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Abstract

The Frenkel-Kontorova model describes how an infinite chain of atoms min-
imizes the total energy of the system when the energy takes into account the
interaction of nearest neighbors as well as the interaction with an exterior
environment. An almost-periodic environment leads to consider a family of
interaction energies which is stationary with respect to a minimal topologi-
cal dynamical system. We introduce, in this context, the notion of calibrated
configuration (stronger than the standard minimizing condition) and, for con-
tinuous superlinear interaction energies, we prove its existence for some en-
vironment of the dynamical system. Furthermore, in one dimension, we give
sufficient conditions on the family of interaction energies to ensure the exis-
tence of calibrated configurations for any environment when the underlying
dynamics is uniquely ergodic. The main mathematical tools for this study
are developed in the frameworks of discrete weak KAM theory, Aubry-Mather
theory and spaces of Delone sets.
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1 Introduction

A minimizing configuration {xk}k∈Z for an interaction energy E : Rd × Rd → R
is a chain of points in Rd arranged so that the energy of each finite segment
(xm, xm+1, . . . , xn) cannot be lowered by changing the configuration inside the seg-
ment while fixing the two boundary points. Define

E(xm, xm+1, . . . , xn) :=
n−1∑
k=m

E(xk, xk+1).

Then {xk}k∈Z is said to be minimizing if, for all m < n, for all ym, ym+1, . . . , yn ∈ Rd
satisfying ym = xm and yn = xn, one has

E(xm, xm+1, . . . , xn) ≤ E(ym, ym+1, . . . , yn). (1)

If the interaction energy is C0, coercive and translation periodic,

lim
R→+∞

inf
‖y−x‖≥R

E(x, y) = +∞, (2)

∀ t ∈ Zd, ∀x, y ∈ Rd, E(x+ t, y + t) = E(x, y), (3)

it is easy to show (see [14]) that minimizing configurations do exist. If d = 1 and
E is a smooth strongly twist translation periodic interaction energy,

∂2E

∂x∂y
≤ −α < 0, (4)

a minimizing configuration admits in addition a rotation number (see Aubry and
Le Daeron [2]). The interaction energy E is supposed to model the interaction
between two successive points as well as the interaction between the chain and the
environment.

For environments which are aperiodic, namely, with trivial translation group,
few results are known (see, for instance, [9, 13, 24]). If d = 1 and E is a twist
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interaction energy describing a quasicrystal environment, Gambaudo, Guiraud and
Petite [13] showed that minimizing configurations do exist, they all have a rotation
number and any prescribed real number is the rotation number of a minimizing
configuration.

We shall make slightly more general assumptions on the properties of E. We
say that E is translation bounded if

∀R > 0, sup
‖y−x‖≤R

E(x, y) < +∞, (5)

translation uniformly continuous if

∀R > 0, E(x, y) is uniformly continuous in ‖y − x‖ ≤ R, (6)

and superlinear if

lim
R→+∞

inf
‖y−x‖≥R

E(x, y)

‖y − x‖
= +∞. (7)

A modification of the arguments given by Zavidovique [25, Appendix] shows
that semi-infinite minimizing configurations do exist for a superlinear, translation
bounded and translation uniformly continuous E. We give a short proof of this
result in Appendix A, proposition 60. It is not clear that there exist bi-infinite
minimizing configurations in this general context.

We call ground energy the lowest energy per site for all configurations

Ē := lim
n→+∞

inf
x0,...,xn

1

n
E(x0, . . . , xn). (8)

A configuration {xn}n∈Z is calibrated at the level Ē if, for every k < l,[
E(xk, . . . , xl)− (l − k)Ē

]
≤ inf

n≥1
inf

y0=xk,...,yn=xl

[
E(y0, . . . , yn)− nĒ

]
. (9)

Notice that the number of sites on the right hand side is arbitrary. A calibrated
configuration is obviously minimizing; the converse is false in general, as discussed
in Appendix A. More generally, a configuration which is calibrated at some level c
(replace Ē by c in (9)) is also minimizing.

If d ≥ 1 and E is C0, coercive and translation periodic (conditions (2) and
(3)), an argument using the notion of weak KAM solutions as in [15, 11, 14] shows
that there exist calibrated configurations at the level Ē. Conversely, if d = 1
and E is twist translation periodic, every minimizing configuration is calibrated
for some modified energy Eλ(x, y) = E(x, y) − λ(y − x), λ ∈ R, with ground
energy Ē(λ). If d = 1 and E is arbitrary (at least translation bounded, translation
uniformly continuous and superlinear), it is not known in general that a calibrated
configuration does exist.

In order to give a positive answer to the question of the existence of calibrated
configurations, we will consider in this paper an interaction energy which has almost
periodic behavior. This leads to look at a family of interaction energies parameter-
ized by a minimal dynamical system.
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Concretely, we will assume there exists a family of interaction energies {Eω}ω
depending on an environment ω. Let Ω denote the collection of all possible envi-
ronments. We assume that a chain {xk + t}k∈Z translated in the direction t ∈ Rd
and interacting with the environment ω has the same local energy that {xk}k∈Z
interacting with the shifted environment τt(ω), where {τt : Ω→ Ω}t∈Rd is supposed
to be a group of bijective maps. More precisely, each environment ω defines an
interaction Eω(x, y) which is assumed to be topologically stationary in the following
sense

∀ω ∈ Ω, ∀ t ∈ Rd, ∀x, y ∈ Rd, Eω(x+ t, y + t) = Eτt(ω)(x, y). (10)

In order to ensure the topological stationarity, the interaction energy will be
supposed to have a Lagrangian form. Formally, we will use the following notations.

Notation 1. The space of environments
(
Ω, {τt}t∈Rd

)
is said to be almost periodic

if Ω is a compact metric space equipped with a minimal Rd-action {τt}t∈Rd, that is,
a family of homeomorphisms τt : Ω→ Ω satisfying the cocycle property τs◦τt = τs+t
for all s, t ∈ Rd, and

– τt(ω) is jointly continuous with respect to (t, ω),
– ∀ω ∈ Ω, {τt(ω)}t∈Rd is dense in Ω.

We say that the family of interaction energies {Eω}ω∈Ω derive from a Lagrangian
if there exists a continuous function L : Ω× Rd → R such that

∀ω ∈ Ω, ∀x, y ∈ Rd, Eω(x, y) := L(τx(ω), y − x). (11)

We call the set of data (Ω, {τt}t∈Rd , L) an almost periodic interaction model.

Notice that the expression “almost periodic” shall not be understood in the
sense of H. Bohr. The almost periodicity in the Bohr sense is canonically relied to
the uniform convergence. See [3] for a discussion on the different concepts of almost
periodicity accordingly to the uniform topology or, for instance, the compact open
topology.

Because of the particular form of Eω(x, y), these energies are translation bounded
and translation continuous uniformly in ω and in ‖y − x‖ ≤ R. We make precise
the two notions of coerciveness and superlinearity in the Lagrangian form.

Definition 2. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. The
Lagrangian L is said to be coercive if

lim
R→+∞

inf
ω∈Ω

inf
‖t‖≥R

L(ω, t) = +∞.

L is said to be superlinear if

lim
R→+∞

inf
ω∈Ω

inf
‖t‖≥R

L(ω, t)

‖t‖
= +∞.

L is said to be ferromagnetic if, for every ω ∈ Ω, Eω is of class C1(Rd × Rd) and,
for every ω ∈ Ω and x, y ∈ Rd,

x ∈ Rd 7→ ∂Eω
∂y

(x, y) ∈ Rd and y ∈ Rd 7→ ∂Eω
∂x

(x, y) ∈ Rd

are homeomorphisms.
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Note that if there is a constant α > 0 such that
∑d

i,j=1
∂2Eω
∂x∂y vivj ≤ −α

∑d
i=1 v

2
i

for all ω ∈ Ω, x, y ∈ Rd, then L is ferromagnetic and superlinear.
Let us illustrate our abstract notions by three typical examples.

Example 3. The classical periodic one-dimensional Frenkel-Kontorova model takes
into account the family of interaction energies Eω(x, y) = W (y − x) + Vω(x), with
ω ∈ S1, written in Lagrangian form as

L(ω, t) = W (t) + V (ω) =
1

2
|t− λ|2 +

K

(2π)2

(
1− cos 2πω

)
, (12)

where λ, K are constants. Here Ω = S1 and τt : S1 → S1 is given by τt(ω) = ω + t.
We observe that {τt}t is clearly minimal.

The following example comes from [13].

Example 4. Consider, for an irrational α ∈ (0, 1) \Q, the set

ω(α) := {n ∈ Z : bnαc − b(n− 1)αc = 1},

where b·c denotes the integer part. Notice that the distance between two consecutive
elements of ω(α) is b 1

αc or b 1
αc+ 1. Now let U0 and U1 be two real valued smooth

functions with supports respectively in (0, b 1
αc) and (0, b 1

αc + 1). Let Vω(α) be the
function defined by Vω(α)(x) = Uωn+1−ωn−b 1

α
c(x − wn), where ωn < ωn+1 are the

two consecutive elements of the set ω(α) such that ωn ≤ x < ωn+1. The associated
interaction energy is the function

Eω(α)(x, y) =
1

2
|x− y − λ|2 + Vω(α)(x). (13)

We can directly extend the definition of Vω′ to any relatively dense set ω′ of the real
line such that the distance between two consecutive points is in {b 1

αc, b
1
αc+ 1}. Let

Ω′ be the collection of all such sets. Then, for any x, t ∈ R, we have the relation
Vω′(x+ t) = Vω′−t(x), where ω′− t denotes the set of elements of ω′ ∈ Ω′ translated
by −t. In section 2, we explain how to associate a compact metric space Ω ⊂ Ω′,
where the group of translations acts minimally, as well as a Lagrangian from which
the family {Eω}ω∈Ω derives.

As we shall see in section 2, the construction given in example 4 extends to
any quasiscrystal ω of Rd, namely, to any set ω ⊂ Rd which is relatively dense
and uniformly discrete such that the difference set ω − ω is discrete and any finite
pattern repeats with a positive frequency (see definition 22). We will later focus
on the class of environments of quasicrystal type (see definition 17). An example
of almost periodic interaction model on R which is not of quasicrystal type can be
constructed in the following way.

Example 5. The underlying minimal flow is the irrational flow τt(ω) = ω+t(1,
√

2)
acting on Ω = T2. The family of interaction energies Eω derives from the La-
grangian

L(ω, t) :=
1

2
|t− λ|2 +

K1

(2π)2

(
1− cos 2πω1

)
+

K2

(2π)2

(
1− cos 2πω2

)
, (14)

where ω = (ω1, ω2) ∈ T2.
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For an almost periodic interaction model, the notion of ground energy is given
by the following definition.

Definition 6. We call ground energy of a family of interactions {Eω}ω∈Ω of La-
grangian form L : Ω× Rd → R the quantity

Ē := lim
n→+∞

inf
ω∈Ω

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn).

The above limit is actually a supremum by superadditivity and is finite as soon
as L is assumed to be coercive. Besides, we clearly have a priori bounds

inf
ω∈Ω

inf
x,y∈Rd

Eω(x, y) ≤ Ē ≤ inf
ω∈Ω

inf
x∈Rd

Eω(x, x). (15)

The constant Ē plays the role of a drift and Eω(x, y) − Ē acts like a “signed
distance”. It is natural to modify the previous notion of minimizing configurations
by saying that {xn}n∈Z is calibrated at the level Ē if

∑n−1
k=m[E(xk, xk+1)−Ē] realizes

the smallest signed distance between xm and xn for every m < n. Hence, we
consider the following key notions borrowed from the weak KAM theory (see, for
instance, [10]).

Definition 7. We call Mañé potential in the environment ω the function on Rd×Rd
given by

Sω(x, y) := inf
n≥1

inf
x=x0,...,xn=y

[
Eω(x0, . . . , xn)− nĒ

]
.

We say that a configuration {xk}k∈Z is calibrated for Eω (at the level Ē) if

∀m < n, Sω(xm, xn) = Eω(xm, xm+1, . . . , xn)− (n−m)Ē.

As discussed in section 3, the Mañé potential for any almost periodic environ-
ment is always finite. More importantly, calibrated configurations always exist for
some environments ω in the projection of a specific set called the Mather set. The
Mather set, denoted Mather(L), will be introduced properly in definition 11 of this
section. It is a nonempty compact set of Ω × Rd and its first projection (the pro-
jected Mather set) by pr : Ω×Rd → Ω, describes the set of environments for which
there exists a calibrated configuration passing through the origin of Rd.

The next theorem extends Aubry-Mather theory of the classical periodic model.
It is the first main result of this paper and will be proved in section 3.

Theorem 8. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model, with L a
C0 superlinear function. Then, for all ω ∈ pr(Mather(L)), there exists a calibrated
configuration {xk}k∈Z for Eω such that x0 = 0 and supk∈Z ‖xk+1 − xk‖ < +∞.

This theorem states that, in the almost periodic case, there exist at least one
environment and one calibrated configuration for that environment (and thus for
any environment in its orbit). It may happen that the projected Mather set does not
meet every orbit of the system. Indeed, in the almost periodic Frenkel-Kontorova
model described in example 5 , for λ = 0, we have Ē = 0 which is attained by taking
xn = 0 for every n ∈ Z. In addition, it is easy to check that the Mather set is reduced
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to the point (0T2 , 0R) and in particular the projected Mather set {0T2} meets a
unique orbit. We shall later show (theorem 19) that this pathology disappears
for a restricted class of one-dimensional almost periodic interaction models, which
generalizes example 4 and will be called weakly twist almost periodic interaction
model of quasicrystal type (see definitions 17 and 18).

We now present the definition of the Mather set. Let ω ∈ Ω be fixed. The ground
energy (in the environment ω) measures the mean energy per site of a configuration
{xn}n≥0 which distributes in Rd so that 1

nEω(x0, . . . , xn) → Ē. Notice that the
previous mean can be understood as an expectation of L(ω, t) with respect to a
probability measure µn,ω := 1

n

∑n−1
k=0 δ(τxk (ω), xk+1−xk):

1

n
Eω(x0, . . . , xn) =

∫
L(ω, t)µn,ω(dω, dt). (16)

Notice also that µn,ω satisfies the following property of pseudoinvariance∫
f(ω)µn,ω(dω, dt)−

∫
f(τt(ω))µn,ω(dω, dt) =

1

n

(
f ◦ τxn(ω)− f ◦ τx0(ω)

)
. (17)

This suggests to consider the set of all weak∗ limits of µn,ω as n→ +∞. Following
[20], we call these limit measures holonomic probabilities.

Definition 9. A probability measure µ on Ω× Rd is said to be holonomic if

∀ f ∈ C0(Ω),

∫
f(ω)µ(dω, dt) =

∫
f(τt(ω))µ(dω, dt).

Let Mhol denote the set of all holonomic probability measures.

The set Mhol is certainly not empty since it contains any δ(ω,0), ω ∈ Ω. It is then
natural to look for holonomic measures that minimize L. We show that minimizing
holonomic measures do exist and that the lowest mean value of L is the ground
energy.

Proposition 10. If L is C0 coercive, then Ē = inf{
∫
Ldµ : µ ∈ Mhol} and the

infimun is attained by some holonomic probability measure.

A measure that attains the previous infimum is called minimizing.

Definition 11. We denote by Mmin the set of minimizing measures. We call
Mather set of L the set

Mather(L) := ∪µ∈Mminsupp(µ) ⊆ Ω× Rd.

The projected Mather set is just pr(Mather(L)), where pr : Ω×Rd → Ω is the first
projection.

Proposition 12.

1. If L is C0 coercive, then

∃µ ∈Mmin with Mather(L) = supp(µ).

In particular, Mather(L) is closed.
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2. If L is C0 superlinear, then Mather(L) is compact.

The set of holonomic measures may be seen as a dual object to the set of
coboundaries {u− u ◦ τt : u ∈ C0(Ω), t ∈ Rd}. Proposition 10 admits thus a dual
version that will actually be proved first.

Proposition 13 (The sup-inf formula). If L is C0 coercive, then

Ē = sup
u∈C0(Ω)

inf
ω∈Ω, t∈Rd

[
L(ω, t) + u(ω)− u ◦ τt(ω)

]
.

We do not know whether the above supremum is achieved in the aperiodic case
(i.e. when any map τt with t 6= 0 has no fixed point). There is finally a third way
to compute the ground energy, which says that the exact choice of the environment
ω is irrelevant.

Proposition 14. If L is C0 coercive, then

∀ω ∈ Ω, Ē = lim
n→+∞

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn).

We present now the definition of a weakly twist interaction model of quasicrystal
type (generalizing example 4). We decided to work in a slightly more general frame
than the usual one for quasicrystals (see section 2). The definition is presented
only for the one-dimensional case, nevertheless the description can be done in any
dimension. We begin by introducing the notions of flow boxes, transverse section,
and box decomposition.

Definition 15. Let (Ω, {τt}t∈R) be an almost periodic environment.
– An open set U ⊂ Ω is said to be a flow box of size R > 0 if there exists a compact
subset Ξ ⊂ Ω, called transverse section, such that:

� the induced topology on Ξ admits a basis of closed and open subsets, called
clopen subsets,

� τ(t, ω) = τt(ω), (t, ω) ∈ R× Ξ, is a homeomorphism from BR(0)× Ξ onto U .
We shall later write BR = BR(0) and τ−1

(i) = τ−1
|Ui : Ui → BR × Ξ for a flow box Ui.

– Two flow boxes Ui = τ [BRi × Ξi] and Uj = τ [BRj × Ξj ] are said to be admissible
if, whenever Ui ∩ Uj 6= ∅, there exists ai,j ∈ R such that

τ−1
(j) ◦ τ(t, ω) = (t− ai,j , τai,j (ω)), ∀ (t, ω) ∈ τ−1

(i) (Ui ∩ Uj).

– A flow box decomposition {Ui}i∈I is a cover of Ω by admissible flow boxes.

Typical examples of these structures are given by the suspensions of minimal
homeomorphisms on a Cantor set with a locally constant roof functions.

The notion of transversally constant Lagrangian has been introduced in [13].
In the periodic case, equation (3) shows that the interaction energy keeps a con-
stant value by moving the whole configuration by a distance equal to a multiple
of the period. In example 4, equation (13) and the minimality of the action by an
irrational rotation on the circle show that, given any finite configuration, the inter-
action energy keeps the same value for infinitely many translated configurations.
Moreover, this set of translations is a relatively dense set in R depending on the
configuration. We formalize this idea in the following definition.
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Definition 16. Let (Ω, {τt}t∈R, L) be an almost periodic interaction model admit-
ting a flow box decomposition.
– A flow box τ [BR×Ξ] is said to be compatible with respect to a flow box decompo-
sition {Ui}i∈I , where Ui = τ [BRi × Ξi], when, for every |t| < R, there exist i ∈ I,
|ti| < Ri and a clopen subset Ξ̃i of Ξi such that τt(Ξ) = τti(Ξ̃i).
– L is said to be transversally constant with respect to a flow box decomposition
{Ui}i∈I if, for every flow box τ [BR × Ξ] compatible with respect to {Ui}i∈I ,

∀ω, ω′ ∈ Ξ, ∀ |x|, |y| < R, Eω′(x, y) = Eω(x, y).

We extend the case treated in [13] for quasicrystals to the almost periodic in-
teraction models. Similarly to studies for the Hamilton-Jacobi equation (see, for
instance, [6, 7, 8, 19]), we will consider here a stationary ergodic setting.

Definition 17. An almost periodic interaction model (Ω, {τt}t∈R, L) is said to be
of quasicrystal type if the action {τt}t∈R is uniquely ergodic (with unique invariant
probability measure λ) and L is transversally constant with respect to some flow box
decomposition.

The strongly twist property (4) is the main assumption in Aubry-Mather theory
([2, 21]). We slightly extend this property.

Definition 18. A one-dimensional almost periodic interaction model (Ω, {τt}t∈R, L)
satisfies the weakly twist property if there exists a C0 function U : Ω→ R such that,
for every ω ∈ Ω, the function Ẽω(x, y) := Eω(x, y) + U(τx(ω)) − U(τy(ω)) is C2,
and

∀x, y ∈ R, ω ∈ Ω
∂2Ẽω
∂x∂y

(x, ·) < 0 and
∂2Ẽω
∂x∂y

(·, y) < 0 a.e.

Now we state the second main result of this paper, which says that, in the qua-
sicrystal case, for any environment, there always exists a calibrated configuration.
Its proof is detailed in section 4.

Theorem 19. Let (Ω, {τt}t∈R, L) be a one-dimensional weakly twist interaction
model of quasicrystal type. Then the projected Mather set meets uniformly any
orbit of the flow τt. More precisely, for every ω ∈ Ω, there exists a calibrated
configuration for Eω, say {xk,ω}k∈Z, with bounded jumps and at a bounded distance
from the origin uniformly in ω:

∀m < n, Sω(xm,ω, xn,ω) =
n−1∑
k=m

Eω(xk,ω, xk+1,ω)− (n−m)Ē,

sup
ω∈Ω

sup
k∈Z
|xk+1,ω − xk,ω| < +∞, sup

ω∈Ω
|x0,ω| < +∞.

As in examples 3 and 4 as well as in the general setting described in section 2,
interaction models of quasicrystal type are easily built when the interaction energy
has the form Eω(x, y) = W (y− x) +V1(τx(ω)) +V2(τy(ω)), where W is superlinear
weakly convex and V1 and V2 are locally transversally constant and smooth along
the flow.
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Definition 20. Let (Ω, {τt}t∈R) be an almost periodic interaction model. A func-
tion V : Ω → R is said to be locally transversally constant on a flow box decompo-
sition {Ui}i∈I , where Ui = τ(BRi × Ξi), if

∀ i ∈ I, ∀ω, ω′ ∈ Ξi, ∀ |x| < Ri, V (τx(ω)) = V (τx(ω′)).

Notice that, in example 5, the locally transversally constant property is not
verified.

Corollary 21. Let (Ω, {τt}t∈R) be a one-dimensional almost periodic interaction
model. Assume that (Ω, {τt}t∈R) is uniquely ergodic. Let V1, V2 : Ω → R be C0

locally transversally constant functions on the same flow box decomposition that
are C2 along the flow (namely, for all ω, the function t ∈ R 7→ Vi(τt(ω)) is C2,
i = 1, 2). Let W : R → R be a C2 superlinear weakly convex function (namely,
W ′′(t) > 0 a.e. and |W ′(t)| → +∞ as |t| → +∞). Define

L(ω, t) = W (t) + V1(ω) + V2(τt(ω)).

Then L is C0, superlinear and transversally constant, (Ω, {τt}t∈R, L) is a one-
dimensional weakly twist interaction model of quasicrystal type and all conclusions
of theorem 19 apply.

2 Backgrounds on quasicrystals

In this section, we recall the basic definitions and properties concerning Delone sets
and specially quasicrystals. More details on Delone sets can be found, for instance,
in [4, 17, 18]. Associated to Delone sets, we will consider strongly equivariant
functions. We recall their main properties here and we refer the reader to [13, 16]
for the proofs.

Definition of quasicrystal. A Delone set ω is a discrete subset of the Euclidean
space Rd for which there exist two positive real numbers rω and Rω satisfying the
following properties:

– uniform discreteness: each open ball of radius rω in Rd contains at most one
point of ω.

– relative density: each closed ball of radius Rω in Rd contains at least one point
of ω.

If precision is required, we will say that ω is rω-uniformly discrete and Rω-relatively
dense.

For R > Rω, we say that a subset P of a Delone set ω is a R-patch (or a pattern
for short) of ω if, for some y ∈ ω, one has

P = ω ∩BR(y),
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where BR(y) denotes the open ball of a radius R centered at y. We will say that the
patch is centered at y (notice that the center may not be unique). The collection
of return vectors associated to the patch P is the set

RP(ω) = {v ∈ Rd : P + v is a patch of ω},

where P + v denotes the translation of all the points of P by the vector v. The set
of occurrences of P is defined as ωP := xP + RP(ω).

Definition 22. A Delone set ω ⊂ Rd is repetitive if it satisfies all the two following
properties:

– finite local complexity: for any real R > 0, the Delone set ω has just a finite
number of R-patches up to translations;

– repetitivity: for each R > 0, there is a real number M(R) > 0 such that any
closed ball of radius M(R) contains at least one occurrence of every R-patch
of ω.

A repetitive Delone set ω ⊂ Rd is a quasicrystal if in addition it satisfies

– uniform pattern distribution: for any pattern P of ω, uniformly in x ∈ Rd,
the following limit exists

lim
N→+∞

#
(
{z ∈ Rd : z is an occurrence of P} ∩BN (x)

)
Leb(BN (x))

= ν(P) > 0.

Notice that the finite local complexity is equivalent to the property that the
intersection of the difference set ω − ω with any bounded set is finite (see [18]).

Basic examples of quasicrystals are derived from Beatty sequences: for a real
number α ∈ (0, 1), the associated the set is ω(α) := {n ∈ Z : bnαc−b(n−1)αc = 1}.
For details, we refer to [18].

Observe that, when ω is a repetitive Delone set (respectively, a quasicrystal),
then ω + v, obtained by translating any point of ω by v ∈ Rd, is also a repetitive
Delone set (respectively, a quasicrystal). A Delone set is said to be aperiodic if
ω + v = ω implies v = 0, and periodic if its stabilizers contains a cocompact
subgroup of Rd. In the former example, it is simple to check that the quasicrystal
ω(α) is aperiodic if, and only if, α is irrational, as in example 4.

We introduce now a combinatorial background. For a Delone set ω and a real
number R > 0, the R-atlas Aω(R) of ω is the collection of all the R-patches centered
at a point of ω and translated to the origin. More precisely, we set

Aω(R) := {ω ∩BR(x)− x : x ∈ ω}.

Notice that ω has finite local complexity if, and only if, Aω(R) is finite for every R.
For a quasicrystal ω and a patch P, it is plain to check that the collection of return
vectors RP(ω) is also a quasicrystal. Hence ωP, the set of all the occurrences of P,
is also a quasicrystal.

In order to avoid an unnecessary dichotomy, we will mainly focus on aperi-
odic quasicrystals. The following lemma is well-known and its proof is plain by
contradiction.
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Lemma 23. If ω is an aperiodic quasicrystal, then, given S > 0, there exists a
constant RS > 0 such that, for any R ≥ RS and any R-patch P of ω, the quasicrystal
ωP is S-uniformly discrete.

Hull of a quasicrystal. As we already mentioned, a translation of a repetitive
Delone set ω∗ is also a repetitive Delone set. We will equipped the set ω∗ + Rd of
all the translations of ω∗ with a topology that reflects its combinatorial properties:
the Gromov-Hausdorff topology. Roughly speaking, two Delone sets in this set will
be close whenever they have the same pattern in a large neighborhood of the origin,
up to a small translation.

Such a topology is metrizable and an associated metric can be defined as follows
(for details, see [4, 16]): given ω and ω two translations of ω∗, their distance is

D(ω, ω) := inf
{ 1

r + 1
: ∃ |v|, |v| < 1

r
s.t. (ω + v) ∩Br(0) = (ω + v) ∩Br(0)

}
.

The continuous hull Ω(ω∗) of the Delone set ω∗ is the completion of such a metric
space. The finite local complexity hypothesis implies that Ω(ω∗) is a compact
metric space and that any element ω ∈ Ω(ω∗) is a Delone set which has, up to
translations, the same patterns as ω∗, namely, Aω(R) = Aω∗(R) for any R > 0 (see
[17, 4]). Moreover, Ω(ω∗) is equipped with a continuous Rd-action given by the
homeomorphisms

τv : ω 7→ ω − v for ω ∈ Ω(ω∗).

Given ω ∈ Ω(ω∗) and S > 0 such that ω ∩ BS(0) 6= ∅, the associated cylinder
set is defined as

Ξω,S := {ω ∈ Ω(ω∗) : ω ∩BS(0) = ω ∩BS(0)}.

The translations of cylinder sets,

Uω,S,ε := {ω + v : v ∈ Bε(0), ω ∈ Ξω,S}, for ε > 0, S > 0, ω ∈ Ω(ω∗),

form a base for the topology of Ω(ω∗).
The dynamical system (Ω(ω∗),Rd) has a dense orbit (namely, the orbit of ω∗).

Actually, the repetitivity hypothesis is equivalent to the minimality of the action,
and so any orbit is dense. The uniform pattern distribution is equivalent to the
unique ergodicity: the Rd-action has a unique invariant probability measure. For
details on these properties, we refer the reader to [17, 4]. We summarize these facts
in the following proposition.

Proposition 24 ([17, 4]). Let ω∗ be a quasicrystal of Rd. Then the dynamical
system (Ω(ω∗),Rd) is minimal and uniquely ergodic.

The canonical transversal Ξ0(ω∗) of the hull Ω(ω∗) of a quasicrystal is the set
of quasicrystals ω in Ω(ω∗) such that the origin 0 belongs to ω. The designation
of transversal comes from the obvious fact that the set Ξ0(ω∗) is transverse to the
action: for any vector v smaller than the uniform discreteness constant, clearly
τv(ω) 6∈ Ξ0(ω∗) for any ω ∈ Ξ0(ω∗). This gives a Poincaré section.
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Proposition 25 ([17]). The canonical transversal Ξ0(ω∗) and the cylinder sets Ξω,S
of an aperiodic quasicrystal ω∗ are Cantor sets. If ω∗ is a periodic quasicrystal, these
sets are finite.

It follows, in one dimension, that the hull admits a flow box decomposition.
This can be generalized straightforwardly in any dimension.

Lemma 26. Let ω∗ be an aperiodic repetitive Delone set of R with constant of
relative denseness Rω∗. Then, for any large enough R > 0, there exist elements
ω1, . . . , ωn ∈ Ξ0(ω∗) such that the collection of open sets {Uωi,R,Rω∗}

n
i=1 is a flow

box decomposition of the almost periodic environment (Ω(ω∗), {τt}t∈R).

Proof. By lemma 23, for all large enough R and for any R-patch P of ω∗, the
discreteness constant rωP of the occurrence set ωP, is greater than 4Rω∗. Notice that,
by the definition of the constant Rω∗ , for all S > 0, the collection {Uω,S,Rω∗}ω∈Ξ0(ω∗)

is a cover of the hull Ω(ω∗). Moreover, the choice of the constant R implies that,
for any ω ∈ Ξ0(ω∗), the map τ : BRω∗ (0) × Ξω,R+2Rω∗ → Uω,R+2Rω∗ ,Rω∗ is an
homeomorphism. This choice also implies that, for any ω1, ω2 ∈ Ξ0(ω∗), there is at
most one vector a ∈ B2Rω∗(0) such that τaΞω1,R+2Rω∗ ∩ Ξω2,R+2Rω∗ 6= ∅. Indeed, if
there are a, a′ ∈ B2Rω∗(0) and ω, ω′ ∈ Ξω1,R+2Rω∗ such that

τaω ∩BR+2Rω∗ (0) = τa′ω
′ ∩BR+2Rω∗ (0),

we have in particular

ω ∩BR(a)− a = ω′ ∩BR(a′)− a′,

which means that a−a′ is an occurrence of an R-patch, and then a = a′ by the choice
of R. Therefore, if two open sets Uω1,R+2Rω∗ ,Rω∗ and Uω2,R+2Rω∗ ,Rω∗ are intersect-
ing, there are t, t′ ∈ BRω∗ (0) such that τt(Ξω1,R+2Rω∗ ) intersects τt′(Ξω2,R+2Rω∗ ).
It follows that the vector t − t′ is unique, and the two open sets Uω1,R+2Rω∗ ,Rω∗
and Uω2,R+2Rω∗ ,Rω∗ are admissible. Thus, any finite subcover of the collection
{Uω,R,Rω∗}ω∈Ξ0(ω∗) is a flow box decomposition.

For a more dynamical description of the hull in one dimension, we consider the
return time function % : Ξ0(ω∗)→ R+ given by

%(ω) := inf{t > 0 : τt(ω) ∈ Ξ0(ω∗)}, ∀ω ∈ Ξ0(ω∗).

The finite local complexity implies that this function is locally constant. The first
return map T : Ξ0(ω∗)→ Ξ0(ω∗) is then given by

T (ω) := τ%(ω)(ω), ∀ω ∈ Ξ0(ω∗).

It is straightforward to check that, for a repetitive Delone set ω∗, the dynamical
system (Ω(ω∗),R) is conjugate to the suspension of the map T on the set Ξ0(ω∗) with
the time map given by the function %. Thus, when ω∗ is periodic, the continuous hull
Ω(ω∗) is homeomorphic to a circle. Otherwise, Ω(ω∗) has a laminated structure: it
is locally the product of a Cantor set by an interval. For the quasicrystal case, the
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unique invariant probability measure on Ω(ω∗) induces a finite measure on Ξ0(ω∗)
that is T -invariant (see [13]).

Associated to a repetitive Delone set ω of Rd, we will mainly consider strongly
ω-equivariant functions as introduced in [16].

Definition 27. Let ω be a repetitive Delone set of Rd. A function f : Rd → R is
strongly ω-equivariant with range R > 0 if, for x, y ∈ Rd,(

BR(x) ∩ ω
)
− x =

(
BR(y) ∩ ω

)
− y ⇒ f(x) = f(y).

In example 4, the function Vω(α) is strongly ω(α)-equivariant with range b 1
αc+1.

Let us mention another example from [16], which holds for any repetitive Delone set
ω∗. Let δ :=

∑
x∈ω∗ δx be the Dirac comb supported on the points of a quasicrystal

ω∗ and let g : R → R be a smooth function with compact support. Then, one
may check that the convolution product δ ∗ g is a smooth strongly ω∗-equivariant
function. Actually, any strongly ω-equivariant function can be defined by a similar
procedure [16].

The following lemma shows that strongly ω∗-equivariant functions arise from
functions on the space Ω(ω∗) that are constant on the cylinder sets.

Lemma 28 ([13, 16]). Given a repetitive Delone set ω∗ of Rd, let Vω∗ : Rd → R be
a continuous strongly ω∗-equivariant function with range R. Then, there exists a
unique continuous function V : Ω(ω∗)→ R such that

Vω∗(x) = V ◦ τx(ω∗), ∀x ∈ Rd.

Moreover, there exists S > R such that V is constant on any cylinder set Ξω,S,
ω ∈ Ω(ω∗). In addition, if Vω∗ is C2, then V is C2 along the flow (that is, for all
ω, the function x ∈ Rd 7→ V (τx(ω)) is C2).

Thus, for d = 1 and with the notation of the former lemma, we get that, for any
large enough constant R′ > S + Rω∗ , the function V : Ω(ω∗) → R is transversally
constant on a flow box decomposition {Uωi,R′,Rω∗}

n
i=1 given by lemma 26. This

comes from the fact that τx(ω′) ∈ Ξτx(ω),S whenever x ∈ BRω∗ (0), ω, ω′ ∈ Ξωi,S+Rω∗ ,
and V is constant on such cylinder sets.

3 Mather set

The Mather set describes the set of environments for which there exist calibrated
configurations. The Mather set is defined in terms of holonomic minimizing mea-
sures. Before proving propositions 10, 13 and 14, we note temporarily

Ēω = lim
n→+∞

inf
x0,...,xn∈Rd

1

n
Eω(x0, . . . , xn), L̄ := inf

{∫
Ldµ : µ ∈Mhol

}
,

and K̄ := sup
u∈C0(Ω)

inf
ω∈Ω, t∈Rd

[
L(ω, t) + u(ω)− u ◦ τt(ω)

]
.

We first show that the infimum is attained in proposition 10.
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Proof of proposition 10. We shall prove later that L̄ = Ē. We prove now that the
infimum is attained in L̄ := inf{

∫
Ldµ : µ ∈Mhol}. Let

C := sup
ω∈Ω

L(ω, 0) ≥ L̄ and Mhol,C :=
{
µ ∈Mhol :

∫
Ldµ ≤ C

}
.

We equip the set of probability measures on Ω× Rd with the weak topology (con-
vergence of sequence of measures by integration against compactly supported con-
tinuous test functions). By coerciveness, for every ε > 0 and M > inf L such that
ε > (C− inf L)/(M − inf L), there exists R(ε) > 0 with infω∈Ω,‖t‖≥R(ε) L(ω, t) ≥M .
By integrating L− inf L, we get

∀µ ∈Mhol,C , µ
(
Ω× {t : ‖t‖ ≥ R(ε)}

)
≤
∫

L− inf L

M − inf L
dµ ≤ C − inf L

M − inf L
< ε.

We have just proved that the set Mhol,C is tight. Let (µn)n≥0 ⊂Mhol,C be a sequence
of holonomic measures such that

∫
Ldµn → L̄. By tightness, we may assume that

µn → µ∞ with respect to the strong topology (convergence of sequence of measures
by integration against bounded continuous test functions). In particular, µ∞ is
holonomic. Moreover, for every φ ∈ C0(Ω, [0, 1]), with compact support,

0 ≤
∫

(L− L̄)φdµ∞ = lim
n→+∞

∫
(L− L̄)φdµn ≤ lim inf

n→+∞

∫
(L− L̄) dµn = 0.

Therefore, µ∞ is minimizing.

We next show that there is no need to take the closure in the definition of the
Mather set. We will show later that it is compact.

Proof of proposition 12 – Item 1. We show that Mather(L) = supp(µ) for some
minimizing measure µ. Let {Vi}i∈N be a countable basis of the topology of Ω×Rd
and let

I := {i ∈ N : Vi ∩ supp(ν) 6= ∅ for some ν ∈Mmin}.

We reindex I = {i1, i2, . . .} and choose for every k ≥ 1 a minimizing measure µk so
that Vik ∩ supp(µk) 6= ∅ or equivalently µk(Vik) > 0. Let µ :=

∑
k≥1

1
2k
µk. Then µ

is minimizing. Suppose some Vi is disjoint from the support of µ. Then µ(Vi) = 0
and, for every k ≥ 1, µk(Vi) = 0. Suppose by contradiction that Vi ∩ supp(ν) 6= ∅
for some ν ∈Mmin, then i = ik for some k ≥ 1 and, by the choice of µk, µk(Vi) > 0,
which is not possible. Therefore, Vi is disjoint from the Mather set and we have
just proved Mather(L) ⊆ supp(µ) or Mather(L) = supp(µ).

Item 2 of proposition 12 will be proved later. We shall need the fact Φ = L− L̄
on the Mather set, that will be proved in lemma 36.

The two formulas given in propositions 10 and 13 are two different ways to
compute Ē. It is not an easy task to show that the two values are equal. It is the
purpose of lemma 29 to give a direct proof of this fact. We also give a second proof
using the minimax formula (see remark 31).

Since we do not yet know that Ēω = L̄ = K̄ = Ē, we first prove the following
result.
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Lemma 29. If L is C0 coercive, then L̄ = K̄ and there exists µ ∈ Mhol such that
L̄ =

∫
Ldµ.

Proof. Part 1. We show that L̄ ≥ K̄. Indeed, for any holonomic measure µ and
any function u ∈ C0(Ω),∫

Ldµ =

∫
[L(ω, t) + u(ω)− u ◦ τt(ω)]µ(dω, dt)

≥ inf
ω∈Ω, t∈Rd

[
L(ω, t) + u(ω)− u ◦ τt(ω)

]
.

We conclude by taking the supremum on u and the infimum on µ.

Part 2. We show that K̄ ≥ L̄. Let X := C0
b (Ω × Rd) be the vector space of

bounded continuous functions equipped with the uniform norm. A coboundary is a
function f of the form f = u◦τ−u or f(ω, t) = u◦τt(ω)−u(ω) for some u ∈ C0(Ω).
Let

A := {(f, s) ∈ X × R : f is a coboundary and s ≥ K̄} and

B := {(f, s) ∈ X × R : inf
ω∈Ω, t∈Rd

(L− f)(ω, t) > s}.

Then A and B are nonempty convex subsets of X × R. They are disjoint by the
definition of K̄ and B is open because L is coercive. By Hahn-Banach theorem,
there exists a nonzero continuous linear form Λ on X × R which separates A and
B. The linear form Λ is given by λ⊗ α, where λ is a continuous linear form on X
and α ∈ R. The linear form λ is, in particular, continuous on C0

0 (Ω× Rd) and, by
Riesz-Markov theorem,

∀ f ∈ C0
0 (Ω× Rd), λ(f) =

∫
f dµ,

for some signed measure µ. By separation, we have

λ(f) + αs ≤ λ(u− u ◦ τ) + αs′,

for u ∈ C0(Ω), f ∈ X and s, s′ ∈ R such that infΩ×Rd(L− f) > s and s′ ≥ K̄. By
multiplying u by an arbitrary constant, one obtains

∀u ∈ C0(Ω), λ(u− u ◦ τ) = 0.

The case α = 0 is not admissible, since otherwise λ(f) ≤ 0 for every f ∈ X and
λ would be the null form, which is not possible. The case α < 0 is not admissible
either, since otherwise one would obtain a contradiction by taking f = 0 and
s→ −∞. By dividing by α > 0 and changing λ/α to λ (as well as µ/α to µ), one
obtains

∀ f ∈ X, λ(f) + inf
Ω×Rd

(L− f) ≤ K̄.

By taking f = c1, one obtains c(λ(1) − 1) ≤ K̄ − infΩ×Rd L for every c ∈ R, and
thus λ(1) = 1. By taking −f instead of f , one obtains λ(f) ≥ infΩ×Rd L − K̄ for
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every f ≥ 0, which (again arguing by contradiction) yields λ(f) ≥ 0. In particular,
µ is a probability measure. We claim that

∀u ∈ C0(Ω),

∫
(u− u ◦ τ) dµ = 0.

Indeed, given R > 0, consider a continuous function 0 ≤ φR ≤ 1, with compact
support on Ω×BR+1(0), such that φR ≡ 1 on Ω×BR(0). Then

u− u ◦ τ ≥ (u− u ◦ τ)φR + min
Ω×Rd

(u− u ◦ τ)(1− φR).

Since λ and µ coincide on C0
0 (Ω× Rd) + R1, one obtains

0 = λ(u− u ◦ τ) ≥
∫

(u− u ◦ τ)φR dµ+ min
Ω×Rd

(u− u ◦ τ)

∫
(1− φR) dµ.

By letting R→ +∞, it follows that
∫
(u− u ◦ τ) dµ ≤ 0 and the claim is proved by

changing u to −u. In particular, µ is holonomic. We claim that

∀ f ∈ X,
∫
f dµ+ inf

Ω×Rd
(L− f) ≤ K̄.

Indeed, we first notice that the left hand side does not change by adding a constant
to f . Moreover, if f ≥ 0 and 0 ≤ fR ≤ f is any continuous function with compact
support on Ω×BR+1(0) which is identical to f on Ω×BR(0), the claim follows by
letting R→ +∞ in∫

fR dµ+ inf
Ω×Rd

(L− f) ≤ λ(fR) + inf
Ω×Rd

(L− fR) ≤ K̄.

We finally prove the opposite inequality L̄ ≤ K̄. Given R > 0, denote LR =
min(L,R). Since L is coercive, LR ∈ X. Then L − LR ≥ 0 and

∫
LR dµ ≤ K̄. By

letting R→ +∞, one obtains
∫
Ldµ ≤ K̄ for some holonomic measure µ.

Remark 30. The existence of a minimizing holonomic probability may be also
obtained from basic properties of Kantorovich-Rubinstein topology on the set of
probabilities measures on a Polish space (X, d). Given a point x0 ∈ X, let us
consider the set of probability measures on the Borel sets of X that admit a finite
first moment, i.e.,

P1(X) =
{
µ :

∫
X
d(x0, x) dµ(x) < +∞

}
.

Notice that this set does not depend on the choice of the point x0. The Kantorovitch-
Rubinstein distance on P1(X) is defined for µ, ν ∈ P1(X) by

D(µ, ν) := inf
{∫

X×X
d(x, y) dγ(x, y) : γ ∈ Γ(µ, ν)

}
,

where Γ(µ, ν) denotes the set of all the probability measures γ on X × X with
marginals µ and ν on the first and second factors, respectively.
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Recall that a continuous function L : X → R is said to be superlinear on a Polish
space X if the map defined by x ∈ X 7→ L(x)/

(
1 + d(x, x0)

)
∈ R is proper. Notice

that this definition is also independent of the choice of x0 and, by considering the
distance d̂ := min(d, 1) on X, any proper function is superlinear for d̂. The follow-
ing well known property gives us a sufficient condition for the relative compactness
in P1(X) (for a detailed discussion, we refer the reader to [1]).

Property. If L is a superlinear continuous function on a Polish space X, then
the map µ 7→

∫
Ldµ is lower semi-continuous and proper, namely, for all c ∈ R, the

set {µ ∈ P1(X) :
∫
Ldµ ≤ c} is compact for the Kantorovich-Rubinstein topology.

Applying this result to X = Ω × Rd, one may guarantee the existence of mini-
mizing holonomic probabilities for C0 superlinear Lagrangians, since it is plain to
check that the set of holonomic measures is a closed subset of P1(Ω × Rd) for the
Kantorovich-Rubinstein topology.

Remark 31 (A second proof for the sup-inf formula). Notice that

min
ω∈Ω

L(ω, 0) = min
ω∈Ω

∫
(L+ u− u ◦ τ) dδ(ω,0) ∀u ∈ C0(Ω)

≥ inf
ω∈Ω, t∈Rd

∫
(L+ u− u ◦ τ) dδ(ω,t)

≥ inf
µ∈P1(Ω×Rd)

∫
(L+ u− u ◦ τ) dµ

≥ min
ω∈Ω, t∈Rd

(L+ u− u ◦ τ)(ω, t)

clearly implies

K̄ = sup
u∈C0(Ω)

inf
µ∈P1(Ω×Rd)

∫
(L+ u− u ◦ τ) dµ.

Besides, for a positive integer `, we have the equality

K̄` := sup
u∈C0(Ω)
‖u‖∞≤`

inf
µ∈P1(Ω×Rd)

∫
(L+ u− u ◦ τ) dµ = sup

u∈C0(Ω)
‖u‖∞≤`

inf
µ∈C`

∫
(L+ u− u ◦ τ) dµ,

(18)
where the nonempty convex subset

C` :=
{
µ ∈ P1(Ω× Rd) :

∫
Ldµ ≤ min

ω∈Ω
L(ω, 0) + 2`

}
(19)

is closed thanks to the property highlighted in the previous remark. Obviously, it
follows that K̄` ↑ K̄ ≤ minω∈Ω L(ω, 0).

We will use now a topological minimax theorem which is a generalization of
Sion’s classical result [22]. For a recent review on such a subject, see [23]. We
state a particular case of theorem 5.7 there.

Topological Minimax Theorem. Let X,Y be Hausdorff topological spaces,
and C ⊂ X,D ⊂ Y be nonempty closed subsets. Let F (x, y) be a real-valued function
on C ×D for which
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– there exists a real number α∗ > supy∈D infx∈C F (x, y) such that, for every
α ∈ (supy∈D infx∈C F (x, y), α∗),

- for every finite set ∅ 6= H ⊂ D, the set ∩y∈H{x ∈ C : F (x, y) ≤ α} is either
empty or connected,

- for every set K ⊂ C, the set ∩x∈K{y ∈ D : F (x, y) > α} is either empty or
connected;

– for any y ∈ D and x ∈ C, F (x, y) is lower semi-continuous in x and upper
semi-continuous in y;

– there exists y0 ∈ D such that x 7→ F (x, y0) is proper.

Then,
inf
x∈C

sup
y∈D

F (x, y) = sup
y∈D

inf
x∈C

F (x, y).

In order to apply such a result, we take then into account here the function
F : (µ, u) ∈ P1(Ω×Rd)×C0(Ω) 7→

∫
(L+ u− u ◦ τ) dµ and we consider the closed

sets C` given in (19) and D` := {u ∈ C0(Ω) : ‖u‖∞ ≤ `}. Since F is affine in both
variables, it satisfies the first point of the above theorem. The property stated in the
previous remark shows that F also verifies the second and the third points. Thus,
from equation (18), we get by the topological minimax theorem

K̄` = inf
µ∈C`

sup
u∈D`

∫
(L+ u− u ◦ τ) dµ. (20)

If µ0 ∈ C`0 is not a holonomic probability, there exists a function u0 ∈ C0(Ω) such
that

∫ (
u0(ω) − u0(τt(ω))

)
dµ0(ω, t) > 0. Moreover, up to a multiplication by a

scalar, we can suppose that
∫

(u0−u0 ◦ τ) dµ0 > minω∈Ω L(ω, 0)− infΩ×Rd L. Thus,
µ0 may be disregarded in the infimum in (20) whenever ` ≥ `0 + ‖u0‖∞. Since µ0

is any non-holonomic probability with respect to which L is integrable, we finally
conclude that

K̄ = lim
`→∞

inf
µ∈C`

sup
u∈D`

∫
(L+ u− u ◦ τ) dµ = inf

µ∈Mhol

∫
Ldµ = L̄.

The holonomic condition shall not be confused with invariance in the usual sense
of dynamical systems. We may nevertheless introduce a larger space than Ω × Rd
and a suitable dynamics on such a space. We will apply Birkhoff ergodic theorem
with respect to that dynamical system to prove that L̄ ≥ Ē.

Notation 32. Consider Ω̂ := Ω× (Rd)N equipped with the product topology and the
Borel sigma-algebra. Ω̂ becomes a complete separable metric space. Any probability
measure µ on Ω × Rd admits a unique disintegration along the the first projection
pr : Ω× Rd → Ω,

µ(dω, dt) := pr∗(µ)(dω)P (ω, dt),

where {P (ω, dt)}ω∈Ω is a measurable family of probability measures on Rd. Let µ̂
be the Markov measure with initial distribution pr∗(µ) and transition probabilities
P (ω, dt). For Borel bounded functions of the form f(ω, t0, . . . , tn), we have

µ̂(dω, dt) = pr∗(dω)P (ω, dt0)P (τt0(ω), dt1) · · ·P (τt0+···+tn−1(ω), dtn).
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If µ is holonomic, then µ̂ is invariant with respect to the shift map

τ̂ : (ω, t0, t1, . . .) 7→ (τt0(ω), t1, t2, . . .).

We will call µ̂ the Markov extension of µ. Conversely, the projection of any τ̂ -
invariant probability measure µ̃ on Ω × Rd is holonomic. This gives a fourth way
to compute Ē

Ē = inf
{∫

L̂ dµ̃ : µ̃ is a τ̂ -invariant probability measure on Ω̂
}
,

where L̂(ω, t0, t1, . . .) := L(ω, t0) is the natural extension of L on Ω̂.

Proof of propositions 10, 13 and 14.
– Part 1: We know that K̄ = L̄ by lemma 29.

– Part 2: We claim that Ēω = Ē for all ω ∈ Ω. By the topological stationar-
ity (10) of Eω and by the minimality of τt, for any n ∈ N, we have that

inf
x0,...,xn∈Rd

Eω(x0, . . . , xn) = inf
x0,...,xn∈Rd

inf
t∈Rd

Eω(x0 + t, . . . , xn + t)

= inf
x0,...,xn∈Rd

inf
t∈Rd

Eτt(ω)(x0, . . . , xn)

= inf
x0,...,xn∈Rd

inf
ω∈Ω

Eω(x0, . . . , xn),

which clearly yields Ēω = Ē for every ω ∈ Ω.

– Part 3: We claim that Ē ≥ K̄. Indeed, given c < K̄, let u ∈ C0(Rd) be
such that, for every ω ∈ Ω and any t ∈ Rd, u(τt(ω)) − u(ω) ≤ L(ω, t) − c. Define
uω(x) = u(τx(ω)). Then,

∀x, y ∈ Rd, uω(y)− uω(x) ≤ Eω(x, y)− c,

which implies Ē ≥ c for every c < K̄, and therefore Ē ≥ K̄.

– Part 4: We claim that L̄ ≥ Ē. Let µ be a minimizing holonomic probability
measure with Markov extension µ̂ (see notation 32). If (ω, t) ∈ Ω̂, then

n−1∑
k=0

L̂ ◦ τ̂k(ω, t) = Eω(x0, . . . , xn) with x0 = 0 and xk = t0 + · · ·+ tk−1,

and, by Birkhoff ergodic theorem,

Ē ≤
∫

lim
n→+∞

1

n

n−1∑
k=0

L̂ ◦ τ̂k dµ̂ =

∫
Ldµ = L̄.

A calibrated sub-action u as given by the Lax-Oleinik operator (see section 5) is
not available in general for an almost periodic interaction energy E. The purpose
of such a sub-action is to calibrate the energy in the following way

Eω,u(x, y) := Eω(x, y)−
[
u ◦ τy(ω)− u ◦ τx(ω)

]
− Ē. (21)
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Actually, Eω,u(x, y) is nonnegative and, depending whether u is forward or back-
ward calibrated, if one of the variables x or y is fixed, the other one can be chosen
so that the interaction becomes null. Notice that U(ω, t) := u ◦ τt(ω) − u(ω) is a
cocycle, namely, it satisfies

∀ω ∈ Ω, ∀ s, t ∈ Rd, U(ω, s+ t) = U(ω, s) + U(τs(ω), t). (22)

An important ingredient of the proof of theorem 8 is the notion of Mañé sub-
additive cocycle.

Definition 33. Let L be a coercive Lagrangian. We call Mañé subadditive cocycle
associated to L the function defined on Ω× Rd by

Φ(ω, t) := inf
n≥1

inf
0=x0,x1,...,xn=t

n−1∑
k=0

[
L(τxk(ω), xk+1 − xk)− Ē

]
.

We call Mañé potential in the environment ω the function on Rd × Rd given by

Sω(x, y) := Φ(τx(ω), y − x) = inf
n≥1

inf
x=x0,...,xn=y

[
Eω(x0, . . . , xn)− nĒ

]
.

The very definitions of Φ and Ē show that

∀ω ∈ Ω, ∀ t ∈ Rd, Φ(ω, 0) ≥ 0 and Φ(ω, t) ≤ L(ω, t)− Ē. (23)

(The sequence {Ēn(ω, 0) := infx1,...,xn−1 Eω(0, x1, . . . , xn−1, 0)}n is subadditive in n
and Ē ≤ limn→∞

1
nĒn(ω, 0).) Moreover, Φ is upper semi-continuous (lemma 36)

and a subadditive cocycle:

∀ω ∈ Ω, ∀ s, t ∈ R, Φ(ω, s+ t) ≤ Φ(ω, s) + Φ(τs(ω), t). (24)

This shows in particular that Φ(ω, t) ≥ Ē − L(τt(ω),−t) and thus Φ(ω, t) takes
always real values. The nontrivial part is to prove that Φ is Mather-calibrated.

Definition 34. A measurable function U : Ω×Rd → [−∞,+∞[ is called a Mather-
calibrated subadditive cocycle if the following properties are satisfied:

– ∀ω ∈ Ω, ∀ s, t ∈ Rd, U(ω, s+ t) ≤ U(ω, s) + U(τs(ω), t),

– ∀ω ∈ Ω, ∀ s, t ∈ Rd, U(ω, t) ≤ L(ω, t)− L̄ and U(ω, 0) ≥ 0,

– ∀µ ∈Mhol with
∫
Ldµ < +∞ ⇒

∫
U(ω,

∑n−1
k=0 tk) µ̂(dω, dt) ≥ 0, ∀n ≥ 1,

– where µ̂ is the Markov extension of µ.

Notice that, provided we know in advance that U is finite, U(ω, 0) ≥ 0 by
replacing s = t = 0 in the subadditive cocycle inequality.

Lemma 35. A Mather-calibrated subadditive cocycle U satisfies in addition

– U(ω, t) is finite everywhere,

– supω∈Ω,t∈Rd |U(ω, t)|/(1 + ‖t‖) < +∞,

– ∀µ ∈Mmin, ∀n ≥ 1, U(ω,
∑n−1

k=0 tk) =
∑n−1

k=0 [L̂− L̄] ◦ τ̂k(ω, t) µ̂ a.e.
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Proof. Part 1. We show that U is sublinear. Let K := supω∈Ω, ‖t‖≤1[L(ω, t) − L̄].

Fix t ∈ Rd and choose the unique integer n such that n− 1 ≤ ‖t‖ < n. Let tk = k
n t

for k = 0, . . . , n − 1. Then the subadditive cocycle property implies, on the one
hand,

∀ω ∈ Ω, ∀ t ∈ Rd, U(ω, t) ≤
n−1∑
k=0

U(τtk(ω), tk+1 − tk) ≤ nK ≤ (1 + ‖t‖)K.

On the other hand, thanks to the hypothesis U(ω, 0) ≥ 0, we get the opposite
inequality

∀ω ∈ Ω, ∀ t ∈ Rd, U(ω, t) ≥ U(ω, 0)− U(τt(ω),−t) ≥ −(1 + ‖t‖)K.

We also have shown that U is finite everywhere.

Part 2. Suppose µ is minimizing. Since

∀ω ∈ Ω, ∀ t0, . . . , tn−1 ∈ Rd,
n−1∑
k=0

[
L̂− L̄

]
◦ τ̂k(ω, t) ≥ U

(
ω,

n−1∑
k=0

tk

)
,

by integrating with respect to µ̂, the left hand side has a null integral whereas
the right hand side has a nonnegative integral. The previous inequality is thus an
equality that holds almost everywhere.

Lemma 36. If L is C0 coercive, then the Mañé subadditive cocycle Φ is upper
semi-continuous and Mather-calibrated. In particular, Φ = L − L̄ on Mather(L),
or more precisely

∀µ ∈Mmin, ∀ (ω, t) ∈ supp(µ̂), ∀ i < j,

Φ
(
τ∑i−1

k=0 tk
(ω),

j−1∑
k=i

tk

)
=

j−1∑
k=i

[
L− L̄

]
◦ τ̂k(ω, t)

(or in an equivalent manner, if x0 = 0 and xk+1 = xk+tk, ∀ k ≥ 0, the semi-infinite
configuration {xk}k≥0 is calibrated for Eω as in definition 7).

Proof. Part 1. We first show the existence of a measurable Mather-calibrated
subadditive cocycle U(ω, t). From the sup-inf formula (proposition 13), for every
p ≥ 1, there exists up ∈ C0(Ω) such that

∀ω ∈ Ω, ∀ t ∈ Rd, up ◦ τt(ω)− up(ω) ≤ L(ω, t)− L̄+ 1/p.

Let Up(ω, t) := up ◦ τt(ω) − up(ω) and U := lim supp→+∞ Up. Then U is clearly a
subadditive cocycle and satisfies U(ω, 0) = 0. Besides, U is finite everywhere, since
0 = U(ω, 0) ≤ U(ω, t) + U(τt(ω),−t) and U(ω, t) ≤ L(ω, t)− L̄. We just verify the
last property in definition 34. Let µ ∈Mhol be such that

∫
Ldµ < +∞. For n ≥ 1,

let

Ŝn,p(ω, t) :=

n−1∑
k=0

[
L̂− L̄+

1

p

]
◦ τ̂k(ω, t)− Up

(
ω,

n−1∑
k=0

tk

)
≥ 0.
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By integrating with respect to µ̂, we obtain

0 ≤
∫

inf
p≥q

Ŝn,p dµ̂ ≤ inf
p≥q

∫
Ŝn,p(ω, t) dµ̂ ≤ n

∫ [
L− L̄+

1

q

]
dµ.

By Lebesgue’s monotone convergence theorem, we obtain∫ [
n(L̂− L̄)− U

(
ω,

n−1∑
k=0

tk

)]
dµ̂ ≤

∫
n[L− L̄] dµ and

∫
U
(
ω,

n−1∑
k=0

tk

)
µ̂(dω, dt) ≥ 0.

Part 2. We next show that Φ is Mather-calibrated. We have already noticed that Φ
satisfies the subadditive cocycle property, besides Φ ≤ L−L̄ by definition. We point
out that Φ(ω, 0) ≥ 0, since, for x0 = 0, x1, . . . , xn−1, xn = 0, denoting y`n+i = xi,
∀ ` = 0, . . . , k, ∀ i = 0, . . . , n− 1, we have

kEω(x0, . . . , xn) = Eω(y0, . . . , ykn) ≥ inf
0=y0,...,ykn=0

Eω(y0, . . . , ykn),

which, thanks to proposition 14, implies

inf
0=x0,...,xn=0

1

n
Eω(x0, . . . , xn) ≥ inf

0=y0,...,ykn=0

1

nk
Eω(y0, . . . , ykn)

k→∞−−−→ Ē.

In particular, Φ(ω, t) is finite everywhere. Moreover, Φ(ω, t) ≥ U(ω, t) and the
third property of definition 34 is thus automatic.

Part 3. We show that Φ is upper semi-continuous. For n ≥ 1, let

Sn(ω, t) := inf{Eω(x0, . . . , xn) : x0 = 0, xn = t}.

Then Φ = infn≥1(Sn − nĒ) is upper semi-continuous if we prove that Sn(ω, t) is
continuous whenever ω ∈ Ω and ‖t‖ ≤ D. Let c0 := infω,x,y Eω(x, y) and K :=
supω∈Ω, ‖t‖≤D Eω(0, . . . , 0, t). By coerciveness, there exists R > 0 such that

∀x, y ∈ Rd, ‖y − x‖ > R⇒ ∀ω ∈ Ω, Eω(x, y) > K − (n− 1)c0.

Suppose ω, x0, . . . , xn are such that Eω(x0, . . . , xn) ≤ K. Suppose by contradiction
that ‖xk+1 − xk‖ > R. Thus

K ≥ Eω(x0, . . . , xn) ≥ (n− 1)c0 + Eω(xk, xk+1) > K,

which is impossible. We have proved that the infimum in the definition of Sn(ω, t),
for every ω ∈ Ω and ‖t‖ ≤ D, can be realized by some points ‖xk‖ ≤ kR. By the
uniform continuity of Eω(x0, . . . , xn) on the product space Ω×Πk{‖xk‖ ≤ kR}, we
obtain that Sn is continuous on Ω× {‖t‖ ≤ D}.
Part 4. Let µ be a minimizing measure with Markov extension µ̂. We show that
every (ω, t) in the support of µ̂ is calibrated. Let

Σ̂ :=
{

(ω, t) ∈ Ω× (Rd)N : ∀n ≥ 1, Φ
(
ω,

n−1∑
k=0

tk

)
≥

n−1∑
k=0

[
L− L̄

]
◦ τ̂k(ω, t)

}
.
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The set Σ̂ is closed, since Φ is upper semi-continuous. By lemma 35, Σ̂ has full
µ̂-measure and therefore contains supp(µ̂). Thanks to the subadditive cocycle prop-
erty of Φ and the τ̂ -invariance of supp(µ̂), we obtain the calibration property

∀ (ω, t) ∈ Σ̂, ∀ 0 ≤ i < j, Φ
(
τxi(ω),

j−1∑
k=i

tk

)
=

j−1∑
k=i

[
L− L̄

]
◦ τ̂k(ω, t).

Proof of proposition 12 – Item 2. We now assume that L is superlinear. From
lemma 35, the Mañé subadditive cocycle is at most linear. There exists R > 0
such that

∀ω ∈ Ω, ∀ t ∈ Rd, |Φ(ω, t)| ≤ R(1 + ‖t‖).

By superlinearity, there exists B > 0 such that

∀ω ∈ Ω, ∀ t ∈ Rd, L(ω, t) ≥ 2R‖t‖ −B.

Let µ be a minimizing measure. Since Φ = L− L̄ µ a.e. (lemma 35), we obtain

‖t‖ ≤ (R+B + |L̄|)/R, µ(dω, dt) a.e.

We have proved that the support of every minimizing measure is compact. In
particular, the Mather set is compact.

Proof of theorem 8. We show that, for every environment ω in the projected Mather
set, there exists a calibrated configuration for Eω passing through the origin. Let µ
be a minimizing measure such that supp(µ) = Mather(L). Let µ̂ denote its Markov
extension. For n ≥ 1, consider

Ω̂n :=
{

(ω, t) ∈ Ω× (Rd)N : Φ
(
ω,

2n−1∑
k=0

tk

)
≥

2n−1∑
k=0

[
L− L̄

]
◦ τ̂k(ω, t)

}
.

From lemma 36, supp(µ̂) ⊆ Ω̂n. From the upper semi-continuity of Φ, Ω̂n is closed.
To simplify the notations, for every t, we define a configuration (x0, x1, . . .) by

x0 = 0, xk+1 = xk + tk so that τ̂k(ω, t) = (τxk(ω), (tk, tk+1, . . .)).

Notice that, if (ω, t) ∈ Ω̂n, thanks to the subadditive cocycle property of Φ and
the fact that Φ ≤ L − L̄, the finite configuration (x0, . . . , x2n) is calibrated in the
environment ω, that is,

∀ 0 ≤ i < j ≤ 2n, Φ
(
τxi(ω),

j−1∑
k=i

tk

)
=

j−1∑
k=i

[
L− L̄

]
◦ τ̂k(ω, t),

or written using the family of interaction energies Eω,

∀ 0 ≤ i < j ≤ 2n, Sω(xi, xj) = Eω(xi, . . . , xj)− (j − i)Ē.

Thanks to the sublinearity of Sω, there exists a constant R > 0 such that, uniformly
in ω ∈ Ω and x, y ∈ Rd, we have |Sω(x, y)| ≤ R(1 + ‖y − x‖). Besides, thanks to
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the superlinearity of Eω, there exists a constant B > 0 such that Eω(x, y) ≥
2R‖y − x‖ −B. Since Sω(xk, xk+1) = Eω(xk, xk+1)− Ē, we thus obtain a uniform
upper bound D := (R+B + |Ē|)/R on the jumps of calibrated configurations:

∀ (ω, t) ∈ Ω̂n, ∀ 0 ≤ k < 2n, ‖xk+1 − xk‖ ≤ D.

Let Ω̂′n = τ̂n(Ω̂n). Thanks to the uniform bounds on the jumps, Ω̂′n is again closed.
Since µ̂(Ω̂n) = 1, µ̂(Ω̂′n) = 1 by invariance of τ̂ . Let ν := pr∗(µ) be the projected
measure on Ω. Then supp(ν) = pr(Mather(L)). By the definition of Ω̂′n, we have

pr(Ω̂′n) = {ω ∈ Ω : ∃ (x−n, . . . , xn) ∈ Rd s.t. x0 = 0 and

Sω(x−n, xn) ≥ Eω(x−n, . . . , xn)− 2nĒ}.

Again by compactness of the jumps, pr(Ω̂′n) is closed and has full ν-measure. Thus,
pr(Ω̂′n) ⊇ pr(Mather(L)). By a diagonal extraction procedure, we obtain, for every
ω ∈ Mather(L), a bi-infinite calibrated configuration with uniformly bounded jumps
passing through the origin.

4 Calibrated configurations for quasicrystals

This section is devoted to the proof of the second main result of this paper: theo-
rem 19. We first collect elementary results on flow boxes in lemma 37. The notions
of flow boxes and flow box decomposition have been introduced in definition 15.
In general, a minimal flow does not possess a cover of flow boxes. Flow boxes are
open sets obtained by taking the union of every orbits of size R starting from any
point belonging to a closed transverse Poincaré section. The restricted topology on
a transverse section must be special: it must admit a basis of clopen sets. We then
explain in lemma 38 how to build a transversally constant Lagrangian from a locally
transversally constant potential. It is indeed easy to built such a potential in the
context of Delone sets as explained in section 2. We show in lemma 40 how to con-
struct a suspension with locally constant return maps that we call Kakutani-Rohlin
tower. We then assume the flow to be uniquely ergodic and recall in lemma 41 the
construction of a unique transverse measure associated to each transverse section.

Supposing (Ω, {τt}t∈R, L) to be weakly twist (definition 18), the fundamental
Aubry crossing property is explained in lemma 43. Examples of weakly twist La-
grangian are given in corollary 21. We collect in lemmas 44, 46 and 47 several
intermediate results, that are consequences of the weakly twist property, about the
order of the points composing a minimizing configuration. We assume moreover L
to be transversally constant. Our first nontrivial result is stated in proposition 48:
a finite configuration (xn0 , . . . , x

n
n) which realizes the minimum of the energy among

all configurations of the same length must be strictly monotone, and must have
uniformly bounded jumps |xnk − xnk−1| ≤ R. If Eω(x, x) = Ē for some ω ∈ Ω and
x ∈ R, the proof of theorem 19 is obvious. We thus suppose Eω(x, x) > Ē for every
ω and x. Our second key result shows then that lim infn→+∞

1
n |x

n
n − xn0 | > 0: the

frequency of points xnk in a flow box of sufficiently large size is positive. We finally
conclude this section with the proof of theorem 19.
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Lemma 37. Let (Ω, {τt}t∈R) be an almost periodic R-action. Assume that the
action is not periodic (t ∈ R 7→ τt(ω) ∈ Ω is injective for every ω ∈ Ω). Then

1. If τ [BR × Ξ] is a flow box, then there exists R′ such that

Ω = τ [BR′ × Ξ] = {τt(ω) : |t| < R′ and ω ∈ Ξ}.

2. If τ [BR×Ξ] is a flow box, then τ : R×Ξ→ Ω is open and τ [BR×Ξ′] is again
a flow box for every clopen subset Ξ′ ⊂ Ξ.

3. If τ [BR × Ξ] is a flow box, then, for every R′ > 0 and ω ∈ Ξ, there exists a
clopen set Ξ′ ⊂ Ξ containing ω such that τ [BR′ × Ξ′] is again a flow box.

4. If U = τ [BR × Ξ] and U ′ = τ [BR′ × Ξ′] are two admissible flow boxes, if
τ [B2R+2R′ × Ξ] and τ [B2R+2R′ × Ξ′] are also flow boxes, then

U ∩ U ′ = τ(B̃ × Ξ̃) = τ(B̃′ × Ξ̃′)

for some clopen sets Ξ̃, Ξ̃′ and some open convex subsets B̃ ⊂ BR, B̃′ ⊂ BR′.

5. If {Ui}i∈I is a flow box decomposition, then, for every ω ∈ Ω and R > 0, there
exits a flow box τ [BR × Ξ], with a transverse section Ξ containing ω, that is
compatible with respect to {Ui}i∈I .

Proof. Let θs : R × Ξ → R × Ξ be the translation (t, ω) 7→ (t + s, ω). We observe
the trivial conjugacy τs ◦ τ = τ ◦ θs and note that both τs : Ω→ Ω and θs : R→ R
are homeomorphisms.

Item 1. Let U = τ [BR×Ξ]. The set ∪t∈Rτt(U) is invariant, open, and therefore
equal to Ω. By compactness Ω = τt1(U) ∪ . . . ∪ τtr(U) = τ [BR′ × Ξ], with R′ =
R+ maxi |ti|.

Item 2. Let V be an open subset of R × Ξ. Given (t, ω) ∈ V , there exist
0 < ε < R and a clopen set Ξ′ ⊂ Ξ containing ω such that Bε(t)× Ξ′ ⊂ V . Then

τ(Bε(t)× Ξ′) = τ ◦ θt(Bε(0)× Ξ′) = τt ◦ τ(Bε(0)× Ξ′) is open in Ω.

If Ξ′ ⊂ Ξ is a clopen set, then BR(0) × Ξ′ is open in BR(0) × Ξ and τ [BR × Ξ′] is
open in Ω.

Item 3. We may clearly assume R′ ≥ R. For every 3
4R ≤ |s| ≤ 2R′, by

aperiodicity, there exists a clopen set Ξs ⊂ Ξ containing ω such that τ is injective
on [BR/4(0) ∪ BR/4(s)] × Ξs. Furthermore, for every |s| ≤ 3

4R, τ is injective on
[BR/4(0)∪BR/4(s)]×Ξ by the definition of a flow box. Let {BR/4(si)}i be a finite

cover of B2R′(0) so that τ is injective on each [BR/4(0) ∪ BR/4(si)] × Ξ′, where
Ξ′ = ∩iΞsi . Then there exists ε > such that τ is injective on [Bε(0) ∪Bε(s)]× Ξ′,
for every |s| ≤ 2R′. By conjugacy, τ is injective on [Bε(s) ∪ Bε(s′)]× Ξ′, for every
|s|, |s′| ≤ R′. We thus have obtained that τ : BR′(0)×Ξ′ → Ω is injective. Moreover,
τ is open on BR′(0)× Ξ′ by item 2.

Item 4. Assume U ∩ U ′ 6= ∅. There exists a ∈ R such that, if ω ∈ Ξ, ω′ ∈ Ξ′,
|t| < R, |t′| < R, then τt(ω) = τt′(ω

′) if, and only if, t′ = t − a and ω′ = τa(ω). In
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particular, a belongs to BR−BR′ and is unique. Then Ξ̃ := Ξ∩ τ−1
a (Ξ′) is a clopen

subset of Ξ and B̃ := BR ∩ (a+BR′) is an open convex subset of BR.

Item 5. Let {Ui = τ(BRi × Ξi)} be a flow box decomposition. Consider ω ∈ Ω
and R > 0. For every |x| ≤ R, τx(ω) ∈ Ui for some box Ui. Then x ∈ BRi(ti) for
some ti such that ωi := τti(ω) ∈ Ξi. By compactness, one can find a finite set of
indices I such that ∪i∈IBRi(ti) covers BR(0). Let i0 ∈ I be such that 0 ∈ BRi0 (ti0)
and ωi0 = τti0 (ω) ∈ Ξi0 . We claim that, for every i ∈ I, there exists a clopen subset

Ξii0 ⊂ Ξi0 containing ωi0 such that τti−ti0 (Ξii0) is a clopen subset of Ξi.

Assuming the claim is true, we denote Ξ := τ−ti0 (∩i∈IΞii0) and, by taking Ξii0 ’s
smaller if necessary, we choose Ξ sufficiently small so that τ(BR×Ξ) is a flow box.
If |x| < R, x ∈ BRi(ti) for some index i ∈ I. Then Ξ̃i := τti−t0(∩j∈IΞji0) is a clopen
subset of Ξi and

τx(Ξ) = τx−ti(τti(Ξ)) = τx−ti(Ξ̃i).

We now prove the claim. We may assume that every BRi(ti) has a nonempty
intersection with BR′(0). Let i ∈ I and x ∈ BRi(ti) ∩ BR′(0). The segment [0, x]
can be split into successive segments [xk−1, xk], k = 1, . . . , n, each one included in
a ball BRik (tik) for some index ik. The last index satisfies in = i. We construct

by induction clopen subsets Ξ
(k)
i0

of Ξi0 containing ωi0 such that τtik−ti0 (Ξ
(k)
i0

) is

a clopen subset of Ξik containing ωik . Let Ξ
(0)
i0

= Ξi0 . Since xk belongs to both
BRik (tik) and BRik+1

(tik+1
), we have

τ(ik)(xk − tik , ωik) = τ(ik+1)(xk − tik+1
, ωik+1

),

ωik ∈ Ξik , ωik+1
∈ Ξik+1

,

ak := tik+1
− tik , ωik+1

= τak(ωik), xk − tik+1
= xk − tik − ak.

By admissability of the two flow boxes Uik and Uik+1
, there exists a clopen subset

Ξ′ik of τtik−ti0 (Ξ
(k)
i0

) containing ωik such that τak(Ξ′ik) ⊂ Ξik+1
. We have proved

that Ξ
(k+1)
i0

:= τti0−tik (Ξ′ik) is a clopen subset of Ξi0 containing ωi0 and that

τtik+1
−ti0 (Ξ

(k+1)
i0

) is a clopen subset of Ξik+1
.

An interaction model does not possess a canonical notion of vertical section.
Such a notion naturally exists whenever the model admits a flow box decomposition
(definition 15). We prove in the next lemma that locally transversally constant
functions V1, V2 : Ω→ R (a set of conditions checked on boxes of size R) enable to
construct a transversally constant Lagrangian L(ω, t) = W (t)+V1(ω)+V2(τt(ω)) (a
set of conditions checked on every sufficiently thin flow box). Corollary 21 follows
from this lemma.

Lemma 38. Let (Ω, {τt}t∈R) be an almost periodic interaction model admitting a
flow box decomposition. Let V1, V2 : Ω → R be two locally transversally constant
functions on the same flow box decomposition (definition 20), and W = R→ R be
any function. Define L(ω, t) = W (t) + V1(ω) + V2(τt(ω)). Then L is transversally
constant (definition 16).
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Proof. Assume V1 and V2 are locally transversally constant on a flow box decom-
position {Ui}i∈I . Let τ [BR × Ξ] be a flow box which is compatible with respect to
{Ui}i∈I . If |x|, |y| < R and ω, ω′ ∈ Ξ, then

Eω(x, y) = W (y − x) + V1,ω(x) + V2,ω(y).

There exist i ∈ I, |ti| < Ri and Ξ̃i a clopen subset of Ξi such that τx(Ξ) = τti(Ξ̃i).
Then τx(ω) = τti(ωi) and τx(ω′) = τti(ω

′
i) for some ωi, ω

′
i ∈ Ξ̃i. We have

V1,ω(x) = V1,ωi(ti) = V1,ω′i
(ti) = V1,ω′(x).

Similarly V2,ω(y) = V2,ω′(y). We have thus proved Eω′(x, y) = Eω(x, y).

The existence of a flow box decomposition (definition 15) enables us to build
a global transverse section of the flow with locally constant return times. We ex-
tend for an almost periodic interaction model what has been done for quasicrystals
in [13]. We first define the notion of Kakutani-Rohlin tower and show that an
interaction model possessing a flow box decomposition admits a Kakutani-Rohlin
tower.

Definition 39. Let (Ω, {τt}t∈R) be a one-dimensional almost periodic interaction
model possessing a flow box decomposition {Ui}i∈I . We call Kakutani-Rohlin tower
a partition {Fα}α∈A of Ω of the form

Fα = τ
(
[0, Hα)× Σα

)
= ∪0≤t<Hατt(Σα)

for some some height Hα > 0 and some transverse section Σα (closed set admitting
a basis of clopen subsets), where τ

(
(0, Hα) × Σα

)
is a flow box (open and homeo-

morphic to (0, Hα)×Σα), and ∪α∈Aτ({Hα}×Σα) = ∪α∈Aτ({0}×Σα) = ∪α∈AΣα.
Moreover, we say that a Kakutani-Rohlin tower is compatible with respect to {Ui}i∈I
if, for every α ∈ A, there exist i ∈ I, ti ∈ R and a clopen subset Ξ̃i ⊂ Ξi such that
Σα = τti(Ξ̃i) and [ti, ti +Hα) ⊂ [−Ri, Ri).

Lemma 40. Let (Ω, {τt}t∈R) be a one-dimensional almost periodic R-action pos-
sessing a flow box decomposition {Ui}i∈I . Then there exists a Kakutani-Rohlin
tower {Fα}α∈A which is compatible with respect to {Ui}i∈I .

Proof. Let {Ui}ni=1 be a flow box decomposition, where Ui = τ [BRi × Ξi]. By
definition, Ui is an open set of Ω. We denote Vi := τ

(
[−Ri, Ri) × Ξi

)
. We shall

build by induction on i = 1, . . . , n a collection of flow boxes {τ
(
(0, Hi,j) × Σi,j

)
}j

such that
– the sets Fi,j := τ

(
[0, Hi,j)× Σi,j

)
are pairwise disjoint,

– Vi \ ∪k<iVk = ∪jτ
(
[0, Hi,j)× Σi,j

)
= ∪jFi,j ,

– τ({−Ri} × Ξi) \ ∪k<iVk ⊂ ∪jτ({0} × Σi,j),
– ∪k<iτ({Rk} × Ξk) ∩ (Vi \ ∪k<iVk) ⊂ ∪jτ({0} × Σi,j),
– τ({Hi,j} × Σi,j) ∩ ∪k<iVk ⊂ ∪k<i ∪j τ({0} × Σk,j),
– τ({Hi,j} × Σi,j) \ ∪k<iVk ⊂ τ({Ri} × Ξi) \ ∪k<iVk.

For i = 1, we choose H1,1 = 2R1 and Σ1,1 = τ−R1(Ξ1). Assume that we have built
the sets τ

(
[0, Hk,j) × Σk,j

)
for every k < i and j. Thanks to the admissibility of
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the flow boxes {Ui}i∈I , the set Vi ∩ Vk, if nonempty, is of the form τ(Ji,k × Ξi,k),
where Ji,k = [ai,k, bi,k), with −Ri ≤ ai,k < bi,k ≤ Ri, and Ξi,k is a clopen set of Ξi.
The complement Vi \ Vk is the union of sets of the form

τ
(
[−Ri, ai,k)× Ξi,k

)
, τ

(
[bi,k, Ri)× Ξi,k

)
or τ

(
[−Ri, Ri)× (Ξi \ Ξi,k)

)
.

Hence, Vi \ ∪k<iVk is obtained as a disjoint union of sets τ
(
[cα, dα) × Σ̃α

)
, where

Σ̃α is any clopen set of the form ∩k<iSk, with either Sk = Ξi,k or Sk = Ξi \ Ξi,k,
and [cα, dα) corresponds to any connected component of [−Ri, Ri) \ ∪k<iJi,k. We
next rewrite τ

(
[cα, dα) × Σ̃α

)
as τ

(
[0, Hi,j) × Σi,j

)
, with j = j(α), where Σi,j =

τcα(Σ̃α) and Hi,j = dα − cα. By construction, for all k < i with Vi ∩ Vk 6= ∅,
τ({Rk}×Ξk)∩Vi = τ({bi,k}×Ξi,k) and its part which is not in ∪l<iVl is included into
∪jτ({0}×Σi,j). Furthermore, τ({Hi,j}×Σi,j) either is included into τ({Ri}×Ξi) or
intersects Vk for some k < i and therefore is included into ∪k<i∪j τ({0}×Σk,j).

When a Kakutani-Rohlin tower is built, we obtain a global transverse section
∪α∈AΣα with a return time constant on each Σα and equal to Hα. We can induce
on a particular section Σα0 and build a second Kakutani-Rohlin tower with larger
heights. We explain in the next paragraph the notations that will be used for these
successive towers.

If {F 0
α}α∈A0 is a Kakutani-Rohlin tower of order 0, denote F 0

α := τ
(
[0, H0

α)×Σ0
α

)
.

We say that Σ0 := ∪αΣ0
α is the basis of the tower. Let ω∗ be a reference point of the

base Σ0. Consider α0 such that ω∗ ∈ Σ0
α0

. The construction of the tower of order 1
is done by inducing the flow on Σ1 := Σ0

α0
. We obtain a partition of Σ1 given by

{Σ1
β}β∈A1 , where β = (α0, . . . , αp), p ≥ 1, αp = α0, αi 6= α0 for i = 1, . . . , p− 1,

Σ1
β = Σ0

α0
∩ τ−1

H0
α0

(Σ0
α1

) ∩ . . . ∩ τ−1
H0
α0

+...+H0
αp−1

(Σ0
αp).

By minimality, there is a finite collection of such nonempty sets Σ1
β. Define then

H1
β := H0

α0
+ . . .+H0

αp−1
,

F 1
β := τ

(
[0, H1

β)× Σ1
β

)
=

p−1⋃
i=0

τ
(
[ti, ti +H0

αi)× Σ0
αi

)
, with ti =

i−1∑
j=0

H0
αj . (25)

We have just obtained a new Kakutani-Rohlin tower {F 1
β}β∈A1 of basis Σ0

α0
. We

induced again on the section Σ1
β0

that contains ω∗ and build the tower of order 2. We

shall write {F lα}α∈Al for the successive towers that are built using this procedure
and F l∗ for the tower of height H l

∗ whose basis Σl
∗ contains ω∗ . The preceding

construction gives minα∈Al+1 H l+1
α ≥ H l

∗ and in particular H l+1
∗ ≥ H l

∗. It may
happen that H l

∗ = H l+1
∗ = H l+2

∗ = . . . In that case, the flow is a suspension over Σl
∗

of constant return time H l
∗ (and Ω is isomorphic to Σl

∗ × S1). In order to exclude
this situation, we split the basis Σl

α0
which contains ω∗ into two disjoint clopen

sets Σl
α0

= Σl
α′0
∪ Σl

α′′0
. We obtain again a Kakutani-Rohlin tower and we induce

as before on the subset which contains ω∗. If (Ω, {τt}t∈R) is not periodic, we may
choose the splitting so that H l+1

∗ > H l
∗ at each step of the construction.
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We now assume the flow (Ω, {τt}t∈R) to be uniquely ergodic. Let λ be the
unique ergodic invariant probability measure. The average frequency of return
vectors to a transverse section of a flow box measures the thickness of the section.
The next lemma gives a precise definition of a family of transverse measures {νΞ}Ξ
parameterized by every transverse section Ξ.

Lemma 41. Let (Ω, {τt}t∈R) be an almost periodic and uniquely ergodic R-action.
Given Ξ a transverse section, let RΞ(ω) be the set of return times to Ξ,

RΞ(ω) := {t ∈ R : τt(ω) ∈ Ξ}, ∀ω ∈ Ω.

Then, for every nonempty clopen set Ξ′ ⊂ Ξ, the following limit exists uniformly
with respect to ω ∈ Ω and is positive:

νΞ(Ξ′) := lim
T→+∞

#(RΞ′(ω) ∩BT (0))

Leb(BT (0))
> 0.

Moreover, νΞ extends to a finite and nonnegative measure on Ξ, called transverse
measure to Ξ, and, for every flow box U = τ [BR × Ξ],

λ(τ(B′ × Ξ′)) = Leb(B′)νΞ(Ξ′), ∀B′ ⊂ BR(0), ∀Ξ′ ⊂ Ξ (Borel sets).

Proof. Let U = τ [BR×Ξ] be a flow box. Let t1 6= t2 be two return times of RΞ(ω).
Since τ is injective on BR(0) × Ξ, it is straightforward that BR(t1) ∩ BR(t2) = ∅.
For ω ∈ Ω and T > 0, consider

µT,ω(U ′) =
1

Leb(BT (0))

∫
BT (0)

1U ′(τs(ω)) ds, ∀U ′ ⊂ Ω (Borel set).

The unique ergodicity of the action implies that, for all φ ∈ C0(Ω), µT,ω(φ) con-
verges uniformly in ω to λ(φ) as T → +∞. Let B′ ⊂ BR(0) be a Borel set and
Ξ′ ⊂ Ξ be a nonempty clopen set. For U ′ = τ(B′ × Ξ′), notice then that

{s ∈ Rd : τs(ω) ∈ U ′} =
⋃

t∈RΞ′ (ω)

t+B′, µT,ω(U ′) =
∑

t∈RΞ′ (ω)

Leb(BT (0) ∩ (t+B′))

Leb(BT (0))
,

and, whenever T > 2R,

Leb(B′)
#(BT−R(0) ∩ RΞ′(ω))

Leb(BT (0))
≤ µT,ω(U ′) ≤ Leb(B′)

#(BT+R(0) ∩ RΞ′(ω))

Leb(BT (0))
.

Moreover, clearly #(BT (0)∩RΞ′(ω)) ≤ Leb(BT+R(0))
Leb(BR(0)) and limT→+∞

Leb(BT+R(0))
Leb(BT (0)) = 1.

Thus, if B′ is open in BR(0), then U ′ is open in Ω and

λ(U ′) ≤ lim inf
T→+∞

µT,ω(U ′) ≤ Leb(B′)

Leb(B2R(0))
.

In particular, if B′ is negligible, thanks to the regularity of Leb, λ(U ′) = 0. If
B′ is open, B′ ⊂ BR(0) and ∂B′ is negligible, then, for every ε > 0, there exist
nonnegative continuous functions φ ≤ ψ such that

φ ≤ 1τ(B′×Ξ) ≤ 1τ(B′×Ξ) ≤ ψ and λ(ψ − φ) < ε.
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Therefore, µT,ω(τ(B′×Ξ′)) converges uniformly in ω to λ(τ(B′×Ξ)) as T → +∞.
On the one hand, for all clopen set Ξ′ ⊂ Ξ, τ(BR(0)× Ξ′) is a flow box and

lim
T→+∞

#(BT (0) ∩ RΞ′(ω))

Leb(BT (0))
:= νΞ(Ξ′) (exists uniformly in ω).

On the other hand, for every B′ = BR′(s
′), s′ ∈ BR(0), ‖s′‖+R′ < R,

λ(τ(B′ × Ξ′)) = lim
T→+∞

µT,ω(τ(B′ × Ξ′)) = Leb(B′)νΞ(Ξ′).

Hence, νΞ extends to a measure on the Borel sets of Ξ and by the monotone class
theorem λ(τ(B′×Ξ′)) = Leb(B′)νΞ(Ξ′) for every Borel sets B′ ⊂ BR(0) and Ξ′ ⊂ Ξ.

We finally remark that νΞ(Ξ′) > 0 for every nonempty clopen set Ξ′ ⊂ Ξ, since
otherwise there would exist an open set of Ω of λ-measure zero.

We come back to Kakutani-Rohlin towers of flows. Let {F lα}α∈Al be such a tower
of order l and {F l+1

β }β∈Al+1 be the subsequent tower as introduced in (25). We recall
the definition of the homology matrix as explained in lemma 2.7 of [13]. For every
α ∈ Al and β ∈ Al+1, β = (α0, . . . , αp), α0 = αp, αi 6= α0 for i = 1, . . . , p − 1, we
denote

M l
α,β := #{0 ≤ k ≤ p− 1 : αk = α}.

A flow box of order l+1, τ
(
[0, H l+1

β )×Σl+1
β

)
, is obtained as a disjoint union of flow

boxes of order l of the type τ
(
[ti, ti + H l

αi) × Σl
αi

)
. The integer M l

α,β counts the
number of times a flow box of order l + 1 indexed by β cuts a flow box of order l
indexed by α. The main result that we shall need is given by the following lemma.

Lemma 42. Let (Ω, {τt}t∈R) be a one-dimensional almost periodic and uniquely
ergodic R-action. Let {F lα}α∈Al be a sequence of Kakutani-Rohlin towers built
as in (25). Let νl be the transverse measure associated to the transverse section
∪α∈AlΣl

α. If νlα := νl(Σl
α), then

νlα =
∑

β∈Al+1

M l
α,βν

l+1
β .

Proof. Let Ξ = ∪β∈Al+1Σl+1
β . For ω ∈ Ξ, let 0 = t0, t1, t2, . . . be its successive

return times to Ξ. We introduce as in lemma 41 the set of return times to the
transverse section Σl

α, say, Rlα(ω) := {t ∈ R : τt(ω) ∈ Σl
α}. The set Rl+1

β (ω) is
defined similarly. Since

#
(
Rlα(ω) ∩ [0, tn)

)
=

∑
β∈Al+1

M l
α,β #

(
Rl+1
β (ω) ∩ [0, tn)

)
,

we divide by tn and apply lemma 41 to conclude.

The main property used in one-dimensional Aubry theory [2] is the twist prop-
erty. It will not be used in the infinitesimal form. The following lemma is an easy
consequence of definition 18. It shows that the energy of a configuration can be
lower by exchanging the positions.
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Lemma 43 (Aubry crossing lemma). If L satisfies the weakly twist property,
then, for every ω ∈ Ω, for every x0, x1, y0, y1 ∈ R verifying (y0 − x0)(y1 − x1) < 0,[
Eω(x0, x1) + Eω(y0, y1)

]
−
[
Eω(x0, y1) + Eω(y0, x1)

]
= α(y0 − x0)(y1 − x1) > 0,

with α = 1
(y0−x0)(y1−x1)

∫ y0

x0

∫ y1

x1

∂2Ẽω
∂x∂y (x, y) dydx < 0 and Ẽω as in definition 18.

Proof. The inequality is obtained by integrating the function ∂2

∂x∂y Ẽω on the domain
[min(x0, y0),max(x0, y0)]× [min(x1, y1),max(x1, y1)].

The first consequence of Aubry crossing lemma is that minimizing configurations
shall be strictly ordered. We begin by an intermediate lemma.

Lemma 44. Let L be a weakly twist Lagrangian, ω ∈ Ω, n ≥ 2, and x0, . . . , xn ∈ R
be a nonmonotone sequence (that is, a sequence which does not satisfy x0 ≤ . . . ≤ xn
nor x0 ≥ . . . ≥ xn).

– If x0 = xn, then Eω(x0, . . . , xn) >
∑n−1

i=0 Eω(xi, xi).
– If x0 6= xn, then there exists a subset {i0, i1, . . . , ir} of {0, . . . , n}, with i0 = 0

and ir = n, such that (xi0 , xi1 , . . . , xir) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir) +
∑

i 6∈{i0,...,ir}

Eω(xi, xi).

Proof. We prove the lemma by induction.
Let x0, x1, x2 ∈ R be a nonmonotone sequence. Then x0, x1, x2 are three distinct

points. Thus, x0 < x1 implies x2 < x1 and x1 < x0 implies x1 < x2. In both cases,
lemma 43 tells us that

Eω(x0, x1) + Eω(x1, x2) > Eω(x0, x2) + Eω(x1, x1).

Let (x0, . . . , xn+1) be a nonmonotone sequence. We have two cases: either
x0 ≤ xn or x0 ≥ xn. We shall only give the proof for the case x0 ≤ xn.

Case x0 = xn. Then (x0, . . . , xn) is nonmonotone and by induction

Eω(x0, . . . , xn+1) > Eω(xn, xn+1) +

n−1∑
i=0

Eω(xi, xi)

= Eω(x0, xn+1) +

n∑
i=1

Eω(xi, xi).

Case x0 < xn. Whether (x0, . . . , xn) is monotone or not, we may choose a
subset of indices {i0, . . . , ir} such that i0 = 0, ir = n, xi0 < xi1 < . . . < xir and

Eω(x0, . . . , xn+1) ≥
(
Eω(xi0 , . . . , xir) +

∑
i 6∈{i0,...,ir}

Eω(xi, xi)
)

+ Eω(xn, xn+1).

If xn ≤ xn+1, then (x0, . . . , xn) is necessarily nonmonotone and the previous
inequality is strict. If xn = xn+1, the lemma is proved by modifying ir = n+ 1. If
xn < xn+1, the lemma is proved by choosing r + 1 indices and ir+1 = n+ 1.
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If xn+1 < xn = xir , by applying lemma 43, one obtains

Eω(xir−1 , xir) + Eω(xn, xn+1) > Eω(xn, xir) + Eω(xir−1 , xn+1),

Eω(x0, . . . , xn+1) > Eω(xi0 , . . . , xir−1 , xn+1) +
∑

i 6∈{i0,...,ir}

Eω(xi, xi) + Eω(xn, xn).

If xir−1 < xn+1, the lemma is proved by choosing ir = n + 1. If xir−1 = xn+1, the
lemma is proved by choosing r − 1 indices and ir−1 = n + 1. If xn+1 < xir−1 , we
apply again lemma 43 until there exists a largest s ∈ {0, . . . , r} such that xs < xn+1

or xn+1 ≤ x0. In the former case, the lemma is proved by choosing s + 1 indices
and by modifying is+1 = n + 1. In the latter case, namely, when xn+1 ≤ x0 < xn,
we have

Eω(x0, . . . , xn+1) > Eω(x0, xn+1) +
n∑
i=1

Eω(xi, xi)

and the lemma is proved whether xn+1 = x0 or xn+1 < x0.

The Mañé subadditive cocycle Φ(ω, t) (definition 33) is obtained by minimizing
a normalized energy Eω(x0, . . . , xn)−nĒ on all the configurations satisfying x0 = 0
and xn = t. The following lemma shows that it is enough to minimize on strictly
monotone configurations (unless t = 0).

Corollary 45. If L satisfies the weakly twist property, then, for every ω ∈ Ω, the
Mañé subadditive cocycle Φ(ω, t) satisfies:

– if t = 0, Φ(ω, 0) = Eω(0, 0)− Ē,
– if t > 0, Φ(ω, t) = infn≥1 inf0=x0<x1<...<xn=t[Eω(x0, . . . , xn)− nĒ],
– if t < 0, Φ(ω, t) = infn≥1 inf0=x0>x1>...>xn=t[Eω(x0, . . . , xn)− nĒ].

Proof. Lemma 44 tells us that we can minimize the energy of Eω(x0, . . . , xn)− nĒ
by the sum of two terms:
– either xn = x0, then

Eω(x0, . . . , xn)− nĒ ≥
[
Eω(x0, x0)− Ē

]
+

∑
i/∈{0,n}

[
Eω(xi, xi)− Ē

]
;

– or xn 6= x0, then for some (xi0 , . . . , xir) strictly monotone, with i0 = 0 and ir = n,

Eω(x0, . . . , xn)− nĒ ≥
[
Eω(xi0 , . . . , xir)− rĒ

]
+

∑
i 6∈{i0,...,ir}

[
Eω(xi, xi)− Ē

]
.

We conclude the proof by noticing that Ē ≤ infx∈REω(x, x).

We recall that a finite configuration (x0, x1, . . . , xn) is said to be minimizing in
the environment ω if Eω(x0, x1, . . . , xn) ≤ Eω(y0, y1, . . . , yn) whenever x0 = y0 and
xn = yn. The following lemmas show that, under certain conditions, a minimizing
configuration is strictly monotone.

Lemma 46. Suppose that L satisfies the weakly twist property. For every ω ∈ Ω,
if (x0, . . . , xn) is a minimizing configuration, with x0 6= xn, such that xi is strictly
between x0 and xn for every 0 < i < n− 1, then (x0, . . . , xn) is strictly monotone.
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Proof. Let (x0, . . . , xn) be such a minimizing sequence. We show, in part 1, it is
monotone, and, in part 2, it is strictly monotone.

Part 1. Assume by contradiction that (x0, . . . , xn) is not monotone. According
to lemma 44, one can find a subset of indices {i0, . . . , ir} of {0, . . . , n}, with i0 = 0
and ir = n, such that (xi0 , . . . , xir) is strictly monotone and

Eω(x0, . . . , xn) > Eω(xi0 , . . . , xir) +
∑

i 6∈{i0,...,ir}

Eω(xi, xi).

We choose the largest integer r with the above property. Since (x0, . . . , xn) is not
monotone, we have necessarily r < n. Since (x0, . . . , xn) is minimizing, one can
find i 6∈ {i0, . . . , ir} such that xi 6∈ {xi0 , . . . , xir}. Let s be one of the indices of
{0, . . . , r} such that xi is between xis and xis+1 . Then, by lemma 43,

Eω(xis , xis+1) + Eω(xi, xi) > Eω(xis , xi) + Eω(xi, xis+1).

We have just contradicted the maximality of r. Therefore, (x0, . . . , xn) must be
monotone.

Part 2. Assume by contradiction that (x0, . . . , xn) is not strictly monotone.
Then (x0, . . . , xn) contains a subsequence of the form (xi−1, xi, . . . , xi+r, xi+r+1)
with r ≥ 1 and xi−1 6= xi = . . . = xi+r 6= xi+r+1. To simplify the proof, we assume
xi−1 < xi+r+1. We want built a configuration (x′i−1, x

′
i, . . . , x

′
i+r, x

′
i+r+1) so that

x′i−1 = xi−1, x′i+r+1 = xi+r+1 and

Eω(xi−1, xi, . . . , xi+r, xi+r+1) > Eω(x′i−1, x
′
i, . . . , x

′
i+r, x

′
i+r+1).

By changing by a coboundary as in definition 18, we may assume that Eω(x, y) is
C2 in x and y. Indeed, since (xi−1, . . . , xi+r+1) is minimizing, we have

Eω(xi−1, . . . , xi+r+1) = Eω(xi−1, xi + ε, xi+1 − ε, . . . , xi+r − ε, xi+r+1) + o(ε2).

Let

α =
1

xi − xi−1

∫ xi

xi−1

∂2Eω
∂x∂y

(x, xi) dx < 0,

β =
1

xi+r+1 − xi+r

∫ xi+r+1

xi+r

∂2Eω
∂x∂y

(xi+r, y) dy < 0.

By Aubry crossing lemma,

Eω(xi−1, xi + ε) + Eω(xi + ε, xi+1 − ε)
= Eω(xi−1, xi+1 − ε) + Eω(xi + ε, xi + ε)− 2ε(xi − xi−1)α+ o(ε).

Since xi = xi+r, obviously Eω(xi + ε, xi + ε) = Eω(xi+r + ε, xi+r + ε). Again by
Aubry crossing lemma,

Eω(xi+r + ε, xi+r + ε) + Eω(xi+r − ε, xi+r+1)

= Eω(xi+r − ε, xi+r + ε) + Eω(xi+r + ε, xi+r+1)− 2ε(xi+r+1 − xi+r)β + o(ε).
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Then, for ε small enough, we have

Eω(xi−1, . . . , xi+r+1) > Eω(xi−1, xi − ε, . . . , xi−r−1 − ε, xi+r + ε, xi+r+1),

which contradicts that (xi−1, . . . , xi+r+1) is minimizing. We have thus proved that
(x0, . . . , xn) is strictly monotone.

Lemma 47. Let L be a weakly twist transversally constant Lagrangian. Then, there
exists R > 0 such that the fact (x0, . . . , xn) ∈ R is a minimizing configuration for
an arbitrary environment ω ∈ Ω and verifies |xn−x0| ≥ R implies that (x0, . . . , xn)
is strictly monotone.

Proof. Let {Ui = τ [BRi×Ξi]}i∈I be a flow box decomposition with respect to which
L is transversally constant. Since {Ui}i∈I is a finite cover, we may choose R large
enough so that every orbit of size R meets every box entirely: for every ω, for every
|y − x| ≥ R, for every i ∈ I, there exists ti ∈ R such that (ti − Ri, ti + Ri) ⊂ [x, y]
and τti(ω) ∈ Ξi.

We first show that there cannot exist r ≥ 0 and 0 < k < n− r such that

xk < xk−1, xk = . . . = xk+r and xk < xk+r+1.

Otherwise, Aubry crossing lemma implies that

Eω(xk−1, xk) + Eω(xk, xk+r+1) > Eω(xk−1, xk+r+1) + Eω(xk, xk).

We rewrite the configuration (x0, . . . , xk−1, xk+r+1, . . . , xn) as (y0, . . . , yn−r−1). Let
Ui be a flow box containing τxk(ω). There exists |s| < Ri and ω′ ∈ Ξi such that
τxk(ω) = τs(ω

′). By the choice of R, there exists t such that (t−Ri, t+Ri) ⊂ [x0, xn]
and τt(ω) ∈ Ξi. Let z0 = . . . = zr := t + s and 1 ≤ l ≤ n − r − 1 be such that
yl−1 < z0 ≤ yl. Using the fact that L is transversally constant on Ui, we have

Eω(xk, xk) = Eω′(s, s) = Eτt(ω)(s, s) = Eω(z0, z0).

By applying again Aubry crossing lemma, we obtain

Eω(yl−1, yl) + Eω(z0, z0) ≥ Eω(yl−1, z0) + Eω(z0, yl),

with a strict inequality if z0 < yl. We have just obtained a new configura-
tion (y0, . . . , yl−1, z0, . . . , zr, yl, . . . , yn−r−1) of n points with a strictly lower energy,
which contradicts the fact that (x0, . . . , xn) is minimizing.

There cannot exist similarly r ≥ 0 and 0 < k < n− r such that

xk > xk−1, xk = . . . = xk+r and xk > xk+r+1.

There cannot exists either a sub-configuration (xk−1, xk, . . . , xk+r, xk+r+1), r ≥ 1,
of the form xk−1 6= xk+r+1 and xk = . . . = xk+r strictly between xk−1 and xk+r+1

thanks to lemma 46. We are thus left to a configuration of the form

x0 = . . . = xr <. . .< xn−r′ = . . . = xn or x0 = . . . = xr >. . .> xn−r′ = . . . = xn
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for some r, r′ ≥ 0. Assume by contradiction that x0 = x1 (the case xn−1 = xn
is done similarly). As before, there exist Ui containing τx0(ω), |s| < Ri and
ω′ ∈ Ξi such that τx0(ω) = τs(ω

′), as well as there exists t ∈ R such that
(t − Ri, t + Ri) ⊂ [min{x0, xn},max{x0, xn}] and τt(ω) ∈ Ξi. One can show in an
analogous way that, whenever z := t + s belongs to (min{xl−1, xl},max{xl−1, xl}]
for 2 ≤ l ≤ n, E(x0, x1, . . . , xn) ≥ E(x1, . . . , xl−1, z, xl, . . . , xn), with strict inequal-
ity if z < max{xl−1, xl}. Since (x0, x1, . . . , xn) is as minimizing configuration, this
implies that z = max{xl−1, xl} and thus (x1, . . . , xl−1, z, xl, . . . , xn) is a minimizing
configuration. The first part of this proof shows that this cannot happen.

The proof that (x0, . . . , xn) is strictly monotone is complete.

Proposition 48. Let L be a weakly twist transversally constant Lagrangian. Then,
there exists R > 0 such that, for ω ∈ Ω, n ≥ 2, and (x0, . . . , xn) with E(x0, . . . , xn) =
min(y0,...,yn)Eω(y0, . . . , yn), the inequality diam({xk : 0 ≤ k ≤ n}) ≥ R implies that
(x0, . . . , xn) is strictly monotone and sup1≤k≤n |xk − xk−1| ≤ R.

Proof. Consider ω ∈ Ω, n ≥ 2, and (x0, . . . , xn) realizing the minimum of the energy
among all configurations of length n in the environment ω.

Part 1. We show there exists R′ > 0 (independent from ω and n) such that
|x1 − x0| ≤ R′ and |x2 − x1| ≤ R′. Indeed, we have

Eω(x0, x1) ≤ Eω(x1, x1) and Eω(x0, x1, x2) ≤ Eω(x2, x2, x2),

which implies

Eω(x0, x1) ≤ sup
x∈R

Eω(x, x) and Eω(x1, x2) ≤ 2 sup
x∈R

Eω(x, x)− inf
x,y∈R

Eω(x, y).

The existence of R′ follows then from the coerciveness of L, which is uniform with
respect to ω. Similarly, we have |xn−1 − xn−2| ≤ R′ and |xn − xn−1| ≤ R′.

Part 2. We show there exists R′′ > 0 such that, if (x0, . . . , xm) is strictly
monotone, then |xi − xi−1| ≤ R′′ for every 1 ≤ i ≤ m. It is clear from the
definition that, if L is transversally constant with respect to a particular flow box
decomposition {τ [Bri × Ξi]}, then L is transversally constant for any flow box
decomposition such that its flow boxes are compatible with respect to {τ [Bri×Ξi]}.
Therefore, let {Ui = τ [BR′ × Ξ′i]} be a finite cover of Ω by flow boxes such that
τ [B2R′ × Ξ′i] is again a flow box and L is transversally constant with respect to
{τ [B2R′ × Ξ′i]}. We choose R′′ > 0 large enough so that every orbit of length R′′

meets entirely each τ [B2R′ × Ξ′i]. Let Ui be a flow box containing τx1(ω): there
exist |s1| < R′ and ω′ ∈ Ξ′i such that τx1(ω) = τs1(ω′). From part 1, we deduce that
τ [B2R′ × Ξ′i] contains {τx0(ω), τx1(ω), τx2(ω)}: there exist |s0|, |s2| < 2R′ such that
τx0(ω) = τs0(ω′) and τx2(ω) = τs2(ω′). Assume by contradiction |xi − xi−1| > R′′.
Then, there exists t ∈ R such that (t−2R′, t+2R′) ⊂ [min{xi−1, xi},max{xi−1, xi}]
and τt(ω) ∈ Ξ′i. Let z0 = t+ s0, z1 = t+ s1 and z2 = t+ s2. Notice that (xi−1, xi)
and (z0, z1, z2) are ordered in the same way. As L is transversally constant on
τ [B2R′ × Ξ′i], we obtain

Eω(x0, x1, x2) = Eω′(s0, s1, s2) = Eτt(ω)(s0, s1, s2) = Eω(z0, z1, z2).
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Aubry crossing lemma applied twice gives

Eω(xi−1, xi) + Eω(z0, z1, z2) > Eω(xi−1, z1) + Eω(z0, xi) + Eω(z1, z2),

> Eω(xi−1, z1, xi) + Eω(z0, z2).

As L is transversally constant, Eω(z0, z2) = Eω(x0, x2) as above and we obtain

Eω(xi−1, xi) + Eω(x0, x1, x2) > Eω(xi−1, z1, xi) + Eω(x0, x2).

The configuration (x0, x2, . . . , xi−1, z1, xi, . . . , xm) has a strictly lower energy, which
contradicts the fact that (x0, . . . , xm) is minimizing. We obtain similarly that, if
(xm, . . . , xn) is strictly monotone, then |xi−1 − xi| ≤ R′′ for every m+ 1 ≤ i ≤ n.

Part 3. Let R′′′ be the constant given by lemma 47. Take R > 2R′′ + 4R′′′. If
|xn− x0| > R′′′, then (x0, . . . , xn) is strictly monotone by lemma 47 and the jumps
|xi − xi−1| are uniformly bounded by R′′. The proof is finished.

Assume by contradiction that |xn − x0| ≤ R′′′. Let a = min0≤k≤n xk and
b = max0≤k≤n xk. Since diam({xk : 0 ≤ k ≤ n}) ≥ R, one of the two inequalities
|a−x0| > R/2 or |b−x0| > R/2 must be satisfied. Assume to simplify |b−x0| > R/2
(the case |a − x0| > R/2 is done similarly). Hence, b = xm for some 0 < m < n.
Since (x0, . . . , xm) and (xm, . . . , xn) are minimizing and satisfy |xm − x0| > R′′′

and |xm − xn| > R′′′, these two configurations are strictly monotone. Then, part 2
tells us that the jumps |xi − xi−1| are uniformly bounded by R′′. In particular,
|xm+1 − xm| ≤ R′′. The configuration (x0, . . . , xm+1) is minimizing and, since
|xm−x0| > R′′+2R′′′, it satisfies |xm+1−x0| > R′′′. By lemma 47, it must be strictly
monotone. Thus, (x0, . . . , xn) is strictly monotone and |xn−x0| > |xm+1−x0| > R′′′,
which is a contradiction.

The proof of the fact that |xk−xk−1| is uniformly bounded uses the same ideas
as in lemma 3.1 of [13]. The fact that L is transversally constant enables us to
translate subconfigurations without modifying the total energy. For a minimizing
and strictly monotone configuration, by minimality of the energy, two consecutive
points cannot enclose a translated subconfiguration of three points. More precisely,
we have the following lemma that extends lemma 3.2 of [13].

Lemma 49. Let L be a weakly twist Lagrangian which is transversally constant for
a flow box decomposition {Ui}i∈I . Suppose that the flow box τ [BR×Ξ] is compatible
with respect to {Ui}i∈I . Let (x0, . . . , xn) be a strictly monotone minimizing config-
uration for some environment ω ∈ Ω. Let (a−R, a+R) and (b−R, b+R) be two
disjoint intervals such that τa(ω) ∈ Ξ and τb(ω) ∈ Ξ. Assume that (a − R, a + R)
is a subset of [x0, xn]. Let A be the number of sites 0 ≤ k ≤ n such that xk belongs
to (a−R, a+R) and let B be defined similarly. Then B ≤ A+ 2. In particular, if
(b−R, b+R) ⊂ [x0, xn], then |A−B| ≤ 2.

Proof. To simplify we assume that (x0, . . . , xn) is strictly increasing. The proof is
done by contradiction by assuming B ≥ A+ 3. Denote

{y1, . . . , yA} := {x0, . . . , xn} ∩ (a−R, a+R) and

{y′1, . . . , y′B} := {x0, . . . , xn} ∩ (b−R, b+R).
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Let y0 be the greatest xk ≤ a−R and yA+1 be the smallest xk ≥ a+R. We write
sk := y′k − b and zk := a + sk for k = 1, . . . , B. The partition into A + 1 disjoint
intervals ∪A+1

k=1 (yk−1, yk] must contain A+3 distinct points {z1, . . . , zA+3}. We have
therefore to consider two cases.

Case 1. Either some interval (yk−1, yk] contains three points (zi−1, zi, zi+1). By
Aubry crossing lemma,

Eω(yk−1, yk) + Eω(zi−1, zi) > Eω(yk−1, zi) + Eω(zi−1, yk),

Eω(zi−1, yk) + Eω(zi, zi+1) ≥ Eω(zi−1, zi+1) + Eω(zi, yk).

Since L is transversally constant on τ [BR × Ξ], we obtain

Eω(y′i−1, y
′
i, y
′
i+1) + Eω(yk−1, yk) = Eω(zi−1, zi, zi+1) + Eω(yk−1, yk)

> Eω(zi−1, zi+1) + Eω(yk−1, zi, yk)

= Eω(y′i−1, y
′
i+1) + Eω(yk−1, zi, yk).

We have obtained a configuration (. . . , y′i−1, y
′
i+1, . . . , yk−1, zi, yk, . . .) with strictly

lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.
Case 2. Or there exist two distinct intervals (yk−1, yk] and (yl−1, yl], k < l,

that contain each two points (zi−1, zi) and (zj−1, zj), respectively. Notice that we
may have yk = yl−1, but we must have zi < zj−1, zi+1 ∈ (a − R, a + R), and
possibly zi+1 = zj−1. We want to obtain a contradiction by showing that one can
decrease the sum of energies Eω(y′i−1, . . . , y

′
j) + Eω(yk−1, . . . , yl) while fixing the

four boundary points. By changing by a coboundary as in definition 18, we may
assume that Eω(x, y) is C2 in x and y.

We perturb the point zi slightly by a small quantity ε and allow an increase of
the energy of order ε2. Since (zi−1, zi, zi+1) is minimizing, we have

Eω(zi−1, zi, zi+1) = Eω(zi−1, zi − ε, zi+1) + o(ε2).

By Aubry crossing lemma,

Eω(yk−1, yk) + Eω(zi−1, zi − ε)
= Eω(yk−1, zi − ε) + Eω(zi−1, yk)− ε(zi−1 − yk−1)α+ o(ε),

with α = 1
zi−1−yk−1

∫ zi−1

yk−1

∂2Eω
∂x∂y (x, yk) dx < 0. Again by Aubry crossing lemma,

Eω(yl−1, yl) + Eω(zj−1, zj) ≥ Eω(yl−1, zj) + Eω(zj−1, yl),

with equality if zj = yl. Since L is transversally constant, we obtain

Eω(y′i−1, . . . , y
′
j) + Eω(yk−1, . . . , yl)

= Eω(zi−1, . . . , zj) + Eω(yk−1, . . . , yl)

> Eω(zi−1, yk, . . . , yl−1, zj) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl)

= Eω(y′i−1, wk, . . . , wl−1, y
′
j) + Eω(yk−1, zi − ε, zi+1, . . . , zj−1, yl)

with tk := yk−a, wk := b+tk,. . . ,tl−1 := yl−1−a, wl−1 := b+tl−1. We have obtained
a configuration (. . . , y′i−1, wk, . . . , wl−1, y

′
j , . . . , yk−1, zi−ε, zi+1, . . . , zj−1, yl, . . .) with

strictly lower energy, which contradicts the fact that (x0, . . . , xn) is minimizing.
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It may happen that Eω(x, x) = Ē for some ω ∈ Ω and x ∈ R. Let xn = x
for every n. Then (xn)n∈Z is a calibrated configuration in the environment ω and
δ(τx(ω),0) is a minimizing measure. If L is transversally constant on a flow box
τ [BR × Ξ] such that τx(ω) ∈ Ξ, then δ(ω′,0) is a minimizing measure for every
ω′ ∈ Ξ. The projected Mather set contains Ξ and theorem 19 is proved. We are
thus left to understand the case infω∈Ω, x∈REω(x, x) > Ē.

Lemma 50. Let L be a weakly twist Lagrangian for which

inf
ω∈Ω, x∈R

Eω(x, x) > Ē.

For ω ∈ Ω and for every n, let (xn0 , . . . , x
n
n) be a configuration realizing the minimum

Eω(xn0 , . . . , x
n
n) = minx0,...,xn∈REω(x0, . . . , xn). Then limn→+∞ |xnn − xn0 | = +∞.

Proof. The proof is done by contradiction. Let ω ∈ Ω and R > 0. Assume there
exist infinitely many n’s for which every configuration (xn0 , . . . , x

n
n) realizing the

minimum of Eω(x0, . . . , xn) satisfies |xnn − xn0 | ≤ R. Thanks to lemma 44, we can
find distinct indices {i0, . . . , ir} of {0, . . . , n} such that i0 = 0, ir = n, (xni0 , . . . , x

n
ir

)
is monotone (possibly not strictly monotone) and

Eω(xn0 , . . . , x
n
n) ≥ Eω(xni0 , . . . , x

n
ir) +

∑
i 6∈{i0,...,ir}

Eω(xni , x
n
i ).

Let ε > 0 be chosen so that Eω(x, y) ≥ Ē + ε for every |y − x| ≤ ε. Thus, if θn
denotes the number of indices 1 ≤ k ≤ r such that |xnik − x

n
ik−1
| > ε, it is clear that

θn ≤ R/ε. Since

nĒ ≥ Eω(xn0 , . . . , x
n
n) ≥ (n− θn)(Ē + ε) + θn inf

x,y∈R
Eω(x, y),

we obtain a contradiction by letting n→ +∞.

We now assume that L is transversally constant. We show in the following
proposition that a sequence of configurations (xn0 , . . . , x

n
n) realizing the minimum

of the energy Eω(x0, . . . , xn) among all configurations of length n admits a weak
rotation number in the sense that

lim inf
n→+∞

|xnn − xn0 |
n

> 0. (26)

The existence of a rotation number for an infinite minimizing configuration (xk)k∈Z
has been established in [13]. The following proposition extends partially this result
in two directions: the interaction model is more general; we compute the rotation
number of a sequence of configurations of increasing length and not the rotation
number of a unique infinite configuration.

Proposition 51. Let (Ω, {τt}t∈R, L) be a one-dimensional weakly twist quasicrystal
interaction model. Assume that

inf
ω∈Ω, x∈R

Eω(x, x) > Ē.
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For ω ∈ Ω and for every n, let (xn0 , . . . , x
n
n) be a configuration realizing the minimum

of the energy among all configurations of length n:

Eω(xn0 , . . . , x
n
n) = min

x0,...,xn
Eω(x0, . . . , xn).

Then,

– Ē = limn→+∞
1
nEω(xn0 , . . . , x

n
n) = supn≥1

1
nEω(xn0 , . . . , x

n
n),

– for n sufficiently large, (xn0 , . . . , x
n
n) is strictly monotone,

– there is R > 0 (independent of ω) such that supn≥1 sup1≤k≤n |xnk −xnk−1| ≤ R,

– lim infn→+∞
1
n |x

n
n − xn0 | > 0.

Proof. We shall assume that the flow (Ω, {τt}t∈R) is not periodic.

Step 1. The first item has been proved in proposition 14; the limit can be
obtained as a supremum because of superadditivity. Moreover, from lemma 50,
|xnn − xn0 | → +∞. From proposition 48, the configuration (xn0 , . . . , x

n
n) must be

strictly monotone and have uniformly bounded jumps R. We are left to prove the
last item of the proposition.

Step 2. By definition of a quasicrystal, L is transversally constant with re-
spect to some flow box decomposition {Ui}i∈I (definition 15). Let {Fα}α∈A be a
Kakutani-Rohlin tower that is compatible with respect to {Ui}i∈I (definition 39)
and let Σ = ∪α∈AΣα be its basis. We may assume that minα∈AHα is as large
as we want and, in particular, larger than R (see the construction (25)). We also
assume that n is sufficiently large so that every tower Fα of basis Σα is completely
cut by the trajectory τt(ω) for t ∈ (min{xn0 , xnn},max{xn0 , xnn}). We consider ν the
transverse measure to Σ (as defined in lemma 41) and we denote να := ν(Σα).

Step 3. Let Sn < Tn be the two return times to Σ (namely, τSn(ω) ∈ Σ and
τTn(ω) ∈ Σ) that are chosen so that [Sn, Tn) is the smallest interval containing the
sequence (xnk)nk=0. From the definition of a Kakutani-Rohlin tower, [Sn, Tn) can be
written as a disjoint union of intervals of type Iα,i := [tα,i, tα,i +Hα), where the list
{tα,i}i, i = 1, . . . , Cnα , denotes the successive return times to Σα between Sn and Tn.
We distinguish two exceptional intervals among this list: the two intervals which
contain xn0 and xnn. If xn0 < xnn, then Nn

α,i denotes the number of points (xnk)nk=1

belonging to Iα,i and Nn
α denotes the maximum of Nn

α,i. If xnn < xn0 , then Nn
α,i and

Nn
α are defined similarly by considering in this case (xnk)n−1

k=0 . From lemma 49, we
obtain Nn

α − 2 ≤ Nn
α,i ≤ Nn

α for every nonexceptional interval Iα,i. We show that
supn≥1N

n
α < +∞ for every α ∈ A. The proof is done by contradiction.

Let Enα,i be the energy of the configuration localized in Iα,i. More precisely,

assume first xn0 < xnn; index the part of (xnk)nk=1 in Iα,i by (xnk,α,i)
N
k=1 with N = Nn

α,i;
denote by xn0,α,i the nearest point strictly smaller than xn1,α,i and define the partial

energy Enα,i := Eω(xn0,α,i, . . . , x
n
N,α,i). If xnn < xn0 , the part of (xnk)n−1

k=0 in Iα,i is

indexed by (xnk,α,i)
N−1
k=0 with N = Nn

α,i; denote by xnN,α,i the nearest point strictly
larger than xnN−1,α,i and define Enα,i similarly.

Thanks to the hypothesis infx∈REω(x, x) > Ē, one can choose ε > 0 such that
Eω(x, y) ≥ Ē+ ε as soon as |y−x| ≤ ε. Let H̄ := maxα∈AHα. Then, if θnα,i denotes
the number of consecutive points xnk,α,i in Iα,i satisfying |xnk,α,i − xnk−1,α,i| > ε,
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obviously θnα,i ≤ H̄/ε. Thus, since n =
∑

α∈A
∑

1≤i≤Cnα N
n
α,i, we have that

nĒ ≥ Eω(xn0 , . . . , x
n
n) =

∑
α∈A

∑
1≤i≤Cnα

Enα,i

≥
∑
α∈A

∑
1≤i≤Cnα

[
θnα,i inf

x,y∈R
Eω(x, y) +

(
Nn
α,i − θnα,i

)
(Ē + ε)

]
= n(Ē + ε) +

∑
α∈A

∑
1≤i≤Cnα

θnα,iE ≥ n(Ē + ε) +
∑
α∈A

Cnα
H̄

ε
E,

where E := (infx,y∈REω(x, y) − Ē − ε) < 0. Among the intervals (Iα,i)i, i =
1, . . . , Cnα , at most two of them are exceptional; the other intervals satisfy Nn

α,i ≥
Nn
α − 2. We thus get n ≥

∑
α∈A(Cnα − 2)(Nn

α − 2). For n sufficiently large, we have

Cnα
Tn − Sn

≤ (1 + ε)να,
Cnα − 2

Tn − Sn
≥ (1− ε)να and

1

n

∑
α∈A

Cnα ≤
(1 + ε)

∑
α∈A να

(1− ε)
∑

α∈A να(Nn
α − 2)

.

If Nn
α → +∞ for some α and a subsequence n → +∞, then 1

n

∑
α∈AC

n
α → 0 and

we obtain a contradiction with the previous inequality.

Step 4. For every α, Iα,i ⊂ [xn0 , x
n
n] except maybe for at most two of them. Then

|xnn − xn0 |
n

≥
∑

α∈A(Cnα − 2)Hα∑
α∈AC

n
αN

n
α

.

Denote N̄α := lim supn→+∞N
n
α . From step 3 we know that N̄α < +∞. By dividing

by (Tn − Sn) and by letting n→ +∞, we obtain

lim inf
n→+∞

|xnn − xn0 |
n

≥
∑

α∈A ναHα∑
α∈A ναN̄α

=
1∑

α∈A ναN̄α
> 0.

Proof of theorem 19. We assume that (Ω, {τt}t∈R, L) is a one-dimensional weakly
twist quasicrystal interaction model. We discuss two cases.

Case 1. Either infω∈Ω infx∈REω(x, x) = Ē. Then Eω∗(x∗, x∗) = Ē for some
ω∗ and x∗. By hypothesis, L is transversally constant with respect to a flow box
decomposition {Ui = τ [BRi × Ξi]}i∈I . Let i ∈ I be such that τx∗(ω∗) ∈ Ui. Let be
|ti| < Ri and ωi ∈ Ξi such that τx∗(ω∗) = τti(ωi). Then

Ē = Eω∗(x∗, x∗) = Eωi(ti, ti) = Eω(ti, ti), ∀ω ∈ Ξi.

We have just proved that δ(τti (ω),0) is a minimizing measure for every ω ∈ Ξi.
The projected Mather set contains τti(Ξi). By minimality of the flow, we have
Ω = τ [BR × Ξi] thanks to item 1 of lemma 37. The projected Mather set thus
meets every sufficiently long orbit of the flow.
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Case 2. Or infω∈Ω infx∈REω(x, x) > Ē. Proposition 51 shows that, if ω∗ ∈ Ω
has been fixed, if for every n ≥ 1 a sequence (xnk)0≤k<n of points of R realizing the
minimum Eω∗(x

n
0 , . . . , x

n
n) = minx0,...,xn Eω∗(x0, . . . , xn) has been fixed, then

– Ē = limn→+∞
1
nEω∗(x

n
0 , . . . , x

n
n),

– (xnk)0≤k<n is strictly monotone for n large enough,
– there is R > 0 (independent of ω∗) such that supn≥1 sup1≤k≤n |xnk − xnk−1| < 2R,

– ρ := lim infn→+∞
1
n |x

n
n − xn0 | > 0.

Let µn,ω∗ be the probability measure on Ω× R defined by

µn,ω∗ :=
1

n

n−1∑
k=0

δ(τxn
k

(ω∗), xnk+1−x
n
k ).

Notice that
∫
Ldµn,ω∗ = 1

nEω∗(x
n
0 , . . . , x

n
n). Since the consecutive jumps of xnk are

uniformly bounded, the sequence of measures {µn,ω∗}n≥1 is tight. By taking a
subsequence, we may assume that µn,ω∗ → µ∞ with respect to the weak topology.
Moreover, µ∞ is holonomic and minimizing. Let Ξ ⊂ Ω be a transverse section of
a flow box τ [BR × Ξ]. Let RΞ(ω∗) be the set of return times to Ξ as defined in
lemma 41. Let pr1 : Ω× R→ Ω be the first projection. Then

pr1
∗(µn,ω∗)(τ [BR × Ξ]) =

1

n
#
{
k : xnk ∈ ∪t∈RΞ(ω∗)BR(t)

}
≥ 1

n
#(BTn(cn) ∩ RΞ(ω∗)),

with Tn := 1
2 |x

n
n − xn0 | and cn := 1

2(xn0 + xnn). The previous inequality comes from
the fact that the intervals BR(t) are disjoints and contain at least one xnk . Then

pr1
∗(µn,ω∗)(τ [BR × Ξ]) ≥ 2Tn

n

#(BTn(0) ∩ RΞ(τcn(ω∗))

Leb(BTn(0))
.

By taking the limit as n → +∞, one obtains pr1
∗(µ∞)(τ [BR × Ξ]) ≥ ρνΞ(Ξ) > 0.

Therefore, since Ξ is arbitrary, every orbit of the flow of length 2R meets the
projected Mather set.

5 Lax-Oleinik operators

The Lax-Oleinik operator is a tool used in PDE’s to solve Hamilton-Jacobi equa-
tions. The Frenkel-Kontorova model appears naturally by discretization in time
of these equations. The solutions of the Lax-Oleinik operator are called viscosity
solutions or weak KAM solutions in the continuous time setting. We will call them
here sub-actions.

Definition 52. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. We
call backward Lax-Oleinik operator the (nonlinear) operator acting on the space of
Borel measurable functions by

T−[u](ω) := inf
t∈Rd

[
u ◦ τ−t(ω) + L(τ−t(ω), t)

]
.
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Similarly, we call forward Lax-Oleinik operator the operator

T+[u](ω) := sup
t∈Rd

[
u ◦ τt(ω)− L(ω, t)

]
.

We will see that these Lax-Oleinik operators are less regularizing than the usual
operators used in discrete weak KAM theory [14] (or in discrete dynamic program-
ming [15]), when they are defined for a specific choice of an environment. For the
usual definition of T±, for a particular choice of E, see Appendix A, definition 59.
From now on, we denote by L∞(X) the space of bounded Borel measurable func-
tions on a topological space X.

Definition 53. A measurable function u is called a sub-action (at the level L̄ = Ē)
if one of the following conditions is satisfied

∀ω ∈ Ω, ∀ t ∈ Rd, u ◦ τt(ω) ≤ u(ω) + L(ω, t)− L̄
⇐⇒ u+ L̄ ≤ T−[u] ⇐⇒ u− L̄ ≥ T+[u].

There are then two possibilities for calibration: a sub-action u is said to be

backward calibrated if T−[u] = u+ L̄,

forward calibrated if T+[u] = u− L̄.

Continuous calibrated sub-actions do exist in the periodic setting. The main
problem we are facing is that bounded measurable sub-actions may not exist in
the almost periodic setting. We recall that L̄ = Ē may be computed using four
formulas, given by definition 6, and propositions 10, 13 and 14.

As in definition 59, one may introduce two Lax-Oleinik operators Tω±, associ-
ated to the interaction Eω for any ω ∈ Ω, each one acting on measurable functions
as follows

Tω−[u](y) := inf
x∈Rd

[
u(x) + Eω(x, y)

]
, (27)

Tω+[u](x) := sup
y∈Rd

[
u(y)− Eω(x, y)

]
. (28)

Notice that, if u is a solution of T−[u] = u + L̄ or T+[u] = u − L̄, then, for every
ω ∈ Ω, uω(x) := u ◦ τx(ω) is a solution of Tω−[uω] = uω + Ē or Tω+[uω] = uω − Ē.

The main result in this section is about the existence of a bounded calibrated
sub-action provided an obvious obstruction is removed. The following result is sim-
ilar to Gottschalk-Hedlund theorem. We denote by Cuscb (Ω) and C lscb (Ω) the spaces
of bounded upper semi-continuous and bounded lower semi-continuous functions,
respectively.

Theorem 54. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. Assume
that L is C0 coercive. Then, the following conditions are equivalent:

1. ∃u ∈ C lscb (Ω), T−[u] = u+ L̄,

2. ∃u ∈ Cuscb (Ω), T+[u] = u− L̄,
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3. ∀ω ∈ Ω, supn≥0 |Tn−[0](ω)− nL̄| < +∞,

4. ∀ω ∈ Ω, supn≥0 |Tn+[0](ω) + nL̄| < +∞,

5. ∃ω ∈ Ω, ∃u ∈ L∞(Rd), Tω−[u] = u+ Ē,

6. ∃ω ∈ Ω, ∃u ∈ L∞(Rd), Tω+[u] = u− Ē.

(As usual, Tn± denotes the nth iterate of T±.) Moreover, any bounded measurable
solution of Tω−[u] = u+ Ē or Tω+[u] = u− Ē is actually uniformly continuous.

The backward and forward calibrated solutions are two very different objects
obtained by reversing the group action. Define

τ̌t := τ−t, ρ(ω, t) = (τ−t(ω), t), and Ľ := L ◦ ρ. (29)

The family of interactions associated to Ľ reads

Ěω(x, y) := Ľ(τ̌x(ω), y − x) = Eω(−y,−x). (30)

Notice that coerciveness and superlinearity are preserved by changing L to Ľ. For
every probability measure µ, we associate the reversed measure

µ̌ := ρ−1
∗ (µ). (31)

Then µ is holonomic for {τt}t if, and only if, µ̌ is holonomic for {τ̌t}t, and µ is
minimizing for L if, and only if, µ̌ is minimizing for Ľ. In particular, L and Ľ
have the same ground energy. For every measurable function u, we associate the
reversed function

ǔ := −u, then T+[u] = −Ť−[ǔ]. (32)

This duality between T− and Ť+ implies readily

u+ L̄ ≤ T−[u] ⇐⇒ u− L̄ ≥ T+[u] ⇐⇒ ǔ+ L̄ ≤ Ť−[ǔ], (33)

u− L̄ = T+[u] ⇐⇒ ǔ+ L̄ = Ť−[ǔ]. (34)

The second equivalence means that u is forward calibrated for L if, and only if, ǔ
is backward calibrated for Ľ.

We will use the following regularity along every orbit of the action.

Definition 55. A function u ∈ L∞(Ω) is said to be equicontinuous along the group
action if

lim
ε→0+

sup
ω∈Ω

sup
‖t‖≤ε

|u ◦ τt(ω)− u(ω)| = 0.

Lemma 56. Assume that L is C0 coercive.

1. If u is lower semi-continuous and finite everywhere, then T−[u] ∈ L∞(Ω). If
u is upper semi-continuous and finite everywhere, then T+[u] ∈ L∞(Ω). If
u is a finite everywhere sub-action which is either lower semi-continuous or
upper semi-continuous, then u ∈ L∞(Ω).
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2. If u ∈ C0(Ω), then T−[u] ∈ C0(Ω).

3. If u ∈ L∞(Ω), then T−[u] ∈ L∞(Ω) and is equicontinuous along the group
action. Moreover, the modulus of equicontinuity is uniform over ‖u‖∞ ≤ R,
that is,

∀R > 0, lim
ε→0+

sup
‖u‖∞≤R

sup
ω∈Ω

sup
‖t‖≤ε

|T−[u] ◦ τt(ω)− T−[u](ω)| = 0.

4. If {un}n≥0 is a nondecreasing sequence of lower semi-continuous functions
such that supn≥0 ‖un‖∞ < +∞, then

sup
n≥0

T−[un] = T−
[

sup
n≥0

un
]
.

If {un}n≥0 is any sequence of measurable functions, then

inf
n≥0

T−[un] = T−
[

inf
n≥0

un
]
.

5. If u ∈ C lscb (Ω), then T−[u] ∈ C lscb (Ω). If u ∈ Cuscb (Ω), then T−[u] ∈ Cuscb (Ω).

Proof. Part 1. Let FN := {ω ∈ Ω : u(ω) ≤ N}. As u is lower semi-continuous,
FN is closed; as u is finite everywhere, Ω = ∪N∈ZFn. By Baire’s theorem, there
exists N(u) such that FN(u) has nonempty interior. By minimality, on may find
D > 0 such that, for every ω ∈ Ω, there exists ‖t‖ ≤ D with τ−t(ω) ∈ FN(u).
By the definition of the backward Lax-Oleinik operator, T−[u](ω) ≤ u ◦ τ−t(ω) +
L(τ−t(ω), t). We obtain the uniform upper bound:

sup
ω∈Ω

T−[u](ω) ≤ N(u) + sup
ω∈Ω, ‖t‖≤D

L(τ−t(ω), t).

By the lower semi-continuity of u, we obtain the following uniform lower bound

inf
ω∈Ω

T−[u](ω) ≥ inf
ω∈Ω

u(ω) + inf
ω∈Ω, t∈Rd

L(ω, t).

We have just proved that T−[u] is bounded. If u is upper semi-continuous, ǔ is
lower semi-continuous and T+[u] = −Ť−[ǔ] is bounded by the previous proof.

If u is a lower semi-continuous and finite everywhere sub-action, then u ≤
T−[u] − L̄. As T−|u] is bounded, u is bounded from above, being bounded from
bellow by semi-continuity. Similarly, from upper semi-continuity and u ≥ T+[u]+L̄,
one obtains that u ∈ L∞(Ω).

Part 2. We first notice that, if u ∈ L∞(Ω), then an optimal translation t ∈ Rd given
in the definition of T−[u] is uniformly bounded from above by a constant D > 0,
which is obtained from the coerciveness of L:

inf
ω∈Ω, ‖t‖≥D

[
u ◦ τ−t(ω) + L(τ−t(ω), t)

]
> sup

ω∈Ω

[
u(ω) + L(ω, 0)

]
.

The family of continuous functions
{
ω ∈ Ω 7→ u ◦ τ−t(ω) + L(τ−t(ω), t)

}
‖t‖≤D is

equicontinuous and, by the compactness of Ω, the infimum T−[u] is also continuous.
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Part 3. For R > 0, choose as in part 2 a constant DR > 0 so that, for every
‖u‖∞ ≤ R,

∀ω ∈ Ω, T−[u](ω) = inf
‖t‖≤DR

[
u ◦ τ−t(ω) + L(τ−t(ω), t)

]
.

(Notice that we can choose ‖t‖ ≤ DR uniformly over the set {u : ‖u‖∞ ≤ R} for
every R.) Then, given η > 0, there exists ‖t‖ ≤ DR such that, for all ω ∈ Ω and
s ∈ Rd,

T−[u](τs(ω))− T−[u](ω) ≤
≤
[
u ◦ τ−t(ω) + L(τ−t(ω), t+ s)

]
−
[
u ◦ τ−t(ω) + L(τ−t(ω), t)

]
+ η ≤

≤ L(τ−t(ω), t+ s)− L(τ−t(ω), t) + η.

Taking first suprema and letting then η → 0, one obtains

sup
ω∈Ω, ‖s‖≤ε

∣∣T−[u](τs(ω))− T−[u](ω)
∣∣ ≤ sup

ω∈Ω, ‖t‖≤DR, ‖s‖≤ε
|L(ω, t+ s)− L(ω, t)|.

The right hand side goes to 0 as ε→ 0 by the uniform continuity of L on compact
sets. We have proved that {T−[u]}‖u‖∞≤R is equicontinuous along the group action.

Part 4. Since the set {un}n is uniformly bounded in L∞(Ω), the infimum on t in
the definition of T−[un] can be realized over ‖t‖ ≤ DR, for some DR > 0, uniformly
in ω and n ≥ 0. Define

fn(ω, t) := un ◦ τ−t(ω) + L(τ−t(ω), t).

Then fn : Ω × {‖t‖ ≤ DR} → R is lower semi-continuous and nondecreasing in n.
The following lemma 57 shows that, for every ω fixed,

sup
n≥0

inf
‖t‖≤DR

fn(ω, t) = inf
‖t‖≤DR

sup
n≥0

fn(ω, t) ⇔ sup
n≥0

T−[un](ω) = T−

[
sup
n≥0

un

]
(ω).

For any sequence {un}n, the property infn T−[un] = T−[infn un] is obtained by
simply permuting the two infima.

Part 5. Let u ∈ C lscb (Ω). There exists a nondecreasing sequence of continuous
functions un such that supn≥0 un = u. Part 4 implies that supn≥0 T−[un] = T−[u].
Moreover, T−[un] is continuous by part 2, which shows that T−[u] is lower semi-
continuous. Besides, T−[u] is bounded by part 3. If u ∈ Cuscb (Ω), then there exists
a nonincreasing sequence of continuous functions un such that u = infn un. One
gets by part 4 that infn T−[un] = T−[u] is upper semi-continuous and by part 3 that
T−[u] is bounded.

We have used the following basic lemma.

Lemma 57. Let X be a compact metric space and un : X → R be a nondecreasing
sequence of lower semi-continuous functions. Suppose that supn un(x) < +∞ for
every x ∈ X. Then supn infx∈X un(x) = infx∈X supn un(x).
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Proof. On the one hand, it is clear that

inf
x∈X

sup
n≥0

un(x) ≥ sup
n≥0

inf
x∈X

un(x).

On the other hand, since un is lower semi-continuous, the minimum of every un
is attained: let xn ∈ X be such that infx∈X un(x) = un(xn). By compactness of
X, let x∞ be an accumulation point of {xn}n. Let u = supn un, which is finite
by assumption. For ε > 0, choose N such that uN (x∞) > u(x∞) − ε. Since
uN is lower semi-continuous, choose a neighborhood U of x∞ so that uN (x) >
u(x∞)−2ε for every x ∈ U . Since {un}n is nondecreasing, we have that, for n ≥ N
sufficiently large, xn ∈ U and un(xn) ≥ uN (xn) > u(x∞) − 2ε, from which we
obtain supn≥0 infx∈X un(x) > u(x∞)− 2ε. Letting ε→ 0, we have just proved that
supn≥0 infx∈X un(x) ≥ infx∈X supn≥0 un(x).

We will also need to recall the notions of lower semi-continuous envelope ulsc
and upper semi-continuous envelope uusc of a bounded function u, namely,

∀ω ∈ Ω, ulsc(ω) := sup{φ(ω) : φ ≤ u and φ ∈ C0(Ω)}, (35)

∀ω ∈ Ω, uusc(ω) := inf{φ(ω) : u ≤ φ and φ ∈ C0(Ω)}. (36)

We have then a key lemma.

Lemma 58. Let u ∈ L∞(Ω).

1. If v := T−[u], then vlsc = T−[ulsc] and vusc ≤ T−[uusc].

2. If v := T+[u], then vusc = T+[uusc] and vlsc ≥ T+[ulsc].

3. If u+ L̄ ≤ T−[u], then ulsc + L̄ ≤ T−[ulsc] and uusc + L̄ ≤ T−[uusc].

4. If u− L̄ ≥ T+[u], then ulsc − L̄ ≥ T+[ulsc] and uusc − L̄ ≥ T+[uusc].

5. If u+ L̄ = T−[u], then ulsc + L̄ = T−[ulsc].

6. If u− L̄ = T+[u], then uusc − L̄ = T+[uusc].

Proof. Even items may be derived immediately from respective odd items simply
by reversing the group action and using, in particular, relation (32). So we only
prove the odd items of the lemma.

Part 1. Let φ ∈ C0(Ω) be such that φ ≤ v. Then, for all ω and t, φ(τt(ω)) ≤
u(ω) + L(ω, t) − L̄. For a fixed t, φ(τt(ω)) − L(ω, t) + L̄ is continuous in ω. By
definition of the envelope, φ(τt(ω)) ≤ ulsc(ω)+L(ω, t)−L̄ for all ω and t. By taking
the supremum on φ, we obtain vlsc(τt(ω)) ≤ ulsc(ω) +L(ω, t)− L̄ or vlsc ≤ T−[ulsc].
Conversely, ulsc ≤ u implies T−[ulsc] ≤ T−[u]. By lemma 56, part 5, T−[ulsc] is
lower semi-continuous. We thus obtain that T−[ulsc] ≤ vlsc. Hence, T−[ulsc] = vlsc.

Let {φn}n ⊂ C0(Ω) be a nonincreasing sequence such that infn φn = uusc. By
lemma 56, part 4, T−[uusc] = infn T−[φn] ≥ T−[u] = v. By lemma 56, part 5,
T−[uusc] is upper semi-continuous. We have obtained that T−[uusc] ≥ vusc.



48 Garibaldi, Petite and Thieullen

Part 3. If u + L̄ ≤ T−[u], by taking the semi-continuous envelope of both parts
of the inequality and by using the first part of this lemma, we obtain ulsc + L̄ ≤
T−[ulsc]. Moreover, u + L̄ ≤ T−[uusc]. By lemma 56, part 5, T−[uusc] is upper
semi-continuous. In particular, uusc + L̄ ≤ T−[uusc].

Part 5. If u + L̄ = T−[u], then ulsc + L̄ ≤ T−[ulsc] by part 3. Let {φn}n be a
nondecreasing sequence of continuous functions such that ulsc = supn φn. Then
φn ≤ u, T−[φn] ≤ T−[u] = u+ L̄, T−[φn] is continuous, T−[φn] ≤ ulsc + L̄, and, by
lemma 56, part 4, we obtain T−[ulsc] ≤ ulsc + L̄. Thus, T−[ulsc] = ulsc + L̄.

Proof of theorem 54. It is clear by reversing the direction of the group action as in
(29) and (30) that item 1 ⇔ item 2, item 3 ⇔ item 4, and item 5 ⇔ item 6. It is
also clear that item 1⇒ item 5 using lemma 56 (item 3) to show that uω ∈ C0

b (Rd).

Part 1. We prove that item 5 ⇒ item 3. Notice first that

Tn−[0](ω̄) = inf
{
Eω̄(x−n, . . . , x−1, x0) : x0 = 0 and x−k ∈ Rd

}
, ∀ ω̄ ∈ Ω.

By assumption, there exist ω ∈ Ω and u ∈ L∞(Rd) such that

∀ y ∈ Rd, u(y) = inf
x∈Rd

{
u(x) + Eω(x, y)− Ē

}
.

On the one hand, we have that

∀ t ∈ Rd, ∀x−n, . . . , x0 ∈ Rd, Eτt(ω)(x−n, . . . , x0) ≥ u(x0 + t)− u(x−n + t) + nĒ.

Since Ē = L̄, by minimality of the interaction model, we obtain thus

inf
ω̄∈Ω

inf
n≥0

[
Tn−[0](ω̄)− nL̄

]
≥ −2‖u‖∞.

On the other hand, for all t ∈ Rd, there are xt−n, . . . , x
t
0 ∈ Rd, with xt0 = 0, such

that

Eτt(ω)(x
t
−n, . . . , x

t
0) ≤ u(xt0 + t)− u(xt−n + t) + nĒ +

n−1∑
k=0

1

2k
,

which yields

∀n ≥ 1, ∀ t ∈ Rd, Tn−[0](τt(ω))− nL̄ ≤ 2(‖u‖∞ + 1),

and an upper bound also follows from the minimality of the action.

Part 2. We prove that item 3 ⇒ item 1. We claim that it is enough to show the
existence of v0 ∈ L∞(Ω) such that

v0 + L̄ ≤ T−[v0] and sup
n≥0

∥∥Tn−[v0]− nL̄
∥∥
∞ < +∞. (37)

Indeed, we may first assume that v0 ∈ C lscb (Ω) since by lemma 58, part 3,

(v0)lsc + L̄ ≤ T−[(v0)lsc],

−‖v0‖∞ ≤ (v0)lsc ≤ Tn−[(v0)lsc]− nL̄ ≤ Tn−[v0]− nL̄ ≤ ‖Tn−[v0]− nL̄‖∞.
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From now on, suppose that v0 is lower semi-continuous and bounded. Let vn :=
Tn−[v0]− nL̄. Then vn is lower semi-continuous by lemma 56, part 5, vn+1 ≥ vn by
the sub-action property, supn ‖vn‖∞ < +∞ by the claim, and T−[vn] = vn+1 + L̄
by construction. By lemma 56, part 4, if v = supn vn, then

v ∈ C lscb (Ω) and T−[v] = T−[ lim
n→+∞

vn] = lim
n→+∞

T−[vn] = v + L̄.

It remains just to prove the existence of v0 ∈ L∞(Ω) verifying (37). Define then
v0 := infk≥0[T k−[0] − kL̄]. Notice that v0 is finite everywhere by assumption and
satisfies v0 + L̄ ≤ T−[v0] by the following inequalities

v0(ω) = inf
n≥0

inf
x−n,...,x−1,x0=0

[
Eω(x−n, . . . , x0)− nL̄

]
,

∀ω ∈ Ω, ∀ t ∈ Rd, v0(τt(ω)) ≤ v0(ω) + Eω(0, t)− L̄.

Moreover, v0 is upper semi-continuous and, by lemma 56, part 1, v0 is bounded.
Notice that

vn := Tn−[v0]− nL̄ = inf
k≥n

[T k−[0]− kL̄].

is a nondecreasing sequence. Define

un := sup
k≥n

[T k−[0]− kL̄].

Then u0 is finite everywhere by hypothesis, and lower semi-continuous. By lemma 56,
part 1, T−[u0] is bounded. Since

T−[u0]− L̄ ≥ u1 ≥ un ≥ vn ≥ v1 ≥ v0,

we finally obtain that supn ‖vn‖∞ = supn ‖Tn−[v0]− nL̄‖∞ < +∞.

Appendices

A Minimizing configurations for general interaction

The existence of a semi-infinite minimizing configuration without asking it to be
calibrated at the level Ē is easier to guarantee and requires few hypothesis. We
consider, in the first part of this appendix, a unique interaction energy E(x, y) that
will be supposed to be superlinear (7), translation bounded (5) and translation
uniformly continuous (6). By adapting a point of view proposed by Zavidovique
[25, Appendix], we will show that there always exists a semi-infinite minimizing
configuration {xn}0n=−∞ with bounded jumps. The configuration will actually be
calibrated at some level c̄, which has no reason to be equal to Ē. We consider, in the
second part of this appendix, an almost periodic interaction model and show the
existence of a bi-infinite calibrated configuration for some Eω̄. We do not describe
the set of such environments ω̄.
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The main problem for a general interaction energy is to obtain an a priori bound
on the jumps ‖xn+1− xn‖ of any finite minimizing configuration. The main tool is
to construct a discrete weak KAM solution (or a calibrated sub-action as in [14]).
We will say that u : Rd → R is Lipschitz in the large if

sup
x,y∈Rd

|u(y)− u(x)|
‖y − x‖+ 1

< +∞. (38)

Definition 59. We call backward Lax-Oleinik operator the (nonlinear) operator T−
acting on continuous functions u : Rd → R by

∀ y ∈ Rd, T−[u](y) := inf{u(x) + E(x, y) : x ∈ Rd}.

We say that u is a calibrated sub-action for E at the level c ∈ R if T−[u] = u+ c.

For translation periodic interaction energy E, it was shown in [14] that the inter-
action energy Eλ(x, y) = E(x, y)−〈λ, y−x〉 admits a periodic calibrated sub-action
uλ at the level Ē(λ). Notice then that u(x) := uλ(x)+〈λ, x〉 becomes calibrated for
E = E0 at the level Ē(λ). It was also shown there that λ 7→ −Ē(λ) is convex and
superlinear. These two simple observations implies that the equation T−[u] = u+ c
admits a solution Lipschitz in the large for all values c in (−∞, supλ Ē(λ)].

For general interaction energies as discussed in this appendix, we do not have an
a priori growth on calibrated sub-actions. An important observation in [25] is that
translation boundedness implies Lipschitz in the large and superlinearity implies
sublinearity and compactness. Let

c̄ := sup
u∈C0(Rd)

inf
x,y∈Rd

[E(x, y) + u(x)− u(y)]. (39)

Proposition 60. Let E : Rd×Rd → R be a C0 superlinear, translation bounded and
translation uniformly continuous interaction energy. Then there exists a uniformly
continuous function ū : Rd → R which solves the Lax-Oleinik equation T−[ū] = ū+c̄.
In particular, there exists a backward calibrated configuration {x−k}+∞k=0 at the level
c̄ with uniformly bounded jumps supk≥1 ‖x−k+1 − x−k‖ < +∞.

Proposition 61. Let (Ω, {τt}t∈Rd , L) be an almost periodic interaction model. Sup-
pose L is superlinear. Then

c̄ := sup
u∈C0(Rd)

inf
x,y∈Rd

[Eω(x, y) + u(x)− u(y)]

is independent of ω and, for a certain ω̄ ∈ Ω, there exists a (bi-infinite) calibrated
configuration for Eω̄ at the level c̄.

As we noticed above, the constant c̄ may not be equal to Ē if we do not assume
any growth at infinity on u. It is not clear that calibrated configurations exist for
any environment ω.

The first two lemmas exhibit a priori compactness for the Lax-Oleinik operator.
Let

c0 := inf
x,y∈Rd

E(x, y) and K0 := sup
‖y−x‖≤1

E(x, y)− c0. (40)

Notice that c0 ≤ c̄ ≤ supxE(x, x) and that K0 < +∞ thanks to the translation
boundedness. Then, we have the following lemma.
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Lemma 62. Let c0 ≤ c ≤ c̄ and u ∈ C0(Rd) be such that u(y)−u(x) ≤ E(x, y)− c
for every x, y ∈ Rd. Then u is Lipschitz in the large with constant K0,

∀x, y ∈ Rd, |u(y)− u(x)| ≤ K0

(
‖y − x‖+ 1

)
.

Proof. Let n ≥ 1 be the unique integer satisfying n − 1 < ‖y − x‖ ≤ n. Define
xk := x+ k

n(y − x), for k = 0, . . . , n. Then

u(xk+1)− u(xk) ≤ E(xk, xk+1)− c, |u(xk+1)− u(xk)| ≤ K0,

|u(y)− u(x)| ≤ nK0 ≤ K0

(
‖y − x‖+ 1

)
.

Notice that T− is a monotone operator, u ≤ v ⇒ T−[u] ≤ T−[v], commutes with
the constants, T−[u + λ] = u + λ, ∀λ ∈ R, and is concave, T−[λu + (1 − λ)v] ≥
λT−[u] + (1 − λ)T−[v], ∀λ ∈ [0, 1]. Notice also that u + c ≤ T−[u] is equivalent to
u(y)− u(x) ≤ E(x, y)− c, ∀x, y ∈ Rd. Define the semi-norm

‖u‖Lip := sup
0<‖y−x‖≤R0

|u(y)− u(x)|
‖y − x‖+ sup

‖x−z‖∨‖y−z‖≤2R0

|E(z, y)− E(z, x)|
, (41)

where R0 > 0 is a constant chosen a priori and given explicitly by the formula

R0 :=
1

K0

(
K0 +B0 + sup

x∈Rd
E(x, x)

)
, (42)

with B0 > 0 defined by the superlinearity:

∀x, y ∈ Rd, E(x, y) ≥ 2K0‖y − x‖ −B0. (43)

We equip C0(Rd) with the topology of the uniform convergence on any compact
sets. Then C0(Rd) becomes a Frechet space. Let

Hc :=
{
u ∈ C0(Rd) : u(0) = 0, u+ c ≤ T−[u] and ‖u‖Lip ≤ 1

}
. (44)

Define T̃−[u] := T−[u] − T−[u](0). Notice that the case c0 = c̄ occurs if, and only
if, u ≡ 0 satisfies the inequality u+ c̄ ≤ T−[u]. For the general situation, we point
out the following lemma.

Lemma 63. For every c0 < c < c̄, Hc is a nonempty compact convex set of C0(Rd),
T̃−[Hc] ⊆ Hc, and T̃− is a continuous map restricted to Hc.

Proof. Define

H̃c :=
{
u ∈ C0(Rd) : u(0) = 0 and u+ c ≤ T−[u]

}
.

Because of the monotonicity and concavity of T−, H̃c is a closed convex subset of
C0(Rd) invariant by T̃−. By the choice of c, H̃c is nonempty. By Ascoli theorem,
Hc is compact in C0(Rd). We prove that T̃−[H̃c] ⊆ Hc and that T̃− : H̃c → C0(Rd)
is continuous.
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We first prove that ‖T−[u]‖Lip ≤ 1 for every u ∈ H̃c. We claim that an optimal
point xopt in the definition of T−[u](x) is at a uniform distance from x. Indeed,
notice that we have T−[u](x) = u(xopt) + E(xopt, x) ≤ u(x) + E(x, x), and then

2K0‖x− xopt‖ −B0 ≤ E(xopt, x) ≤ u(x)− u(xopt) + E(x, x)

≤ K0(‖x− xopt‖+ 1) + E(x, x),

from which it follows that

‖x− xopt‖ ≤ R0.

We show now that ‖T−[u]‖Lip ≤ 1. For ‖y − x‖ ≤ R0, we obtain that

T−[u](x) = u(xopt) + E(xopt, x),

T−[u](y) ≤ u(xopt) + E(xopt, y),

T−[u](y)− T−[u](x) ≤ sup
‖x−z‖∨‖y−z‖≤2R0

|E(z, y)− E(z, x)|,

‖T−[u]‖Lip ≤ 1.

We next show the T− restricted to H̃c is continuous. For u, v ∈ H̃c and R > 0,
notice that

T−[u](x) = u(xopt) + E(xopt, x),

T−[v](x) ≤ v(xopt) + E(xopt, x),

sup
‖x‖≤R

|T−[v](x)− T−[u](x)| ≤ sup
‖x‖≤R+K0

|v(x)− u(x)|.

Then T− and therefore T̃− are continuous for the topology of the uniform conver-
gence on compact sets.

Proof of proposition 60. The set Hc̄ = ∩c0<c<c̄Hc is a nonempty compact convex
subset of the Hausdorff topological vector space C0(Rd) and T̃− : Hc̄ → Hc̄ is a
continuous map. By Schauder theorem (see [5] for a recent reference), T̃− admits a
fixed point ū ∈ Hc̄. Let c := T̃−[ū](0), then T−[ū] = ū+ c. Since ū ∈ Hc̄, we have,
on the one hand, ū+ c̄ ≤ T−[ū] = ū+ c and therefore c̄ ≤ c. On the other hand,

c̄ ≥ inf
x,y

[
E(x, y) + ū(x)− ū(y)

]
= inf

y

[
T−[ū](y)− ū(y)

]
= c.

We have just shown that there exists ū ∈ C0(Rd), uniformly Lipschitz in the large,
with ‖ū‖Lip ≤ 1, such that T−[ū] = ū + c̄, where c̄ is given by (39). We construct
by induction a backward calibrated configuration using the identity

∀ k ≥ 1, ū(x−k+1) = ū(x−k) + E(x−k, x−k+1)− c̄.

Proof of proposition 61. Let

c̄(ω) := sup
u∈C0(Rd)

inf
x,y∈Rd

[Eω(x, y) + u(x)− u(y)].
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The conclusion of the proof of proposition 60 asserts that the supremum in c̄(ω)
can be realized on a smaller space which may be defined independently of ω. Let

C0
Lip(Rd) :=

{
u ∈ C0(Rd) :u(0) = 0, ‖u‖Lip ≤ 1

}
,

where the new semi-norm ‖u‖Lip is given by

‖u‖Lip := sup
‖y−x‖≥R̄

|u(y)− u(x)|
2K̄‖y − x‖

∨
∨

sup
0<‖y−x‖≤R̄

inf
‖x−z‖≤2R̄
‖y−z‖≤2R̄

|u(y)− u(x)|
‖y − x‖+ sup

ω∈Ω
|Eω(z, y)− Eω(z, x)|

,

with K̄, R̄ given as in (40), (42) and (43):

K̄ := sup
ω∈Ω, ‖y−x‖≤1

Eω(x, y)− inf
ω∈Ω, x,y∈Rd

Eω(x, y),

R̄ :=
1

K̄

(
K̄ + B̄ + sup

ω∈Ω, x∈Rd
Eω(x, x)

)
,

∀x, y ∈ Rd, inf
ω∈Ω

Eω(x, y) ≥ 2K̄‖y − x‖ − B̄.

Then
c̄(ω) := max

u∈C0
Lip(Rd)

inf
x,y∈Rd

[Eω(x, y) + u(x)− u(y)].

For every u ∈ C0
Lip(Rd), the infimum is a continuous function of ω thanks to the

uniform superlinearity of Eω. In particular, ω 7→ c̄(ω) is lower semi-continuous.
By the topological stationarity (10) of Eω, ω 7→ c̄(ω) is constant along any orbit
{τt(ω)}t∈Rd . The set {ω : c̄(ω) ≤ inf c̄} is closed, nonempty, and invariant. By
minimality, c̄ is a constant function.

We now prove the existence of a calibrated configuration at the level c̄. Let
ω ∈ Ω be fixed. By proposition 60, there exists uω ∈ C0

Lip(Rd) such that

∀ y ∈ Rd, uω(y) = min
x∈Rd, ‖y−x‖≤R̄

[
uω(x) + Eω(x, y)− c̄

]
.

Let n ≥ 1. We construct by induction a backward configuration {x−k}k=2n
k=0 starting

at x0 = 0 and satisfying

∀ 1 ≤ k ≤ 2n, uω(x−k+1) = uω(x−k) + Eω(x−k, x−k+1)− c̄.

By shifting by the same amount the environment ωn = τx−n(ω) and the configu-
ration xnk := xk−n − x−n, we obtain a finite configuration {xnk}nk=−n centered at
the origin xn0 = 0 and calibrated for Eωn at the level c̄. Thanks to the fact that
the successive jumps are uniformly bounded, by a diagonal extraction procedure,
one can find a subsequence of integers {n′}, ω̄ ∈ Ω, and a bi-infinite configuration
{x̄k}+∞k=−∞ so that ωn → ω̄ and xnk → x̄k for every k ∈ Z along the subsequence

{n′}. Since the calibration property passes to the limit, {x̄k}+∞k=−∞ is a calibrated
configuration for Eω̄ at the level c̄.
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mentarii Mathematici Helvetici 87 (2012), 1–39.


	Introduction
	Backgrounds on quasicrystals
	Mather set
	Calibrated configurations for quasicrystals
	Lax-Oleinik operators
	Appendices
	Minimizing configurations for general interaction

