Automorphisms of low complexity subshifts

Samuel Petite

LAMFA UMR CNRS Université de Picardie Jules Verne, France

JSPS-FWF Meeting, Salzburg Feb. 2019

Automorphisms of low complexity subshifts

- 4 回 と 4 き と 4 き と

Basic topological notions: Topological dynamical system

Throughout X will be a compact metric space.

Homeo(X): the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Basic topological notions: Topological dynamical system

Throughout X will be a compact metric space.

Homeo(X): the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

(X, T) is (topologically) isomorphic or conjugate to (Y, S) if there exists a homeomorphism $\phi: X \to Y$ such that

$$\phi \circ T = S \circ \phi.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Basic topological notions: Topological dynamical system

Throughout X will be a compact metric space.

Homeo(X): the group of self homeomorphisms of X.

A (topological) dynamical system is a pair (X, T) where X is a compact metric space and $T \in \text{Homeo}(X)$.

(X, T) is (topologically) isomorphic or conjugate to (Y, S) if there exists a homeomorphism $\phi: X \to Y$ such that

$$\phi \circ T = S \circ \phi.$$

(Y, S) is a (topological) factor of (X, T), or (X, T) is an extension of (Y, S), if there exists a continuous surjective $\phi: X \to Y$ such that

$$\phi \circ T = S \circ \phi.$$

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

 $\phi \circ T = T \circ \phi.$

 $Aut(X, T) = \{ \phi \in Homeo(X) : \phi \circ T = T \circ \phi \}$

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

$$\operatorname{Aut}(X, T) = \{ \phi \in \operatorname{Homeo}(X) : \phi \circ T = T \circ \phi \}$$
$$\langle T \rangle < \operatorname{Aut}(X, T)$$

(中) (종) (종) (종) (종) (종)

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

$$\operatorname{Aut}(X, T) = \{ \phi \in \operatorname{Homeo}(X) : \phi \circ T = T \circ \phi \}$$
$$\langle T \rangle < \operatorname{Aut}(X, T)$$

Q: What can we say on Aut(X, T) as a group?
 commutative? nilpotent? Amenable? Finitely generated?
 What are the subgroups? the quotients?...

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

$$\operatorname{Aut}(X, T) = \{ \phi \in \operatorname{Homeo}(X) : \phi \circ T = T \circ \phi \}$$
$$\langle T \rangle < \operatorname{Aut}(X, T)$$

- Q: What can we say on Aut(X, T) as a group?
 commutative? nilpotent? Amenable? Finitely generated?
 What are the subgroups? the quotients?...
- <u>Q</u>: What do dynamical properties of (X, T) say about properties of Aut(X, T) and vice versa ?

Definition

Let (X, T) be a topological dynamical system. An automorphism $\phi: X \to X$ is an homeomorphism s.t.

$$\phi \circ T = T \circ \phi.$$

$$\operatorname{Aut}(X, T) = \{ \phi \in \operatorname{Homeo}(X) : \phi \circ T = T \circ \phi \}$$
$$\langle T \rangle < \operatorname{Aut}(X, T)$$

- Q: What can we say on Aut(X, T) as a group?
 commutative? nilpotent? Amenable? Finitely generated?
 What are the subgroups? the quotients?...
- <u>Q</u>: What do dynamical properties of (X, T) say about properties of Aut(X, T) and vice versa ?
- Q: How does Aut(X, T) acts on X? On T-invariant measures?

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \dots u_{n-1}$, where $u_i \in A$, is |u| = n.

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \dots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

 $\ldots x_{-1}x_0x_1\ldots, \qquad \forall i \in \mathbb{Z}, x_i \in A.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \dots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

 $\ldots x_{-1}x_0x_1\ldots, \qquad \forall i \in \mathbb{Z}, x_i \in A.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $A^{\mathbb{Z}}$ endowed with the product topology, is a Cantor set.

An alphabet A is a finite set whose elements are letters.

A word u is an element of the free monoid A^* generated by A.

The length of the word $u = u_0 \dots u_{n-1}$, where $u_i \in A$, is |u| = n.

The elements of $A^{\mathbb{Z}}$ are bi infinite sequences

$$\ldots x_{-1}x_0x_1\ldots, \qquad \forall i\in\mathbb{Z}, x_i\in A.$$

 $A^{\mathbb{Z}}$ endowed with the product topology, is a Cantor set.

The open sets are unions of cylinders:

$$[u.v] := \{ (x_n)_n \in A^{\mathbb{Z}} : x_{-|u|} \dots x_{|v|-1} = uv \}; \qquad u, v \in A^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The shift map

$$\begin{array}{rcl} \sigma \colon A^{\mathbb{Z}} & \to & A^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

The shift map

$$\begin{array}{rcl} \sigma \colon A^{\mathbb{Z}} & \to & A^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$.

Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

The shift map

$$\sigma \colon A^{\mathbb{Z}} \to A^{\mathbb{Z}} (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$.

Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

The language

$$\mathcal{L}(X) := \{ u \in A^* : u = x_0 \cdots x_{|u|-1} \text{ for some } (x_n)_n \in X \}.$$

 $\mathcal{L}_n(X) := \mathcal{L}(X) \cap A^n.$

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant ($\sigma(X) = X$), a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant ($\sigma(X) = X$), a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

(□) (@) (E) (E) [E]

Example:

• When
$$\mathcal{F} = \emptyset$$
, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F} = \emptyset$, $X = A^{\mathbb{Z}}$, $(A^{\mathbb{Z}}, \sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).
- For a sequence x ∈ A^ℤ, ({σⁿ(x) : n ∈ ℤ}, σ) is the a subshift generated by x.

For a closed set $X \subset A^{\mathbb{Z}}$, shift invariant $(\sigma(X) = X)$, a subshift is the dynamical system $(X, \sigma|_X)$. Similarly

$$X = \{(x_n)_n \in A^{\mathbb{Z}}; x_i \cdots x_{i+m} \notin \mathcal{F} \ \forall m, i\}, \text{ where } \mathcal{F} \subset A^*.$$

Example:

- When $\mathcal{F}=\emptyset$, $X=A^{\mathbb{Z}}$, $(A^{\mathbb{Z}},\sigma)$ is full shift.
- When \mathcal{F} is finite, (X, σ) is a subshift of finite type (SFT).
- For a sequence x ∈ A^ℤ, ({σⁿ(x) : n ∈ ℤ}, σ) is the a subshift generated by x.

The system (X, σ) is expansive: $\exists \epsilon > 0, x \neq y \in X$,

$$\sup_{n\in\mathbb{Z}}\operatorname{dist}(\sigma^n(x),\sigma^n(y))>\epsilon.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

Let G be a group:

Let G be a group:

• a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.

Let G be a group:

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

Let G be a group:

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.

• A subgroup H < G has finite index if $\#G/H < +\infty$.

Let G be a group:

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.
- A subgroup H < G has finite index if $\#G/H < +\infty$.
- The center of G: $Z(G) := \{g \in G : gh = hg \ \forall h \in G\}.$ $\langle T \rangle < Z(\operatorname{Aut}(X, T))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let G be a group:

- a commutator for $f, g \in G : [f, g] = fgf^{-1}g^{-1}$.
- A subgroup H < G is normal if gHg⁻¹ = H for all g ∈ G, denoted H ⊲ G. A subgroup H is normal iff there exists a homomorphism φ: G → G₀ so that H = kerφ.
- A subgroup H < G has finite index if $\#G/H < +\infty$.
- The center of G: $Z(G) := \{g \in G : gh = hg \ \forall h \in G\}.$ $\langle T \rangle < Z(\operatorname{Aut}(X, T))$
- The centralizer of *S* ⊂ *G*: *C*_G(*S*) := {*g* ∈ *G* : *gs* = *sg* ∀*s* ∈ *S*}.

 *C*_{Homeo(X)}(*T*) = Aut(*X*, *T*).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Algebraic motivations

For any minimal subshift (X, σ) (without proper subshift), there is a group $[[\sigma]]'$ which

• is finitely generated, simple

Matui (06)

For any minimal subshift (X, σ) (without proper subshift), there is a group $[[\sigma]]'$ which

- is finitely generated, simple
- is amenable

Matui (06)

Juschenko-Monod (13)

 has intermediate growth rate, when X is palindromic linearly repetitive subshift (ex. Fibonacci)
 Nekrashevych (18)

(first examples known!).

For any minimal subshift (X, σ) (without proper subshift), there is a group $[[\sigma]]'$ which

- is finitely generated, simple
- is amenable

Matui (06)

Juschenko-Monod (13)

 has intermediate growth rate, when X is palindromic linearly repetitive subshift (ex. Fibonacci)
 Nekrashevych (18)

(first examples known!).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The (topological) full group of a subshift (X, σ) is

 $[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$

For any minimal subshift (X, σ) (without proper subshift), there is a group $[[\sigma]]'$ which

- is finitely generated, simple
- is amenable

Matui (06)

Juschenko-Monod (13)

 has intermediate growth rate, when X is palindromic linearly repetitive subshift (ex. Fibonacci)
 Nekrashevych (18)

(first examples known!).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The (topological) full group of a subshift (X, σ) is

 $[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$

The commutator subgroup of $[[\sigma]]$ is

$$[[\sigma]]' := \langle fgf^{-1}g^{-1}; f, g \in [[\sigma]] \rangle.$$

The (topological) full group of a subshift (X, σ) is

 $[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$

Outer automorphism

 $\operatorname{Out}([[\sigma]]) := \{\varphi \colon [[\sigma]] \to [[\sigma]] \text{ isomorphism}\}_{/\langle g \mapsto hgh^{-1} : h \in [[\sigma]] \rangle}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

The (topological) full group of a subshift (X, σ) is

 $[[\sigma]] := \{ \psi \in \operatorname{Homeo}(X); \exists n \colon X \to \mathbb{Z} \text{ cont. } \psi(x) = \sigma^{n(x)}(x) \, \forall x \in X \}.$

Outer automorphism

 $\operatorname{Out}([[\sigma]]) := \{\varphi \colon [[\sigma]] \to [[\sigma]] \text{ isomorphism}\}_{/\langle g \mapsto hgh^{-1} : h \in [[\sigma]] \rangle}.$

Giordano-Putnam-Skau (1999): If (X, σ) is minimal (without proper subshift)

$$\operatorname{Out}([[\sigma]]) \simeq \{ \phi \in \operatorname{Homeo}(X) : \phi \circ \sigma = \sigma^{\pm} \circ \phi \} / \langle \sigma \rangle.$$

 $\{\phi \in \operatorname{Homeo}(X) : \phi \circ \sigma = \sigma^{\pm} \circ \phi\}_{/\operatorname{Aut}(X,\sigma)} \subset \mathbb{Z}/2\mathbb{Z}.$

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

The range of $\hat{\phi}$ is r.

Theorem (Curtis-Hedlund-Lyndon)

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.
An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

(中) (문) (문) (문) (문)

$$\phi(x) =$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

 $\phi(x) = \dots 0100111.01010000111\dots$

An automorphism ϕ of (X, σ) is a sliding block code, i.e. there exists a block map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

	000	001	010	011	100	101	110	111	
e.g. $A = \{0,1\}, \ \hat{\phi}$:	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	
	0	1	0	1	0	1	0	1	
x =	(010011.10101010000111							

 $\phi(x) = \dots 0100111.01010000111\dots = \sigma(x)$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Let ϕ be an automorphism of (X, σ) There exists a local map $\hat{\phi} \colon \mathcal{L}_{2r+1}(X) \to A$ s.t.

$$\phi(x)_n = \hat{\phi}(x_{n-r} \cdots x_{n+r}) \text{ for any } n \in \mathbb{Z}.$$

Corollary

 $Aut(X, \sigma)$ is countable. $Aut(X, \sigma)$ is a discrete subgroup of Homeo(X) for the uniform convergence topology.

(□) (@) (E) (E) E

The complexity $p_X \colon \mathbb{N} \to \mathbb{N}$,

 $p_X(n) = \# \mathcal{L}_n(X) = \#$ words of length n in X.

Q: How the growth of the complexity restricts $Aut(X, \sigma)$?

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

How the growth of the complexity restricts $Aut(X, \sigma)$?

Complexity $p_X(n)$ growth rate

- 4 Automorphism of SFT
- 2 Automorphism of classical minimal systems
 - a) Linear complexity case
 - b) Toeplitz subshifts case
- Automorphism for sub-exponential complexity subshifts and restrictions on automorphisms groups.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

• the direct sum of every countable collection of finite group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• the direct sum of every countable collection of finite group.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• the free group on a countable number of generators.

• the direct sum of every countable collection of finite group.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- the free group on a countable number of generators.
- Aut($\{1, \ldots, n\}^{\mathbb{Z}}, \sigma$) for all n Kim & Rousch, (90).

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n Kim & Rousch, (90).

Open problem: Aut($\{1,2\}^{\mathbb{Z}},\sigma$) \simeq Aut($\{1,2,3\}^{\mathbb{Z}},\sigma$) ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n Kim & Rousch, (90).

Open problem: Aut $(\{1,2\}^{\mathbb{Z}},\sigma) \simeq \operatorname{Aut}(\{1,2,3\}^{\mathbb{Z}},\sigma)$? • If (X,σ) is irreducible, $Z(\operatorname{Aut}(X,\sigma)) = \langle \sigma \rangle$ Ryan, (72).

- the direct sum of every countable collection of finite group.
- the free group on a countable number of generators.
- $\operatorname{Aut}(\{1,\ldots,n\}^{\mathbb{Z}},\sigma)$ for all n Kim & Rousch, (90).

Open problem: Aut($\{1,2\}^{\mathbb{Z}},\sigma$) \simeq Aut($\{1,2,3\}^{\mathbb{Z}},\sigma$) ? • If (X,σ) is irreducible, $Z(Aut(X,\sigma)) = \langle \sigma \rangle$ Ryan, (72).

In this case:

 $Aut(X, \sigma)$ is not finitely generated, not amenable.

(□) (@) (E) (E) E

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0$ for $s \notin \{0, j\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0 \text{ for } s \not \in \{0,j\}.$

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$. **E.g.**

 $\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * \mathbf{1}000 \cdots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Embedding free products

Aut(X, σ) contains the free product $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0$ for $s \notin \{0, j\}$.

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$. **E.g.**

 $\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1000 \cdots$ $\phi_2\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1200 \cdots$

Embedding free products

Aut(X, σ) contains the free product $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0$ for $s \notin \{0, j\}$.

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$. **E.g.**

$$\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1000 \cdots$$

$$\phi_2\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1200 \cdots$$

$$\phi_3\phi_2\phi_1: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1230 \cdots$$

Embedding free products

Aut(X, σ) contains the free product $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0$ for $s \notin \{0, j\}$.

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$. **E.g.**

 $\begin{array}{c} \phi_{1}: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1000 \cdots \\ \phi_{2}\phi_{1}: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1200 \cdots \\ \phi_{3}\phi_{2}\phi_{1}: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 1230 \cdots \\ \phi_{2}\phi_{3}\phi_{2}\phi_{1}: \cdots 000 * 0000 \cdots \mapsto \cdots 000 * 10320 \cdots \end{array}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

For simplicity $X = \{*, 0, 1, 2, 3\}^{\mathbb{Z}}$ For $j \in \{1, 2, 3\}$, define $\phi_j \in Aut(X, \sigma)$ be the automorphisms s.t.

 $sj \leftrightarrow s0$ for $s \notin \{0, j\}$.

Study the action of $\langle \phi_1, \phi_2, \phi_3 \rangle$ on the the point $\cdots 000 * 000 \cdots$. See it generates a group isomorphic to $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/2\mathbb{Z}$.

Basic algebra shows it contains the free group on 2 generators, hence the free group with countably many generators.

A group *G* is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

◆ロト ◆御ト ◆注ト ◆注ト 注目 のへで

A group *G* is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

A group G is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let
$$\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \ge 1$$

A group G is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let
$$Per_n := \{x \in X : \sigma^n(x) = x\}, n \ge 1$$

It is a non empty finite set.

A group G is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \ge 1$

It is a non empty finite set. Each $\phi \in Aut(X, \sigma)$ induces a permutation on Per_n

A group G is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \ge 1$ It is a non empty finite set. Each $\phi \in \operatorname{Aut}(X, \sigma)$ induces a permutation on Per_n

$$\pi_n \colon \phi \in \operatorname{Aut}(X, \sigma) \mapsto \phi|_{\operatorname{Per}_n} \in \mathfrak{S}(\operatorname{Per}_n).$$

A group *G* is residually finite if for any $g_1 \neq g_2 \in G$ there is a homomorphism $\pi: G \to G_0$ onto a finite group G_0 such that $\pi(g_1) \neq \pi(g_2)$. **Ex:** finite group, \mathbb{Z}^d , free group, finitely generated linear group,...

Theorem (BLR)

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Proof. Let $\operatorname{Per}_n := \{x \in X : \sigma^n(x) = x\}, n \ge 1$ It is a non empty finite set. Each $\phi \in \operatorname{Aut}(X, \sigma)$ induces a permutation on Per_n

$$\pi_n \colon \phi \in \operatorname{Aut}(X, \sigma) \mapsto \phi|_{\operatorname{Per}_n} \in \mathfrak{S}(\operatorname{Per}_n).$$

Since $\bigcup_n \operatorname{Per}_n$ is dense in *X*,

$$\pi_n(\phi_1) = \pi_n(\phi_2), \ \forall n \Rightarrow \phi_1 = \phi_2.$$

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Corollary

For an irreducible SFT, $Aut(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in Aut(X, \sigma) \setminus {Id}$, there exists $n \in \mathbb{N}$ s.t. the equation

$$\psi^n = \phi$$

has no solution $\psi \in Aut(X, \sigma)$.

Ex: Aut(X, σ) does not contains \mathbb{Q} .

For an irreducible SFT, the group $Aut(X, \sigma)$ is residually finite.

Corollary

For an irreducible SFT, $Aut(X, \sigma)$ does not contains a divisible subgroup: For any $\phi \in Aut(X, \sigma) \setminus {Id}$, there exists $n \in \mathbb{N}$ s.t. the equation

$$\psi^n = \phi$$

has no solution $\psi \in Aut(X, \sigma)$.

Ex: Aut(X, σ) does not contains \mathbb{Q} . **Open problem:** is $\mathbb{Z}[1/p]$ contained in Aut(X, σ) for any prime p?

For an SFT, the group $Aut(X, \sigma)$ contains no finitely generated group with unsolvable word problem.

<ロ> <部> <部> < 2> < 2> < 2> < 2> < 2

For an SFT, the group $Aut(X, \sigma)$ contains no finitely generated group with unsolvable word problem.

Proof. Given $\phi_1, \ldots, \phi_\ell \in Aut(X, \sigma)$, find a finite procedure to decide if

$$\psi = \phi_{i_1}^{\pm} \circ \cdots \circ \phi_{i_r}^{\pm} = \mathrm{Id}, \quad i_1, \dots, i_r \in \{1, \dots, \ell\}.$$

By Curtys-Hedlund-Lyndon Theorem, it is enough to check if the block map of ψ with range $r_{\psi} = O(r)$ satisfies

$$\hat{\psi}(x_{-r_{\psi}}\cdots x_{r_{\psi}})=x_0.$$

Automorphism of \mathbb{Z}^d - SFT, $d \geq 2$

There exists a \mathbb{Z}^d -SFT whose automorphism group has undecidable word problem Guillon,Jeandel,Kari,Vanier (18).

There exists a \mathbb{Z}^{d} -SFT whose automorphism group has undecidable word problem Guillon,Jeandel,Kari,Vanier (18).

Hochman (10):

Let (X, σ) be a \mathbb{Z}^d -SFT with $h(X, \sigma) > 0$ then

- Aut(X, σ) contains the direct sum of every countable collection of finite group.
- If moreover, minimal orbits are dense (e.g. periodic orbits), then Aut(X, σ) contains a copy of Aut({1,..., n}^Z, σ) ∀n.

There exists a \mathbb{Z}^d -SFT whose automorphism group has undecidable word problem Guillon,Jeandel,Kari,Vanier (18).

Hochman (10):

Let (X, σ) be a \mathbb{Z}^d -SFT with $h(X, \sigma) > 0$ then

- Aut(X, σ) contains the direct sum of every countable collection of finite group.
- If moreover, minimal orbits are dense (e.g. periodic orbits), then Aut(X, σ) contains a copy of Aut({1,..., n}^Z, σ) ∀n.

▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Open problem: Aut($\{0,1\}^{\mathbb{Z}^d}, \sigma$) < Aut($\{0,1\}^{\mathbb{Z}^m}, \sigma$) ?

- M. BOYLE, D. LIND & D. RUDOLPH, *The automorphism* group of a shift of finite type. Trans. Amer. Math. Soc. 1988
- G.A. HEDLUND, Endomorphisms and automorphism of the shift dynamical system. Math. Systems theory, 1969
- M. HOCHMAN On the automorphism groups of multidimensional shifts of finite type. Egrodic Theory Dynam. Systems, 2010
- K.H. KIM & F. W. ROUSH, On the automorphism groups of subshifts. pure Math. Appl. Ser. B, 1990

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• P. RYAN, *The shift and commutativity*. Math. Systems theory, 1972