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Abstract. In this article we study automorphisms of Toeplitz subshifts. Such
groups are abelian and any finitely generated torsion subgroup is finite and

cyclic. When the complexity is non superlinear, we prove that the automor-
phism group is, modulo a finite cyclic group, generated by a unique root of the

shift. In the subquadratic complexity case, we show that the automorphism

group modulo the torsion is generated by the roots of the shift map and that
the result of the non superlinear case is optimal. Namely, for any ε > 0 we

construct examples of minimal Toeplitz subshifts with complexity bounded by

Cn1+ε whose automorphism groups are not finitely generated. Finally, we
observe the coalescence and the automorphism group give no restriction on

the complexity since we provide a family of coalescent Toeplitz subshifts with

positive entropy such that their automorphism groups are arbitrary finitely
generated infinite abelian groups with cyclic torsion subgroup (eventually re-

stricted to powers of the shift).

1. Introduction

A subshift is a subset of a fullshift AZ which is closed for the product topology
and invariant under the shift map σ : AZ → AZ, (xi)i∈Z 7→ (xi+1)i∈Z. The complex-
ity of a subshift X is the map pX(·) : N→ N which for n ∈ N counts the number of
words of length n appearing in sequences of X. An endomorphism is a continuous
onto map φ : X → X such that φ◦σ = σ◦φ. It is called an automorphism whenever
it is bijective. The group of all automorphisms is countable and denoted Aut(X,σ).

The study of the group of automorphisms of low complexity subshifts has be-
come very active in the last five years. In contrast with the positive entropy studies,
where the automorphism group can be very large (see for instance [3]), a lot of ev-
idence suggests that low complexity systems ought to have a small automorphism
group. In particular, studies [21] and [18] on classes of minimal substitutive sub-
shifts showed that the automorphism groups are virtually Z. It turns out that
this result holds for any minimal subshift with non superlinear complexity (i.e.,
lim inf
n→∞

pX(n)/n < ∞) [9, 13]. Also, for some special substitution subshifts with

this complexity growth, the automorphism group is cyclic [7]. Higher order polyno-
mial complexity growth was also considered by Cyr and Kra in [8, 10]. In [8], the
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authors proved that for transitive subshifts, if lim inf
n→∞

pX(n)/n2 = 0 then the quo-

tient Aut(X,σ)/〈σ〉 is a periodic group, where 〈σ〉 is the group spanned by the shift
map. In [10], for a large class of minimal subshifts of subexponential complexity
they also proved that the automorphism group is amenable. These results showed
that the automorphism group seems to gain in constraints when the complexity
goes down but this is not always true. Interestingly, in [22] the author provided a
Toeplitz subshift with complexity pX(n) ≤ Cn1.757, whose automorphism group is
not finitely generated.

Even though these results are allowing us to slowly understand the group of
automorphisms of low complexity subshifts, the complete picture is still unclear,
even for particular classes of subshifts. The purpose of this article is to use as model
study the automorphism group of Toeplitz subshifts in order to understand some
general questions relating complexity growth and the size of the automorphism
group. We observe that since the automorphism group of Toeplitz subshift is a
subgroup of the associated odometer [13], then it is a countable abelian group.
This fact restricts our study to such class of groups.

We start by considering Toeplitz subshifts of subquadratic complexity. In this
case, any endomorphism is bijective, so the coalescent property holds (see Section 3
for an expanded discussion). In Theorem 3.2 we show that the automorphism group
is spanned by the roots of the shift map modulo the torsion subgroup. In fact, this
result holds each time the quotient Aut(X,σ)/〈σ〉 is periodic and the subquadratic
case is a consequence of [8]. When this quotient is finite, in particular when the
Toeplitz subshift has non superlinear complexity [13], we also prove in Theorem 3.2
that the automorphism group modulo a finite cyclic group is spanned by one root
of the shift map, thus this quotient is a cyclic group. Both results open the door
to applications to other Toeplitz subshifts with higher complexities. These results
follow from the study of subgroups of odometers and allow us to recover Theorem
12 from [7], where the authors consider a family of Toeplitz subshifts generated
by substitutions. The condition on Theorem 3.2 is true for many Toeplitz in the
family called (p, q)-Toeplitz [5], including the example in [22]. Then, using this
class of Toeplitz subshifts we extend the example given by Salo in [22], proving
that the condition of non superlinear complexity of [9, 13] cannot be relaxed.
More precisely, in Theorem 4.1 we prove that for any ε > 0 there exists a Toeplitz
subshift in the aforementioned family such that the complexity verifies pX(n) ≤
Cn1+ε for all n ∈ N and whose automorphism group is not finitely generated. In
fact, this construction allows us to produce Toeplitz subshifts with any polynomial
complexity whose automorphism group is not finitely generated. We left open the
question whether we can get the same result with an even smaller complexity. For
instance, pX(n)/n ≤ C log(n) for all n ∈ N.

In contrast with previous results, large complexity is not enough to have a large
automorphism group. Here we prove that coalescence and the size of the automor-
phism group impose no restrictions to the complexity function. In Theorem 5.4 we
provide a family of coalescent Toeplitz subshifts with positive entropy such that
its automorphism group is an arbitrary infinite countable and finitely generated
abelian group with cyclic torsion subgroup. For the group Z, this result resem-
bles the main result in [4] where the construction is not explicit. Also, in [15],
an explicit example is given, with an arbitrary entropy but with a specific maxi-
mal equicontinuous factor. Our construction is explicit, self-contained and may be
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generalized to Zd-Toeplitz arrays or G-Toeplitz arrays for any countable amenable
residually finite group G (see [6]).

Finally, we remark that not any infinite countable abelian group can be the
automorphism group of a Toeplitz subshift: it has to be a subgroup of an odometer
[13], hence residually finite. For instance, the rational numbers Q does not satisfy
this property (see Section 2.3). But besides this restriction, we do not know if any
infinitely generated countable abelian group (embedded in an odometer) can be
realized as the automorphism group of a Toeplitz subshift.

2. Background

2.1. Topological dynamical systems. A topological dynamical system (or
just a system) is a pair (X,T ) where X is a compact metric space and T : X → X
is a homeomorphism. Let “dist” be a distance in X. The orbit of a point x ∈ X is
given by OrbT (x) = {Tnx;n ∈ Z}. A topological dynamical system is minimal if
the orbit of every point is dense in X and is transitive if at least one orbit is dense
in X. In a transitive system, points with dense orbits are called transitive points.

Let (X,T ) be a topological dynamical system. We say that x, y ∈ X are
proximal if there exists a sequence (ni)i∈N in Z such that limi→∞ dist(Tnix, Tniy) =
0. A stronger condition than proximality is asymptoticity. Two points x, y ∈ X are
asymptotic if limn→∞ dist(Tnx, Tny) = 0. Nontrivial asymptotic pairs may not exist
in an arbitrary topological dynamical system but it is well known that a nonempty
aperiodic subshift always admits at least one [2, Chapter 1].

A factor map between the topological dynamical systems (X,T ) and (Y, S) is
a continuous onto map π : X → Y such that π ◦ T = S ◦ π. We say that (Y, S) is
a factor of (X,T ) and that (X,T ) is an extension of (Y, S). We use the notation
π : (X,T ) → (Y, S) to indicate the factor map. If in addition π is a bijective map
we say that (X,T ) and (Y, S) are topologically conjugate.

The system (X,T ) is a proximal extension of (Y, S) via the factor map
π : (X,T ) → (Y, S) (or that the factor map itself is a proximal extension) if for
every x, x′ ∈ X the condition π(x) = π(x′) implies that x, x′ are proximal. For
minimal systems, (X,T ) is an almost one-to-one extension of (Y, S) via the fac-
tor map π : (X,T ) → (Y, S) (or the factor map itself is an almost one-to-one
extension) if there exists y ∈ Y with a unique preimage for the map π. The re-
lation between these two notions is given by the following folklore result. If the
factor map π : (X,T ) → (Y, S) between minimal systems is an almost one-to-one
extension then it is also a proximal extension (see [13] for a proof).

A topological dynamical system (X,T ) is equicontinuous if for any ε > 0 there
is δ > 0 such that if dist(x, y) ≤ δ then for any n ∈ Z one has dist(Tnx, Tny) ≤
ε. It is well known that any topological system has a maximal equicontinuous
factor, that is, a factor that is equicontinuous and that is an extension of any other
equicontinuous factor of the system (see [2]).

An automorphism of the topological dynamical system (X,T ) is a homeomor-
phism φ of the space X to itself such that φ ◦ T = T ◦ φ. We denote by Aut(X,T )
the group of automorphisms of (X,T ). The subgroup of Aut(X,T ) generated by
T is denoted by 〈T 〉. Analogously one defines an endomorphism of the topologi-
cal dynamical system (X,T ) as a continuous and onto map φ : X → X such that
φ ◦ T = T ◦ φ. The space of endomorphisms of (X,T ) is denoted End(X,T ). A
system (X,T ) is coalescent if End(X,T )=Aut(X,T ). When (X,σ) is a subshift,
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the Curtis-Hedlund-Lyndon theorem asserts that an endomorphism φ is defined by
a local rule. That is, there exists r ∈ N (called a radius of φ) and a block map

φ̂ : A2r+1 → A such that φ(x)n = φ̂(xn−r . . . xn . . . xn+r) for every n ∈ Z.

2.2. Odometers. Let (pn)n≥1 be a sequence of natural numbers such that
pn divides pn+1 for all n ≥ 1. Define the quotients associated to this sequence by
q1 = p1 and qn+1 = pn+1/pn for n ≥ 1. The odometer at scale (pn)n≥1 is given by

Z(pn) = {(xn)n≥1 ∈
∞∏
n=1

Zpn ;xn+1 = xn mod pn ∀n ≥ 1},

where Zp stands for Z/pZ, notation which is usually devoted to the ring of p-adic
integers when p is prime. In this framework this ring is denoted Z(pn).

The set Z(pn) is an inverse limit lim
←

Zpn of the canonical homomorphisms

Zpn+1
→ Zpn . Clearly Z(pn) is an abelian group with the coordinatewise addi-

tion and when finite it is cyclic. The odometer Z(pn) where pn = n! for all n ≥ 1
is called the universal odometer. We notice that the odometers Z(pn) and Z(pin ),
where (in)n≥1 is strictly increasing, are isomorphic as groups. We denote by 0 and
1 the elements (0, 0, . . .) and (1, 1, . . .) in any odometer. The natural dynamics on
an odometer Z(pn) is given by the addition by 1. It is not difficult to see that it is a
minimal equicontinuous topological dynamical system, that we also call odometer
and denote by (Z(pn),+1). In particular, the subgroup 〈1〉 generated by 1 is dense
in Z(pn). This subgroup is identified with the integers.

The following simple lemma is a slight generalization of the minimality of the
odometer. The proof is given for completeness.

Lemma 2.1. Let Z(pn) be an odometer and consider an integer m ∈ Z such that
(m, pn) = 1 for all n ≥ 1. Then, the dynamics defined by the addition by m1 in
Z(pn) is minimal.

Proof. Since the addition by 1 is minimal in Z(pn), it suffices to show that the
orbit of 0 in Zpn by the addition by m contains 1 for all n ≥ 1. Since (m, pn) = 1,
there exist integers a, b such that am = bpn + 1. This ends the proof. �

We will also need to understand when an odometer has torsion elements. For
that we need some extra notation. For each prime number p, denote by vp(n) the
p-adic valuation of the integer n, that is, vp(n) = max{k ≥ 0; pk divides n}. Given
an odometer Z(pn), the sequence (vp(pn))n≥1 is a non decreasing sequence and we
can define the multiplicity function, as proposed in [14], by

v((pn)) =
(

lim
n→∞

vp(pn); p prime
)
.

For an abelian group G, let T (G) denote its torsion subgroup, that is, the
subgroup generated by the torsion elements, i.e., elements of finite order. For an
integer p, let T (G)p denote the set of elements in G of order a power of p.

Lemma 2.2. Let Z(pn) be an odometer. Then its torsion subgroup is

T (Z(pn)) =
⊕
p

T (Z(pn))p,

where the sum is taken over all the prime numbers p such that limn→∞ vp(pn) is
positive and finite. Moreover, each group T (Z(pn))p is a finite cyclic group of order
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plimn→∞ vp(pn). In particular, if limn→∞ vp(pn) ∈ {0,∞} for all prime numbers,
then Z(pn) is torsion free.

It follows from the Chinese remainder theorem that the torsion subgroup of
a finitely generated subgroup of an odometer is cyclic. Also, the group of p-adic
integers Z(pn) is torsion free. In contrast, the odometer Z(pn) where pn is the
product of the first n primes, i.e., limn→∞ vp(pn) = 1 for any prime number p, has
a non finitely generated torsion subgroup.

Proof. The Chinese remainder theorem implies that T (Z(pn)) =
⊕

p T (Z(pn))p,
where the sum is taken over all the prime numbers. So it suffices to study each
group T (Z(pn))p.

Let p be a prime such that there exists (xn)n≥1 ∈ T (Z(pn))p different from 0,

of order pk for some k ≥ 1, meaning pkxn = 0 mod pn for each n ≥ 1. Moreover
there exists n such that for all large enough m ≥ n, pk is the order of xm in Zpm ,
and, thus pk divides pm. Thus, if T (Z(pn))p is non trivial then limn→∞ vp(pn) is
positive. Let us show it is finite. If it is not the case then there would be some
m such that pm = pnpq for some integer q and we should have pk−1xm = apnq
for some integer a. Consequently, pk−1xn = 0 mod pn and thus xn = 0 mod pn.
This would contradict the fact that pk is the order of xn.

Hence, limn→∞ vp(pn) = kp is finite and the order of (xn)n≥1 is at most pkp .
Since for each large enough n (so that vp(pn) = kp), the set of elements in Zpn of

order pk
′

for some 0 ≤ k′ ≤ kp, forms a cyclic group of cardinality pkp , the group
T (Z(pn))p is a cyclic group of cardinality pkp . �

2.3. Toeplitz subshifts. We will use classical notions of symbolic dynamics
(e.g. subshift, words, complexity,. . .) and we refer to Section 2.3 in [13] for a
presentation and the notation of these notions. We assume some familiarity of the
reader with the notion of Toeplitz subshift so we review them succinctly. We refer
to [14] for a survey on this topic.

Let x = (xn)n∈Z ∈ AZ, where A is a finite alphabet. For an integer p ≥ 1, we
let Perp(x) = {n ∈ Z;xn = xn+kp for all k ∈ Z} be the set of indexes where x is
p-periodic. The sequence x is said to be Toeplitz if there exists a sequence (pn)n≥1

in N \ {0} such that Z =
⋃
n≥1 Perpn(x). Equivalently, the sequence x is Toeplitz

if all finite blocks in x appear periodically. We say that pn is an essential period if
for any 1 ≤ p < pn the sets Perp(x) and Perpn(x) do not coincide. If the sequence
(pn)n≥1 is formed by essential periods and pn divides pn+1, we call it a periodic
structure of x. Clearly, if (pn)n≥1 is a periodic structure, then (pin)n≥1 is also a
periodic structure for any strictly increasing sequence of positive integers (in)n≥1.

A subshift (X,σ) is a Toeplitz subshift if X is the orbit closure of a Toeplitz
sequence x ∈ X. The subshift (X,σ) is also referred as the subshift generated by
x. Let ? be a symbol not in A. If (pn)n≥1 is a periodic structure of x, then for
every n ≥ 1 we can define the skeleton map at scale pn by Spn : X → (A ∪ ?)Z by
putting (Spn(y))m equal to ym if m ∈ Perpn(y) and to ? otherwise. Not all the
points y ∈ X are Toeplitz sequences, but they all have the same skeleton structure
(Spn(y))n≥1 modulo a shift. More precisely, if (pn)n≥1 is the periodic structure of
the Toeplitz sequence x and y is any point in X, then for any n ≥ 1 there exists
jn ∈ {0, . . . , pn − 1} such that Perpn(y) = Perpn(x) − jn and sequences x and y
coincide on these coordinates, i.e., Spn(y) = σjnSpn(x) (see [14], Section 8).
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It is well known that a minimal subshift (X,σ) is a Toeplitz subshift if it is an
almost one-to-one extension of an odometer. The odometer is given by Z(pn), where
(pn)n≥1 is a periodic structure of a Toeplitz point x generating X. The projection
of a point y ∈ X into the odometer is given by the sequence (jn)n≥1 described
above (see for instance [23]). Hence, the projection of the Toeplitz sequence x is 0.
Moreover, this odometer is the maximal equicontinuous factor of (X,σ). A finite
Toeplitz subshift is generated by a periodic Toeplitz sequence so it can be identified
with its also finite associated odometer.

Since a Toeplitz subshift is an almost one-to-one extension of its maximal
equicontinuous factor, to study its group of automorphisms, we will use the fol-
lowing result proved in [13] (Lemma 2.1 and Lemma 2.4).

Lemma 2.3 ([13]). Let (X,T ) be a minimal system and π : (X,T )→ (Y, S) be
the projection of X onto its maximal equicontinuous factor. Then, we can define
a map π̂ : Aut(X,T ) → Aut(Y, S), φ 7→ π̂(φ), such that π̂(φ)(π(x)) = π(φx) for
every x ∈ X. If π is a proximal extension (in particular if π is an almost one-to-one
extension) then π̂ is injective.

It is worth mentioning that the same result holds for endomorphisms and that
endomorphisms of an equicontinuous system are automatically automorphisms [1].
It follows that the automorphism group of a Toeplitz subshift can be identified with
a subgroup of the associated odometer. Indeed, it is well known that the group
of automorphisms of an equicontinuous system is homeomorphic to the space itself
(see [1] or Lemma 5.9 in [13] for a shorter proof). It follows that the automorphism
group of a Toeplitz subshift is a countable abelian group.

Many other results described below will follow from the analysis of subgroups of
odometers. As a first remark we have that if (X,σ) is a Toeplitz subshift and Z(pn)

is its associated odometer, then any finitely generated subgroup G ≤ Aut(X,σ) is
isomorphic to Zd⊕H, where, by Lemma 2.2, H is a finite cyclic abelian group. If the
odometer has no torsion, then the group H is trivial and thus G is isomorphic to Zd.
This kind of properties restrict the groups that can be realized as the automorphism
groups of Toeplitz subshifts. We already mentioned in the introduction that the
group of rational numbers with the addition cannot be injected in any odometer
Z(pn). Nevertheless, we will see in Section 5 that any finitely generated abelian
group whose torsion subgroup is cyclic can be realized as the automorphism group
of a Toeplitz subshift.

2.4. Automorphism group of disjoint Toeplitz subshifts. Two topolog-
ical dynamical systems (X,T ) and (Y, S) are said to be disjoint if the product
system (X × Y, T × S) has not non-empty, closed and T × S invariant subsets
projecting onto X and Y respectively, different from X × Y .

In what follows we use the symbol ⊕ (instead of ×) whenever we want to stress
that a product is in the group category. We start with a general lemma. Notice
that the inclusion End(X,T )⊕ End(Y, S) ⊆ End(X × Y, T × S) is always true.

Lemma 2.4. Let (X,T ) and (Y, S) be disjoint minimal systems. If φ ∈ End(X×
Y, T × S) (resp. Aut(X × Y, T × S)) commutes with id × S and T × id, then
φ ∈ End(X,T ) ⊕ End(Y, S) (resp. Aut(X,T ) ⊕ Aut(Y, S)). In particular, the
conclusion holds if End(X × Y, T × S) is abelian.

Proof. Write the endomorphism φ(x, y) = (φ1(x, y), φ2(x, y)). If φ commutes
with id × S and T × id, then we get that φ1(x, y) = φ1(x, Sny) and φ2(Tnx, y) =
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φ2(x, y) for every n ∈ Z. By minimality of (X,T ) and (Y, S) we get that φ1 only
depends on x and φ2 only depends on y, meaning that φ belongs to End(X,T ) ⊕
End(Y, S). The same is true for φ an automorphism. �

Corollary 2.5. Let (X1, σ) and (X2, σ) be disjoint Toeplitz subshifts. Then,
End(X1 × X2, σ × σ) = End(X1, σ) ⊕ End(X2, σ) and Aut(X1 × X2, σ × σ) =
Aut(X1, σ)⊕ Aut(X2, σ). In particular, if (X1, σ) and (X2, σ) are coalescent then
(X1 ×X2, σ × σ) is coalescent too.

Proof. It suffices to notice that the system (X1 × X2, σ × σ) is a Toeplitz
subshift itself. By Lemma 2.3, End(X1 × X2, σ × σ) is abelian and we can apply
Lemma 2.4. �

3. Automorphism group of Toeplitz subshifts with subquadratic
complexity

In this section we study the automorphism groups of Toeplitz subshifts of sub-

quadratic complexity. That is, the complexity function verifies lim inf
n→∞

pX(n)

n2
= 0.

In this case, a simple argument relying in Lemma 5 of [19] implies that these
systems are coalescent. In fact, if (X,σ) is a minimal subshift of subquadratic
complexity (not necessarily Toeplitz), we can consider the spacetime tiling of an
endomorphism φ, as done in [8, 11, 12], and obtain a periodicity condition on this
tiling that is translated into φn = σm for some n ∈ N and m ∈ Z. From this we
deduce that φ is injective and then is an automorphism (recall that in a minimal
system all endomorphisms are automatically onto).

Recall that for an abelian group G, T (G) is its torsion subgroup and that
G/T (G) is a torsion free group. Most of the proofs rely on the following property
of odometers.

Lemma 3.1. If G is an abelian group and s ∈ G is an element of infinite order
such that G/〈s, T (G)〉 is finite, then G/T (G) is a cyclic group isomorphic to 〈s〉.
In particular, the quotient (G/T (G)) /〈s〉 is also a cyclic group.

Proof. Since G/〈s, T (G)〉 is finite, let g1, . . . , gm ∈ G be representatives for
all of its cosets. For every i ∈ {1, . . . ,m} there exists an integer `i ∈ Z such that
`igi ∈ 〈s, T (G)〉. Let ` denote the smallest positive integer such that `g ∈ 〈s, T (G)〉
for every g ∈ G. It is standard to check that ` divides lcm(`1, . . . , `m).

Now, for each i ∈ {1, . . . ,m}, let ki be the integer such that `gi ≡ kis
mod T (G). Since G/T (G) is torsion free, the minimality of ` gives that
(`, k1, . . . , km) = 1. By Bezout’s Theorem there exist integers a0, . . . , am such that

a0`+ a1k1 + · · ·+ amkm = 1.

Therefore, s = (a0` + a1k1 + · · · + amkm)s ≡ `(a0s + a1g1 + · · · + amgm)
mod T (G), and consequently there exists g ∈ G such that `g ≡ s mod T (G).
Since `gi ≡ `kig mod T (G) for each i ∈ {1, . . . ,m} and G/T (G) is torsion free,
it follows gi ≡ kig mod T (G). This together with `g ≡ s mod T (G) shows that
G/T (G) is generated by g, thus is cyclic. Clearly (G/T (G))/〈s〉 is also cyclic. �

Theorem 3.2. Let (X,σ) be a Toeplitz subshift and let T = T (Aut(X,σ)) be
the torsion subgroup of Aut(X,σ).
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(1) If Aut(X,σ)/〈T, σ〉 is a periodic group, then any subgroup H of Aut(X, σ)
containing the shift is spanned by the roots of σ mod T (H) in H and
T (H). In particular, a torsion free subgroup H containing σ is spanned
by the roots of σ in H.

(2) If Aut(X,σ)/〈σ〉 is finite, then Aut(X,σ) is isomorphic to Z ⊕ T and T
is either trivial or isomorphic to some ZN .

The statement (1) of this theorem applies for instance when (X,σ) has sub-
quadratic complexity, by the main result in [8]. Statement (2) applies when (X,σ)
has non superlinear complexity [13]. Moreover, since Aut(X,σ) embeds into the
odometer Z(pn) associated to (X,σ), Lemma 2.2 implies that any prime divisor p of
N satisfies limn→∞ vp(pn) is positive and finite. In this situation, the odometers of
the Toeplitz substitutions considered in [7] are groups of p-adic integers Z(pn), that
have no torsion. So it follows that in this case Aut(X,σ) is itself a cyclic group,
which corresponds to Corollary 12 in [7].

Proof. Let Z(pn) be the odometer associated to the Toeplitz subshift (X,σ)
and let H be a subgroup of Aut(X,σ) containing σ. For φ ∈ H, consider the
subgroup G of H spanned by φ and σ. By Lemma 2.3 we can see G as a subgroup
of the odometer Z(pn) and translate the hypothesis to the statement: G/〈T (G),1〉
is an abelian finitely generated periodic group. But this implies that G/〈T (G),1〉
is in fact finite. From Lemma 3.1, the group G/T (G) is cyclic. In particular,
there exist ρ ∈ G and m1,m2 ∈ Z such that φ ≡ ρm1 mod T (H) and σ = ρm2

mod T (H). This completes (1).
If Aut(X,σ)/〈σ〉 is finite, then Aut(X,σ) is finitely generated. So Lemma 2.2

implies that its torsion subgroup T is cyclic. A direct consequence of Lemma 3.1
to Aut(X,σ) is that Aut(X,σ)/T is cyclic. Since Aut(X,σ) ' (Aut(X,σ)/T )⊕ T
we have proved statement (2). �

It is worth noting that if ϕ is a root of σ, then the integer ` such that ϕ` = σ has
to be prime with each pn appearing in the odometer Z(pn). This follows from the

fact that the equality ϕ` = σ (in Aut(X,σ)) is translated into `z = 1 for z ∈ Z(pn),
which is possible only if ` is prime with pn for all n ≥ 1. This observation allows us
to produce examples of Toeplitz subshifts without roots, so where the automorphism
group is trivial.

We illustrate Theorem 3.2 and previous comment in the next general construc-
tion. We concentrate on part (2). Examples for part (1) appear in the next section.

Consider a sequence (wn)n≥1 on the finite alphabet A∪ {?} such that for each
n ≥ 1, |wn| = qn ≥ 3 and, for n ≥ 2, wn = un?vn, where un and vn are non empty
words on the alphabet A. Thus wn contains exactly one symbol ?. Now define
the sequence (Wn)n≥1 by: W1 = w∞1 = . . . w1w1.w1w1 . . ., where the central dot
indicates the position to the left of the zero coordinate, and Wn+1 = FWn(w∞n+1)
for every n ≥ 1. Here, FWn

(w∞n+1) is the sequence obtained from Wn replacing
consecutively all the symbols ? by the sequence w∞n+1, where (w∞n+1)0 is placed in
the first ? to the right of coordinate 0. The map F will be studied in more details
in next section.

Since symbol ? moves away from zero coordinate with n, then the sequence
(Wn)n≥2 converges to a point x ∈ AZ. In addition, each coordinate of x is periodic
with periods in the sequence (pn)n≥1, where pn = q1 · · · qn. Hence x is a Toeplitz
sequence. We let the reader check that one can choose the words un’s and vn’s
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to construct a non periodic sequence x. Also, special choices of the un’s and vn’s
allow to prove that (pn)n≥1 is the sequence of essential periods of x (for example
consider two different letters a, b ∈ A and take un = a, vn = bqn−2). So, under
this assumption we have that Z(pn) is the odometer associated with X, the orbit
closure of x by the shift map. Finally, remark that any word of length pn appearing
in x can be constructed filling one symbol ? in Wn, which is a periodic sequence of
period pn. Then, the complexity of X verifies pX(pn) ≤ |A| pn, and thus X has
non superlinear complexity.

Fixing the values of (qn)n≥1 in such a way that pn = n! for all n ≥ 3 we get
a Toeplitz subshift whose odometer is the universal one. In this case, by Lemma
2.2 we have that Aut(X,σ) is torsion free and by Theorem 3.2 it is spanned by the
roots of σ. But by the discussion after previous theorem the only possible root is
the shift itself. Again, by Lemma 2.2, one can make other choices of the sequence
(qn)n≥1 in such a way that Aut(X,σ) is torsion free and isomorphic to Z.

The same construction together with Corollary 2.5 allow to get Toeplitz sub-
shifts with non superlinear complexity such that Aut(X,σ) is isomorphic with
Z ⊕ ZN for any N ∈ N. Indeed, in previous construction consider p a prime
number not dividing N and set qn = p for any n ≥ 1. Then consider the cartesian
product system (X ×ZN , σ×+1), which, by the mentioned corollary, is a Toeplitz
subshift with the desired automorphism group.

As consequence of the discussion of this section we can formulate the following
dichotomy.

Corollary 3.3. Let (X,σ) be a Toeplitz subshift such that Aut(X,σ)/〈σ〉 is
a periodic group. If Aut(X,σ) is torsion free, then either Aut(X,σ) is cyclic or
Aut(X,σ) is not finitely generated.

Proof. The dichotomy follows from considering the cases whether Aut(X,σ)
is spanned by finitely or infinitely many roots of σ. �

This situation has to be contrasted with the case of a mixing shift of finite
type, where the shift always admits only finitely many roots (see the discussion
after Problem 3.5 in [3]). In the next section we exhibit some examples where the
shift does have infinitely many roots. It remains open whether we can give a precise
description of the roots of the shift map generating the automorphism groups in
previous theorems.

4. Not finitely generated automorphism groups for Toeplitz subshifts

As proved in Theorem 3.2, the quotient of the automorphism group by the
torsion subgroup for a Toeplitz subshift of subquadratic complexity is generated
by the roots of the shift map. In the particular case of non superlinear complexity
the automorphism group modulo its torsion subgroup is virtually Z and generated
by a unique root. In this section we prove that the last result is in some sense
optimal. That is, we can construct Toeplitz subshifts of subquadratic complexity
such that the automorphism group is even not finitely generated. The same con-
struction allows to get Toeplitz subshifts of arbitrary polynomial complexity whose
automorphism groups are not finitely generated.

The main result of the section is the following,
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Theorem 4.1. For every ε > 0, there exists a Toeplitz subshift (X,σ) such that

the complexity verifies pX(n)
n ≤ Cnε for all n ≥ 1 and whose automorphism group

is torsion free and not finitely generated.

To achieve this, we make use of the class of (p, q)-Toeplitz subshifts. In [5],
Cassaigne and Karhumäki introduced this class and established the fundamental
properties we discuss in the sequel. In this class one can get complexities that are ar-
bitrarily close to non superlinear (but always superlinear). This class was implicitly
used by Salo [22] to give an example of a subshift of complexity pX(n) ≤ Cn1.757

with a non finitely generated automorphism group. We simplify and extend his
result in the generality of Theorem 4.1. We start introducing the basic notions
from [5], then we use freely their results. It is worth noting that in [5] the con-
struction was carried out for one sided subshifts, but all can be extended without
any problem to the two sided case.

4.1. (p, q)-Toeplitz subshifts. We refer to Section 2 in [5] for a detailed
discussion on next properties and concepts.

Let A be a finite alphabet and ? a letter not in A (usually the symbol ? is
referred as a “hole”). Let x ∈ (A ∪ {?})Z. The sequence x represents a sequence
over the alphabet A with holes. Given x, y ∈ (A ∪ {?})Z, define Fx(y) as the
sequence obtained from x replacing consecutively all the ? by the symbols of y,
where y0 is placed in the first ? to the right of coordinate 0. In particular, if x has
no holes, Fx(y) = x for every y ∈ (A ∪ {?})Z. In addition, observe that:

(4.1) if z = Fx(y) then Fz = Fx ◦ Fy.

Now, consider a finite word w in A ∪ {?}. Let p be the length of w and q the
number of its holes. Denote by w∞ the sequence · · ·www.www · · · ∈ (A ∪ {?})Z,
where the central dot indicates the position to the left of coordinate 0. We define
the sequence (Tn(w))n≥1 by: T1(w) = w∞ and Tn+1(w) = Fw∞(Tn(w)) for every
n ≥ 1. It is not complicated to see that each Tn(w) = u∞n for some word un of
length pn and un has qn holes. We have that the limit x = lim

n→∞
Tn(w) is well

defined as a sequence in (A ∪ {?})Z. Moreover, if w does not start or finish with
a hole, then the limit sequence belongs to AZ, i.e., x has no holes. The point x is
called a (p, q)-Toeplitz sequence. Its orbit closure under the shift map X is called a
(p, q)-Toeplitz subshift.

One of the main results in [5, Theorem 5] states that the complexity of a non
periodic (p, q)-Toeplitz is Θ(nr), where r = log(p/d)/ log(p/q) and d = (p, q).

Now suppose that (p, q) = 1. Then, there exist positive constants C1 and C2

such that

(4.2) C1n
1+ log q

log p−log q ≤ pX(n) ≤ C2n
1+ log q

log p−log q , ∀n ≥ 1.

Moreover, the length of |un| above is the smallest possible, (pn)n≥1 is a periodic
structure for x and the associated odometer is given by Z(pn) which is torsion free
by Lemma 2.2. Therefore, thanks to Lemma 2.3 we get the same conclusion for
Aut(X,σ).

If p is large enough compared with q, we have that | log q
log p−log q | ≤ ε. Thus,

(p, q)-Toeplitz subshifts is a natural class to study to prove Theorem 4.1.
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4.2. Self reading properties of (p, q)-Toeplitz. Let w be a finite word in
(A ∪ {?}) of length p and q holes with (p, q) = 1. Let x = limn→∞ Tn(w) be the
(p, q)-Toeplitz sequence generated and X its orbit closure under the shift. The
purpose of this section is to prove the main consequences of the so called “self-
reading” property of x. First we summarize some basic results, some were already
discussed in [5], others need to be proved.

Proposition 4.2. We have,

(1) For every n ≥ 1, the map FTn(w) : (A∪ {?})Z → (A∪ {?})Z is continuous
and FTn(w)(x) = x.

(2) FTn(w)(σ
qny) = σp

n

FTn(w)(y) for every y ∈ (A ∪ {?})Z.
(3) The skeleton structure of x is (Tn(w))n, i.e., Spn(x) = Tn(w) for all n ≥ 1.

(4) The transformation σq
n

is minimal in X for every n ≥ 1.
(5) FTn(w) leaves X invariant.

Proof. Continuity in statement (1) is direct from definition. Now, from
(4.1) we have that Tn+1(w) = Fw∞(Tn(w)), and thus FTn+1(w) = Fw∞ ◦ FTn(w),
which implies FTn(w) = (Fw∞)n. From this equality we deduce FTn(w)(x) =

limm→∞(Fw∞)n+m(w∞) = x. This proves (1).
Statement (2) follows from the fact that each Tn(w) is periodic of period pn

and contains qn holes. Statement (3) is direct.
Let π denote the factor map from X to Z(pn). Since (p, q) = 1, statement (4)

follows from the fact that translation by qn1 acts minimally in the odometer Z(pn)

by Lemma 2.1, for every n ≥ 1. Indeed, if A ⊆ X is closed and invariant under
σq

n

, then so is π(A) and by minimality π(A) = π(X) = Z(pn). But π is almost
one-to-one and thus A contains all points with one preimage (which is a Gδ-set).
Since A is closed we get A = X. This proves (4).

We finally notice that properties (1) and (2) imply that FTn(w)((σ
qn)mx) ∈ X

for all n ≥ 1 and m ∈ Z. The minimality of σq
n

implies that FTn(w) leaves invariant
X, proving (5). �

4.3. Proof of Theorem 4.1. First, we choose a word w of length p and with
q holes in A ∪ {?} such that the associated limit sequence x is non periodic and
in AZ. It is enough to avoid the symbol ? in the first and last coordinates of w.
Recall we are considering p and q to be relatively primes. Notice that, by (4.2),
within the family of (p, q)-Toeplitz subshifts with p and q relatively primes we can
get for any ε > 0 complexities such that for some constant C > 0, pX(n)/n ≤ Cnε,
for all n ≥ 1. It remains to prove that the automorphism group of the subshift X
generated by x is not finitely generated.

Let n ≥ 1 and z ∈ X. As observed in Section 2.3, we can find a unique
m = m(n, z) ∈ {0, . . . , pn − 1} such that Spn(z) = σmSpn(x) = σmTn(w), where in
the last equality we have used Proposition 4.2 (3). Recall that Spn(·) is the skeleton
map at scale pn and m is nothing but the projection of z onto the factor Zpn .

Let z ∈ X 7→ Hn(z) be the map that associates the sequence in AZ of the
consecutive symbols of z in the holes of Spn(z) from the coordinate −m(n, z). That
is, the unique sequence satisfying

(4.3) FSpn (x)(Hn(z)) = σ−m(n,z)(z).

We have that Hn is a continuous function. Let k be an integer and r such that
0 ≤ r < pn and k+m = lpn + r for some l ∈ Z. It is straightforward to check that
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m(n, σk(z)) = r. Then, using (4.3) one gets

(4.4) Hn(σkz) = σlq
n

Hn(z).

We claim that Hn(z) belongs to X. Since Spn(z) = σmSpn(x), there is an integer

sequence (`i)i≥0 so that z can be written as z = limi→∞ σp
n`i+m(x). Using formula

(4.4) we get,

Hn(z) = Hn( lim
i→∞

σp
n`i+m(x)) = lim

i→∞
σq

n`iHn(σm(x)).

But, from (4.3), Hn(σm(x)) = Hn(x) and by Proposition 4.2 (1) Hn(x) = x, then
Hn(z) = limi→∞ σq

n`i(x) ∈ X. The claim is proved.
Define ϕn(z) = σmFSpn (x)(σ(Hn(z))). We have that this map ϕn : X → X

is well defined by the previous claim and Proposition 4.2 (5). This map leaves
invariant each A-letter in the pn-skeleton of z and shift the symbols of z in the
holes by one within the holes.

Using again formula (4.4) it is not difficult to check that ϕn is an automorphism
of (X,σ). Moreover, we have that ϕq

n

n = σp
n

because there are qn holes in the first
pn letters of Spn(x) = Tn(w).

On the other hand, qn is the minimum positive integer ` such that ϕ`n ∈ 〈σ〉.
Indeed, if ϕ`n = σr for some integer r, then σ`p

n

= ϕ`q
n

n = σrq
n

and by aperiodicity,
`pn = rqn. Since p and q are relatively prime, qn divides `.

In particular, 〈{ϕn : n ∈ N}, σ〉 /〈σ〉 is an infinite periodic group and thus it is
not finitely generated (finitely generated torsion abelian groups are finite). This
implies that Aut(X,σ) is not finitely generated. �

We finish this section pointing out that if we choose p and q = p − 2 for a
large odd value of p, then the associated (p, q)-Toeplitz subshift has a polynomial

complexity of degree log(p)
log(p)−log(p−2) ≥

p−2
2 log(p). We conclude that,

Corollary 4.3. There exist Toeplitz subshifts of arbitrary polynomial com-
plexity with a not finitely generated automorphism group.

In the light of Corollary 3.3, we notice that we can easily exhibit infinitely many
roots of the shift.

Corollary 4.4. Let (X,σ) be a (p, q)-Toeplitz, with (p, q) = 1. Then for every
n ≥ 1, σ admits a qn-root.

Proof. We have that for every n ≥ 1 there exists an automorphism ϕn such
that ϕq

n

n = σp
n

. Since (p, q) = 1 we can find a, b ∈ Z such that apn = bqn + 1.
Then ϕaq

n

n = σap
n

= σbq
n

σ and the automorphism ϕanσ
−b is a qn-root of σ. �

5. Realization of finitely generated abelian groups

In this section we show that within the class of Toeplitz subshifts we can realize
any finitely generated abelian group with cyclic torsion subgroup as an automor-
phism group. Recall that the property of the torsion is necessary by Lemma 2.2.
In the process, we show that large entropy does not suffice to have a large auto-
morphism group, by constructing Toeplitz subshifts with arbitrarily large entropy
and no automorphisms other than powers of the shift. This result is a consequence
of the following theorem.
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Theorem 5.1. For any infinite odometer there exists a uniquely ergodic Toeplitz
subshift (X,σ) with an arbitrarily large topological entropy whose associated odome-
ter is equal to the given one and Aut(X,σ) = End(X,σ) = 〈σ〉.

Proof. Fix an odometer Z(pn) not isomorphic to a finite group. In this case
we can consider (pn)n≥1 strictly increasing. Below we construct a Toeplitz point
x and its associated subshift X in an iterative process and prove all the desired
properties. Without loss of generality we may assume that p1 = 1.
The Toeplitz subshift. Let D0 > 1 and k1 > 3 be constants that will be adjusted
later. In the following, we will assume that k1 is large enough so that 2n−2k1 >
(n+ 1)2D0 for all integer n ≥ 2. We consider an alphabet A with k1 letters and let
i1 = 1.

Fix n ≥ 2 and suppose that at step (n − 1) we have defined kn−1 ≥ 2n−2k1

words B1,n−1, . . . , Bkn−1,n−1 of the same length pin−1
on A. Pick a positive integer

in > in−1 such that pin > pin−13kn−1((n2D0)−1 − k−1
n−1)−1 (the definition of k1

ensures that the term (n2D0)−1−k−1
n−1 is positive). Next, we build words of length

pin by concatenating the words B1,n−1, . . . , Bkn−1,n−1 according to the following
rules:

C1) The words B1,n−1 . . . Bbkn−1/2c,n−1 and Bbkn−1/2c+1,n−1 . . . Bkn−1,n−1 respec-
tively always appear as prefix and suffix of all words of step n.

C2) After ensuring C1), we complete the remaining positions with pin/pin−1
−

kn−1words of length pin−1
of the previous step. To do so, we consider all different

concatenations of B2,n−1, . . . , Bkn−1,n−1 (we exclude B1,n) such that each Bi,n−1

appears the same number of times di,n−1, for every i ≥ 2. More precisely, set
dn = di,n−1 = b(pin/pin−1

− kn−1)/(kn−1 − 1)c for i ≥ 3 (so it is constant for such

i) and d̂n = d2,n−1 = pin/pin−1 − kn−1 − (kn−1 − 2)dn. Clearly, d̂n ≥ dn. For any
such concatenation we obtain a word of step n of length pin and we let kn denote
the number of words of this length we get. We have the bound kn ≥ f(dn, kn−1−1),

where f(d, k) = (dk)!
(d!)k

denotes the number of partitions of a set of cardinality dk

in k atoms such that each atom has d elements. Observe that f(d, k) ≥ k! and so
kn ≥ 2kn−1 ≥ 2n−1k1 for each n ≥ 2. We choose an order B1,n, . . . , Bkn,n of them
and continue with step n+ 1.

By construction, there exists a sequence x in AZ such that for every n ≥ 1
the word around coordinate 0 is equal to Bkn,n.B1,n, where the dot indicates the
position to the left of coordinate 0 in x. It is not difficult to see that for every n ≥ 1
the sequence x is a concatenation of words B·,n. Moreover, any finite word in x
appears periodically with period pin for some n ≥ 1. Indeed, by construction, any
finite word in x is a subword of Bkn,n.B1,n for some n ≥ 1, which by C1) is pin+1

-
periodic. This implies that x is a Toeplitz sequence. Call (X,σ) the associated
Toeplitz subshift.

We will need the following fundamental claim. We say a word u has a trivial
overlapping with the word v whenever u appears in v only as a prefix or a suffix,
meaning if v = pus for some words p, s then p or s has to be the empty word.

Claim 5.2. For every n ≥ 1, each word Bi,n does not have a non trivial
overlapping with Bj,nBk,n for any i, j, k ∈ {1, . . . , kn}.

Proof. We proceed by induction. The case n = 1 is true by construction.
Now assume the result holds for n and by contradiction assume that Bi,n+1 is
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a subword (different from a prefix or a suffix) of Bj,n+1Bk,n+1 for some i, j, k ∈
{1, . . . , kn+1}. We have that in the word Bj,n+1Bk,n+1, B1,n only appears as prefix
of Bj,n+1 and prefix of Bk,n+1, otherwise B1,n would be a subword of Bj′,nBk′,n
for some j′, k′ ∈ {1, . . . , kn}, contradicting the induction hypothesis. But Bi,n+1

also starts with B1,n so the only possibility is Bj,n+1Bk,n+1 = Bi,n+1Bk,n+1 or
Bj,n+1Bk,n+1 = Bj,n+1Bi,n+1, which contradicts our assumption. �

Before giving the rest of the proof, let us fix some notations. For a word y
(eventually infinite), i < j ∈ Z, y|[i,j) denotes the word yi · · · yj−1. We say that a
word u occurs in y if there exists some i ∈ Z such that y|[i,i+|u|) = u, where |u|
denotes the length of u and the index i is called an occurrence of u.

Now we check that X is an almost one-to-one extension of the odometer Z(pin ).
For this, it is enough to verify that (pin)n≥1 is a periodic structure of x = (xn)n,
and for this it is only left to check that each pin is an essential period of x. If not,
there exists n ≥ 1 and 1 ≤ p < pin such that Perp(x) = Perpin (x). By condition
C1), {0, 1, . . . , pin−1 − 1} ⊆ Perpin (x), so p is an occurrence of x|[0,pin−1

) = B1,n−1

in x. Since B1,n is a concatenation of words B·,n−1, Claim 5.2 and condition C2),
both imply that B1,n−1 has no occurrence, except 0, in B1,n = x|[0,pin ). This
contradicts the fact that 1 ≤ p < pin .

Lower bound for the topological entropy. We use the following lower bound of

the topological entropy h(X,σ) = lim
n→∞

log pX(n)/n ≥ lim sup
n→∞

log kn
pin

. A standard

computation using the Stirling formula gives that

log f(d, k) ≥ (d− 1)(k − 1) log(k + 1)

for every d and k larger than some universal constant. Since we have dn ≥ 3(((n+
1)2D0)−1 − (2n−2k1)−1)−1 − 2 and kn ≥ 2n−1k1, in what follows we can assume
that k1 and D0 are large enough so that dn and kn satisfy the previous estimates
for all n ≥ 1. An iterated use of the previous inequality leads to:

log kn
pin

≥ log f(dn, kn−1 − 1)

pin

≥ dn − 1

pin
(kn−1 − 2) log kn−1 =

pin−1

pin
(dn − 1)(kn−1 − 2)

log kn−1

pin−1

≥
pin−1

pin
(dn − 1)(kn−1 − 2) · · · pi1

pi2
(d2 − 1)(k1 − 2)

log k1

pi1
.

Now, a standard computation gives that for all n ≥ 2

∣∣∣∣pin−1

pin
(dn − 1)(kn−1 − 2)− 1

∣∣∣∣ ≤ 1

kn−1 − 1
+
pin−1

pin
3kn−1 ≤

1

n2D0
.

Let C > 0 and 0 < r < 1 be constants such that z + 1 ≥ exp(−C|z|) when

|z| < r. Then, if D0 is large enough, we can take z =
pin−1

pin
(dn − 1)(kn−1 − 2)− 1

to get ∏
n≥2

pin−1

pin
(dn − 1)(kn−1 − 2) ≥ exp(−C

∑
n≥2

1

n2D0
).
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It follows that h(X,σ) ≥ exp(−C
∑
n≥2

1
n2D0

) log k1
pi1

. Hence, we can make the en-

tropy arbitrarily large by moving k1.

Unique ergodicity. Condition C2) and Claim 5.2 both impose that for every n ≥ 1
and i ∈ {1, . . . , kn} the set of occurrences of the word Bi,n in x has a specific
frequency. Hence Bi,n appears with the same frequency in each sequence of the
associated subshift and by the ergodic theorem any invariant probability measure
gives the same mass to the cylinder set defined by it. Since these cylinders generate
(and their images under the powers of the shift) the Borel σ-algebra, the associated
subshift is uniquely ergodic.

Automorphism group. We now prove that (X,σ) has no other endomorphisms than
the powers of σ. Let φ ∈ End(X,σ) and consider n ≥ 1 large enough such that
pin−1

is greater than the radius of a block map for φ.
By Claim 5.2 and condition C2), any occurrence i ∈ Z of B1,n is an occurrence

of some Bj,n+1 in x. Since x is a concatenation of words B·,n+1, the index i− (kn−
bkn/2b)pin − pin−1 is an occurrence of the word

Bkn−1,n−1Bbkn/2c+1,n . . . Bkn,n B1,n B2,n . . . Bbkn/2c,nB1,n−1,

meaning that the wordB1,n is always preceded in x byBkn−1,n−1Bbkn/2c+1,n . . . Bkn,n
and followed by the word B2,n . . . Bbkn/2c,nB1,n−1. This phenomenon is usually re-
ferred as B1,n is an extensible word.

Therefore, there exists a word w of length knpin such that

{i ∈ Z;x|[i,i+pin ) = B1,n} ⊆ {i ∈ Z;φ(x)|[i−(kn−bkn/2c)pin ,i+bkn/2cpin ) = w}.

By construction, the set in the left hand side of the equation is pin+1
Z, so the

word w occurs periodically with period pin+1
in φ(x).

Recall that φ(x) is a concatenation of the words Bi,n+1 of length pin+1
and,

in such decomposition, condition C2) ensures that each word Bi,n+1Bj,n+1, i, j ∈
{2, . . . , kn+1} appears at least once. From the periodicity of occurrences of w there
exists 0 ≤ p ≤ pin+1 such that for every i, j ∈ {2, . . . , kn+1},

Bi,n+1Bj,n+1|[p,p+knpin ) = w.(5.1)

The following claim shows that this p has to be close to pin+1
, that is, w starts

with a suffix of Bi,n+1 and ends with a prefix of Bj,n+1.

Claim 5.3. Let p be an integer 0 ≤ p ≤ pin+1
that satisfies (5.1). Then,∣∣p+ knpin − pin+1

− bkn/2cpin − 1
∣∣ ≤ pin−1

(bkn−1/2c+ 1).

Proof. Assume the inequality is false. This implies that the word w =
Bi,n+1Bj,n+1|[p,p+knpin ) has a suffix (or a prefix) with a factor B·,n−1 of Bi,n+1

(or of Bj,n+1) different from the ordered part given by condition C1). Since condi-
tion C2) ensures that we can find any word B`,n−1, ` ≥ 2, at any position in pinZ∩
{pinbkn/2c, . . . , pin+1−(kn−bkn/2c)pin} outside the ordered parts given by condition
C1), there exist indices i′, j′ ∈ {2, . . . , kn+1} such that Bi′,n+1Bj′,n+1|[p,p+knpin ) 6=
w, leading to a contradiction �

Call the word Bi,n+1Bj,n+1|[p+(kn−ckn/2b)pin−1,p+(kn−ckn/2b+1)pin ) the middle
word of w. For any occurrence ` of B1,n in x, the unique extension property implies
that ` also is an occurrence of the middle word of w in φ(x). Thus, by Claim (5.3),
` is at distance at most pin−1

(bkn−1/2c + 1) from an occurrence of B1,n in φ(x).
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Finally, we get k ∈ Z with |k| ≤ pin−1
(bkn−1/2c+ 1) such that both x and σkφ(x)

starts with B1,n. Considering σkφ instead of φ, we can assume that x and φ(x)

start with the word B1,n, where φ admits a block map φ̃ of radius smaller than
pin−1

+ pin−1
(bkn−1/2c+ 1) ≤ pin .

By the extensible property of B1,n we get that φ([B1,n]0) ⊆ [B1,n]0, where
[B1,n]0 is the cylinder set starting with word B1,n at zero coordinate. Using that
B1,n only appears as a prefix of the words Bj,n+1 for all j ∈ {1 . . . , kn+1}, we

get that φ(x) has to start with some word Bj,n+1. Since the radius of φ̃ is lower
than pin , the same argument as before shows that there exists another k ∈ Z with
|k| ≤ pin(bkn/2c+ 1) < pin+1 such that both x and σkφ(x) starts with B1,n+1. But
since φ(x) starts with some Bj,n+1 we have that if j 6= 1 then k ≥ pin+1 . So we get
that j = 1 and k = 0. Inductively we conclude that x and φ(x) start with the word
B1,n for every n ≥ 1. Hence, x and φ(x) are right asymptotic. Since any word of x

has a positive occurrence in x, the block map φ̃ codes the identity map, so φ = Id.
We conclude that End(X,σ) = Aut(X,σ) = 〈σ〉, finishing the proof. �

In the previous proof we can relax condition C2) by considering all the con-
catenations of words Bi,n−1, i ∈ {2, . . . , kn−1}, without imposing restrictions on
their number of occurrences, leading to the construction of a coalescent Toeplitz
subshift with entropy arbitrarily high but not necessarily uniquely ergodic.

The fact that we can choose first an infinite odometer and then find a Toeplitz
almost one-to-one extension of it with arbitrarily high entropy allow us to deduce
the following.

Theorem 5.4. Any infinite finitely generated abelian group with cyclic torsion
subgroup can be realized as the automorphism group of a coalescent Toeplitz subshift
with arbitrarily large or zero entropy.

Proof. Let G be a finitely generated abelian group with cyclic torsion sub-
group. By the fundamental theorem of finitely generated abelian groups, we may
identify G with Zd ⊕ Za, where d ≥ 1 and a = as11 · · · a

s`
` with different prime

numbers ai for i ∈ {1, . . . , `} and ` ≥ 1.
Consider d different primes r1, . . . , rd, where each rj is also chosen to be different

from the ai’s for i ∈ {1, . . . , `}. Let us consider for each j ∈ {1, . . . , d} a Toeplitz
subshift (Xj , σ) such that End(Xj , σ) = Aut(Xj , σ) = 〈σ〉, so is isomorphic to Z,
and whose associated odometer is Z(rnj ), i.e., where the scale is given by (rnj )n≥1.

Examples of such subshifts are provided by Theorem 5.1, in the positive entropy
case and by the examples illustrating Theorem 3.2 (2) in the zero entropy case.

Consider the product space X = X1 × · · · ×Xd × Za with the action σ : X →
X given by the shift on each Xj for j ∈ {1, . . . , d} and by the addition by one
on the finite system Za (recall that in the case a Toeplitz is finite we identify it
with the associated odometer). The fact that all the involved odometers (finite
and infinite) have different primes in their bases implies that the system (X,σ)
is a minimal system (we refer to Section 12 in [14] for a deeper discussion on
disjointness properties of Toeplitz subshifts). Moreover, (X,σ) is also a Toeplitz
subshift: the k-th coordinate of x = (x1, . . . , xd,m) ∈ X is periodic of period the
product of the periods of the k-th coordinates of x1, . . . , xd,m. By Corollary 2.4
we get that (X,σ) is coalescent and its automorphism group is abelian and equal
to Aut(X1, σ)⊕· · ·⊕Aut(Xd, σ)⊕Aut(Za,+1), which is nothing but Zd⊕Za, and
thus is isomorphic to G. �
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Finally remark that any finite cyclic group can be realized as the automorphism
group of a periodic Toeplitz subshift. So to summarize, any finitely generated
abelian group with cyclic torsion subgroup can be realized as the automorphism
group of a Toeplitz subshift.

We finish this section with some open questions: Given a countable subgroup
of an odometer Z(pn), can we find a Toeplitz subshift whose automorphism group
realizes this group? In particular, does there exist a Toeplitz subshift whose auto-
morphism group contains an infinite countable direct sum of Z?
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7352, Université de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens cedex 1,

France.
E-mail address: samuel.petite@u-picardie.fr


