integer Nl,j such that for each loop γl,j of Bl,
each connected component of (πl ◦ I)−1(γl,j) ⊂ R (resp. each connected component
of (πl ◦I)−1(γl,j) ⊂ R which does not intersect (−∞, θp]∪ [θq,+∞)) contains either
Nl,j or Nl,j + 1 or Nl,j + 2 atoms of the minimal configuration (resp. the minimal
segment).
In other words, when n increases, the projection of the minimal configuration (resp.
the minimal segment) stays the same amount of time in a given loop up to an error
of 2.

Now we can prove the existence of a non negative rotation number for any
minimal configurations.

First, consider a minimal configuration (θn)n such that lim
n→+∞

θn = +∞ and

lim
n→−∞

θn = −∞. Let us estimate the length of the interval [θ0, θn] for n ≥ 0. Let

nl,j be the number of times πl ◦ I([θ0, θn]) covers completely the loop γl,j of Bl. We
have, for each l ≥ 0:
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pl∑
j=1

nl,jLl,j ≤ θn − θ0 ≤
pl∑

j=1

nl,jLl,j + 2Ll,

where Ll,j is the height of the tower associated with the loop γl,j (i.e. the length
of the loop γl,j) and

Ll = max
j∈{1,...,pl}

Ll,j .

On the other hand we have:

pl∑
j=1

nl,jNl,j ≤ n ≤
pl∑

j=1

nl,j(Nl,j + 2) + 2(Nl + 2),

where
Nl = max

j∈{1,...,pl}
Nl,j .

This yields:
pl∑

j=1

nl,jLl,j

pl∑
j=1

nl,j(Nl,j + 2) + 2(Nl + 2)
≤ θn − θ0

n
≤

pl∑
j=1

nl,jLl,j + 2Ll

pl∑
j=1

nl,jNl,j

.

When n goes to +∞ the quantity:
nl,j

pl∑
j=1

nl,jLl,j

goes to the measure νl,j of the clopen set El,j . It follows that the sequence (θn −
θ0)/n has bounded limit sup and limit inf and that any accumulation point ρ of
this sequence satisfies:

pl∑
j=1

νl,jLl,j

pl∑
j=1

νl,j(Nl,j + 2)
≤ ρ ≤

pl∑
j=1

νl,jLl,j

pl∑
j=1

νl,jNl,j

.

Recall that the measure ν is the transverse measure associated with an invariant
probability measure on the hull Ω(QC) and thus:

pl∑
j=1

νl,jLl,j = 1.

On the other hand we have:
pl∑

j=1

νl,j = ν(Cl).

We deduce that:
1

pl∑
j=1

νl,jNl,j + 2ν(Cl)
≤ ρ ≤ 1

pl∑
j=1

νl,jNl,j

.

Since these last inequalities are true for any l ≥ 0, and since ν(Cl) goes to 0 as l
goes to +∞, it follows that the sequence (θn − θ0)/n converges to the limit:
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lim
l→+∞

1
pl∑

j=1

νl,jNl,j

(?).

Observe that this rotation number is different from 0.
Consider now a minimal configuration which satisfies lim

n→+∞
θn = M < +∞ or

lim
n→+∞

θn = m < +∞. The constant configuration

θn = θ0, ∀n ∈ Z,

has obviously a rotation number equal to 0. Let us assume now that the minimal
configuration is not constant and satisfies lim

n→+∞
θn = M < +∞. Let us show that

we cannot have lim
n→−∞

θn = −∞. Indeed, consider the interval [M − 2R,M + 2R]

and choose u > 0 such that the interval [M − 2R− u, M + 2R− u] is disjoint from
[M − 2R,M + 2R] and such that:

B2R(M − u) ∩QC + u = B2R(M) ∩QC.

Consider now, for n large enough, the interval [θn − R, θn] ⊂ [M − 2R,M ]. The
number of atoms in [θn −R, θn] goes to +∞ with n. If lim

n→−∞
θn = −∞, it follows

from Proposition 3.3 that the number of atoms in [θn −R− u, θn − u] and thus in
[M −2R−u, M +2R−u], goes to +∞ with n. Consequently the minimal sequence
(θn)n has an accumulation point in [M − 2R− u, M + 2R− u] when n goes to −∞
which is a contradiction. Thus for a minimal configuration we have:

lim
n→+∞

θn < +∞ ⇐⇒ lim
n→−∞

θn > −∞

⇐⇒ (θn)n is bounded
⇐⇒ (θn)n has rotation number 0.

This ends the proof of Part (i) of Theorem 1.1.

4.2. Continuity of the rotation number. Consider a sequence (θm,n)n of min-
imal configurations with rotation numbers ρm which converges, in the product
topology, to a minimal configuration (θn)n with rotation number ρ > 0. We fix
l > 0 and choose a loop γl,j in Bl. Consider the first time when, starting from 0 on
the real line and going in the positive direction, the projection of the configuration
(θn)n enters in this loop. Let us do the same for the configuration (θm,n)n. Since
(θm,n)n converge to (θn)n in the product topology, for m large enough both config-
urations stay the same time in the loop for their first visits. It follows from Lemma
4.1 that the minimal number of times Nm,l,j , the projections of the configurations
(θm,n)n spend in the loop γl,j of Bl, and the minimal number of times Nl,j , the
projection of the configuration (θm,n)n spends in the same loop γl,j , satisfy:

|Nm,l,j − Nl,j | ≤ 2, ∀ j ∈ {1, . . . , p(l)}.

The rotation number ρm of the configuration (θm,n)n satisfies:

1
pl∑

j=1

νl,jNm,l,j + 2ν(Cl)
≤ ρm ≤ 1

pl∑
j=1

νl,jNm,l,j

.
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On the other hand
1

pl∑
j=1

νl,jNl,j + 2ν(Cl)
≤ ρ ≤ 1

pl∑
j=1

νl,jNl,j

.

This implies that for m large enough:∣∣∣∣1ρ − 1
ρm

∣∣∣∣ ≤ 8ν(Cl).

Considering bigger and bigger l yields:

lim
m→+∞

ρm = ρ.

When the rotation number ρ = 0, we have proved that the configuration (θn)n is
bounded. Let M be its upper bound and consider the loop γ0,i in B0 on which M
descends by projection. If M falls on the singular point, we consider the loop where
the M − ε’s for ε > 0 small enough, are falling. Fix K > 2, when m is big enough,
the projection of the configuration (θm,n)n (whose rotation number is assumed to
be different from 0) must spend at least a time K in the loop γ0,i during one of its
visits and thus, thanks to Lemma 4.1 at least K − 2 times at each of its visits. It
follows that the rotation number of (θm,n)n satisfies:

ρm ≤ 1
(K − 2)ν0,i

,

and, consequently:
lim

m→+∞
ρm = 0.

Thus, we have proved Part (ii) of Theorem 1.1.

4.3. Construction of minimal configurations. Observe that a constant config-
uration is a minimal configuration with rotation number 0. For positive rotation
numbers, we are first going to construct minimal configurations for a dense subset
of rotation numbers in R+.

The good candidate F to be a dense set in R+ for which minimal configurations
can be construct is suggested by the expression (?) obtained in the previous sub-
section. Again, let us consider an increasing sequence (Sl)l≥0 going to +∞ with l
and such that S0 > R. Consider also an associated sequence of Kakutani-Rohlin
towers systems (QC, Sl, Cl, {El,j}j∈{1,...,rl})l≥0

and the corresponding sequence of
skeletons (Bn)n≥0 as constructed in Subsection 2.5. Recalling that the νl,j ’s are the
measures of the clopen sets El,j , we define the set F as follows:

F =


1

pl∑
j=1

Nl,jνl,j

, ∀Nl,j ∈ Z+ \ {0}, ∀j ∈ {1, . . . , pl}, ∀l ≥ 0

 .

Since the measures of the clopen sets El,j go to zero with l uniformly in j, we check
easily that F is a dense subset of R+.

Proposition 4.2. For any real number ρ0 in F , there exists a minimal configura-
tion with rotation number ρ0.
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Figure 7. The branched manifold with its marked points

Proof. Fix l0 ≥ 0 and choose pl0 positive integers Nl0,1, . . . , Nl0,pl0
. Consider the

positive real number:

ρ0 =
1

pl0∑
j=1

Nl0,jνl0,j

∈ F .

Let us construct a minimal configuration with rotation number ρ0.
Step 1: For j = 1, . . . , pl0 , consider on the loop γl0,j of the oriented branched
manifold Bl0 , Nl0,j − 1 points b̂l0,1 < · · · < b̂l0,Nl0,j−1, disjoint from the singular
point πl0(x0) of Bl0 (where we recall that ∩l≥0 Cl = {x0}) as shown in Figure 7.
For each j = 1, . . . , pl0 , we consider the segment:

(πl0(x0), b̂l0,1, . . . , b̂l0,Nl0,j−1, πl0(x0)).

Thanks to Lemma 2.8, it makes sense to compute the potential energy of this
segment and to consider the position of the points, b̂l0,1, . . . , b̂l0,Nl0,j−1, which min-
imizes this potential energy. Having done it for all loops, we denote B̂l0 the col-
lection of these marked points (all the b̂l0,k’s and πl0(x0)) on Bl0 and consider the
subset of the real line (πl0 ◦ I)−1(B̂l0). It is a discrete subset that we can ordered
as a bi-infinite increasing sequence (θl0,n)n. This subset of R contains the subset
(πl0 ◦I)−1(πl0(x0)) which is a quasicrystal. The configuration (θl0,n)n is made with
a concatenation of minimal segments whose extremities are consecutive points in
(πl0 ◦ I)−1(πl0(x0)) and, there are exactly pl0 different equivalence classes of seg-
ments, each of them corresponding to a minimal segment starting at the beginning
and ending at the end of a loop in Bl0 .
Step 2: Consider now the subset τ−1

l0
(B̂l0) of the branched manifold Bl0+1. This

subset contains the singular point πl0+1(x0) and for each j = 1, . . . , pl0+1, the
loop γl0+1,j of Bl0+1 contains Nl0+1,j − 1 consecutive points, b̂l0+1,1 < · · · <

b̂l0+1,Nl0+1,j−1, distinct from the singular point πl0+1(x0). Actually we have:

Nl0+1,j =
pl0∑
i=1

ml0,i,jNl0,i (??)
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Figure 8. The configurations (θl0,n)n and (θl0+1,n)n

where ml0,i,j is the coefficient of the homology matrix Ml0 . Again, for each j =
1, . . . , pl0+1, we consider the segment:

(πl0+1(x0), b̂l0+1,1, . . . , b̂l0+1,Nl0+1,j−1, πl0+1(x0)).

we choose the position of the points b̂l0+1,1, . . . , b̂l0+1,Nl0+1,j−1 which minimizes
the potential energy. Having done it for all loops, we denote B̂l0+1 the collec-
tion of these marked points (all the b̂l0+1,k’s and πl0+1(x0)) on Bl0+1 and con-
sider the subset of the real line (πl0+1 ◦ I)−1(B̂l0+1). It is a discrete subset that
we can ordered as a bi-infinite increasing sequence (θl0+1,n)n. This subset of R
contains the subset (πl0+1 ◦ I)−1(πl0(x0)) which is a quasicrystal contained in
the quasicrystal (πl0 ◦ I)−1(πl0(x0)). The configuration (θl0+1,n)n is made with
a concatenation of minimal segments whose extremities are consecutive points in
(πl0+1 ◦I)−1(πl0+1(x0)) and there are exactly pl0+1 equivalence classes of segments,
each of them corresponding to a minimal segment starting at the beginning and
ending at the end of a loop in Bl0+1 (See Figure 8).
Step 3: We iterate this procedure to get a configuration (θl0+m,n)n for each m ≥ 0.

Lemma 4.3. For each m ≥ 0, the configuration (θl0+m,n)n has rotation number
ρ0.

Proof. As a preliminary remark, observe that by construction:

• For any j in {1, . . . , p(l0)}, each time the projection of the configuration
(θl0,n)n crosses the loop γl0,j of Bl0 , it spends an amount of time Nl0,j in
this loop.

• Similarly, for any m ≥ 0 and for any k in {1, . . . , p(l0 + m)}, each time
the projection of the configuration (θl0+m,n)n crosses the loop γl0+m,k of
Bl0+m, it spends an amount of time Nl0+m,k in loop.

• Remark also that for any m ≥ 0 and any k in {1, . . . , p(l0 + m)}, each
time the projection of the configuration (θl0,n)n crosses the loop γl0+m,k of
Bl0+m, it spends an amount of time in loop which is precisely Nl0+m,k.

Using the same estimate as for the proof of the existence of a rotation number
for a minimal configuration, we get that the configuration (θl0,n)n has a rotation
number and that this rotation number is the limit when m → +∞ of the sequence
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(ρm)m≥0, where:

ρm =
1

pl0+m∑
j=1

νl0+m,jNl0+m,j

∀m ≥ 0.

Claim: The sequence (ρm)m≥0 is constant.
Proof of the claim: Using the relation (??) we get, for each m ≥ 0:

1
pl0+m+1∑

j=1

νl0+m+1,jNl0+m+1,j

=
1

pl0+m+1∑
j=1

νl0+m+1,j

(pl0+m∑
i=1

ml0+m,i,jNl0+m,i

)
=

1
pl0+m∑
i=1

Nl0+m,i

(
pl0+m+1∑

j=1

ml0+m+1,i,jνl0+m+1,j

) .

Thanks to Lemma 2.7:

νl0+m,i =
pl0+m+1∑

j=1

ml0+m+1,i,jνl0+m+1,j .

Thus:
ρm+1 = ρm, ∀m ≥ 0.

This proves the claim and shows that the rotation number of the configuration
(θl0,n)n is equal to ρ0.

To conclude the proof of the lemma, we remark that a same computation yields
that, for each p ≥ 0, the configuration (θl0+p,n)n has a rotation number and that
this rotation number is the limit when m → +∞ of the sequence (ρp,m)m≥0, where:

ρp,m =
1

pl0+p+m∑
j=1

νl0+p+m,iNl0+p+m,j

∀m ≥ 0.

As shown previously, the sequence (ρp,m)m≥0 is constant and ρp,0 = ρp = ρ0. �

Step 4:

Lemma 4.4. There exists M > 0 such that:

0 ≤ θl0+m,n+1 − θl0+m,n ≤ M ∀m ≥ 0, ∀n ∈ Z.

Proof. Notice first that because of the very construction of the configurations
(θl0+m,n)n the lemma is true if we consider only a finite subset of these sequences.
Let us prove this lemma by contradiction. Let us fix m0 > 0 and assume that
the lemma is not true for the set of sequences (θl0+m,n)n with m > m0. Choose
M(m0) > 0 such that M(m0) is larger than the longest loop of Bl0+m0 . We know
that there exists m > m0 and n ∈ Z such that:

M(m0) < θm,n+1 − θm,n.

Recall that the configuration (θl0+m,n)n is a concatenation of minimal segments
whose extremities descend by projection on the singular point of Bl0+m0 . This
implies that there exists a minimal segment:

Θ = (θl0+m,n1 , . . . , θl0+m,n, θl0+m,n+1, . . . , θl0+m,n2)
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of the configuration (θl0+m,n)n and a loop γl0+m,j in Bl0+m0 such that:

πl0+m0 ◦ I(Θ) ∩ γl0+m0,j = ∅, and γl0+m0,j ⊂ πl0+m0 ◦ I([θl0+m,n, θl0+m,n+1]).

Recall that the image τl0+m0−1(γl0+m0,j) covers all the loops of Bl0+m0−1. Using
Lemma 4.1, we deduce that the projection of the segment Θ on Bl0+m0−1 stays at
each passage in a loop of Bl0+m0−1 at most 3 times in this loop. It follows that the
rotation number ρl0+m of the configuration (θl0+m,n)n satisfies:

ρl0+m ≥ 1
3ν(Cl0+m0−1)

.

This inequality must be true for all m0 ≥ 0 and thus ρ0 = +∞, a contradiction. �

Let us consider the set RZ equipped with the product topology. For M > 0, the
set SM of non decreasing sequences (ξn)n in RZ such that:

0 ≤ ξn − ξn−1 ≤ M, ∀n ∈ Z,

is a compact subset of RZ. Thus it follows from Lemma 4.4, that the set of all the
configurations (θl0+m,n)n, for m ≥ 0 and their translated is in a compact subset of
RZ.
Step 5: For each m ≥ 0, consider um ∈ R such that 0 belongs to the center of a min-
imal segment of (θl0+m,n + um)n. From lemma 4.1, the sequence of configurations
(θl0+m,n + um)n has an accumulation point in RZ. We denote this configuration
(θ∞,n)n.

Lemma 4.5. The configuration (θ∞,n)n is a minimal configuration with rotation
number ρ0.

Proof. The fact that the configuration (θ∞,n)n is minimal is standard. Consider a
segment of (θ∞,n)n. By construction this segment is a limit of minimal segments
and it is straightforward to show that this segment is minimal.
Let us prove now that the configuration (θ∞,n)n has rotation number ρ0. Since the
configuration is minimal, it has a rotation number ρ∞ which is defined as the limit:

lim
l→+∞

1
pl∑

j=1

νl,jN∞,l,j

,

where N∞,l,j is the minimal number of times the configuration (θ∞,n)n spends in
the jth loop of Bl.
We use a similar argument to the one used in the proof of the continuity of the
rotation number. Fix l1 > l0, and choose a loop γl1,j in Bl1 . Consider the first
time when, starting from 0 on the real line and going in the positive direction, the
configuration (θ∞,n)n enters in this loop. Let us do the same for the configuration
(θl0+m,n + um)n. Since a subsequence of configurations (θl0+m,n + um)n converges,
when m goes +∞ to the configuration (θ∞,n)n, it follows that for m big enough
both projections of the configurations stay the same time in the loop γl1,j for their
first visit in this loop. It follows from Lemma 4.1 that the minimal number Nl0+m,l,j

of times the projection of the configuration (θl0+m,n)n spends in the loop γl1,j of
Bl1 satisfies:

|Nl0+m,l1,j − N∞,l1,j | ≤ 2, ∀ j ∈ {1, . . . , p(l1)}.
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Thus for m big enough, the rotation number ρ0 of the configuration (θl0+m,n)n
satisfies:

1
pl1∑
j=1

νl1,jNl0+m,l1,j + 2ν(Cl1)
≤ ρ0 ≤

1
pl1∑
j=1

νl1,jNl0+m,l1,j

.

On the other hand
1

pl1∑
j=1

νl1,jN∞,l1,j + 2ν(Cl1)
≤ ρ∞ ≤ 1

pl1∑
j=1

νl1,jN∞,l1,j

.

This implies: ∣∣∣∣ 1
ρ∞

− 1
ρ0

∣∣∣∣ ≤ 8ν(Cl1).

Since this last inequality is true for all l1 > l0, we get:

ρ∞ = ρ0.

�

This ends the proof of Proposition 4.2. �

In order to prove Part (iii) of Theorem 1.1, we choose a positive real number ρ
and consider a sequence of minimal configurations (θm,n)n, m ≥ 0, with rotation
number ρm ∈ F such that:

lim
m→+∞

ρm = ρ.

A discussion completely similar to the one we used in the proof of Lemma 4.4 allows
us to show that there exists M > 0 such that:

0 ≤ θm,n+1 − θm,n ≤ M ∀m ≥ 0, ∀n ∈ Z.

Consequently, the set of all the configurations (θm,n)n, for m ≥ 0 and their trans-
lated, is in a compact subset of RZ and thus, as done previously, we can exhibit
a subsequence of configurations which converges to a minimal configuration (θn)n.
Thanks to continuity property of the rotation number (Part (ii) of Theorem 1.1),
we conclude that the rotation number of (θn)n is ρ.

5. Final remarks

5.1. Dynamical systems. Minimal configurations of the Frenkel-Kontorova model
obviously satisfy the variational equations:

U ′(θn − θn+1) − U ′(θn−1 − θn) + V ′(θn) = 0, ∀n ∈ Z.

By introducing the new variables5:

pn = U ′(θn−1 − θn), ∀n ∈ Z,

we get the dynamical system defined on R× R by:
pn+1 = pn − V ′(θn)

θn+1 = θn − (U ′)−1(pn − V ′(θn))
(? ? ?)

5Recall that U ′ is an increasing homeomorphism of the real line.
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In the crystal case, V ′ is a periodic function with period L, the period of the crys-
tal. It follows that the map defined by (???) descends to a map on the open annulus
R/L.R× R which is an orientation preserving diffeomorphism which preserves the
standard area form. Area preserving maps of the annulus have been widely studied
and Aubry-Mather theory which makes a bridge between the Frenkel-Kontorova
model and dynamical systems, has been a powerful tool for both sides.

In the quasicrystal case, the dynamical system extends to an area preserving
”diffeomomorphism” 6 on the solenoidal annulus Ω(QC) × R. The study of such
maps will be the subject of a forthcoming paper.

5.2. Quasicrystals in Rd, d > 1. As we already noticed, the construction of
the hull of a quasicrystal and its interpretation as an inverse limit of branched
manifolds can be done for quasicrystals in any dimension (see [BG], [BBG], [S]).
On the other hand, in a recent work [KLR] , H. Koch, R de la Llave and C. Radin
developed a generalization of Aubry-Mather theory for functions on lattices in Rd.
Both arguments make tempting to develop in a same way, a Aubry-Mather theory
for quasicrystals in Rd, d > 1.
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