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Abstract. In discrete schemes, weak KAM solutions may be inter-
preted as approximations of correctors for some Hamilton-Jacobi equa-
tions in the periodic setting. It is known that correctors may not exist
in the almost periodic setting. We show the existence of discrete weak
KAM solutions for non-degenerate and weakly twist interactions in
general. Furthermore, assuming equivariance with respect to a lin-
early repetitive quasi-periodic set, we completely classify all possible
types of weak KAM solutions.

1. Introduction

We consider a generalized model of Frenkel-Kontorova type on the real
line. The model describes the states at equilibrium of chains of atoms
interacting with their nearest neighbors and with an underlying one-
dimensional substrate. The interaction between two successive atoms at
the positions (xn, xn+1) has the general form E(xn, xn+1) for some contin-
uous function E : R× R→ R, called subsequently interaction model.

The seminal Frenkel-Kontorova model [16] was proposed to represent
the dislocation in a crystal. This simple model has appeared to be uni-
versal to describe several physical problems [2, 3]. Its standard version
may be given as

E(x, y) =
1

2τ
(y − x)2 − λ(y − x) + τKV (x),

where the constants λ,K ∈ R, τ > 0, are the parameters of the model.
Here E has the physical dimension of an action assuming the mass is equal
to 1. The constant τ plays the role of a discretized time, τλ is a inter-
distance between two successive atoms (a positive constant λ > 0 forces
the chain (xn)n∈Z to be increasing), K is a dimensionless constant that
measures the strength of the interaction between one atom of the chain
and the substrate, and V is a periodic potential of unit size describing a
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periodic external environment. Our main motivation is to understand in-
teraction models of Frenkel-Kontorova type without assuming V periodic.

A central part of the theory consists in studying the set of configurations
at the ground state, called hereinafter Mañé calibrated configurations, that
is the set of positions of the atoms in a chain (xn)n∈Z that minimize, in a
sense to be defined, the total action

arg min
(xn)n∈Z

∑
n∈Z

E(xn, xn+1).

A key tool for this study is the notion of weak KAM solution at an ap-
propriate action level. Let us recall these concepts. The ground action or
atomic mean action is a particular choice of action level defined as

Ē := lim
n→+∞

inf
x0,...,xn∈R

1

n

n−1∑
k=0

E(xk, xk+1).

It is finite by the choice of the interaction model we are going to make. A
continuous function u : R→ R is called weak KAM solution if it satisfies{

∀x, y ∈ R, u(y)− u(x) ≤ E(x, y)− Ē,
∀ y, ∃x s.t. u(y)− u(x) = E(x, y)− Ē.

(1.1)

The relevance of these solutions has been highlighted by Fathi in [11, 12,
13] in the context of the Hamilton-Jacobi equations on compact manifolds,
and by Contreras, Iturriaga, Paternain, Paternain [8], Contreras [7], Fathi,
Maderna [14] for non compact manifolds. These works are influenced by
the viewpoint proposed by Mather [24, 25] for studying minimizing orbits
of Lagrangian systems. Weak KAM solutions are deeply connected to
the homogenization of Hamilton-Jacobi equations [22] in the framework
of viscosity solution theory. Besides, discrete weak KAM solutions are
intrinsically linked to numerical approximations of viscosity solutions (see
[4, 5, 10]). More recently, the discrete analogue of the Hamilton-Jacobi
equations has been studied by many authors – see, for instance, [20, 18,
30]. In particular, it is known there exists a weak KAM solution u for
periodic interaction models, that is, for models satisfying

∀x, y ∈ R, E(x+ 1, y + 1) = E(x, y),

as is the case of the standard Frenkel-Kontorova model (for details see [6,
18]). Moreover, such a solution u is periodic and hence bounded.

Regarding the atomic interpretation, an interest of weak KAM solution
lies in the concept of u-calibrated configuration (xn)n∈Z, that is:

∀m,n ∈ Z, m < n,
n−1∑
k=m

(
E(xk, xk+1)− Ē

)
= u(xn)− u(xm).(1.2)

A u-calibrated configuration (xn)n minimizes the total action in a strong
sense that we call Mañé calibration. More precisely, the configuration
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(xn)n is said to be Mañé calibrated if it satisfies ∀m,n ∈ Z, n ≥ 1,

m+n−1∑
k=m

(
E(xk, xk+1)− Ē

)
= S(xm, xm+n),(1.3)

where S denotes the Mañé potential,

S(x, y) = inf
n≥1

inf
x=x0,...,xn=y

n−1∑
k=0

(
E(xk, xk+1)− Ē

)
.

In words, the Mañé potential between two sites measures the minimal re-
duced action necessary to go from one site to another. A Mañé calibrated
configuration is an infinite chain such that each finite sub-chain realizes
the smallest reduced action between its two endpoints.

Unlike the periodic case, for which there exist u-calibrated configura-
tions (hence Mañé calibrated), the fact that there is no corrector in the
almost-periodic setting [23] might raise doubts on the existence of a dis-
crete weak KAM solution in general. We show here there are weak KAM
solutions for non-degenerate and weakly twist interaction models. In fact,
we get a full description of all possible types of discrete weak KAM so-
lutions in an analogous but more rigid context than the almost-periodic
scenery: the setting of linearly repetitive quasi-periodic sets. This frame-
work includes significant and classical quasicrystals such as Fibonacci and
substitutive ones. One-dimensional quasicrystals are essentially discrete
sets for which any finite pattern repeats in space in a syndetic manner and
with some pattern-dependent density. For models on quasicrystals, the
atoms are supposed to interact with an underlying aperiodic substrate, a
structure having no translational symmetry but exhibiting a long-range
order [28]. Actually these quasi-periodic contexts fall into the framework
of a topological stationary setting (see [23, 17, 19]). Initial studies (see, for
instance, [17, 29, 9]) showed that some classical properties of the periodic
case hold when models on quasicrystals are taken into account, in partic-
ular the links between the minimizing configurations and their rotation
numbers. Notably, unbounded Mañé calibrated configurations do exist as
shown in [19]. However this did not answer to the existence problem of a
weak KAM solution.

Our main result states that, under standard hypotheses on the regular-
ity of the interaction E (hypothesis 2), if the condition of non-degeneracy
infx∈R E(x, x) > Ē holds, there always exists a discrete Lipschitz weak
KAM solution u : R → R. We then focus on an additional hypothesis on
the interaction, namely an equivariance property (see definition 4) which
naturally appears when considering the classical examples of quasicrystals
(e.g. given by Fibonacci quasicrystal, substitutive ones or for typical cut-
and-project quasicrystals [1]). In this case, we exhibit three weak KAM
solutions with different asymptotic growths: linear, sublinear and a mix
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of these two growths. Actually this provides a classification of all the
possible discrete weak KAM solutions.

Theorem 1. A weakly twist interaction E fulfilling infxE(x, x) > Ē
always admits a Lipschitz weak KAM solution.

If E is in addition pattern equivariant with respect to a linearly repetitive
quasi-periodic set ω, then there is a selected half-space (either the positive
or the negative reals), depending only on E, such that any weak KAM
solution u belongs to one of three non-empty disjoint classes, namely,

• u has sublinear growth on the real line,
• u has linear growth on the real line,
• u has mixed linear/sublinear growth: u growths sublinearly on

the selected half-space and growths linearly on the complementary
half-space.

Besides, any two weak KAM solutions of the same type lie at uniform
distance from each other.

In the next section, we detail our assumptions and more rigorously for-
mulate our central results. In particular, we provide qualitative criteria in
theorem 5 to distinguish to which case a weak KAM solution belongs. Let
us point out that theorem 1 also provides a classification on the asymptotic
behaviour of weak KAM solutions in the periodic case, as summarized in
theorem 6. At our knowledge, this is a new result in this classical setting.

2. Main results

We consider a general interaction model E(x, y) (in which each variable
describes a position on the real line).

Hypotheses 2. An interaction model is a C0 function E : R × R → R
that fulfills the following three conditions

(H1) E(x, y) is locally uniformly bounded in the sense that

inf
x,y∈R

E(x, y) > −∞, sup
x∈R

E(x, x) < +∞,

(H2) E(x, y) is locally uniformly Lipschitz for every R > 0, there exists
a constant CE

Lip(R) > 0 such that, for every x, y, z ∈ R,

if |y − x| ≤ R, |z − x| ≤ R then |E(x, z)− E(x, y)| ≤ CE
Lip(R)|z − y|,

if |z − x| ≤ R, |z − y| ≤ R then |E(y, z)− E(x, z)| ≤ CE
Lip(R)|y − x|,

(H3) E(x, y) is uniformly superlinear :

lim
R→+∞

inf
|y−x|≥R

E(x, y)

|y − x|
= +∞.

An interaction model E(x, y) is said to be weakly twist if it is a C2 function
such that

(H4) ∀x ∈ R,
∂2E

∂x∂y
(x, ·) < 0 a.e., and ∀ y ∈ R,

∂2E

∂x∂y
(·, y) < 0 a.e.
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Here we are interested in models that take into account the interac-
tion between the atoms of the chain and the underlying environment that
will be modeled by a quasi-periodic substrate ω. In particular, we fo-
cus on pattern equivariant interactions, a notion that not only captures
the dependence with respect to the quasi-periodic environment, but also
introduces the concept of short-range interaction in this context.

By a one-dimensional quasi-periodic set we mean a discrete set ω ⊂ R
which has finite local complexity and is repetitive. To introduce these
notions, we will need the one of pattern, namely, a set P of the form ω ∩ I
for some bounded open interval I. Two patterns P and P̂ are equivalent
whenever one is the translated of the other one, that is: P + t = P̂ for
some t ∈ R. A discrete set ω ⊂ R is said to be quasi-periodic when the
following properties are satisfied:

finite local complexity: – the set ω possesses only finitely many equiv-
alence classes of patterns of cardinality 2;

repetitivity: – for any R > 0, there is a constant M(R) such that for
any open interval I of length at least M(R), ω ∩ I contains a
representative from each class of patterns of diameter less than
R.

In particular, we observe that the finite local complexity condition im-
plies the quasi-periodic set is (uniformly) discrete. Moreover, ω, as a set,
is unbounded from above and below by the repetitivity condition. By
this condition, each type of pattern occurs infinitely many times along
the real line with uniformly bounded gaps between the occurences. A
very representative class of quasi-periodic sets is formed by quasicrystals.
Such sets are quasi-periodic ones with an additional density property on
the occurences of the patterns (see Appendix A). The repetitivity condi-
tion can be interpreted as a weak homogeneity property in a topological
sense. For a dynamical explanation, see [17]. Of course periodic lattices
are quasi-periodic sets, but there also exist aperiodic examples (i.e. that
are invariant under no translation). The simplest ones are constructed
by iteration of a procedure so called substitution, or in a geometrical way
by a cut and project scheme (see [1, 27]). The Fibonacci quasicrystal is
a famous one that can be obtained by both methods. Note that in the
substitutive case, the parameter M(R) of the repetitivity condition can
be taken with a growth at most linear in R. Such quasi-periodic sets are
called linearly repetitive, in the following sense.

Definition 3. We say that a quasi-periodic set ω is linearly repetitive if
the repetitivity parameter M(R) has at most linear growth as a function
of the upper bound R for pattern diameters.

Most of quasicrystals obtained by cut and project are linearly repeti-
tive. In the geometrical, combinatorial and dynamical senses, they are the
simplest examples of aperiodic quasicrystals. We refer to [1] for a survey
of their properties.
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A quasi-periodic set ω on the real line models the underlying substrate
to be considered. We now describe the kind of interaction energy E be-
tween the chain and the substrate we are interested in. We say that an
interaction potential V is pattern equivariant with respect to ω if two
potentials are the same, V (x) = V (y), at two distinct positions x 6= y
provided the relative structures ω − x and ω − y coincide locally. We
generalize that idea to interaction energies in the following definition.

Definition 4. We say that an interaction E(x, y) is pattern equivariant
with respect to the quasi-periodic set ω if there exists ς0 > 0 such that
for patterns P (of diameter greater than 2ς0), whenever P + t is again a
pattern of ω,

E(x, y) = E(x+ t, y + t) ∀x, y ∈
[

min P + ς0, max P− ς0
]
.

We refer the reader to [17, 19] and to appendix A for examples of pattern
equivariant interactions. We precise our core results (theorem 1) in the
following statement. For a weakly twist interaction model that is pattern
equivariant with respect to a linearly repetitive quasi-periodic set, we not
only show the existence but we completely classify all possible types of
weak KAM solutions.

Theorem 5. Let E be an interaction fulfilling the assumptions (H1-4) of
hypotheses 2. Suppose that infxE(x, x) > Ē. Then there exist positive
constants K and r < R such that the following holds.

(i) There exist Mañé calibrated configurations. All Mañé calibrated
configurations are strictly monotone and satisfy

∀ k ∈ Z, r ≤ |xk+1 − xk| ≤ R.

(ii) There exist weak KAM solutions. Every weak KAM solution u is
Lipschitz with Lip(u) ≤ K and satisfies

∀ y ∈ R, arg min{u(·) + E(·, y)} ⊂ [y −R, y +R].

Assume moreover that E is pattern equivariant with respect to a linearly
repetitive quasi-periodic set. Then there exists γ > 0 such that the follow-
ing holds.

(iii) There exists a preferred ordering of R (ε = 1 for the standard
ordering, ε = −1 for the reversed one) such that every weak KAM
solution u belongs to one of the following three types:
• every u-calibrated configuration (xn)n∈Z is such that (εxn)n∈Z

is increasing, and

lim
x→±∞

u(x)

x
= 0;

• every u-calibrated configuration (xn)n∈Z is such that (εxn)n∈Z

is decreasing, and

lim sup
x→+∞

u(εx)

|x|
≤ −γ, lim inf

x→−∞

u(εx)

|x|
≥ γ;
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• there is no bi-infinite u-calibrated configuration and

lim sup
x→+∞

u(εx)

|x|
≤ −γ, lim

x→−∞

u(εx)

|x|
= 0.

(iv) There exist weak KAM solutions of the three types previously de-
scribed.

(v) Any two weak KAM solutions u and v of the same type lie at
uniform distance from each other: supx |u(x)− v(x)| < +∞.

We provide families of interactions fulfilling the hypotheses of this the-
orem in appendix A. Assumption infxE(x, x) > Ē is a non-degeneracy
hypothesis. This condition roughly indicates that a chain formed by atoms
very close to each other cannot be strongly minimizing, so that Mañé cal-
ibrated configurations have an intrinsic interspacing.

The above theorem has implications for the periodic case. As already
mentioned, the existence of periodic (and therefore bounded) weak KAM
solutions is well established. To the best of our knowledge, however, weak
KAM solutions with linear or mixed behavior in the periodic context are
not reported in the literature.

Theorem 6. For a weakly twist and periodic interaction model E such
that infxE(x, x) > Ē, there are exactly three types of weak KAM solutions:
those that are bounded, those that have linear growth along the real line,
and those that are simultaneously bounded on a selected half-line and have
linear growth along the complementary half-line.

Moreover, two weak KAM solutions belonging to the same class remain
at a uniform distance from each other along the real line.

The fact that the infimum of self-interactions (E(x, x), x ∈ R) equals
the ground action may be an indicator of behaviors different from those
observed in theorem 5, including in the periodic case. This is captured
by another main result of this article.

Theorem 7. There is a periodic interaction E(x, y), with infxE(x, x) =
Ē, for which x 7→ S(0, x) defines a weak KAM solution of linear growth
but all Mañé calibrated configurations are (uniformly) bounded.

A classical approach to get weak KAM solution is through the study
of the action of the Lax-Oleinik operator on a suitable space of functions.
Related to our context, an interesting space is the one formed by con-
tinuous functions u : R→ R with at most linear growth, namely, fulfilling
supx |u(x)|/(|x|+ 1) < +∞. For E an interaction satisfying assumptions
(H1-3) of hypotheses 2, recall that the backward Lax-Oleinik operator is
the non-linear operator acting on the space of continuous functions with
at most linear growth as

(2.1) ∀ y ∈ R, T [u](y) := inf
x∈R

{
u(x) + E(x, y)

}
.

Then weak KAM solutions are functions that satisfy T [u] = u+ Ē.
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Our purpose in the next sections is to detail the proofs of the above
results. The rest of the paper is organized as follows. In section 3, from a
Mañé calibrated configuration that traverses the entire real line, we define
a family of localized Lax-Oleinik operators preserving a suitable sequence
of functional spaces. We then show they admit additive eigenfunctions
and moreover their accumulation points are indeed Lipschitz weak KAM
solutions (theorem 11). In section 4, for weakly twist models E that fulfill
infxE(x, x) > Ē, proposition 15 ensures that calibrated configurations are
always monotone and have successive jumps bounded (in a uniform way)
from above as well as from below. This provides the existence of a Mañé
calibrated configuration as required to apply theorem 11, which provides
theorem 18 that corresponds to the first statement of theorem 5. The
linearly repetitive quasi-periodic case is studied in details in section 5.
Thanks to the specific properties of repetitions of the pattern in this
quasi-periodic setting, we are able to identify, as |x− y| → +∞, distinct
behaviors of the Mañé potential according to whether x < y or x > y
(proposition 24). Actually, the model introduces a preferred ordering on
the real line (ε = 1 for the standard ordering, ε = −1 for the reversed one),
and a dichotomy on the type of growth of the Mañé potential S(x, y) as
|x− y| → +∞: a sublinear growth of S(εx, εy) when x < y and a positive
linear growth of S(εx, εy) when x > y. Such a feature is the key piece that
allows the classification of all weak KAM solutions. Hence, proposition 29,
corollary 30 and proposition 31 are the results that complete the statement
of theorem 5. Finally the periodic example proving theorem 7 is studied
in proposition 34, in section 6.

3. Mañé calibration and weak KAM solutions

We prove in this section the existence of weak KAM solutions (1.1)
under the assumption there exists a Mañé calibrated configuration un-
bounded at ±∞ with uniformly bounded jumps. Note that we do not
require this configuration to be monotone.

During this section, we suppose that E is an interaction model satisfying
assumptions (H1-3) of hypotheses 2, no additional condition is required.

We recall first some of main definitions mentioned in the introduction.

Definition 8.

(i) We call ground action the quantity

Ē := lim
n→+∞

inf
x0,x1,...,xn

1

n

n−1∑
k=0

E(xk, xk+1)

(ii) We call Mañé potential the function defined on R× R as

S(x, y) := inf
n≥1

inf
x=x0,x1,...,xn=y

n−1∑
k=0

(
E(xk, xk+1)− Ē

)
.
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(iii) A subconfiguration (xk)
q
k=p, p < q, is said to be Mañé calibrated

if

∀ p ≤ m < n ≤ q, S(xm, xn) =
n−1∑
k=m

(
E(xk, xk+1)− Ē

)
.

To simplify the notations we will use the convention

E(x0, x1, . . . , xn) :=
n−1∑
k=0

E(xk, xk+1).

We observe the following simple properties.

Remark 9.

(i) Ē = supn≥1 infx0,x1,...,xn
1
n
E(x0, x1, . . . , xn),

(ii) infx,y∈R E(x, y) ≤ Ē ≤ infx∈R E(x, x),
(iii) ∀x0 ∈ R, ∀n ≥ 1, Ē ≤ infx1,...,xn−1

1
n
E(x0, x1, . . . , xn−1, x0)

(iv) infx,y∈R S(x, y) ≤ 0 ≤ infx∈R S(x, x),
(v) ∀x, y, z ∈ R, S(x, z) ≤ S(x, y) + S(y, z),

(vi) ∀x, y ∈ R, Ē − E(y, x) ≤ S(x, y) ≤ E(x, y)− Ē.

Property (i) is a consequence of Fekete’s lemma and the super-additivity
of [n 7→ infx0,...,xn E(x0, . . . , xn)]. Property (ii) is obtained by bounding
from above infx0,...,xn E(x0, . . . , xn) by computing the action on configura-
tions of the form (x, x, . . . , x). Property (iii) follows from Fekete’s lemma
and the sub-additivity of [n 7→ infx1,...,xn−1 E(x0, x1, . . . , xn−1, x0)]. Prop-
erty (iv) is a consequence of (iii) for the right hand side, and a consequence
of the definition of Ē and the inequality S(x, y) ≤ E(x, y) − Ē for the
left hand side. Property (v) follows by concatenation of configurations.
Finally, property (vi) follows from the inequality S(x, y) ≤ E(x, y) − Ē
obtained by taking a simple configuration (x, y), and then from (v) using
the second inequality of (iv).

We show in the following lemma that any weak KAM solution is Lips-
chitz and that any backward minimizer in the definition of the Lax-Oleinik
operator (2.1) has a uniform bounded jump.

Lemma 10. There exist constants K,R ≥ 0 (depending only on the in-
teraction model E) such that for every weak KAM solution u

(i) u is Lipschitz continuous and Lip(u) ≤ K,
(ii) ∀ y ∈ R, arg min{u(·) + E(·, y)} ⊂ [y −R, y +R].

Proof. Let u be a weak KAM solution, that is, T [u] = u+ Ē, where T is
the Lax-Oleinik operator associated to E defined as (2.1).

Step 1. We show an a priori linear growth of u. Denote

K̃ := sup
|y−x|≤1

E(x, y)− inf
x,y∈R

E(x, y).
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We claim that |u(y) − u(x)| ≤ K̃(|y − x| + 1) for all x, y ∈ R. Indeed,
either one has |y − x| ≤ 1, and then

(3.1) u(y)− u(x) ≤ E(x, y)− Ē ≤ sup
|y−x|≤1

E(x, y)− inf
x,y∈R

E(x, y) ≤ K̃,

which clearly implies u(y)−u(x) ≤ K̃(|y−x|+ 1). Or otherwise for some
n ≥ 2, n − 1 < |y − x| ≤ n. In this case, consider xk := x + k

n
(y − x),

k = 0, . . . , n, a sequence of points spaced apart by at most 1. Then
from (3.1) u(xk)− u(xk−1) ≤ K̃, so that

u(y)− u(x) ≤ nK̃ ≤ K̃(|y − x|+ 1).

Step 2. We show item ii. By the superlinearity, there exists R ≥ K̃
such that E(x, y) > K̃|x − y| + Ē + K̃ whenever |x − y| > R. Suppose
x, y ∈ R fulfill u(y)− u(x) = E(x, y)− Ē. Assume by contradiction that
|y−x| > R. From the first step, |u(y)−u(x)| ≤ K̃(|y−x|+ 1). However,
from the choice of R, we see that E(x, y)− Ē > K̃(|y − x|+ 1). We thus
obtain a contradiction and conclude that |y − x| ≤ R.

Step 3. We show item i. Let y, z ∈ R and x ∈ arg min{u(·) + E(·, y)}.
Hence,

u(y) = u(x) + E(x, y)− Ē and u(z) ≤ u(x) + E(x, z)− Ē.

Either |z − y| ≥ 1, and therefore

u(z)− u(y) ≤ K̃(|z − y|+ 1) ≤ 2K̃|z − y|,

or |z − y| < 1 so that, as |y − x| ≤ R and |z − x| ≤ R + 1, using the
constant CE

Lip in (H2),

u(z)− u(y) ≤ E(x, z)− E(x, y) ≤ CE
Lip(R + 1)|z − y|.

We obtain that u is K-Lipschitz with K := max{2K̃, CE
Lip(R + 1)}. �

We highlight the key result of this section.

Theorem 11. Assume there exists a configuration (xk)k∈Z fullfiling

• (xk)k∈Z is Mañé calibrated,
• it has bounded jumps, namely, sup

k∈Z
|xk+1 − xk| < +∞,

• it is unbounded from above and below in the sense that either

lim sup
k→+∞

xk = +∞, lim inf
k→−∞

xk = −∞,

or

lim inf
k→+∞

xk = −∞, lim sup
k→−∞

xk = +∞.

Then there exists a Lipschitz weak KAM solution v such that for m < n,
the configuration (xk)k∈Z satisfies

v(xn)− v(xm) = S(xm, xn).
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We first prove an a priori linear growth of the Mañé potential. Note
that, thanks to hypotheses (H1) and (H2),

∀R > 0, sup
|y−x|≤R

E(x, y) < +∞.

Lemma 12. There exists a constant C > 0 such that

∀x, y ∈ R, |S(x, y)| ≤ C(|y − x|+ 1).

Proof. Define

C := sup
|y−x|≤1

|E(x, y)− Ē|.

Choose n ≥ 1 such that n−1 ≤ |y−x| < n, and denote tk := x+ k
n
(y−x).

Then

|S(x, y)| ≤
n∑
k=1

|S(tk−1, tk)| ≤ nC ≤ C(|y − x|+ 1). �

Proof of theorem 11. Suppose that

lim sup
k→+∞

xk = +∞ and lim inf
k→−∞

xk = −∞.

The other case follows from this one by introducing Ê(x, y) := E(−x,−y)

and noticing that (x̂k)k := (−xk)k is calibrated with respect to Ŝ(x, y) =
S(−x,−y).

Step 1. The idea of the proof is to construct (in a uniformly Lipschitz
way) approximated weak KAM solution on an exhausting sequence of
compact intervals BN := [xiN , xjN ], iN → −∞, jN → +∞. The difference
between the standard Lax-Oleinik operator and the approximated one is
that we impose on the latter a fixed boundary condition on the set of
solutions outside BN .

We define inductively two sequences of indices

· · · ≤ i2 ≤ i1 < 0 < j1 ≤ j2 ≤ · · ·

such that for every N ≥ 1,

xiN−1 < x0 −N < x0 +N < xjN+1 and

∀ iN ≤ k ≤ jN , xk ∈ [x0 −N, x0 +N ].

Let BN := [xiN , xjN ] and TN be the operator acting on C0(BN) by

∀ y ∈ BN , TN [u](y) = min
x∈R

[
ũ(x) + E(x, y)− Ē

]
,

where ũ is the extension of u on R defined as

∀x 6∈ BN , ũ(x) = S(xiN−2, x).

Note that TN is well defined thanks to the superlinearity of the interaction
and the sublinearity of S. We show there exists a constant K > 0 such
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that for every N , TN preserves the following functional space

HN :=
{
u ∈ C0(BN) : ∀ iN ≤ k ≤ jN , u(xk) = S(xiN−2, xk),

∀x ∈ BN , u(x) ≥ S(xiN−2, x),

∀x, y ∈ BN with |x− y| < 1, |u(y)− u(x)| ≤ K|y − x|
}
,

Note that for u ∈ HN ,

∀x ∈ R, ũ(x) ≥ S(xiN−2, x), ∀ k ∈ Z, ũ(xk) = S(xiN−2, xk).

To prove the stability of HN , observe for every y ∈ BN and x ∈ R,

ũ(x) + E(x, y)− Ē ≥ S(xiN−2, x) + S(x, y) ≥ S(xiN−2, y),

and for every iN ≤ k ≤ jN , thanks to the calibration of (xk)k∈Z,

ũ(xk−1) +E(xk−1, xk)− Ē = S(xiN−2, xk−1) + S(xk−1, xk) = S(xiN−2, xk),

which implies

TN [u](y) ≥ S(xiN−2, y), ∀ y ∈ BN and

TN [u](xk) = S(xiN−2, xk), ∀ iN ≤ k ≤ jN .

Let y ∈ BN . We prove that the infimum in the definition of TN [u](y) is
attained at some x ∈ R satisfying |y − x| ≤ R for some uniform constant
R > 0. Define ρ := supk∈Z |xk+1 − xk|. On the one hand, if xk ∈ BN is
chosen such that |y − xk| ≤ ρ, then

TN [u](y) ≤ ũ(xk) + E(xk, y)− Ē = S(xiN−2, xk) + E(xk, y)− Ē
≤ S(xiN−2, y) + S(y, xk) + E(xk, y)− Ē
≤ S(xiN−2, y) + 2 sup

|x−x′|≤ρ

∣∣E(x, x′)− Ē
∣∣,

On the over hand, by the superlinearity of the interaction, one can find
x ∈ R such that

TN [u](y) = ũ(x) + E(x, y)− Ē ≥ S(xiN−2, x) + E(x, y)− Ē.
Combining both inequalities, one obtains

E(x, y)− Ē ≤ S(x, y) +D,

with D := 2 sup|y−x|≤ρ |E(x, y)− Ē|. Using again the superlinearity of E
and the constant C from lemma 12, one gets for some constant B > 0,

(C + 1)|y − x| −B ≤ E(x, y)− Ē ≤ S(x, y) +D ≤ C(|y − x|+ 1) +D,

|y − x| ≤ R with R := B + C +D.

We prove that TN |u] is Lipschitz continuous. Consider y1, y2 ∈ BN with
|y2 − y1| ≤ 1. Then there exists x ∈ R, |y1 − x| ≤ R, such that

TN [u](y1) = ũ(x) + E(x, y1) and TN [u](y2) ≤ ũ(x) + E(x, y2).

Using the constant CE
Lip(R) as in (H2) and denoting K := CE

Lip(R + 1),
one obtains

|TN [u](y2)− TN [u](y1)| ≤ K|y2 − y1|.



CLASSIFICATION OF DISCRETE WEAK KAM SOLUTIONS 13

In conclusion, HN is a compact convex subset of C0(BN) for the uniform
topology. The non linear operator TN : HN → HN is 1-Lipschitz. By
Schauder-Tychonoff theorem, TN admits a fixed point uN .

Step 2. Define

vN(y) := uN(y)− uN(x0), ∀ y ∈ BN .

Then, for N sufficiently large, xiN < x0 −R < x0 +R < xjN ,

• vN(x0) = 0,
• ∀x, y ∈ BN with |x− y| < 1, |vN(y)− vN(x)| ≤ K|y − x|,
• ∀x, y ∈ BN , vN(y) ≤ vN(x) + E(x, y)− Ē,
• ∀ y ∈ [xiN + R, xjN − R], ∃x ∈ BN such that |y − x| ≤ R and
vN(y) = vN(x) + E(x, y)− Ē,
• ∀ iN ≤ k < l ≤ jN , vN(xl)− vN(xk) = S(xk, xl).

By using a diagonal procedure of extraction, there exists a subsequence of
(vN)N that converges uniformly on any compact interval to a K-Lipschitz
function v : R→ R that is a weak KAM solution calibrating (xk)k∈Z. �

4. Non-degenerate and weakly twist models

The main result of this section guarantees that, for weakly twist mod-
els (i.e., interactions fulfilling all the assumptions (H1-4) of hypotheses 2)
that satisfy the non-degenerate condition infxE(x, x) > Ē, there are al-
ways weak KAM solutions. In order to apply theorem 11, we prove in
lemma 17 the existence of increasing as well as decreasing Mañé cali-
brated configurations with bounded jumps and unbounded from above
and below. Actually we improve a result obtained in [19] for which the
environment is supposed to be a quasi-crystal – in particular, it possesses
a uniquely ergodic hull and the interaction is pattern equivariant. On
the contrary lemma 17 does not require any particular assumption on the
structure of an underlying substrate.

We first gather results that have been proved in [19].

Lemma 13. Let E be a weakly twist interaction. Then

(i) ∀x < y, S(x, y) = infx=x0<x1<···<xn=y
{
E(x0, . . . , xn)− nĒ

}
,

(ii) ∀x > y, S(x, y) = infx=x0>x1>···>xn=y
{
E(x0, . . . , xn)− nĒ

}
,

(iii) ∀x ∈ R, S(x, x) = E(x, x)− Ē.

Moreover, if the interaction is pattern equivariant with respect to a quasi-
periodic set, then the Mañé potential is also pattern equivariant.

Proof. See proposition 24 in [19]. �

We assume from now on that infx∈R E(x, x) > Ē. We choose once for
all η0 > 0 such that

(4.1) ∀x, y ∈ R, |y − x| < η0 ⇒ E(x, y)− Ē > η0.
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Lemma 14. Assume that E is a weakly twist interaction model satisfying
infxE(x, x) > Ē. Then, there exist constants A0, B0 > 0 such that for
any (x0, . . . , xn) ∈ Rn+1, with x0 = x and xn = y,

(4.2) n ≤ A0|y − x|+B0

n∑
k=1

(
E(xk−1, xk)− Ē

)
.

Proof. If (x0, . . . , xn) is not monotone, then by lemma 23 in [19] there
exists a subset of distinct indices {i0, . . . , iσ} of {0, . . . , n}, with i0 = 0,
iσ = n, such that (xi0 , . . . , xiσ) is strictly monotone, and
(4.3)

E(x0, . . . , xn)− nĒ > E(xi0 , . . . , xiσ)− σĒ +
∑

j 6∈{i0,...,iσ}

(
E(xj, xj)− Ē

)
.

If (x0, . . . , xn) is monotone, we choose σ = n and ik = k for all k. In both
cases, we obtain

E(x0, . . . , xn)− nĒ ≥ E(xi0 , . . . , xiσ)− σĒ + (n− σ)η0.

We now consider the set of indices I ⊆ {0, . . . , σ − 1} such that k ∈ I if
and only if |xik − xik+1

| ≥ η0. If k ∈ I, we use an a priori lower bound

E(xik , xik+1
)− Ē ≥ Emin − Ē

where Emin = infx,y∈R E(x, y). If k 6∈ I, the definition of η0 gives

E(xik , xik+1
)− Ē ≥ η0.

Hence, we have

E(xi0 , . . . , xiσ)− σĒ ≥ |I|(Emin − Ē) + (σ − |I|)η0.

Combining the estimates above, we obtain

E(x0, . . . , xn)− nĒ ≥ |I|(Emin − Ē − η0) + nη0.

By monotonicity of (xi0 , . . . , xiσ), clearly |I| ≤ |xiσ−xi0|/η0 = |xn−x0|/η0,
so that

n ≤ Ē − Emin + η0
η20

|y − x|+ 1

η0

n∑
k=1

(
E(xk−1, xk)− Ē

)
.

�

We show in the following lemma that the infimum in the definition
in S(x, y) is actually a minimum, and that the number of points realiz-
ing the minimum is bounded from above by a quantity proportional to
|y − x|. Besides, we prove that the successive jumps of Mañé calibrated
configurations are uniformly bounded from above and from below.

Proposition 15. Suppose that E is a weakly twist interaction model ful-
filling infxE(x, x) > Ē.
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(i) For every x 6= y, there are an integer n ≥ 1 and a strictly mono-
tone configuration (x0, . . . , xn), with x0 = x and xn = y, fulfilling

S(x, y) =
n∑
k=1

E(xk−1, xk)− nĒ.

(ii) There exist constants A > 0 and B ≥ 0 such that, for every pair
of points x, y ∈ R, if (x0 . . . , xn) ∈ Rn+1 satisfies x0 = x, xn = y,
and S(x, y) =

∑n
k=1E(xk−1, xk)− nĒ, then

S(xp, xq) =

q∑
k=p+1

E(xk−1, xk)− (p− q)Ē, ∀ 0 ≤ p < q ≤ n,

(x0, . . . , xn) is monotone and n ≤ A|y − x|+B.

Besides, for n ≥ 2, (x0, . . . , xn) is strictly monotone.
(iii) The Mañé potential admits a negative sublinear lower bound in

the following sense:

∀α > 0, ∃ β ≥ 0, ∀x, y ∈ R, S(x, y) ≥ −α|y − x| − β.

(iv) There exist constants 0 < r < R such that every Mañé calibrated
subconfiguration (xp, . . . , xq) with q − p ≥ 2 is strictly monotone
and satisfies

∀ p ≤ k < q, r ≤ |xk+1 − xk| ≤ R.

Proof. We assume in all items x ≤ y. The other case x ≥ y is similar. We
start by proving item ii.

Item ii. Let (x0, . . . , xn) be a configuration satisfying

S(x, y) =
n∑
k=1

E(xk−1, xk)− nĒ.

Obviously for 0 ≤ p < q ≤ n,

S(x0, xq) +

q∑
k=p+1

E(xk−1, xk)− (p− q)Ē + S(xq, xn) ≤

≤
n∑
k=1

E(xk−1, xk)− nĒ = S(x0, xn) ≤ S(x0, xq) +S(xp, xq) +S(xq, xn)

implies that S(xp, xq) =
∑q

k=p+1E(xk−1, xk)− (p− q)Ē. Inequality (4.3)

shows that (x0, . . . , xn) must be monotone, since otherwise one could de-
crease strictly the Mañé potential

S(x, y) = E(x0, . . . , xn)− nĒ > E(xi0 , . . . , xiσ)− σĒ ≥ S(x, y).

For n ≥ 2, the configuration is actually strictly monotone, since otherwise
there would exist 1 ≤ j ≤ n such that xj−1 = xj and we would obtain the
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same contradiction as above

S(x, y) =
[∑
k 6=j

E(xk−1, xk)− (n− 1)Ē
]

+
[
E(xj−1, xj)− Ē

]
≥ S(x, y) + inf

x∈R
E(x, x)− Ē.

The estimate (4.2) thus implies n ≤ A0|y−x|+B0S(x, y). We conclude us-
ing the a priori sublinearity estimate for the Mañé potential in lemma 12,
so that n ≤ A|y − x|+B, with A = A0 +B0C and B = B0C.

Item i. Let us consider a sequence S` > S(x, y) converging to S(x, y).
Item i of lemma 13 shows there exists a strictly increasing configuration
(x`0, . . . , x

`
n`

), with x`0 = x and x`n = y, such that

S` >

n∑̀
k=1

(
E(xk−1, xk)− n`Ē

)
.

The estimate (4.2) implies n` ≤ A0|y−x|+B0S`. As S` → S(x, y), we may
assume n` = n is constant. We then extract a subsequence of (x`0, . . . , x

`
n)

converging to some (x0, . . . , xn) satisfying

S(x, y) ≥
n∑
k=1

(
E(xk−1, xk)− nĒ

)
≥ S(x, y).

The previous item shows that (x0, . . . , xn) is strictly monotone.

Item iii. Let α > 0 and α′ = α/A, where A is the constant obtained in
the first item. Thanks to item i of definition 8, there exists β′ ≥ 0 such
that

∀n ≥ 1, ∀ (x0, . . . , xn), E(x0, . . . , xn)− nĒ ≥ −α′n− β′.

Items i and ii of the present proposition ensure that there is a particular
configuration (x0, . . . , xn) such that

S(x, y) = E(x0, . . . , xn)− nĒ ≥ −α′n− β′

≥ −α′(A|y − x|+B)− β′ = −α|y − x| − β,

with β := α′B + β′.

Item iv. Let (xp, . . . , xq) be a Mañé calibrated subconfiguration. It
is strictly monotone for q − p ≥ 2 as a consequence of item ii. From
lemma 12, we have

S(xk, xk+1) ≤ C(|xk+1 − xk|+ 1)

for some constant C. From the superlinearity of the interaction, there
exists a constant B > 0 such that

(C + 1)|xk+1 − xk| −B ≤ E(xk, xk+1)− Ē = S(xk, xk+1).
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Therefore, |xk+1 − xk| ≤ B + C := R. With respect to the lower bound,
let first η0 > 0 be defined as in (4.1). Note then that for p ≤ k < q − 1,

S(xk, xk+1) = S(xk, xk+2)− S(xk+1, xk+2)

≤ E(xk, xk+2)− E(xk+1, xk+2)

≤ CE
Lip(2R) |xk+1 − xk|.(4.4)

We claim that |xk+1−xk| > η0/
(
CE

Lip(2R)+1
)

=: r. Indeed, otherwise by

the very definition of η0 we would have η0 < E(xk, xk+1)−Ē = S(xk, xk+1),
but (4.4) shows that S(xk, xk+1) ≤ CE

Lip(2R) η0/
(
CE

Lip(2R) + 1
)
< η0, and

we would reach a contradiction. The equality S(xq−1, xq) = S(xq−2, xq)−
S(xq−2, xq−1) allows to discuss the case of the last index in a similar way.

�

The regularity of the Mañé potential is an immediate consequence of
the previous proposition.

Corollary 16. For a weakly twist interaction E fulfilling infxE(x, x) >
Ē, the Mañé potential is Lipschitz continuous.

Proof. Let I, J ⊂ R be both open intervals of length 1. It is enough to
argue that S|I×J is Lipschitz. Items i and ii of proposition 15 guarantees
there exists N = N(I, J) > 0 such that

S(a, b) = min
1≤n≤N

min
(a=x0,...,xn=b)

[
E(x0, . . . , xn)− nĒ

]
,

for all a ∈ I and b ∈ J . Therefore, given x, x̂ ∈ I and y, ŷ ∈ J , items i
and iv of proposition 15 provide the estimate

|S(x, y)− S(x̂, ŷ)| ≤ max
{

max
|x−a|≤R
|y−b|≤R

|E(x, a)− E(x̂, a) + E(b, y)− E(b, ŷ)| ,

max
|x̂−â|≤R
|ŷ−b̂|≤R

∣∣E(x, â)− E(x̂, â) + E(b̂, y)− E(b̂, ŷ)
∣∣}.

Since E is locally uniformly Lipschitz, we conclude that

|S(x, y)− S(x̂, ŷ)| ≤ CE
Lip(R + 1)

(
|x− x̂|+ |y − ŷ|

)
.

�

The existence of Mañé calibrated configurations such as those required
among the hypotheses of theorem 11 was actually proved in [19] by adopt-
ing a viewpoint focus on minimization of Lagrangians, a similar strategy
to the one inaugurated by Mather [24]. The next result guarantees the
existence of these configurations in a more direct way.

Lemma 17. Assume that E is a weakly twist interaction model such that
infxE(x, x) > Ē. Then E admits increasing as well as decreasing Mañé
calibrated configurations which have bounded jumps and are unbounded
from above and below.
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Proof. We make use of R, r > 0, the constants that bound the successive
jumps of calibrated configurations according to item iv of proposition 15.
In particular, given A ∈ R with |A| > R, from proposition 15 we consider
a subconfiguration (xAp , . . . , x

A
q ), with p < 0 < q, such that

|xA0 | ≤ R,

r ≤ |xAk+1 − xAk | ≤ R ∀ k,
S(−A,A) = Eq−p(x

A
p , . . . , x

A
q )− (q − p)Ē.

Note that (xAp , . . . , x
A
q ) is increasing for A > 0 and decreasing for A < 0.

By denoting xAk := xAp = −A for all k ≤ p and xAk = xAq = A for all

k ≥ q, we have a configuration (xAk )k∈Z that belongs to the compact set∏
i∈Z

[
− (|i| + 1)R, (|i| + 1)R

]
. Hence, as either A → +∞ or A → −∞,

we are able to obtain an accumulation point (yk)k∈Z. By taking into
account a suitable subfamily, we may suppose that (yk) is the limit of
(xAk ). Obviously (yk) fulfills for all k ∈ Z, r ≤ |yk+1 − yk| ≤ R. It only
remains to show that it is a calibrated configuration. However, thanks
to the continuity of the Mañé potential, from item ii of proposition 15, it
follows for all i < j,

S(yi, yj) = lim
A
S(xAi , x

A
j )

= lim
A

[
Ej−i(x

A
i , . . . , x

A
j )− (j − i)Ē

]
= Ej−i(yi, . . . , yj)− (j − i)Ē.

�

From the previous lemma, one has the following consequence of theo-
rem 11.

Theorem 18. Let E(x, y) be a weakly twist interaction model satisfying
infxE(x, x) > Ē. Then there exist a weak KAM solution u and a u-
calibrated (and thus Mañé calibrated) configuration (xk)k∈Z. There exist
constants K > 0 and 0 < r < R such that every weak KAM solution
u is Lipschitz with Lip(u) ≤ K, and every Mañé calibrated configuration
(xk)k∈Z is strictly monotone and satisfies

∀ k ∈ Z, r ≤ |xk+1 − xk| ≤ R.

The results in the previous theorem and lemma 10 constitute the first
two statements of theorem 5.

5. Linearly repetitive quasi-periodic sets

Our main goal is to show that, in the context of linearly repetitive
quasi-periodic sets (see definition 19 below), all weak KAM solutions are
of one three types, which may be described according to their kind of
growth (linear versus sublinear), to the ordering of their calibration, or
to the existence or not of calibrated configuration traversing the real line.



CLASSIFICATION OF DISCRETE WEAK KAM SOLUTIONS 19

Proposition 29 and corollary 30 gather the core of this classification. Along
with proposition 31, they complete the statement of theorem 5. One of the
essential ingredients to reach the classification is the notion of fundamental
configuration, that is, a finite configuration that performs the minimum
sum of a certain fixed number of interactions. In the linearly repetitive
framework, with the hypothesis of non-degeneracy infx∈R E(x, x) > Ē, all
these fundamental configurations are shown to be ordered in the same
way as long as a large enough number of interactions is considered. This
define a preferred ordering. The linearly repetitive and non-degenerate
framework allows to show that the Mañé potential has sublinear growth
according to this preferred ordering (see proposition 24). In fact, the
understanding of the behavior of the Mañé potential against the ordering
introduced by these sufficiently large fundamental configurations is the
key element for the study of the possible types of weak KAM solutions.

We begin by reestablishing repetitivity, now in more quantitative terms.

Definition 19. A discrete set ω ⊂ R, is said repetitive if for every R > 0,
there exists M(R) > 0 such that, for any open interval J of length at least
M(R) and any pattern P of diameter at most R, there is t ∈ R for which
P+ t is a pattern of ω∩ J . Besides, whenever there are positive constants
A and B such that M(R) ≤ AR + B for all R, ω is said to be linearly
repetitive.

First note that the repetitivity implies that the quasi-periodic set ω is
relatively dense, i.e. there is no arbitrary large gap between consecutive
elements. More quantitatively, there is a constant R0 > 0 such that

ω ∩ I 6= ∅ for any interval I of length greater than R0.(5.1)

We assume from now on that the interaction is pattern equivariant with
respect to a quasi-periodic set.

Definition 20. For a given interaction E, a fundamental configuration of
size n ≥ 1 is a finite sequence (z0, . . . , zn) such that

E(z0, . . . , zn) = min
x0,...,xn∈R

E(x0, . . . , xn).

We denote by Γn(E) ⊂ Rn+1 the set of fundamental configurations of size
n.

The above minimum exists because of the superlinearity of E. More-
over, by definition of Ē, for any sequence of fundamental configurations
(zn0 , . . . , z

n
n)

E(zn0 , . . . , z
n
n) ≤ nĒ and lim

n→+∞

1

n
E(zn0 , . . . , z

n
n) = Ē.

We show in the next lemma that minimizing configurations are strictly
monotone provided that their endpoints are sufficiently far apart from
each other. Recall that ς0 is the constant that characterizes the pattern
equivariance of E(x, y) (see definition 4).
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Lemma 21. Let E be a weakly twist interaction model that is pattern
equivariant with respect to a quasi-periodic set ω. Then there exists a
constant L > 0 such that every minimizing configuration (x0, . . . , xn) sat-
isfying |xn − x0| ≥ L is strictly monotone.

Proof. The proof is by contradiction. To simplify, assume x0 < xn. In
the case the configuration is not monotone, by lemma 23 in [19] there are
indices i0 = 0 < i1 < · · · < iσ = n such that (xi0 , xi1 , . . . , xiσ) is strictly
monotone and

n−1∑
k=0

E(xk, xk+1) ≥
σ−1∑
k=0

E(xik , xik+1
) +

∑
j /∈{i0,...,iσ}

E(xj, xj).(5.2)

In the case the configuration is monotone but not strictly monotone, we
obtain the existence of σ and (i0, . . . , iσ) as above but with an equality
in (5.2) instead of an inequality. We now use the pattern equivariance
of E to transport the points xj, j /∈ {i0, . . . , iσ}, to new locations x̃j
inside the interval (x0, xn). Let P be the set of all patterns of the form
Px := (x−R0 − ς0, x+R0 + ς0)∩ ω where x is any point. By repetitivity,
there exists L > 0 such that any interval of length L contains a translate
of any pattern in P. Then, for xn− x0 ≥ L, there are x̃j, j /∈ {i0, . . . , iσ},
such that

Px̃j ⊂ (x0, xn) and Px̃j − x̃j = Pxj − xj.
By pattern equivariance E(xj, xj) = E(x̃j, x̃j).

Whenever x̃j ∈ (xis , xis+1) for some j and s, by Aubry crossing Lemma

E(xis , xis+1) + E(x̃j, x̃j) > E(xis , x̃j) + E(x̃j, xis+1).

We may re-index the new set {xi0 , . . . , xiσ} ∪ {x̃j} as {x̃i0 , . . . , x̃iσ+1} and
again apply again Aubry crossing Lemma to other points x̃k distinct from
{x̃i0 , . . . , x̃iσ+1}. We finally obtain a new monotone sequence (x̃0, . . . , x̃n),
with x̃0 = x0 and x̃n = xn, satisfying

n−1∑
k=0

E(xk, xk+1) >
n−1∑
k=0

E(x̃k, x̃k+1).

The strict inequality shows that (x0, . . . , xn) is not minimizing. We have
obtained a contradiction.

We are led to consider the situation in which all the new points x̃j
belong to {xi1 , . . . , xiσ−1}. By re-indexing, one obtains a monotone but
not strictly monotone configuration x0 = x̃0 < x̃1 ≤ . . . ≤ x̃n−1 < x̃n = xn
fulfilling

n−1∑
k=0

E(xk, xk+1) ≥
n−1∑
k=0

E(x̃k, x̃k+1).

Proposition 25 of [19] implies that (x̃0, . . . , x̃n) is not minimizing, and
therefore (x0, . . . xn) is not minimizing. We have reached again a contra-
diction. �
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Note that (z0, . . . , zn) ∈ Γn(E) implies E(z0, . . . , zn) = minx T
n[0](x).

In the next lemma, we guarantee that any configuration (y−n, . . . , y0), with
endpoints sufficiently apart from each other, such that E(y−n, . . . , y0) =
T n[0](y0) has (uniformly) bounded jumps.

Lemma 22. Let E be a weakly twist interaction model that is pattern
equivariant with respect to a quasi-periodic set ω. Then there exist con-
stants L > R > 0 such that, for every configuration (y−n, . . . , y0) satisfying
|y−n − y0| ≥ L and E(y−n, . . . , y0) = T n[0](y0),

|y−k+1 − y−k| ≤ R, ∀ 1 ≤ k ≤ n.(5.3)

Proof. Although we deal with a more general context, the proof is very
similar to the one of proposition 39 in [19].

Part 1. We prove first an intermediate result: there exists a constant
R′ > 0 such that

|y−n+1 − y−n| ≤ R′, |y−n+2 − y−n+1| ≤ R′.

For the first estimate, denoting Esup := supx∈R E(x, x), since T n[0](y0) ≤
E(y−n+1, y−n+1, y−n+2, . . . , y0), one has

E(y−n, y−n+1)− Esup ≤ E(y−n+1, y−n+1)− Esup ≤ 0.

With respect to the second estimate, introducing Einf := infx,y∈R E(x, y),
note that T n[0](y0) ≤ E(y−n+2, y−n+2, y−n+2, y−n+3, . . . , y0) obviously im-
plies E(y−n, y−n+1, y−n+2) ≤ E(y−n−2, y−n+2, y−n+2), so that

E(y−n+1, y−n+2)− Esup ≤ Esup − Einf .

Superlinearity ensures there is R′ > Esup−Einf such that if |x− y| > R′,
then

E(x, y)− Esup > |x− y|.
Therefore, we necessarily have |y−n+1−y−n| ≤ R′ and |y−n+2−y−n+1| ≤ R′.

Part 2. Lemma 21 shows that (y−n, . . . , y0) is strictly monotone. To fix
ideas, suppose that (y−n, . . . , y0) is increasing. Let I denote the interval
(y−n −R0 − ς0, y−n+2 +R0 + ς0) and

s := 2R′ + 2R0 + 2ς0 ≥ |y−n+2 − y−n|+ 2R0 + 2ς0.

By repetitivity, any interval of length at least M(s) contains a translate
I + t, ω ∩ (I + t) = (ω ∩ I) + t, and by pattern equivariance,

∀x, y ∈ [y−n, y−n+2], E(x+ t, y + t) = E(x, y).

Define R := M(s). We claim that |y−k+1 − y−k| ≤ R for every 1 ≤ k ≤
n− 3. The proof is by contradiction. Indeed, if this is not the case, based
on the foregoing there exists t ≥ 0 such that{

[y−n −R0 − ς0, y−n+2 +R0 + ς0] + t ⊆ (y−k, y−k+1),

∀x, y ∈ [y−n, y−n+2], E(x+ t, y + t) = E(x, y).
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Aubry crossing lemma (lemma 22 of [19]) shows that

E(y−k, y−k+1) + E(y−n, y−n+1, y−n+2) =

= E(y−k, y−k+1) + E(y−n + t, y−n+1 + t, y−n+2 + t)

> E(y−k, y−n+1 + t, y−k+1) + E(y−n + t, y−n+2 + t)

= E(y−k, y−n+1 + t, y−k+1) + E(y−n, y−n+2).

Shifting y−n+1 to the position y−n+1 + t, one obtains

T n[0](y0) = E(y−n, y−n+1, y−n+2, . . . , y−k, y−k+1, . . . , y0)

> E(y−n, y−n+2, . . . , y−k, y−n+1 + t, y−k+1, . . . , y0).

We have obtained a configuration of n + 1 points ending at y0 that de-
creases strictly T n[0](y0). That contradicts the optimality of (y−n, . . . , y0).

�

We gather in the following lemma several conclusions that are proved in
the lemmas 41 and 42 in [19]. We actually simplify the proof and and we
only use the results of that work exclusively related to the twist condition
to obtain the lemma below in a more general framework.

Lemma 23. Let E be a weakly twist interaction that is pattern equivariant
with respect to a quasi-periodic set ω. Assume infxE(x, x) > Ē. Then
there exist constants φ > 0, R > 0 and an integer N > 0 such that, for
every n ≥ 1, for every (z0, . . . , zn) ∈ Γn(E),

(i) |zn − z0| ≥ nφ,
(ii) ∀ 0 ≤ i < n, |zi+1 − zi| ≤ R,

(iii) if n ≥ N , then (z0, . . . , zn) is strictly monotone.

Proof.
Item i. Inequality (4.2) shows that

n ≤ A0|zn − z0|+B0

[
E(z0, . . . , zn)− nĒ

]
.

As (z0, . . . , zn) is a fundamental configuration, one has E(z0, . . . , zn) ≤
nĒ, so that |zn − z0| ≥ nφ, with φ = 1/A0.

Item ii. For L > 0 as in lemma 22, denote N := dL
φ
e. If n ≥ N ,

then |zn − z0| ≥ L and item ii is a consequence of lemma 22. If n ≤ N ,
let Esup := supxE(x, x) and Einf := infx,y E(x, y). The superlinearity
provides the existence of R > 0 such that |x− y| > R implies

E(x, y) > N(Esup − Einf ) + Esup.

By contradiction, assume |z−k+1 − z−k| > R for some 1 ≤ k ≤ n. In
particular, E(z−k, z−k+1) − Esup > N(Esup − Einf ). Then, using the a
priori bound E(z−`, z−`+1) ≥ Einf for ` 6= k, as well as Ē ≤ Esup, we
obtain the contradiction

0 ≥ E(z0, . . . , zn)− nĒ > (N − n+ 1)(Esup − Einf ) ≥ 0.
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Item iii. If n ≥ N , then |zn − z0| ≥ L and (z0, . . . , zn) is strictly
monotone thanks to lemma 22. �

In the next result, we highlight fundamental properties of the growth
of the Mañé potential when the quasi-periodic set is linearly repetitive
(recall definition 19).

Proposition 24. Let E(x, y) be a weakly twist interaction that is pattern
equivariant with respect to a linearly repetitive quasi-periodic set ω. As-
sume that infxE(x, x) > Ē. Suppose there exists a sequence {K(n)}n of
positive integers diverging to infinite for which, associated with each n,
there is an increasing fundamental configuration zn = (zn0 , . . . , z

n
K(n)).

Then

(i) the Mañé potential has sublinear growth for positively ordered
variables

∀α > 0, ∃ β ≥ 0, ∀x ≤ y ∈ R, |S(x, y)| ≤ α|y − x|+ β;

(ii) the Mañé potential grows linearly for negatively ordered variables

∃ γ > 0, δ ≥ 0, ∀x ≥ y, S(x, y) ≥ γ|y − x| − δ.

(iii) for m large enough, any fundamental configuration of size m is
increasing.

Similarly if there exists a sequence of decreasing fundamental configura-
tions whose sizes tend to infinity, then the Mañé potential has sublinear
growth for negatively ordered variables

∀α > 0, ∃ β ≥ 0, ∀x ≥ y ∈ R, |S(x, y)| ≤ α|y − x|+ β,

the Mañé potential grows linearly for positively ordered variables

∃ γ > 0, δ ≥ 0, ∀x ≤ y, S(x, y) ≥ γ|y − x| − δ,

and all sufficiently long fundamental configuration is decreasing.

Proof. We prove the case where fundamental configurations are increasing.
The other case will be deduced from the symmetric interaction Ê(x, y) =
E(−x,−y).

Item i. Proposition 15 shows that S admits negative sublinear lower
bounds. It is enough to show that S also admits positive sublinear upper
bounds.

Let C > 0 be the constant in lemma 12 that gives a priori growth of
S, that is,

∀x, y ∈ R, |S(x, y)| ≤ C(|y − x|+ 1).

The repetitivity assumption says there exist constants A,B > 0 such that

∀R > 0, M(R) ≤ AR +B,

where M is the repetitivity function introduced in definition 19. As we
will avoid working with overlaps, there is no loss of generality in assuming
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A > 1. Denote

α∗ := inf
{
α > 0 : ∃ β > 0, ∀x ≤ y, S(x, y) ≤ α|y − x|+ β

}
.

We want to show that α∗ = 0. By contradiction, assume α∗ > 0. Let α ∈
(α∗, 2α∗). We will reach an absurd by considering a large index n (to be
completely defined later) and a corresponding fundamental configuration
(zn0 , . . . , z

n
K(n)). Initially, applying lemma 23, we require that n be large

enough so that (zn0 , . . . , z
n
K(n)) is strictly increasing and, for some φ > 0,

znK(n) − zn0 ≥ φK(n) > 2ς0.

Denote

I0 := (zn0 , z
n
K(n)) and P := (zn0 −R0, z

n
K(n) +R0) ∩ ω.

Note that the pattern P has diameter ` = znK(n) − zn0 + 2R0 greater than

2ς0. By repetitivity, we may find a sequence (tk)k∈Z ⊂ R such that, for all
k, P + tk is a pattern of ω and

0 < min(P + tk+1)−max(P + tk) ≤M(`)− `.

Define (ak, bk) = Ik := I0 + tk and let I ′k = (bk, ak+1) be the interval in
between Ik and Ik+1. Then

|I ′k| ≤M(`)− `+ 2(ς0 +R0) ≤ (A− 1)`+B + 2(ς0 +R0) = A′|Ik|+B′,

where A′ = A− 1 and B′ = 2A(ς0 +R0) +B. Note thus that, for p < q,

|aq − ap| =
q−1∑
k=p

(
|Ik|+ |I ′k|

)
≤ A

q−1∑
k=p

|Ik|+B′(q − p).

By pattern equivariance,

S(ak, bk) ≤ E(zn0 + tk, . . . , z
n
K(n) + tk)−K(n)Ē

= E(zn0 , . . . , z
n
K(n))−K(n)Ē ≤ 0.

By sub-additivity of S,

S(ap, aq) ≤
q−1∑
k=p

[S(ak, bk) + S(bk, ak+1)] ≤
q−1∑
k=p

S(bk, ak+1).

By the choice of α, there is β > 0 such that

S(bk, ak+1) ≤ α|I ′k|+ β.

These estimates provide

S(ap, aq) +
α

A
|aq − ap| ≤

q−1∑
k=p

S(bk, ak+1) + α

q−1∑
k=p

|Ik|+
αB′

A
(q − p)

≤ α|aq − ap|+
(αB′
A

+ β
)

(q − p).
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Since |aq − ap| ≥
∑q−1

k=p |Ik| = (q − p)|I0|, we obtain

S(ap, aq) ≤
( αA′

A′ + 1
+
( αB′

A′ + 1
+ β

) 1

|I0|

)
|aq − ap|.

The distance between ak and ak+1 is at most

|Ik|+ |I ′k| ≤ (A′ + 1)|I0|+B′ := H0.

If y − x > H0 are any given points, we choose p < q such that x ∈ Ip ∪ I ′p
and y ∈ Iq−1∪ I ′q−1. Hence, by the sub-additivity and the a priori growth
of the Mañé potential,

S(x, y) ≤ S(x, ap) + S(ap, aq) + S(aq, y)

≤
( αA′

A′ + 1
+
( αB′

A′ + 1
+ β

) 1

|I0|

)
|aq − ap|+ 2C(H0 + 1)

≤ α′|aq − ap|+ β′,

with

α′ =
αA′

A′ + 1
+
( 2α∗B

′

A′ + 1
+ β

) 1

|I0|
and β′ = 2C(H0 + 1).

Suppose first y−x > nH0. Then, using 0 ≤ x−ap ≤ H0 and 0 ≤ aq−y ≤
H0, we see that |aq − ap| ≤

(
1 + 2

n

)
|y − x| and therefore

S(x, y) ≤ α′
(

1 +
2

n

)
|y − x|+ β′.

If however y − x ≤ nH0, then

S(x, y) ≤ C(nH0 + 1) ≤ C(nH0 + 1) + β′ =: β′′.

We focus on a strictly bigger constant A′

A′+1
< 2A′

2A′+1
< 1 to choose α

sufficiently close to α∗ and then n large enough so that

α′′ :=
( A′

A′ + 1
α +

( 2α∗B
′

A′ + 1
+ β

) 1

φK(n)

)(
1 +

2

n

)
<

2A′

2A′ + 1
α∗.

We have obtained two constants 0 < α′′ < α∗ and β′′ > 0 such that

∀x ≤ y, S(x, y) ≤ α′′|y − x|+ β′′.

The existence of α′′ contradicts the definition of α∗. We have thus proved
that α∗ = 0.

Item ii. Let x > y. Item i of proposition 15 shows that there ex-
ist n ≥ 1 and a strictly decreasing sequence (y0, . . . , yn), with y0 = x
and yn = y, such that S(x, y) = E(y0, . . . , yn). Lemma 17 shows that
there exists a strictly increasing Mañé calibrated configuration (xk)k∈Z

with bounded jumps that is unbounded from above and bellow. Let
xi ≤ y be the largest point of this configuration less than or equal to
y. Let xj ≤ x be defined similarly. Then i ≤ j. If i = j, item iii
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of lemma 13 provides S(xi, xj) = E(xi, xj) − Ē. Otherwise, by calibra-
tion S(xi, xj) = E(xi, . . . , xj)− (j − i)Ē. Consider now the configuration
(y0, . . . , yn, xi, . . . , xj, y0). Then lemma 23 in [19] guarantees that

S(x, y) +
(
E(y, xi)− Ē

)
+ S(xi, xj) +

(
E(xj, x)− Ē

)
≥

≥ (n+ j − i+ 2)
(

inf
x∈R

E(x, x)− Ē
)
.

Since S has sublinear growth for positively ordered variables thanks to
the previous item, for α > 0 (to be chosen later), there exists β ≥ 0 such
that

S(xi, xj) ≤ α|xj − xi|+ β.

As the jumps are bounded, |xj − xi| ≤ R(j − i), we thus have

S(x, y) + α|xj − xi|+ β ≥ 2γ|xj − xi| − δ′,

with 2γ := infx∈R(E(x, x) − Ē)/R and δ′ := 2 sup|y−x|≤R
(
E(x, y) − Ē

)
.

We conclude by choosing α = γ and δ = δ′ + β + γR, so that

S(x, y) ≥ γ|y − x| − δ.

Item iii. Let m ≥ N (where N is given in lemma 23) and (z0, . . . , zm)
be a decreasing fundamental configuration. Let R > 0 be the constant
given in lemma 23 and

α :=
1

2R

(
inf
x∈R

E(x, x)− Ē
)
.

Then on the one hand, thanks to item i, there exists β ≥ 0 such that

S(zm, z0) ≤ α|z0 − zm|+ β.

On the other hand, thanks to item i of proposition 15, one can find an
increasing configuration (x0, . . . , xn), with x0 = zm and xn = z0, such that

S(zm, z0) = E(x0, . . . , xn)− nĒ.
Using item 1 of lemma 23 in [19], we obtain

S(zm, z0) ≥ S(zm, z0) + E(z0, . . . , zm)−mĒ
= E(x0, . . . , xn, z1, . . . , zm)− (m+ n)Ē

≥ (m+ n)
(

inf
x∈R

E(x, x)− Ē
)
≥ m

(
inf
x∈R

E(x, x)− Ē
)
.

As item ii of lemma 23 implies |z0 − zm| ≤ mR, the choice of α is contra-
dicted by the inequality

αmR + β ≥ m
(

inf
x∈R

E(x, x)− Ē
)

for m large enough. �

The previous result makes it clear that, in the linearly repetitive con-
text, the ordering of arbitrarily long fundamental configurations plays a
key role, thus introducing a preferential ordering to the model.
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Definition 25. Suppose that E(x, y) is a weakly twist interaction which
fulfills infxE(x, x) > Ē, and is pattern equivariant with respect to a lin-
early repetitive quasi-periodic set ω. A monotone configuration is said
to be compatible with the preferred ordering or for short compatible if the
configuration is ordered as any fundamental configurations of size suffi-
ciently large. Otherwise, the configuration is said to be anti-compatible
with the preferred ordering or for short anti-compatible.

We now classify the set of weak KAM solutions u. There are three
approaches: a classification using the type of growth (sublinear versus
linear), a classification using the ordering of u-calibrated subconfigura-
tions, and a classification using bi-infinite u-calibrated configurations. We
recall that any calibrated configuration for a weak KAM solution is also
Mañé calibrated and therefore strictly monotone with a minimal spacing
as stated by proposition 15.

Lemma 26. Let E(x, y) be a weakly twist interaction that is pattern equi-
variant with respect to a linearly repetitive quasi-periodic set ω. Suppose
that infxE(x, x) > Ē. There exists L > 0 such that, given any weak KAM
solution u and two points x0 > y0 + L, there cannot exist simultaneously
an increasing u-calibrated configuration ending at x0 and a decreasing u-
calibrated configuration ending at y0.

Proof. Suppose that (x−m, . . . , x0) is increasing, (y−n, . . . , y0) is decreas-
ing, with x0 > y0, and that m and n have been chosen so that y0 − R ≤
x−m ≤ y0 and x0 ≤ y−n ≤ x0 +R. From item ii of proposition 24, we have

u(y0)− u(y−n) = S(y−n, y0) ≥ γ|y−n − y0| − δ
≥ γ|x0 − x−m| − 2γR− δ ≥ γ(x0 − y0)− 2γR− δ.

Recall any weak KAM solution is Lipschitz continuous, with Lipschitz
constant bounded by some fixed value K (lemma 10). Hence, applying
proposition 24 with α = γ/2 we see that for some β > 0,

u(y0)− u(y−n) ≤ 2KR + u(x−m)− u(x0) = 2KR− S(x−m, x0)

≤ 2KR + |S(x−m, x0)| ≤ 2KR +
γ

2
|x0 − x−m|+ β

≤ 2KR +
γ

2
(x0 − y0) +

γ

2
R + β.

Therefore,

x0 − y0 ≤
2

γ

(
2KR +

γ

2
R + β + 2γR + δ

)
.

It is then enough to take L :=
⌈
5R + (4KR + 2β + 2δ)/γ

⌉
+ 1. �

We introduce vocabulary to quickly refer to possible classes of solutions.

Definition 27. Let u : R→ R be a function. We say that

(i) u is of type I (or u has a sublinear variation) if

∀α > 0, ∃ β ≥ 0, ∀x, y ∈ R, |u(x)− u(y)| ≤ α|x− y|+ β;(5.4)
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(ii) u is of type II (or u is linearly decreasing with respect to the pre-
ferred ordering) if

∃ γ, δ > 0, ∀x, y ∈ R,
[
x precedes y ⇒ u(y)− u(x) ≤ −γ|x− y|+ δ

]
;

(iii) u is of type III (or u is of mixed type) it it is of type I on points
that precede 0 and of type II on points that succeed 0 according
to the preferred ordering.

Proposition 28. Let E(x, y) be a weakly twist interaction that is pattern
equivariant with respect to a linearly repetitive quasi-periodic set ω. Sup-
pose that infxE(x, x) > Ē. Let u be a weak KAM solution. Then, the
following properties hold.

(i) If u is of type I, any u-calibrated configuration is compatible.
(ii) If u is of type II, any u-calibrated configuration is anti-compatible.

(iii) If u is of type III, there is T ≥ 0 such that any u-calibrated
configuration ending at x ≤ −T is increasing and ending at x ≥ T
is decreasing.

An equivalent way to describe the role of T in the last item above is to
say that, according to the preferred ordering, any u-calibrated configura-
tion that ends at a point preceding 0 by at least T is compatible, as well
as any u-calibrated configuration that ends at a point succeeding 0 by at
least T is anti-compatible.

Proof. Assume the preferred ordering is the increasing order.

Item i. By contradiction, assume (x−1, x0) is u-calibrated and decreas-
ing. We can extend it to an arbitrarily large decreasing u-calibrated con-
figuration (x−n, . . . , x−1, x0). From item ii of proposition 24, there are
γ1 > 0 and δ1 ≥ 0 fulfilling

u(x0)− u(x−n) = S(x−n, x0) ≥ γ1|x−n − x0| − δ1.
However, as u is of type I, it has sublinear variation, so that for α = γ1/2
there is β1 ≥ 0 such that

|u(x0)− u(x−n)| ≤ γ1
2
|x−n − x0|+ β1.

As |x−n − x0| → ∞ as n→∞, we have reached a contradiction.

Item ii. Suppose, by reduction to the absurd, that (x−1, x0) is an in-
creasing u-calibrated pair, and extend it to an arbitrarily large increasing
u-calibrated configuration (x−n, . . . , x−1, x0). As u is of type II, there are
γ2 > 0 and δ2 ≥ 0

−S(x−n, x0) = u(x−n)− u(x0) ≥ γ2|x0 − x−n| − δ2.
Since S is sublinear for positively ordered variables, for some β2 > 0,

|S(x−n, x0)| ≤
γ2
2
|x0 − x−n|+ β2.

We obtain a contradiction similar to the first item.
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Item iii. Let us consider T of the form T := RN , where R > 0 is the
upper bounded for successive jumps of Mañé calibrated configurations
obtained in proposition 15 and N > 1 will be chosen later. Assume that
(x−1, x0) is a decreasing u-calibrated pair such that x0 ≤ −T . Extend it to
a decreasing u-calibrated configuration (x−N , . . . , x−1, x0). In particular,
x−N ≤ 0. As u is of type I on R−, the computations in the first part imply
that

Nr ≤ |x−N − x0| ≤
2

γ1
(β1 + δ1).

Denote then N1 := d 2
γ1r

(β1+δ1)e+1. Similarly, if (x−N , . . . , x0) is increas-

ing u-calibrated configuration such that x0 ≥ T , one obtains x−N ≥ 0.
As u is of type II on R+, the computations of the second part lead us
to take into account N2 := d 2

γ2r
(β2 + δ2)e + 1. It is enough to choose

N := max{N1, N2}. �

Proposition 29. Let E(x, y) be a weakly twist interaction that is pat-
tern equivariant with respect to a linearly repetitive quasi-periodic set ω.
Suppose that infxE(x, x) > Ē. Then

(i) there are examples of weak KAM solutions of each of the three
types.

(ii) every weak KAM solution u is of one of three types:
(a) u is of type I if there exists a bi-infinite u-calibrated compat-

ible configuration;
(b) u is of type II if there exists a bi-infinite u-calibrated anti-

compatible configuration;
(c) u is of type III if there is no bi-infinite u-calibrated configu-

ration.

Proof. Assume for instance the preferred ordering is the increasing order.
The case of decreasing order is similar.

Part 1. We prove the existence of weak KAM solutions of type I and II.
Lemma 17 shows that one can always ensure the existence of an increas-
ing as well as a decreasing calibrated configuration as required to apply
theorem 11. We claim that the resulting weak KAM solutions are of type
I and II, respectively. Recall from lemma 10 that any weak KAM solution
is Lipschitz continuous, with a Lipschitz constant that only depends on
the interaction model E. Recall also that the Mañé potential is Lipschitz
continuous as stated in corollary 16.

The Lipschitz weak KAM solution uI obtained from the increasing cal-
ibrated configuration inherits the sublinear growth for positively ordered
variables of the Mañé potential, and it is thus of type I. More concretely,
for such a solution uI we have

∀ k < `, uI(x`)− uI(xk) = S(xk, x`)
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along the increasing Mañé calibrated configuration (xn)n∈Z. Let R > 0
denote an upper bound for the successive jumps of a calibrated configu-
ration. Given y−x > 2R, we may choose k and ` with x ∈ [xk, xk+1) and
y ∈ (x`−1, x`] so that

|uI(x)− uI(y)| ≤ |S(xk, x`)|+ 2Lip(uI)R

≤ |S(x, y)|+ 2
(
Lip(uI) + Lip(S)

)
R.

Item i of proposition 24 shows that the Mañé potential has sublinear
growth in this situation, we immediately conclude that uI has sublinear
variation.

By its turn, the solution uII obtained from the decreasing calibrated
configuration is linearly decreasing as a consequence of the behavior of the
Mañé potential for negatively ordered variables. In more precise terms,
uII satisfies

∀ k < `, uII(y`)− uII(yk) = S(yk, y`),

where (yn)n∈Z is a particular decreasing Mañé calibrated configuration.
Similarly as above, for y − x > 2R one may find ` > k such that

S(y, x)−2
(
Lip(uII)+Lip(S)

)
R ≤ S(yk, y`)−2Lip(uII)R ≤ uII(x)−uII(y).

The fact that uII is of type II follows thus from item ii of proposition 24.

Part 2. We prove the existence of a weak KAM solution of type III.
Let vI and vII be weak KAM solutions of type I and II, respectively. We
may assume vI(0) = vII(0) = 0. Define vIII := min{vI , vII}. Then vIII is
again a weak KAM solution. Let γII , δII > 0 be constants used to describe
vII as of type II. Since vI is of type I, let βI > 0 be the corresponding
constant associated with αI := γII/2. For every x ≥ 2(βI + δII)/γII , we
have the following inequalities

vI(x) = vI(x)− vI(0) ≥ −αIx− βI ,
vII(x) = vII(x)− vII(0) ≤ −γIIx+ δII ,

which yield vII(x) ≤ vI(x)− γII
2
x+ βI + δII ≤ vI(x). Note that whenever

x ≤ −2(βI + δII)/γII , we get

vI(x) ≤ −αIx+ βI , vII(x) ≥ −γIIx− δII ,

so that vI(x) ≤ vII(x) + γII
2
x + βI + δII ≤ vII(x). To simplify, denote

then T := 2(βI + δII)/γII . Let K ≥ 0 be the Lipschitz constant of all
weak KAM solutions (see lemma 10). If 0 ≤ x ≤ y, let xT = max{T, x},
yT = max{T, y}. Then T ≤ xT ≤ yT and

vIII(y)− vIII(x) ≤ vIII(yT )− vIII(xT ) + 2KT

= vII(yT )− vII(xT ) + 2KT

≤ −γII |yT − xT |+ δII + 2KT

≤ −γII |y − x|+ δII + 2T (K + γII).
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We have proved that vIII is of type II on R+. Given any α > 0, there is
β ≥ 0 such that

∀x, y ∈ R, |vI(x)− vI(y)| ≤ α|x− y|+ β.

If x ≤ y ≤ 0, let xT = min{x,−T}, yT = min{y,−T}. Then xT ≤ yT ≤
−T and

|vIII(x)− vIII(y)| ≤ |vIII(xT )− vIII(yT )|+ 2KT

= |vI(xT )− vI(yT )|+ 2KT

≤ α|xT − yT |+ β + 2KT ≤ α|x− y|+ βIII ,

with βIII = β + 2T (K + α). We have proved that vIII is of type I on R−.

Part 3. Conversely, we prove that every weak KAM solution u is one
of the three types. Let B−u be the set of points x ∈ R such that all
u-calibrated configurations ending at x are increasing. Let B+

u be the
set of points x for which all u-calibrated configurations ending at x are
decreasing. From lemma 26, note that sup(R \ B+

u ) ≤ inf B+
u + L. We

discuss thus three possibilities.

Case B+
u = R. For every x ∈ R, all u-calibrated configurations ending at

x are decreasing. Given A > 0, one constructs a decreasing u-calibrated
configuration ending at −A of size n sufficiently large, −A = x0 < x−1 <
· · · < x−n, where x−n > A and r ≤ |x−k − x−k+1| ≤ R for every k.
By re-indexing, one has a family of sequences xNiN < · · · < xN−jN with

|xN0 | ≤ R and iN , jN → +∞. Using a diagonal extraction, one obtains
a bi-infinite decreasing u-calibrated configuration (xk)k∈Z with bounded
jumps and a minimal spacing. For every x < y − R, we choose k ≤ `
so that |x` − x| ≤ R , |y − xk| ≤ R. Let γ, δ > 0 be given as in item ii
of proposition 24. Using the Lipschitz constant K of u and the fact that
(xk)k∈Z is Mañé calibrated, it follows that

u(x)− u(y) ≥ u(x`)− u(xk)− 2KR = S(xk, x`)− 2KR

≥ γ|xk − x`| − δ − 2KR ≥ γ|y − x| − δ − 2R(γ +K).

We have proved that u is of type II.

Case R \ B+
u 6= ∅ is unbounded from above. Note that R \ B+

u is the set
of points x for which there exists an increasing u-calibrated configuration
ending at x. When it is unbounded from above, lemma 26 ensures that
B−u = R and hence all u-calibrated configurations are increasing. One can
construct as above a strictly increasing bi-infinite u-calibrated configura-
tion (xk)k∈Z that is also Mañé calibrated. Let K denote the Lipschitz
constant of u. For every x < y−R, if k ≤ ` is chosen so that |x−xk| ≤ R
and |y− x`| ≤ R, for every α > 0 and β ≥ 0 given by proposition 24, one
obtains

|u(y)− u(x)| ≤ |u(x`)− u(xk)|+ 2KR = |S(xk, x`)|+ 2KR

≤ α|x` − xk|+ β + 2KR ≤ α|y − x|+ β + 2R(α +K).
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We have proved that u is type I.
Case b := sup(R\B+(u)) ∈ R. Let a := b−L, where L > 0 is the constant
obtained in lemma 26. Then any u-calibrated configuration ending at
x0 < a is increasing, and any u-calibrated configuration ending at y0 > b is
decreasing. In particular, there is no bi-infinite u-calibrated configuration.
Fix once for all an increasing u-calibrated configuration (x−k)k≥0 ending
at a point x0 < min{a, 0} and a decreasing u-calibrated configuration
(yk)k≥0 ending at a point y0 > max{b, 0}. Both are Mañé calibrated.
For x < y − R with y ≤ x0, making use of the increasing u-calibrated
configuration as above, given α > 0 we have that

|u(y)− u(x)| ≤ α|y − x|+ β + 2R(α +K),

where β ≥ 0 is guaranteed by proposition 24. For x < y−R with x ≥ y0,
making use of the decreasing u-calibrated configuration as in the first case,
we see that

u(x)− u(y) ≥ γ|y − x| − δ − 2R(γ +K),

where γ, δ > 0 are the constants guaranteed by item ii of proposition 24.
These facts show that u is of type III. �

We highlight an immediate corollary of the proof of the result above.

Corollary 30. Let E(x, y) be a weakly twist interaction that is pattern
equivariant with respect to a linearly repetitive quasi-periodic set ω. Sup-
pose that infxE(x, x) > Ē. Given a weak KAM solution u, with respect
to the preferred ordering,

(i) u is of type I if, and only if, for any y ∈ R, every point belonging
to arg min{u(·) + E(·, y)} precedes y,

(ii) u is of type I if, and only if, for any y ∈ R, every point belonging
to arg min{u(·) + E(·, y)} succeeds y,

(iii) if u is of type III, if and only if, there exists an interval I of length
at most L, where L > 0 is given as in lemma 26, for which, for all
y preceding I every element of arg min{u(·) +E(·, y)} precedes y,
and for all y succeeding I every element of arg min{u(·)+E(·, y)}
succeeds y.

The next proposition shows that solutions of the same type not only
have the same asymptotic behavior characteristics but actually lie at a
uniform distance from each other.

Proposition 31. Let E(x, y) be a weakly twist interaction that is pattern
equivariant with respect to a linearly repetitive quasi-periodic set ω. As-
sume infxE(x, x) > Ē. If u and v are two weak KAM solutions of the
same type, then supx∈R |u(x)− v(x)| < +∞.

Proof. Assume the preferred ordering is the increasing one. There are
three cases depending on the types of u, v.

Assume that u and v are of type I. Let (xk)k∈Z be an increasing bi-
infinite u-calibrated configuration. We may assume |x0| ≤ R, where R
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is given by proposition 15. We first show by induction that, if c is some
constant, if u(xk) ≥ v(xk) + c for some k, then u(xk+1) ≥ v(xk+1) + c.
Indeed, using the fact that v is a sub-action, we see that

u(xk+1) = u(xk) + E(xk, xk+1)− Ē
≥ v(xk) + E(xk, xk+1)− Ē + c ≥ v(xk+1) + c.

Starting with c = u(x0)− v(x0), one thus obtains

∀ k ≥ 0, u(xk)− v(xk) ≥ u(x0)− v(x0).

We then extend the above inequality to every x > 0. We choose k ≥ 0
such that |x − xk| ≤ R. Using the Lipschitz constant K of u and v, one
has

∀x ≥ 0, u(x)− v(x) ≥ u(xk)− v(xk)− 2KR ≥ u(x0)− v(x0)− 2KR.

By permuting the role of u and v, one obtains

sup
x≥0
|u(x)− v(x)| ≤ sup

y∈[−R,R]

|u(y)− v(y)|+ 2KR.

Similarly if u(xk) ≤ v(xk) + c for some k ≤ 0, by induction one gets
u(xk−1) ≤ v(xk−1) + c. One concludes as before that

∀x ≤ 0, u(x)− v(x) ≤ u(x0)− v(x0) + 2KR, and

sup
x≤0
|u(x)− v(x)| ≤ sup

y∈[−R,R]

|u(y)− v(y)|+ 2KR.

If u and v are of type II, the proof is completely analogous using de-
creasing bi-infinite u-calibrated and v-calibrated configurations.

Assume that u and v are of type III. Let T ≥ 0 be the maximum of
the respective constants for u and v as given in proposition 28. Through
decreasing u-calibrated and v-calibrated configurations ending at T , in a
similar way as above, we get supx≥T |u(x)− v(x)| ≤ |u(T )− v(T )|+ 2KR.
Then using increasing u-calibrated and v-calibrated configurations ending
at −T , we obtain supx≤−T |u(x)− v(x)| ≤ |u(−T )− v(−T )|+ 2KR. �

6. Periodic interaction models

Theorem 5 illustrates that, when the non-degeneracy condition is satis-
fied (infxE(x, x) > Ē), the asymptotic behaviour of a weak KAM solution
is related to the one of calibrated configurations. A noticeable point in
the proof is the existence of unbounded Mañé calibrated configurations,
at least in one direction. We show the non-degeneracy hypothesis is neces-
sary for these results by providing an example of a degenerate interaction
for which any Mañé calibrated configuration is bounded but admitting
a weak KAM solution with linear growth. In more precise words, we
prove in this section theorem 7. Unexpectedly, the example falls in the
classical framework of a periodic interaction mechanical model of Frenkel-
Kontorova type.
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Hypotheses 32. Let E : R×R→ E be an interaction model satisfying all
the assumptions (H1-4) of hypotheses 2. We will say that E is a periodic
interaction model whenever

(Hper) E is periodic: ∀x, y ∈ R, E(x, y) = E(x+ 1, y + 1).

Periodicity suggests to introduce another interaction Eper : R× R→ R
defined as

Eper(x, y) := min
k∈Z

E(x, y + k).

Note that Eper : T× T→ R may be seen as a function on the torus, that
is, Eper is doubly periodic. But we will see it is important to keep the real
line orientation and consider configurations on R and not on T. It is easy
to verify that the two ground actions coincide,

Ē = Ēper.

As in definition 8 and in (2.1), we may similarly introduce periodic ver-
sions of the Mañé potential and Lax-Oleinik operator (now acting on
periodic functions):

∀x, y ∈ R, Sper(x, y) = inf
n≥1

inf
x=x0,...,xn=y

n−1∑
k=0

(
Eper(xk, xk+1)− Ē

)
,

∀u ∈ C0(T), ∀ y ∈ R, T per[u](y) := inf
x∈R

{
u(x) + Eper(x, y)

}
.

It is easy to check the following properties.

Lemma 33. Let E be an interaction model satisfying the hypotheses (32).

(i) The periodic Mañé potential for the interaction Eper is related to
the Mañé potential by

∀x, y ∈ R, Sper(x, y) = inf
k∈Z

S(x, y + k).

(ii) If u ∈ C0(R) is 1-periodic, then

T per[u] = u+ Ē ⇔ T [u] = u+ Ē.

(iii) If u is a 1-periodic weak KAM solution (for either E or Eper),
the optimal points in the two definitions of T and T per coincide
modulo Z: for every y ∈ R, we have

arg min
x∈R

{u(x) + Eper(x, y)− Ē} = arg min
x∈R

{u(x) + E(x, y)− Ē}+ Z.

By taking into account the periodic potential

V (x) := 1− cos(2πx),

we will focus on the following version of the standard Frenkel-Kontorova
model

(6.1) Eλ(x, y) :=
1

2
|y − x− λ|2 +KV (x), λ ∈ R, K ∈ R+.

Let Ēλ denote the corresponding ground action.



CLASSIFICATION OF DISCRETE WEAK KAM SOLUTIONS 35

We now fix K > 0 and discuss the properties on the periodic inter-
action model (6.1) with respect to λ. Denote by Sλ(x, y) the respective
Mañé potential. Since the interaction E0 may be written as a sum of
even functions, the Mañé potential and the ground action preserve some
symmetries:

S0(0, y) = S0(0,−y),

S0(x, y) +KV (y) = S0(y, x) +KV (x),

Eλ+1(x, y) = Eλ(x, y), E−λ(x, y) = Eλ(−x,−y),

Ēλ+1 = Ēλ, Ē−λ = Ēλ.

We resume in the next proposition the main properties of the Mañé po-
tential and of the Mañé calibrated configurations that will give theorem 7.
More precisely, for suitable parameters K and λ, this model is degenerate
(item iii), the Mañé potential defines a weak KAM solution (item vi) of
linear growth (items i and ii) but all Mañé calibrated configurations are
bounded (item vii).

Proposition 34. Let K > 0 and c0(K) := min{
√

1 + 2K − 1, 1
40
}. Then

for every |λ| < c0(K), we have

(i) ∀ y ∈ R, S0(0, y) ≥ c0(K)(|y| − 1
2
),

(ii) ∃ c1(K) > c0(K), ∀ x, y ∈ R, S0(x, y) ≤ c1(K)(|y − x|+ 1),
(iii) Ēλ = infx∈R Eλ(x, x) = 1

2
λ2,

(iv) Eλ(x, y)− 1
2
λ2 = E0(x, y)−λ(y−x), Sλ(x, y) = S0(x, y)−λ(y−x),

(v) ∀ i < j < k, i, j, k ∈ Z, Sλ(i, k) = Sλ(i, j) + Sλ(j, k),
(vi) Sλ(0, x) is a uniformly Lipschitz weak KAM solution,

(vii) if (xk)k∈Z is a Mañé calibrated configuration for the interaction
Eλ, then there is an integer n such that xk ∈ [n, n+ 1], ∀ k ∈ Z.

Note that this model is non-degenerate for some parameters. Actually,
it will be shown in proposition 35 of appendix A (for ρ = 1) that this pe-
riodic Frenkel-Kontorova model is non-degenerate for large |λ| compared
to K, namely:

∀ 0 ≤ K <
λ2

8
, Ēλ < inf

x∈R
Eλ(x, x).

Proof.

Item (i). By the symmetries of S0, we may suppose that y > 0. Note
that Ē0 = 0. Thanks to lemma 13, for the computation of S0(0, y), it is
enough to consider monotone configurations 0 = x0 < x1 < . . . < xn = y.
Denote

{iα < iα+1 < . . . < iβ} := {0 ≤ i < n : [xi, xi+1) ∩ (Z + 1
2
) 6= ∅}.
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Clearly, 0 ≤ xiα <
1
2
, xik+1

− xik+1 < 1, and y − xiβ < 1. By positivity of
E0, we have

n−1∑
i=0

E0(xi, xi+1) ≥
β∑

k=α

E0(xik , xik+1).

We claim that there exists a constant c ∈ (0, 1
4
) such that, for any such

a subconfiguration, E0(xik , xik+1) > c (xik+1 − xik + 1), ∀ k = α, . . . , β.
Using 0 ≤ xik+1

− xik+1 ≤ 1, the claim will imply

(6.2)

β∑
k=α

E0(xik , xik+1) ≥ c (y − xiα).

Let us prove the claim. Denote by qk + 1
2

the smallest element of

Z + 1
2

belonging to [xik , xik+1). If we write uk = qk + 1
2
− xik and vk =

xik+1 − (qk + 1
2
), to show our claim it is enough to assure the existence of

a constant c ∈ (0, 1
4
) such that, for every u, v ≥ 0,

F (u, v) :=
1

2
(u+ v)2 +K(1 + cos 2πu)− c (u+ v + 1) ≥ 0.

The minimum of F (u, v) over u, v ≥ 0 takes place on the boundary of
the domain, since there is no critical points in the interior of the domain.
Hence, we have to consider the following three cases.

Case 1. On the border u = 0, note that

F (0, v) =
1

2
v2 − cv − c+ 2K ≥ 2K − 1

2
(c+ 1)2 +

1

2
≥ 0,

whenever c ∈ [0,
√

1 + 4K − 1].

Case 2a. On the border v = 0 and u ≥ 1
4
, we have

F (u, 0) ≥ 1

2
u2 − c (u+ 1) ≥ 1

32
− c5

4
≥ 0,

whenever c ∈ [0, 1
40

].

Case 2b. Finally, on the border v = 0 and 0 ≤ u ≤ 1
4
, observe that

F (u, 0) ≥ 1

2
u2 +K − c (u+ 1) ≥ K − 1

2
(c+ 1)2 +

1

2
≥ 0,

whenever c ∈ [0,
√

1 + 2K − 1].

To summarize, we have shown that the inequality (6.2) holds for the
constant c = c0(K) = min{

√
1 + 2K − 1, 1

40
}. With the obvious estimate

iα−1∑
i=0

E0(xi, xi+1) ≥ c0(K)(xiα − 1
2
),

we conclude that S0(0, y) ≥ c0(K)(y − 1
2
) for all y > 0.

Item (ii). The existence of c1(K) follows from lemma 12.



CLASSIFICATION OF DISCRETE WEAK KAM SOLUTIONS 37

Item (iii). On the one hand, as Ēλ = limn→+∞ infx0,...,xn
1
n
Eλ(x0, . . . , xn),

from the configuration xk = 0 for all k, one obtains Ēλ ≤ 1
2
λ2.

On the other hand, let us introduce the function

uλ(x) = inf
n≥1

inf
x0=0,...,xn=x

[
Eλ(x0, . . . , xn)− nλ

2

2

]
.

Since Eλ(x, y)− λ2

2
= E0(x, y)− λ(y − x), clearly uλ(x) = S0(0, x)− λx,

and in particular, u is a well-defined function. Note that

uλ(x) ≥ (c0(K)− |λ|)|x| − 1
2
c0(K) ≥ −1

2
c0(K), ∀ x ∈ R,

uλ(x) + Eλ(x, y) ≥ uλ(y) + 1
2
λ2, ∀ x, y ∈ R.(6.3)

Define then uperλ (x) := infp∈Z uλ(x + p). Using the constant c1(K) of
item (ii), it follows that

−1
2
c0(K) ≤ uperλ (x) ≤ inf

p∈Z

[
(c1(K) + |λ|)(|x+ p|+ 1)

]
≤ 2(c1(K) + |λ|),

namely, uperλ is bounded. From (6.3), we obtain for every y ∈ R,

uperλ (y) + 1
2
λ2 ≤ inf

x∈R
inf
p,q∈Z

[
uλ(x+ p) + Eλ(x, y + q)

]
= inf

x∈R

[
uperλ (x) + Eper

λ (x, y)
]
.

Therefore, we clearly get

Ēλ = lim
n→+∞

inf
x0,...,xn∈R

1

n

[
Eλ(x0, . . . , xn) + uperλ (x0)− uperλ (xn)

]
≥ 1

2
λ2.

Item (iv). It follows from Ēλ = 1
2
λ2.

Item (v). From item (iv), it is enough to prove the relation for λ = 0. In
addition, since S0(m,n) = S0(0, n −m) for any integers m < n, one just
needs to argue that S0(0, k) = kS0(0, 1) for all positive integers k. Such a
fact follows from

S0(0, k + 1) = S0(0, k) + S0(0, 1), ∀ k ≥ 1.

To see that the equality above holds, note first that clearly S0(0, k+ 1) ≤
S0(0, k) + S0(k, k + 1) = S0(0, k) + S0(0, 1). Recall that we may consider
only monotone configurations (x0 = 0, . . . , xn = k + 1) in the expression
defining S0(0, k + 1) (lemma 13). Observe that for u, v ≥ 0 and j ∈ Z,

E0(j−u, j+v)− [E0(j−u, j)+E0(j, j+v)] =
1

2
(u+v)2− 1

2
u2− 1

2
v2 ≥ 0.

For m = max{0 ≤ i ≤ n : xi < k}, this inequality implies the configura-
tion obtained by concatainnaiting the configurations (x0 = 0, . . . , xm, k)
and (k, xm+1, . . . , xn = k + 1) does not increase the total energy. This
ensures the opposite inequality S0(0, k + 1) ≥ S0(0, k) + S0(0, 1).
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Item (vi). The fact that Sλ(0, ·) is a weak KAM solution follows from
Sλ(0, 0) = 0. We next show that the infimum in

Sλ(0, y) = inf
x∈R

[
Sλ(0, x) + Eλ(x, y)− Ēλ

]
,

is attained at some x which satisfies |y− x| ≤ R for some R > 0 indepen-
dent of y. The infimum is realized at some x thanks to the superlinearity
of Eλ. Using item (ii), one obtains

Sλ(x, y) ≤ (c1(K) + |λ|)(|y − x|+ 1), ∀x, y ∈ R.

On the one hand,

Sλ(0, y) ≤ Sλ(0, x) + Sλ(x, y) ≤ Sλ(0, x) + (c1(K) + |λ|)(|y − x|+ 1).

On the other hand, thanks to the superlinearity of Eλ, there exists a
constant c2(K,λ) such that

Eλ(x, y)− Ēλ ≥ (c1(K) + |λ|+ 1)|y − x| − c2(K,λ), ∀x, y ∈ R.

Using the two previous estimates and Sλ(0, y) = Sλ(0, x) +Eλ(x, y)− Ēλ,
one gets

|y − x| ≤ c1(K) + |λ|+ c2(K,λ) := R.

The Lipschitz constant of y 7→ Sλ(0, y) depends on the Lipschitz constant
of y 7→ Eλ(x, y) uniformly on |y − x| ≤ R.

Item (vii). Observe that by item (iv), a Mañé calibrated configuration for
Eλ is also Mañé calibrated for E0. So without lost of generality, we can
assume λ = 0.

Part 1. We show that (xk, xk+1) cannot contain an integer. By con-
tradiction, if n ∈ (xk, xk+1), the twist property (see lemma 22 of [19])
implies

S0(xk, xk+1) = S0(xk, xk+1) + E0(n, n),

= E0(xk, xk+1) + E0(n, n),

> E0(xk, n) + E0(n, xk+1) ≥ S0(xk, xk+1),

and we reach an absurd.
Part 2. We show there cannot exist an integer p ∈ Z such that for some

index k ∈ Z and some integer l ≥ 0,

xk−1 < xk = xk+1 = · · · = xk+l < xk+l+1, xk = p ∈ Z.

The other case xk−1 > xk > xk+l+1 and xk ∈ Z is done similarly. By
contradiction, on the one hand, the function

x 7→ E0(xk−1, x, · · · , x, xk+l+1) (x repeated l + 1 times)

reaches its minimum at x = xk and for small ε > 0 one has

E0(xk−1, xk + ε, · · · , xk+l + ε, xk+l+1) = S0(xk−1, xk+l+1) +O(ε2).



39

On the other hand, the twist property implies there exists α > 0 (inde-
pendent of ε) such that

E0(xk−1, xk + ε) = E0(xk−1, xk + ε) + E0(xk, xk)

≥ E0(xk−1, xk) + E0(xk, xk + ε) + αε.

Thus

S0(xk−1, xk+l+1) +O(ε2) ≥
≥ E0(xk−1, xk, xk + ε, · · · , xk+l + ε, xk+l+1) + αε

≥ S0(xk−1, xk+l+1) + αε,

and we obtain a contradiction.
The two previous parts show that (xk)k∈Z cannot overlap an interval of

the form [n, n+ 1], n ∈ Z. �

Appendices
Appendix A. Non-degenerate almost crystalline models

Our aim is to provide examples of pattern equivariant interactions that
fulfill hypothesis infxE(x, x) > Ē. For this purpose, we focus on one-
dimensional quasicrystals studied in [17]. More concretely, given α ∈
(0, 1/2) and ρ > 0, we will consider a quasi-periodic set ω(α, ρ) = ω =
{qk}k∈Z ⊂ R defined by

∀ k ∈ Z, qk = k + (ρ− 1)bkαc.

Note that qk − qk−1 = 1 + (ρ− 1)ak, where

ak = bkαc − b(k − 1)αc.

Since α < 1, we have (ak)k∈Z ∈ {0, 1}Z and qk − qk−1 equals 1 or ρ
whenever ak equals 0 or 1, respectively. As α < 1/2, ak and ak+1 cannot
be both equal to 1. In fact, (ak)k∈Z is periodic if α is rational, and is
called a Sturmian sequence when α is irrational [26].

Since ω is uniformly discrete, it satisfies the (finite local complexity)
property. The fact that ω obeys (repetitivity) can be assured essentially
because irrational rotations on the circle are minimal. Moreover, since
these rotations are also uniquely ergodic, they satisfy an additional prop-
erty: each type of pattern occurs with a positive density (see [15] for a
modern presentation). In precise terms, they fulfill

uniform pattern distribution: – for any pattern P, there is a positive
number ν(P) > 0 such that for any nested sequence of bounded
open intervals I1 ⊂ I2 ⊂ . . . ⊂ Ik ⊂ . . . with unbounded sequence
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of lengths (|Ik|)k, the quantity

NP(Ik)

|Ik|
converges to ν(P), where NP(I) denotes the number of patterns
in ω ∩ I equivalent to P.

The uniform pattern distribution is a consequence of the uniform limits

(A.1) µb = lim
n−m→+∞

#ba[m,n)
n−m

,

where #ba[m,n) is the number of times the subword b = b1 · · · br ∈ {0, 1}r,
r ≥ 1, appears in the word a[m,n) = amam+1 · · · an−1 for n > m, m,n ∈ Z.

A discrete set that satisfies (finite local complexity), (repetitivity) and
(uniform pattern distribution) is said to be a quasicrystal. See [21] for
details.

Let us explain how to define a C2 interaction model E(x, y) that is
twist and pattern equivariant with respect to ω. Regarding the interac-
tion with the substrate, we introduce a pattern equivariant V obtained
by translating two functions V1 and Vρ according to the patterns of two
consecutive points of ω. Concretely, for V1 : [0, 1]→ R and Vρ : [0, ρ]→ R
defined as V1(x) = Vρ(ρx)/ρ2 = 1− cos 2πx, consider for every k ∈ Z and
x ∈ [qk, qk+1),

V (x) =

{
V1(x− qk), if qk+1 − qk = 1,
Vρ(x− qk), if qk+1 − qk = ρ.

See the figure below for the graph of an example. Let the interaction be
defined by

Eλ(x, y) :=
1

2
|y − x− λ|2 +KV (x), λ ∈ R, K ∈ R+.

x×q−3 ×q−2 ×q−1 ×q0 ×q1 ×q2 ×q3 ×q4 ×q5
1 ρ

Figure 1. Graph of the potential V for α = 1/
√

5 and ρ =
√

3

The next proposition provides examples of non-degenerate interactions
for which theorem 5 does apply. Remark that for ρ = 1 the quasicrystal is
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nothing but the lattice Z. For ρ 6= 1, note that the quasicrystal ω(α, ρ) is
linearly repetitive when the coefficients of the continued fraction of α are
bounded [1] (e.g. when α is quadratic by the Lagrange’s continued fraction
theorem). It is known that the set of α satisfying this condition is a Baire
meager set, of zero Lebesgue measure but with Hausdorff dimension 1.

Proposition 35. For 0 < ρ < 1 + α−1/2, denote c1(λ) := λ2

8
1−α(1−ρ)2
1+α(ρ2−1) .

Then for every K ∈ (0, c1(λ)),

inf
x∈R

Eλ(x, x) > Ēλ.

In the periodic case, that is, when ρ = 1, the proposition gives a simple
estimate between λ and K for the non-degeneracy. For K < λ2

8
, the

periodic Frenkel-Kontorova model is non-degenerate.

Proof. Obviously infxEλ(x, x) = λ2/2. Since

Ēλ = lim
n→∞

inf
x0,...,xn

1

n
Eλ(x0, . . . , xn),

the strategy consists in finding a long configuration by concatenating short
configurations located in each cell [qk, qk+1] so that the mean of the suc-
cessive interactions is strictly smaller than λ2/2. Let ` ≥ 1. For cells
(qk, qk+1) of length qk+1 − qk = 1, we use a translate qk + y` of the sub-
configuration y` in (0, 1)

y` =
(
y`0, . . . , y

`
2`−1

)
:=
( 1

2`+1
+
j

2`

)2`−1
j=0

.

For cells of length qk+1 − qk = ρ, we use a translate of the homothetic
subconfiguration ρy` = (ρy`0, . . . , ρy

`
2`−1). More precisely, we define for

every k ≥ 1 a configuration x`k of k2`+1 points obtained by concatenating
k translates of some homothetic y` and by adding an extra translate of y`0

x`k :=
(
(q1 − q0)y`, q1 + (q2 − q1)y`, . . . , qk−1 + (qk − qk−1)y`,

qk + (qk+1 − qk)y`0
)
∈ Rk2

`+1.

Note that x`k has 2` entries belonging to each interval (q0, q1), . . . , (qk−1, qk),
and an extra point of (qk, qk+1). The total energy Eλ(x

`
k) consists in two

terms. The term coming from the external potential is a sum of par-
tial sums, of the form either

∑
x∈y`+q V1(x) or

∑
x∈ρy`+q Vρ(x). The main

observation is that in both cases each partial sum boils down to

c
(
2` −

2`−1∑
j=0

cos(2πy`j + d)
)
, with c, d constants, c ∈ {1, ρ2}.

Since
∑2`−1

j=0 cos(2πy`j) =
∑2`−1

j=0 sin(2πy`j) = 0, we thus have∑
x entry into y`+q

V1(x) = 2` and
∑

x entry into ρy`+q

Vρ(x) = ρ22`.
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The term coming from the mutual interaction between neighboring atoms
can be calculated according to the cases of entries belonging to possible
cells, and presents three values. In fact, let x < y be consecutive entries
into x`k. The energy 1

2
|y − x− λ|2 takes one of the following values:

λ2

2
+
ρ

2`

( ρ

2`+1
− λ
)

if x, y ∈ [qk−1, qk], with ak = 1,

λ2

2
+

1

2`

( 1

2`+1
− λ
)

if x, y ∈ [qk−1, qk+1], with ak = ak+1 = 0,

λ2

2
+
ρ+ 1

2`+1

(ρ+ 1

2`+2
− λ
)

if x ∈ [qk−1, qk] and y ∈ [qk, qk+1],

with ak 6= ak+1

For k ≥ 1, let #k
i denote the number of times the subword i ∈ {0, 1}

appears in the word a1 · · · ak+1. Only three types of subwords of length 2
appear in (ak)k∈Z: 00, 01 and 10. Introduce similarly #k

ij as the number
of times the subword ij, i, j ∈ {0, 1}, appears in the word a1 · · · ak+1.
Clearly #k

11 = 0. Then

Eλ(x
`
k) := K2`(#k

0 + ρ2#k
1) + #k

002
`
[λ2

2
+

1

2`

( 1

2`+1
− λ
)]

+ #k
01(2

` − 1)
[λ2

2
+

1

2`

( 1

2`+1
− λ
)]

+ #k
01

[λ2
2

+
ρ+ 1

2`+1

(ρ+ 1

2`+2
− λ
)]

+ #k
10(2

` − 1)
[λ2

2
+
ρ

2`

( ρ

2`+1
− λ
)]

+ #k
10

[λ2
2

+
ρ+ 1

2`+1

(ρ+ 1

2`+2
− λ
)]
.

We divide by k2` and let k → +∞. From (A.1), we have #k
0/k → µ0

and a similar result for #k
1, #k

00, #k
01 and #k

10. Since the word 1 is always
preceded and followed by 0 in (ak)k, note then that µ1 = µ01 = µ10 =
(1− µ00)/2. We thus obtain

lim
k→+∞

Eλ(x
`
k)

k2`
=
λ2

2
+K(1+µ1(ρ

2 − 1)) +
1 + µ00

2

1

2`

( 1

2`+1
− λ
)

+
1− µ00

2

ρ

2`

( ρ

2`+1
− λ
)
− 1− µ00

2`
(1− ρ)2

22`+3
.

We want to find a condition on λ > 0 so that Ēλ <
λ2

2
. Ignoring the

nonpositive term, it is enough to choose λ so that

2`K(1 + µ1(ρ
2 − 1)) +

1 + µ00

2

( 1

2`+1
− λ
)

+
1− µ00

2
ρ
( ρ

2`+1
− λ
)
< 0,

or equivalently

2`K(1+µ1(ρ
2−1))+

1 + µ00

2

1

2`+1
+

1− µ00

2

ρ2

2`+1
< λ

(1 + µ00

2
+ρ

1− µ00

2

)
.
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Assume ` has been chosen so that 1
2`
< λ ≤ 1

2`−1 . It suffices to rewrite the

inequality above with 1
2`

instead of λ. Then K must satisfy

2`K(1 + µ1(ρ
2 − 1)) <

1 + µ00

2

1

2`+1
+

1− µ00

2

ρ(2− ρ)

2`+1
.

As λ ≤ 1
2`−1 , we have λ2

8
≤ 1

22`+1 . Hence, it is enough to choose K so that

K <
λ2

8

(1 + µ00

2
+

1− µ00

2
ρ(2− ρ)

) 1

1 + µ1(ρ2 − 1)
.

Recalling that (1− µ00)/2 = µ1, we have

1 + µ00

2
+

1− µ00

2
ρ(2− ρ) = 1− µ1 + µ1ρ(2− ρ) = 1− µ1(1− ρ)2.

We thus have proved that Ēλ <
λ2

2
whenever K < λ2

8
1−µ1(1−ρ)2
1+µ1(ρ2−1) . A direct

computation [26] shows that µ1 = α . This proves the proposition. �
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theory, Comment. Math. Helv. Vol. 87 (2012), 1–39.

IMECC, Universidade Estadual de Campinas, 13083-859, Campinas, Bra-
sil

Email address: garibaldi@ime.unicamp.br

LAMFA, CNRS, UMR 7352, Université de Picardie Jules Verne, 80 000
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