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Abstract
We show that the mesh mutations are the minimal rela-
tions among the g -vectors with respect to any initial
seed in any finite-type cluster algebra. We then use this
algebraic result to derive geometric properties of the g -
vector fan: we show that the space of all its polytopal
realizations is a simplicial cone, and we then observe
that this property implies that all its realizations can
be described as the intersection of a high-dimensional
positive orthant with well-chosen affine spaces. This
sheds a new light on and extends earlier results of
Arkani-Hamed, Bai,He, andYan in type𝐴 and of Bazier-
Matte, Chapelier-Laget, Douville, Mousavand, Thomas,
and Yıldırım for acyclic initial seeds. Moreover, we use
a similar approach to study the space of polytopal real-
izations of the g -vector fans of another generalization of
the associahedron: nonkissing complexes (also known
as support 𝜏-tilting complexes) of gentle algebras. We
show that the space of realizations of the nonkissing
fan is simplicial when the gentle bound quiver is brick
and 2-acyclic, and we describe in this case its facet-
defining inequalities in terms of mesh mutations. Along
the way, we prove algebraic results on 2-Calabi–Yau tri-
angulated categories, and on extriangulated categories
that are of independent interest. In particular, we prove,
in those two setups, an analogue of a result of Auslan-
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der on minimal relations for Grothendieck groups of
module categories.
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INTRODUCTION

The associahedron is a “mythical polytope” [44] whose facial structure encodes Catalan families:
its vertices correspond to parenthesizations of a nonassociative product, triangulations of a con-
vex polygon, or binary trees; its edges correspond to applications of the associativity rule, diagonal
flips, or edge rotations; and in general its faces correspond to partial parenthesizations, diago-
nal dissections, or Schröder trees. Its combinatorial and topological structure was introduced in
early works of Tamari [100] and Stasheff [97], and a first 3-dimensional polytopal model was real-
ized by Milnor for the Ph.D. defense of Stasheff. The first systematic polytopal realizations were
constructed by Haiman [44] and Lee [57]. Since then, the associahedron has been largely “demys-
tified” with several polytopal constructions and generalizations (some are discussed below). Its
realizations can be classified into three species: the secondary polytopes [13, 41], the g -vectors real-
izations [46, 49, 50, 60, 61, 79, 86, 87] and the 𝒅-vector realizations [25, 28]. See [28] for a discussion
of some of these realizations and their connections.
The associahedron appears as a fundamental structure in several mathematical theories, such

as moduli spaces and topology [54, 97], operads and rewriting theory [71, 99], combinatorial Hopf
algebras [27, 62, 77], diagonal harmonics [21, 84], mathematical physics [4], and so on. Another
striking illustration of the ubiquity of the associahedron lies in the theory of cluster algebras
introduced by Fomin and Zelevinsky in [37] with motivation coming from total positivity and
canonical bases. Cluster algebras are commutative rings generated by variables obtained from
an initial seed by the discrete dynamical process of seed mutations. finite-type cluster algebras,
whose mutation graph is finite, were classified in [38] using the Cartan–Killing classification for
crystallographic root systems. Finite-type cluster complexes were geometrically realized first by
Chapoton, Fomin, and Zelevinsky [25] based on the 𝒅-vector fans [38, 39] of the bipartite initial
seed, then by Hohlweg, Lange, and Thomas [49] based on the Cambrian fans [91, 92] of acyclic
initial seeds, and finally by Hohlweg, Pilaud, and Stella [50] based on the g -vector fans [40] with
respect to an arbitrary initial seed. The resulting polytopes are known as generalized associahedra,
and the classical associahedra corresponds to the type 𝐴 cluster algebras.
This paper focuses on a surprising construction of the associahedron that recently appeared

in mathematical physics. Motivated by the prediction of the behavior of scattering particles,
Arkani-Hamed, Bai, He, and Yan recently described in [4, section 3.2] the kinematic associahe-
dron. It is a class of polytopal realizations of the classical associahedron obtained as sections of
a high-dimensional positive orthant with well-chosen affine subspaces. This construction pro-
vides a large degree of freedom in the choice of the parameters defining these affine subspaces,
and actually produces all polytopes whose normal fan is affinely equivalent to that of Loday’s
associahedron [60] (see Subsection 2.1). These realizations were then extended by Bazier-Matte,
Chapelier-Laget, Douville, Mousavand, Thomas, and Yıldırım [17] in the context of finite-type
cluster algebras using tools from representation theory of quivers. More precisely, they fix a finite-
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type cluster algebra  and consider the real euclidean space ℝ indexed by the set  of cluster
variables of . Starting from an acyclic initial seed Σ◦, they consider a set  of mesh muta-
tions and compute the corresponding linear dependences between the g -vectors, which can be
interpreted as linear spaces in ℝ . Finally, they perturb these mesh linear spaces by a collec-
tion 𝓵 ∈ ℝ

>0
of positive parameters and intersect the resulting perturbedmesh affine spaces with

the positive orthant ℝ
⩾0
(see Subsection 2.2). They show that the resulting polytope is always a

generalized associahedron, and that its normal fan is the g -vector fan ofwith respect to the ini-
tial acyclic seed Σ◦. An implicit by-product of their construction is that the space of all polytopal
realizations of the g -vector fan ofwith respect to the initial acyclic seed Σ◦ is a simplicial cone.
In this paper, we revisit, extend, and explore further this construction using a reversed

approach. Given a complete simplicial fan  , we consider the space 𝕋ℂ() of all its polytopal
realizations. This space was called type cone in [67] and deformation cone in [79, 85], who studied
the case when  is the braid arrangement leading to the rich theory of generalized permutahe-
dra (recently extended to all finite Coxeter arrangements in [2]). The type cone is known to be a
polyhedral cone defined by a collection of inequalities corresponding to the linear dependences
among the rays of  contained in pairs of adjacent maximal cones of  (see Definition 1.3). Our
approach is based on an elementary but powerful observation: for any fan  , all polytopal realiza-
tions of  can be described as sections of a high-dimensional positive orthant with a collection of
affine subspaces parameterized by the type cone𝕋ℂ() (see Proposition 1.10); if moreover the type
cone 𝕋ℂ() is a simplicial cone, it leads to a simple parameterization of all polytopal realizations
of  by a positive orthant corresponding to the facets of the type cone 𝕋ℂ() (see Corollary 1.11).
To prove that the type cone 𝕋ℂ() is simplicial, we just need to identify which pairs of adja-
cent maximal cones of  correspond to the facets of 𝕋ℂ() and to show that the corresponding
linear dependences among their rays positively span the linear dependence among the rays of
any pair of adjacent maximal cones of  . When applied to the g -vector fans of cluster algebras
(see Subsection 2.2), the type cone approach yields all polytopal realizations of the g -vector fans
and thus efficiently revisits and extends the construction of [17]. This new perspective has several
advantages, as our proof uniformly applies in the following generality.

∙ Any initial seed, regardless of whether it is acyclic or not (see Example 2.18 and Figures 6
to 8 for examples in types 𝐴3 and 𝐶3 cyclic). In contrast, the proof of [17] only treats acyclic
initial seeds although the approach has since been extended to any seed in [16] (as previously
announced by Thomas in a lecture given at RIMS in June 2019).

∙ All finite-type cluster algebras, regardless of whether it is simply laced or not (see Exam-
ple 2.18 for an example in type 𝐶3). In contrast, even with the acyclicity restriction, the result
of [17] is first proved in simply laced cases (𝐴, 𝐷, and 𝐸) using representation theory of quivers.
Extension to the non simply laced cases can then be argued by a folding argument. This subtle
and technical argument is presented in [6].

∙ Any positive real-valued parameters, regardless of whether they are rational or not. In
contrast, the proof of [17] naturally applies to rational parameters and then requires an
approximation argument.

These advantages all follow from one essential feature of the type cone approach. Namely, it
enables to completely separate the algebraic aspects from the geometric aspects of the problem.

∙ On the algebraic side, we study the relations between the g -vectors of a finite-type cluster
algebra and we show that the mesh mutations minimally generate these relations. For this, we
use representation theory in the setting of 2-Calabi–Yau triangulated categories, and we adapt
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Auslander’s proof that the relations in theGrothendieck group of anArtin algebra are generated
by the ones given by almost-split sequences preciselywhen the algebra is of finite representation
type [10] (see Section 3).

∙ On the geometric side, we use elementary manipulations to show that a fan whose type cone
is simplicial is affinely equivalent to the normal fan of sections of a high-dimensional positive
orthant with well-chosen affine subspaces (see Section 1). We then observe that our algebraic
result precisely states that all type cones of g -vector fans of cluster algebras are simplicial from
which we derive all our geometric consequences (see Section 2).

These two aspects are interesting in their own right and might be useful in different com-
munities: the geometric side enables to simply describe all polytopal realizations of a fan with
simplicial type cone (which is sometimes easier to check than to find an explicit realization),
while the algebraic side provides fundamental new results on the g -vectors of cluster algebras
and on (an extriangulated variant of) the Grothendieck groups of 2-Calabi–Yau triangulated cat-
egories with cluster tilting objects. We have therefore deliberately split our presentation into two
clearly marked parts that can be read independently. The geometric side, which uses elementary
techniques, is presented in Part I together with all its consequences on polytopal realizations. The
algebraic side, which is of independent interest, is presented in Part II.
Besides revisiting the construction of [4, 17] and extending it to any initial seed (acyclic or not)

in any finite-type cluster algebra (simply laced or not), our type cone approach is also success-
ful when applied to the g -vector fans of other families of generalizations of the associahedron.
In the present paper, we explore specifically gentle associahedra. These complexes where con-
structed in [81] as polytopal realizations of finite nonkissing complexes of gentle bound quivers.
They encompass two families of simplicial complexes studied independently in the literature: on
the one hand the grid associahedra introduced by Petersen, Pylyavskyy, and Speyer in [82] for a
staircase shape, studied by Santos, Stump, and Welker [96] for rectangular shapes, and extended
by McConville in [66] for arbitrary grid shapes; and on the other hand the Stokes polytopes and
accordion associahedra studied by Baryshnikov [11], Chapoton [26], Garver and McConville [42],
and Manneville and Pilaud [70]. The latter, sometimes called accordiohedra, have also recently
appeared in the mathematical physics literature concerning scattering amplitudes [15, 89], with
realizations inspired by those in [4]. It was shown in [12, 81] that the nonkissing complex of a
gentle bound quiver provides a combinatorial model for the support 𝜏-tilting complex [8] of the
associated gentle algebra. Even for finite nonkissing complexes, it turns out that the type cone
of the nonkissing fan is not always simplicial (see Remark 2.47). We prove however that the type
cone is always simplicial when the gentle bound quiver is brick (at least two relations in any cycle)
and 2-acyclic (no oriented cycle of length 2). Moreover, we precisely describe the facet-defining
inequalities of the type cone in terms of linear dependences of g -vectors involved in certain mesh
relations. We thus automatically derive a construction similar to that of [4, 17] describing all
polytopal realizations of the g -vector fans of these brick and 2-acyclic gentle bound quivers as
sections of a positive orthant by well-chosen affine spaces (see Subsection 2.2). Again, this result
mainly relies on findingwhich relationsminimally generate the relations between theg -vectors in
the nonkissing complex. We present both a purely combinatorial proof (see Subsection 2.2) and a
purely algebraic proof for (nonnecessarily gentle) brick algebrasmaking use of extriangulated cat-
egories (see Section 4). Our algebraic proof is based on an analogue of a result of Auslander [10]
relating to minimal generators of Grothendieck groups. Along the way, we need to generalize,
for extriangulated categories, several results from cluster-tilting theory on indices [31] and on
abelian quotients [19, 55] that were known for triangulated categories. We note, however, that
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our assumptions are not quite the expected ones. This is related to the fact that the Grothendieck
groups of cluster categories are badly behaved (e.g., the Grothendieck group of a cluster cate-
gory of type 𝐴2 is trivial). So, as to overcome this difficulty, we replace the triangulated structure
of cluster categories by some relative extriangulated structure, before considering Grothendieck
groups. This explains why we consider projective objects rather than cluster-tilting objects for
extriangulated categories.
Further families of generalizations of the associahedron certainly deserve to be studied with

our type cone approach. We are investigating in particular graph associahedra and nestohedra†
[24, 36, 79, 103], brick polytopes [86, 87], and quotientopes [88, 90, 91]. In fact, as already men-
tioned, it seems sometimes easier to find all polytopal realizations of a fan (by describing its type
cone in terms of certain specific pairs of adjacent maximal cones) than to identify one specific
explicit realization. This is clearly the case when the type cone is simplicial as illustrated by the
results of this paper: we naturally obtained all polytopal realizations of the g -vector fans of clus-
ter algebras from cyclic seeds and of gentle algebras whose polytopality was only established very
recently [50, 81]. We believe that this approach gives reasonable hope that the polytopality of fur-
ther fans could in the future be established using our type cone approach. Tempting candidates are
quotientopes for hyperplane arrangements beyond type𝐴, which are particularly interesting since
the coarsenings of a fan essentially correspond to the faces of its type cone (see Subsection 1.5).
Last but not least, the type cone approach naturally opens many research questions. First, it

raised the fundamental problem of describing theminimal relations among g -vectors in 2-Calabi–
Yau and extriangulated categories that we treat in Part II. It also motivates the study of relevant
objects revealed by the type cone dictionary between geometry and algebra.

∙ The facet-defining inequalities of the type cone of  correspond to very specific pairs of adja-
cent maximal cones of whose corresponding linear dependencesminimally generate all such
dependences. Although they correspond tomeshmutations for cluster algebras and brick and 2-
acyclic gentle algebras, they are not understood in general (see, for instance, Figure 14 (right)).
It would be particularly interesting to fully understand these specific mutations for arbitrary
(nonkissing finite) gentle algebras.

∙ The rays of the type cone of  correspond to specific polytopes that form a positive Minkowski
basis of all realizations of  (see Subsection 1.6). In particular, when the type cone is simplicial,
any polytopal realization of  has a unique representation (up to translation) as a Minkowski
sum of positive dilates of these polytopes. For cluster algebras, it follows from [17, section 6]
that these polytopes are Newton polytopes of the 𝐹-polynomials. It would be interesting to
obtain similar algebraic interpretations for the rays of the type cones of the nonkissing fans
of gentle algebras.

∙ Once we get a representation of a polytope 𝑃 as a signed Minkowski sum 𝑃 =
∑
𝑖∈[𝑘] 𝛼𝑖𝑄𝑖 , we

get a formula for the volume of 𝑃 as a multivariate polynomial in 𝛼1, … , 𝛼𝑘 whose coefficients
are the mixed volumes of 𝑄1,… , 𝑄𝑘 [1, 68]. These encode rich combinatorial information when
representing generalized permutahedra as positive Minkowski sums of coordinate simplices or
hypersimplices [79], and in particular for matroid polytopes [1]. It would be interesting to get
such volume formulae for polytopal realizations of g -vector fans of cluster algebras and gentle
algebras, and combinatorial interpretations for their coefficients.

†A preliminary version of this paper contained the full facet description of the type cones of graph associahedra. As they
are not simplicial, they lie slightly beyond the scope of this paper. These results now appeared in a paper of A. Padrol,
V. Pilaud and G. Poullot on type cones of graph associahedra and nestohedra [74].
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Another question related to this paper is to understand the complete realization space of the
combinatorics of the associahedra. The associahedra constructed in [4, 17] and the present paper
describe all polytopal realizations of the g -vector fans, but there are other polytopal realizations of
the combinatorial type of the associahedron with different normal fans. Is it possible to similarly
understand the complete realization space of the cluster complex, including all realizations not
having the g -vector fan as their normal fan?
To conclude, it is our hope that the present paper will participate to the interactions between

combinatorial geometry, representation theory, and mathematical physics; in particular through
further developments of the geometric approach to scattering amplitudes that has flourished dur-
ing the last years [3, 7]. The kinematic associahedron from [4] is one of the most recent “positive
geometries” [5] that has emerged in the study of scattering amplitudes.

STRUCTURE OF THE PAPER: MAIN RESULTS AND LOGICAL
DEPENDENCIES

We now give a more detailed overview of our main results and the structure of the article. In par-
ticular, some of the geometric realizations in Part I depend on algebraic results whose proofs are
delayed until Part II. The goal of this section is to clarify their logical dependencies, summarized
in the schematic diagram depicted at the end.

Type cone approach (Section 1)
Let  be an essential complete polyhedral fan in ℝ𝑛 (all definitions are recalled in Subsection
1.1). The type cone 𝕋ℂ() of  (Subsection 1.2), introduced by McMullen [67], is a polyhedral
cone that parameterizes the set of all possible polytopal realizations of  . These realizations can
be described explicitly as affine sections of the nonnegative orthant ℝ𝑁

⩾0
, where 𝑁 is the num-

ber of rays of  (Proposition 1.10). If  is a simplicial fan and has the unique exchange relation
property (Definition 1.8), then its type cone is easier to describe and study. And if moreover the
type cone 𝕋ℂ() is simplicial (Remark 1.6), then all possible polytopal realizations of  can be
described explicitly in terms of 𝑁 − 𝑛 positive real parameters as follows.

Corollary 1.11. Assume that the type cone 𝕋ℂ() is simplicial and let𝑲 be the (𝑁 − 𝑛) × 𝑁-matrix
whose rows are the inner normal vectors of the facets of 𝕋ℂ(). Then the polytope

𝑅𝓵 ∶=
{
𝒛 ∈ ℝ𝑁

||| 𝑲𝒛 = 𝓵 and 𝒛 ⩾ 0
}

is a realization of the fan  for any positive vector 𝓵 ∈ ℝ𝑁−𝑛
>0

. Moreover, the polytopes 𝑅𝓵 for
𝓵 ∈ ℝ𝑁−𝑛

>0
describe all polytopal realizations of  .

This gives a new point of view on [4, 17], illustrated in Subsection 2.1 for classical associahedra,
thatwe then apply to two families ofg -vector fans generalizing theg -vector fans of classical associ-
ahedra: the g -vector fans of cluster algebras of finite type (generalized associahedra) in Subsection
2.2, and the g -vector fans of gentle algebras (nonkissing associahedra, noncrossing associahedra,
generalized accordiohedra) in Subsection 2.3.
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Cluster algebras of finite type and generalized associahedra (Subsection 2.2)
We first consider the g -vector fan (B◦) of a skew-symmetrizable cluster algebra of finite type,
with respect to any initial exchangematrix B◦ (acyclic or not). We provide the following polytopal
realizations of (B◦).

Theorem 2.26. For any 𝓵 ∈ ℝ
(B◦)
>0

, the polytope

𝑅𝓵(B◦) ∶=
{
𝒛 ∈ ℝ(B◦) ||| 𝒛 ⩾ 0 and 𝒛𝑥 + 𝒛𝑥′ − ∑

𝑦∈(B◦)

𝛼𝑥,𝑥′ (𝑦) 𝒛𝑦 = 𝓵{𝑥,𝑥′} for all {𝑥, 𝑥′} ∈(B◦)
}

is a generalized associahedron, whose normal fan is the cluster fan (B◦). Moreover, the
polytopes 𝑅𝓵(B◦) for 𝓵 ∈ ℝ

(B◦)
>0

describe all polytopal realizations of (B◦).

Here, (B◦) denotes the set of all pairs {𝑥, 𝑥′} related by noninitial mesh mutations (Defini-
tion 2.19), and(B◦) the set of cluster variables. For {𝑥, 𝑥′} ∈(B◦) and 𝑦 ∈ (B◦), the coefficient
𝛼𝑥,𝑥′ (𝑦) is defined as follows: 𝛼𝑥,𝑥′ (𝑦) is set to be |𝑏𝑥𝑦| if 𝑦 ∈ 𝑋 ∩ 𝑋′ and 0 otherwise, where 𝑋,𝑋′
are any two clusters such that 𝑋 ⧵ {𝑥} = 𝑋′ ⧵ {𝑥′}. By the unique exchange relation property, the
coefficients 𝛼𝑥,𝑥′ (𝑦) do not depend on the specific choice of clusters 𝑋,𝑋′.
Some crucial pieces of the proof of Theorem 2.26 use cluster categories (2-Calabi–Yau trian-

gulated categories) and are deferred to Section 3. Namely, a reformulation of [18, Theorem 7.5],
proved in Section 3, gives the first step toward applying our type cone strategy.

Proposition 2.16. The cluster fan (B◦) has the unique exchange relation property.

The second step follows from our main result in Section 3, which makes use of representation
theory of finite-dimensional algebras and additive categorification of cluster algebras.

Corollary 2.24. The type cone 𝕋ℂ((B◦)) is simplicial.

Gentle algebras, nonkissing complexes, and generalized accordiohedra (Subsection 2.3)
The same strategy is applied to a class of finite-dimensional algebras, called gentle algebras, whose
representations are combinatorially well-understood. We note that the 𝜏-tilting theory of gentle
algebras is the algebraic counterpart of the combinatorics of accordions on surfaces [12, 80, 81].
We identify two conditions, called brick and 2-acyclicity (Definition 2.40), that enable us to make
use of the type cone approach.
Let �̄� = (𝑄, 𝐼) be a gentle bound quiver, and let (�̄�) be the fan of its g -vectors

(Subsection 2.3.1), also called nonkissing fan. We provide the following polytopal realizations
of (�̄�).

Theorem 2.44. For any brick and 2-acyclic gentle quiver �̄� and any 𝓵 ∈ ℝ
(�̄�)
>0

, the polytope

𝑅𝓵(�̄�) ∶=

{
𝒛 ∈ ℝ(�̄�)

||||| 𝒛 ⩾ 0, 𝒛𝜔 = 0 for any straight or self-kissing walk 𝜔,
and 𝒛 ✓𝜎✓ + 𝒛

✓

𝜎
✓ − 𝒛 ✓

𝜎✓ − 𝒛 ✓𝜎
✓ = 𝓵𝜎 for all 𝜎 ∈ (�̄�)

}

is a realization of the nonkissing fan (�̄�). Moreover, the polytopes 𝑅𝓵(�̄�) for 𝓵 ∈ ℝ
(�̄�)
>0

describe all
polytopal realizations of (�̄�).



GENERALIZED ASSOCIAHEDRA ANDMINIMAL RELATIONS BETWEEN g-VECTORS 521

Here, (�̄�) is the set of all strings of �̄�, and(�̄�) the set of all walks on �̄� (i.e., of all strings of
the blossoming bound quiver of �̄� that join two blossom vertices). If 𝜎 is a string of �̄�, we make
use of the evocative notations ✓𝜎✓,

✓

𝜎
✓
,

✓

𝜎✓, ✓𝜎
✓
for the walks obtained by adding, in the

blossoming bound quiver, hooks or cohooks at each end of 𝜎.
The two main ingredients are similar to those for cluster algebras. As a first step, we obtain the

following consequence of Proposition 2.34 (ii), which is proved in Section 4.6 by representation-
theoretic methods.

Proposition 2.34 (iv). The nonkissing fan (�̄�) has the unique exchange relation property.

The second step is the following statement, for which we provide a purely combinatorial proof
in Subsection 2.3.3 and an algebraic proof in Section 4.6, using the main result of Section 4.

Corollary 2.43. If the gentle bound quiver �̄� is brick and 2-acyclic, then the type cone 𝕋ℂ((�̄�))
is simplicial.

Cluster categories (Section 3)
Weprove an analogue for cluster categories of a result of Auslander formodule categories of Artin
algebras [10]. We are mainly motivated by the fact that it implies that the type cones of the cluster
fans of finite type are simplicial. However, this result is of independent interest and sheds new
lights on the Grothendieck groups of cluster categories.
Let  be a cluster category with finitely many isomorphism classes of indecomposable objects

(see Subsection 3.1 for the precise and more general setting in which the theorem is proven).
Let𝐾sp

0
() be the split Grothendieck group of . Fix a cluster-tilting object 𝑇 ∈ , and let𝐾0(; 𝑇)

be the quotient of 𝐾sp
0
() by the relations [𝑋] + [𝑍] − [𝑌] for all triangles 𝑋 4→ 𝑌 4→ 𝑍

ℎ
4→ Σ𝑋

with ℎ ∈ (Σ𝑇). Denote by g ∶ 𝐾
sp
0
() → 𝐾0(; 𝑇) the canonical projection. For any indecompos-

able𝑋 ∈ , write 𝓁𝑋 = [𝑋] + [Σ−1𝑋] − [𝐸], where 𝐸 is the middle term of an almost split triangle
starting at 𝑋. For any objects 𝑋,𝑌 ∈ , we write ⟨𝑋,𝑌⟩ for dim𝕂 HomΛ(𝐹𝑋, 𝐹𝑌), where Λ is the
cluster-tilted algebra End(𝑇) and 𝐹 is the equivalence of categories (𝑇, −) ∶ ∕(Σ𝑇) → modΛ.

Theorem 3.8. The set 𝐿 ∶= {𝓁𝑋 | 𝑋 ∈ ind() ⧵ add(Σ𝑇)} is a basis of the kernel of g and, for
any 𝑥 ∈ ker(g), we have

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Extriangulated categories (Section 4)
We prove a more general version of Theorem 3.8 that applies not only to cluster fans, but also to
nonkissing fans. Once more, our main motivation is to prove that the type cone of the nonkissing
fan of a brick and 2-acyclic gentle algebra is simplicial, but the results are of independent interest,
and might be useful for studying the type cones of other families of simplicial fans.
Let  be an extriangulated category (Subsection 4.4) with a fixed projective object 𝑇 such that

the morphism 𝑇 → 0 is an inflation and, for each 𝑋 ∈ , there is an extriangle 𝑇𝑋
1
↣ 𝑇𝑋

0
↠ 𝑋

𝛿𝑋
⤏.

Let Σ𝑇 be the cone of the inflation 𝑇 ↣ 0.

Proposition 4.6. The functor (𝑇, −) induces an equivalence 𝐹 ∶ ∕(Σ𝑇) → modEnd(𝑇).
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Our assumptions allow for awell-defined notion of index: ind𝑇(𝑋) = [𝑇𝑋0 ] − [𝑇
𝑋
1
] ∈ 𝐾0(add𝑇).

Proposition 4.11. The index induces an isomorphism of abelian groups from 𝐾0() to 𝐾0(add𝑇).

The previous two statements also hold when 𝑇 is an additive subcategory rather than a mere
object. Assumemoreover that  is𝕂-linear, Ext-finite, Krull–Schmidt and has Auslander–Reiten–
Serre duality. Then, with notations analogous to those used for cluster categories above, we obtain
the following statement.

Theorem 4.13. The extriangulated category  has only finitely many isomorphism classes of
indecomposable objects if and only if the set 𝐿 generates the kernel of the canonical projection
g ∶ 𝐾

sp
0
() → 𝐾0(). In that case 𝐿 is a basis of the kernel of g and any 𝑥 ∈ ker(g) decomposes as

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Schematic diagram of logical dependencies
We conclude with a schematic diagram representing the logical dependencies between the
different sections of the paper.
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PART I. TYPE CONES OF g-VECTOR FANS

1 POLYTOPAL REALIZATIONS AND TYPE CONE OF A
SIMPLICIAL FAN

1.1 Polytopes and fans

We briefly recall basic definitions and properties of polyhedral fans and polytopes, and refer
to [105] for a classical textbook on this topic.
A hyperplane 𝐻 ⊂ ℝ𝑛 is a supporting hyperplane of a set 𝑋 ⊂ ℝ𝑛 if 𝐻 ∩ 𝑋 ≠ ∅ and 𝑋 is

contained in one of the two closed half-spaces of ℝ𝑛 defined by𝐻.
We denote by ℝ⩾0𝑹 ∶= {

∑
𝒓∈𝑹 𝜆𝒓 𝒓 | 𝜆𝒓 ∈ ℝ⩾0} the positive span of a set 𝑹 of vectors of ℝ𝑛. A

polyhedral cone is a subset of ℝ𝑛 defined equivalently as the positive span of finitely many vec-
tors or as the intersection of finitely many closed linear halfspaces. The faces of a cone 𝐶 are the
intersections of𝐶 with the supporting hyperplanes of𝐶. The 1-dimensional (resp., codimension 1)
faces of𝐶 are called rays (resp., facets) of𝐶. A cone is simplicial if it is generated by a set of linearly
independent vectors.
A polyhedral fan is a collection  of polyhedral cones such that

∙ if 𝐶 ∈  and 𝐹 is a face of 𝐶, then 𝐹 ∈  ,
∙ the intersection of any two cones of  is a face of both.

A fan is simplicial if all its cones are simplicial, complete if the union of its cones covers the ambient
space ℝ𝑛, and essential if it contains the cone {𝟎}. Note that every complete fan is the product of
an essential fan with its lineality space (the largest linear subspace contained in all the cones). For
two fans  , in ℝ𝑛, we say that  refines  (and that  coarsens  ) if every cone of  is contained
in a cone of .
A polytope is a subset 𝑃 of ℝ𝑛 defined equivalently as the convex hull of finitely many points

or as a bounded intersection of finitely many closed affine halfspaces. The dimension dim(𝑃) is
the dimension of the affine hull of 𝑃. The faces of 𝑃 are the intersections of 𝑃 with its supporting
hyperplanes. The dimension 0 (resp., dimension 1, resp., codimension 1) faces are called vertices
(resp., edges, resp., facets) of 𝑃. A polytope is simple if each vertex is incident to dim(𝑃) facets (or
equivalently to dim(𝑃) edges).
The (outer) normal cone of a face 𝐹 of 𝑃 is the cone generated by the outer normal vectors

of the facets of 𝑃 containing 𝐹. In other words, it is the cone of vectors 𝒄 such that the linear
form 𝒙 ↦ ⟨ 𝒄 | 𝒙 ⟩ on 𝑃 is maximized by all points of the face 𝐹. The (outer) normal fan of 𝑃 is the
collection of the (outer) normal cones of all its faces.We say that a complete polyhedral fan inℝ𝑛
is polytopal when it is the normal fan of a polytope 𝑃 of ℝ𝑛, and that 𝑃 is a polytopal realization
of  .

1.2 Type cone

Fix an essential complete simplicial fan  in ℝ𝑛, with an (arbitrary) indexing of its rays by
[𝑁] ∶= {1, … ,𝑁}. Let𝑮 be the𝑁 × 𝑛-matrix whose rows are representative vectors of the rays of .
Let𝑲 be a (𝑁 − 𝑛) × 𝑁-matrix that spans the left kernel of𝑮 (i.e.,𝑲𝑮 = 0 and rank(𝑲) = 𝑁 − 𝑛).
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For any height vector 𝒉 ∈ ℝ𝑁 , we define the polytope

𝑃𝒉 ∶= {𝒙 ∈ ℝ𝑛 | 𝑮𝒙 ⩽ 𝒉},
where 𝑮𝒙 ⩽ 𝒉 is the standard shorthand for the corresponding system of inequalities.
We say that 𝒉 is  -admissible if 𝑃𝒉 is a polytopal realization of  . The following classical

statement characterizes the  -admissible height vectors. It is a reformulation of regularity of tri-
angulations of vector configurations, introduced in the theory of secondary polytopes [41], see
also [32]. We present here a convenient formulation from [25, Lemma 2.1].

Proposition 1.1. Let be an essential complete simplicial fan inℝ𝑛 with𝑁 rays. Then the following
are equivalent for any height vector 𝒉 = (𝒉𝒓)𝒓∈rays() ∈ ℝ𝑁 .

(1) The fan  is the normal fan of the polytope 𝑃𝒉 ∶= {𝒙 ∈ ℝ𝑛 | 𝑮𝒙 ⩽ 𝒉}.
(2) For any two adjacent maximal cones ℝ⩾0𝑹 and ℝ⩾0𝑹′ of  with 𝑹 ⧵ {𝒓} = 𝑹′ ⧵ {𝒓′},

𝛼 𝒉𝒓 + 𝛼
′ 𝒉𝒓′ +

∑
𝒔∈𝑹∩𝑹′

𝛽𝒔 𝒉𝒔 > 0,

where

𝛼 𝒓 + 𝛼′ 𝒓′ +
∑

𝒔∈𝑹∩𝑹′

𝛽𝒔 𝒔 = 0

is the unique (up to rescaling) linear dependence with 𝛼, 𝛼′ > 0 between the rays of 𝑹 ∪ 𝑹′.

Notation 1.2. For any adjacent maximal cones ℝ⩾0𝑹 and ℝ⩾0𝑹′ of  with 𝑹 ⧵ {𝒓} = 𝑹′ ⧵ {𝒓′}, we
denote by 𝛼𝑹,𝑹′(𝒔) the coefficient of 𝒔 in the unique linear dependence between the rays of𝑹 ∪ 𝑹′,
that is, such that ∑

𝒔∈𝑹∪𝑹′

𝛼𝑹,𝑹′(𝒔) 𝒔 = 0.

These coefficients are a priori defined up to rescaling, but we additionally fix the rescaling so
that 𝛼𝑹,𝑹′(𝒓) + 𝛼𝑹,𝑹′(𝒓′) = 2 (this convention is arbitrary, but will be convenient in Section 2).

In this paper, we are interested in the set of all possible realizations of  as the normal fan of a
polytope 𝑃𝒉. This was studied byMcMullen in [67] (see [32, section 9.5] for a formulation in terms
of chambers of triangulations of vector configurations).

Definition 1.3. The type cone of  is the cone 𝕋ℂ() of all  -admissible height vectors 𝒉 ∈ ℝ𝑁 :

𝕋ℂ() ∶=
{
𝒉 ∈ ℝ𝑁 |  is the normal fan of 𝑃𝒉

}
=
{
𝒉 ∈ ℝ𝑁

||| ∑
𝒔∈𝑹∪𝑹′

𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 > 0
for any adjacent maximal
cones ℝ⩾0𝑹 and ℝ⩾0𝑹′ of 

}
.
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F IGURE 1 A 2-dimensional fan  with five rays 1, … , 5 and five maximal cones 𝑎,… , 𝑒 (left), its polytopal
realization corresponding to the height vector (1∕2, 3∕4, 1, 1, 5∕4) (middle), and the intersection of 𝑲𝕋ℂ() with a
hyperplane to get a 2-dimensional slice (right).

Note that the type cone is an open cone and contains a lineality subspace of dimension 𝑛
(it is invariant by translation in 𝑮ℝ𝑛). It is sometimes useful to get rid of the lineality space by
considering the projection 𝑲𝕋ℂ().
We denote by 𝕋ℂ() the closure of 𝕋ℂ(), and call it the closed type cone of  . It is the

closed polyhedral cone defined by the inequalities
∑
𝒔∈𝑹∪𝑹′ 𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 ⩾ 0 for any adjacent max-

imal cones ℝ⩾0𝑹 and ℝ⩾0𝑹′. If  is the normal fan of the polytope 𝑃, then 𝕋ℂ() is called the
deformation cone of 𝑃 in [79], see also [85].

Example 1.4. Consider the 2-dimensional fan depicted in Figure 1 (left) (wewill encounter this
fan again in Examples 1.14, 1.19 and 2.5). It has five rays labeled 1, … , 5 and five maximal cones
labeled 𝑎,… , 𝑒. For the matrices 𝑮 and 𝑲, we consider

𝑮 =

⎡⎢⎢⎢⎢⎢⎣

1 0

0 1

−1 1

−1 0

0 −1

⎤⎥⎥⎥⎥⎥⎦
and 𝑲 =

⎡⎢⎢⎣
1 0 0 1 0

0 1 0 0 1

1 0 1 0 1

⎤⎥⎥⎦ .

The type cone 𝕋ℂ() lies in ℝ5, but has a 2-dimensional lineality space. The five pairs of adjacent
maximal cones of  give rise to following five defining inequalities for 𝕋ℂ():

𝐻>
𝑎𝑏
∶ 𝒉1 + 𝒉3 − 𝒉2 > 0 𝐻>

𝑏𝑐
∶ 𝒉2 + 𝒉4 − 𝒉3 > 0 𝐻>

𝑐𝑑
∶ 𝒉3 + 𝒉5 − 𝒉4 > 0

𝐻>
𝑑𝑒
∶ 𝒉1 + 𝒉4 > 0 𝐻>

𝑎𝑒 ∶ 𝒉2 + 𝒉5 > 0,

where𝐻>
𝑖𝑗
denotes the halfspace defined by the inequality corresponding to the two adjacentmax-

imal cones 𝑖 and 𝑗. Note that the inequalities𝐻>
𝑎𝑒 and𝐻

>
𝑑𝑒
are redundant. For example, the height

vector (1∕2, 3∕4, 5∕4, 1, 5∕4) belongs to the type cone 𝕋ℂ(), and the corresponding polytope is repre-
sented in Figure 1 (middle). To represent this type cone, it suffices to represent𝑲𝕋ℂ(), which is
an essential simplicial cone inℝ3, given as the intersection of the following five open halfspaces:

𝑲𝐻>
𝑎𝑏
∶ 𝑥 − 𝑦 + 2𝑧 > 0 𝑲𝐻>

𝑏𝑐
∶ 𝑥 + 𝑦 − 𝑧 > 0 𝑲𝐻>

𝑐𝑑
∶ −𝑥 + 𝑦 + 2𝑧 > 0

𝑲𝐻>
𝑑𝑒
∶ 2𝑥 + 𝑧 > 0 𝑲𝐻>

𝑎𝑒 ∶ 2𝑦 + 𝑧 > 0.
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One can further reduce the dimension by intersecting with a transversal hyperplane to get a
2-dimensional representation. Any affine hyperplane crossing all the rays of𝑲𝕋ℂ()wouldwork,
here we take the hyperplane 𝑥 + 𝑦 + 𝑧 = 1 and we get the red triangle depicted in Figure 1 (right).

Definition 1.5. An extremal adjacent pair of  is a pair of adjacent maximal cones {ℝ⩾0𝑹, ℝ⩾0𝑹′}
of  such that the corresponding inequality

∑
𝒔∈𝑹∪𝑹′ 𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 ⩾ 0 in the definition of the type

cone 𝕋ℂ() actually defines a facet of 𝕋ℂ().

In other words, extremal adjacent pairs define the extremal rays of the polar of the closed
type cone 𝕋ℂ(). Understanding the extremal adjacent pairs of  enables to describe its type
cone 𝕋ℂ() and thus all its polytopal realizations. For instance, for the 2-dimensional fan of
Example 1.4, the extremal adjacent pairs are {𝑎, 𝑏}, {𝑏, 𝑐} and {𝑐, 𝑑}.

Remark 1.6. As the type cone is an𝑁-dimensional cone with a lineality subspace of dimension 𝑛,
it has at least𝑁 − 𝑛 facets (thus𝑁 − 𝑛 extremal adjacent pairs). The type cone is simplicialwhen
it has precisely 𝑁 − 𝑛 facets.

Although we will only deal with simplicial fans, note for completeness that Proposition 1.1 and
Definition 1.3 can be easily adapted to nonsimplicial fans. To describe the type cone of an arbi-
trary complete fan, it suffices to consider any simplicial refinement, and to set some of the strict
inequalities of the definition of the type cone to equality (see [88, Proposition 3] for a proof).

Proposition 1.7. Let  be a complete fan that coarsens the essential complete simplicial fan . The
type cone 𝕋ℂ() of all  -admissible height vectors 𝒉 ∈ ℝ𝑁 is

𝕋ℂ() =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝒉 ∈ ℝ𝑁

||||||||||||||||||

∑
𝒔∈𝑹∪𝑹′ 𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 = 0

for any adjacent maximal cones
ℝ⩾0𝑹 and ℝ⩾0𝑹′ of  belonging
to the samemaximal cone of  ,

∑
𝒔∈𝑹∪𝑹′ 𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 > 0

for any adjacent maximal cones
ℝ⩾0𝑹 and ℝ⩾0𝑹′ of  belonging
to distinctmaximal cones of 

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

1.3 Unique exchange relation property

Two rays 𝒓 and 𝒓′ of  are exchangeable if there are two adjacent maximal cones ℝ⩾0𝑹 and ℝ⩾0𝑹′
of  with 𝑹 ⧵ {𝒓} = 𝑹′ ⧵ {𝒓′}.

Definition 1.8. We say that two exchangeable rays 𝒓, 𝒓′ of  admit a unique exchange relation
when the linear dependence ∑

𝒔∈𝑹∪𝑹′

𝛼𝑹,𝑹′(𝒔) 𝒔 = 0
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does not depend on the pair {𝑹, 𝑹′} of adjacent maximal cones of  with 𝑹 ⧵ {𝒓} = 𝑹′ ⧵ {𝒓′}, but
only on the pair of rays {𝒓, 𝒓′}. This implies in particular that the rays 𝒔 for which 𝛼𝑹,𝑹′(𝒔) ≠ 0
belong to 𝑹 ∪ 𝑹′ for any pair {𝑹, 𝑹′} of adjacent maximal cones of  with 𝑹 ⧵ {𝒓} = 𝑹′ ⧵ {𝒓′}.
We say that the fan has theunique exchange relation property if any two exchangeable rays 𝒓, 𝒓′

of  admit a unique exchange relation.

When  has the unique exchange relation property, we change the notation 𝛼𝑹,𝑹′(𝒔) to 𝛼𝒓,𝒓′ (𝒔)
and we obtain that the type cone of  is expressed as

𝕋ℂ() =
{
𝒉 ∈ ℝ𝑁

||| ∑
𝒔

𝛼𝒓,𝒓′ (𝒔) 𝒉𝒔 > 0 for any exchangeable rays 𝒓 and 𝒓′ of 
}
.

Definition 1.9. In a fan  with the unique exchange relation property, an extremal exchangeable
pair is a pair of exchangeable rays {𝒓, 𝒓′} such that the corresponding inequality

∑
𝒔 𝛼𝒓,𝒓′ (𝒔) 𝒉𝒔 ⩾ 0

defines a facet of the closed type cone 𝕋ℂ().

In this paper, we will only consider fans with the unique exchange relation property, and our
objective will be to describe their extremal exchangeable pairs.

1.4 Alternative polytopal realizations

In this section, we provide alternative polytopal realizations of the fan  . We also discuss the
behavior of these realizations in the situation when the type cone 𝕋ℂ() is simplicial.
We still consider an essential complete simplicial fan  in ℝ𝑛, the𝑁 × 𝑛-matrix 𝑮 whose rows

are the rays of  , and an (𝑁 − 𝑛) × 𝑁-matrix 𝑲 that spans the left kernel of 𝑮 (i.e., 𝑲𝑮 = 0 and
rank(𝑲) = 𝑁 − 𝑛).

Proposition 1.10. The affine map Ψ ∶ ℝ𝑛 → ℝ𝑁 defined by Ψ(𝒙) = 𝒉 − 𝑮𝒙 sends the polytope

𝑃𝒉 ∶=
{
𝒙 ∈ ℝ𝑛

||| 𝑮𝒙 ⩽ 𝒉}
to the polytope

𝑄𝒉 ∶=
{
𝒛 ∈ ℝ𝑁

||| 𝑲𝒛 = 𝑲𝒉 and 𝒛 ⩾ 0}.
Proof. This result is standard and is proved for instance in [32, Corollary 9.5.7]. We include a short
argument here for the convenience of the reader. For 𝒙 in 𝑃𝒉, we have Ψ(𝒙) ⩾ 0 by definition
and𝑲Ψ(𝒙) = 𝑲𝒉 − 𝑲𝑮𝒙 = 𝑲𝒉 because𝑲 is the left kernel of𝑮. Therefore,Ψ(𝒙) ∈ 𝑄𝒉.Moreover,
the map Ψ ∶ 𝑃𝒉 → 𝑄𝒉 is:

∙ Injective: Indeed,Ψ(𝒙) = Ψ(𝒙′) implies𝑮(𝒙 − 𝒙′) = 0 and𝑮has full rank because is essential
and complete.

∙ Surjective: Indeed, for 𝒛 ∈ 𝑄𝒉, we have 𝑲(𝒉 − 𝒛) = 0 so that 𝒉 − 𝒛 belongs to the right kernel
of 𝑲, which is the image of 𝑮 (because 𝑮 is of full rank). Hence, there exists 𝒙 ∈ ℝ𝑛 such that
𝒉 − 𝒛 = 𝑮𝒙. We have 𝒛 = Ψ(𝒙) and 𝒙 ∈ 𝑃𝒉 because 𝒉 − 𝑮𝒙 = 𝒛 ⩾ 0. □
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Note that 𝑲 is only defined up to linear transformation, as it depends on the choice of a basis
of the left kernel of 𝑮. Note also that, by construction, the coefficients of the normal vectors of
the facets of 𝕋ℂ() arise from a linear dependence among the rays of  , and hence belong to
this kernel. When 𝕋ℂ() is simplicial, its (𝑁 − 𝑛) facets are necessarily linearly independent, and
hence form a basis. They provide a particularly interesting choice of 𝑲.

Corollary 1.11. Assume that the type cone 𝕋ℂ() is simplicial and let𝑲 be the (𝑁 − 𝑛) × 𝑁-matrix
whose rows are the inner normal vectors of the facets of 𝕋ℂ(). Then the polytope

𝑅𝓵 ∶=
{
𝒛 ∈ ℝ𝑁

||| 𝑲𝒛 = 𝓵 and 𝒛 ⩾ 0
}

is a realization of the fan  for any positive vector 𝓵 ∈ ℝ𝑁−𝑛
>0

. Moreover, the polytopes 𝑅𝓵 for
𝓵 ∈ ℝ𝑁−𝑛

>0
describe all polytopal realizations of  .

Proof. Let 𝓵 ∈ ℝ𝑁−𝑛
>0

. As 𝑲 has full rank there exists 𝒉 ∈ ℝ𝑁 such that 𝑲𝒉 = 𝓵. As 𝑲𝒉 ⩾ 0 and
the rows of𝑲 are precisely all inner normal vectors of the facets of the type cone 𝕋ℂ(), we obtain
that 𝒉 belongs to 𝕋ℂ(). As 𝑅𝓵 = 𝑄𝒉 ∼ 𝑃𝒉 by Proposition 1.10, we conclude that 𝑅𝓵 is a polytopal
realization of  . As 𝕋ℂ() is simplicial, we have𝑲𝕋ℂ() = ℝ𝑁−𝑛

>0
, so that we obtain all polytopal

realizations of  in this way. □

1.5 Faces of the type cone

We now relate the faces of the closed type cone 𝕋ℂ() with the coarsenings of the fan  .

Theorem 1.12. Let be a polytopal fan. Then the relatively open faces of the closed type cone 𝕋ℂ()
are the type cones of all (polytopal) coarsenings of  .

Proof. Let  be a simplicial refinement of  . By Proposition 1.7, the type cone of any coarsening of
 is a relatively open cell of the hyperplane arrangement defined by adjacent pairs of . The type
cone of the coarsening is not empty whenever it is polytopal. When nonempty, distinct coarsen-
ings give rise to distinct cells (one will have an equality that is a strict inequality in the other), and
all lie in the closure of 𝕋ℂ() (as they are all in the closure of all the defining half-spaces). Thus,
every coarsening describes a relatively open face of 𝕋ℂ().
For the converse, observe that for 𝒉 ∈ 𝕋ℂ(), the normal fan of 𝑃𝒉 is the polytopal complete

fan obtained by merging all pairs of adjacent maximal cones ℝ⩾0𝑹 and ℝ⩾0𝑹′ of  such that∑
𝒔∈𝑹∪𝑹′ 𝛼𝑹,𝑹′(𝒔) 𝒉𝒔 = 0. □

Remark 1.13. Some observations are in place.

∙ Note that any extremal adjacent pair {ℝ⩾0𝑹, ℝ⩾0𝑹′} of  gives rise to a facet of 𝕋ℂ(), but that
this pair might not be unique for this facet. There might be several extremal adjacent pairs
giving rise to the same facet. This happens often when we have the unique exchange relation
property and there are many pairs of maximal cones separating the same exchangeable rays.

∙ Mergings induced by extremal adjacent pairs are not the only ones that can take place in the
boundary of 𝕋ℂ(). Indeed, if  is the coarsening defining a lower-dimensional face 𝕋ℂ()
of 𝕋ℂ(), then to get  we have to perform all the coarsenings given by facets of 𝕋ℂ() con-
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taining 𝕋ℂ(). But wemight have to performmore coarsenings arising from exchangeable pairs
{ℝ⩾0𝑹, ℝ⩾0𝑹

′} whose inequality is redundant for 𝕋ℂ() but tight for all points in 𝕋ℂ(). This
situation arises when, in order to have a polytopal polyhedral fan, more pairs of adjacent cones
must be merged.

∙ Even if  is essential, not all its polytopal coarsenings need to be. Indeed, it can happen that
there is a certain polytopal coarsening  in which all the cells have a common lineality space.
In this case,  is the normal fan of a lower-dimensional polytope (whose codimension is the
dimension of the lineality space of ). For this to happen, it is necessary (but not sufficient)
that there is a positive linear dependence between some rays of  .

Example 1.14. Consider the 2-dimensional fan  of Figure 1 (left) whose type cone has been
described in Example 1.4 and represented in Figure 1 (right). The relative interior of the three
facets of 𝕋ℂ() are the type cones of three coarsenings of , obtained bymerging certain adjacent
maximal cones (those that are extremal). One of the rays generating 𝑲𝕋ℂ() corresponds to a
triangle, and its normal fan is obtained bymerging two pairs of extremal adjacent maximal cones.
The two remaining rays lie not only in hyperplanes 𝐻𝑖𝑗 defining facets of the type cone, but also
in one extra such hyperplane. Their normal fans have only two cones, one arising as a merging of
three cones and one arising as a merging of two cones. These fans are not essential, they have a
1-dimensional lineality space. Hence, the corresponding polytopes are not full-dimensional, they
are of codimension 1.

1.6 Minkowski sums

We now discuss the connection between convex combinations in the type cone and Minkowski
sums of polytopes. Recall that the Minkowski sum of two polytopes 𝑃 and 𝑄 is the polytope
𝑃 + 𝑄 ∶= {𝑝 + 𝑞 | 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝑄}.
Lemma 1.15. For any 𝒉, 𝒉′ ∈ 𝕋ℂ(), the polytope 𝑃𝒉+𝒉′ is the Minkowski sum of the polytopes 𝑃𝒉
and 𝑃𝒉′ .

Proof. As 𝒉, 𝒉′ ∈ 𝕋ℂ(), the fan  is the normal fan of both 𝑃𝒉 and 𝑃𝒉′ , and thus of
their Minkowski sum 𝑃𝒉 + 𝑃𝒉′ . Hence 𝑃𝒉 + 𝑃𝒉′ = 𝑃𝒉′′ for some 𝒉

′′ ∈ 𝕋ℂ(). Moreover, we
have 𝒉′′ = 𝒉 + 𝒉′ since for any ray 𝒓 of  ,

𝒉′′𝒓 = max
{⟨
𝒓 ||𝒙′′⟩ ||𝒙′′ ∈ 𝑃𝒉′′} = max {⟨𝒓 ||𝒙′′⟩ ||𝒙′′ ∈ 𝑃𝒉 + 𝑃𝒉′}

= max
{⟨
𝒓 ||𝒙⟩ ||𝒙 ∈ 𝑃𝒉} +max {⟨𝒓 ||𝒙′⟩ |𝒙′ ∈ 𝑃𝒉′} = 𝒉𝒓 + 𝒉′𝒓. □

We say that 𝑃 is aMinkowski summand of 𝑅 if there is a polytope 𝑄 such that 𝑃 + 𝑄 = 𝑅, and a
weak Minkowski summand if there is a 𝜆 ⩾ 0 and a polytope 𝑄 such that 𝑃 + 𝑄 = 𝜆𝑅. Lemma 1.15
ensures that convex combinations in the type cone correspond to Minkowski combinations of
polytopes. Actually, the set of weak Minkowski summands of a polytope 𝑃 with normal fan 

is isomorphic to the closed type cone 𝕋ℂ() modulo lineality (the cone of weak Minkowski
summands was studied by Meyer in [69], to see that it is equivalent to the type cone and other
formulations, see, for example, the appendix of [85]).
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This provides natural Minkowski summands for all polytopal realizations of  : the rays of the
closed type cone. These correspond to indecomposable polytopes, see [69] or [67]. A polytope
𝑃 ⊆ ℝ𝑛 is called indecomposable if all its weak Minkowski summands are of the form 𝜆𝑃 + 𝑡 for
some 𝜆 ⩾ 0 and 𝑡 ∈ ℝ𝑛.

Corollary 1.16. Any polytope in 𝕋ℂ() is the Minkowski sum of at most 𝑁 − 𝑛 indecomposable
polytopes corresponding to some rays of𝑲𝕋ℂ().

If 𝑃 = 𝑄 + 𝑅, then we say that 𝑅 is the Minkowski difference of 𝑃 and 𝑄, denoted 𝑅 = 𝑃 − 𝑄.
Note that this is only defined when 𝑄 is a Minkowski summand of 𝑃. For instance, we have
𝑃𝒉 − 𝑃𝒉′ = 𝑃𝒉−𝒉′ when 𝑃𝒉′ is a Minkowski summand of 𝑃𝒉. There are two natural ways this
construction generalizes to arbitrary pairs of polyhedra. On the one hand, one can consider that
𝑃 − 𝑄 = {𝒙 ∈ ℝ𝑛 | 𝒙 + 𝑄 ⊆ 𝑃}. On the other hand, considering arbitrary differences of support
functions gives rise to virtual polyhedra, which is the Grothendieck group of the semigroup of
polytopes with Minkowski sums [78].

Corollary 1.17. Let 𝒉(1), … , 𝒉(𝑁−𝑛) ∈ 𝕋ℂ() form a basis of the left kernel of 𝑮. Then for any
𝒉 ∈ 𝕋ℂ(), the polytope 𝑃𝒉 has a unique representation (up to translation) as a signed Minkowski
sum of dilates of 𝑃

𝒉(1)
, … , 𝑃

𝒉(𝑁−𝑛)
.

Proof. It suffices to express the projection of 𝒉 onto the left kernel of 𝑮 in terms of 𝒉(1), … , 𝒉(𝑁−𝑛)

to obtain the coefficients of 𝑃𝒉 as a signed Minkowski sum of dilates of 𝑃
𝒉(1)
, … , 𝑃

𝒉(𝑁−𝑛)
. □

This is used in [1] to show that every generalized permutahedron can be written uniquely as a
signed Minkowski sum of simplices. In the particular case when the type cone is simplicial, then
we can get rid of the Minkowski differences.

Corollary 1.18. If the type cone 𝕋ℂ() of  is simplicial, then every 𝑃𝒉 with 𝒉 ∈ 𝕋ℂ() (resp., with
𝒉 ∈ 𝕋ℂ()) has a unique representation, up to translation, as a Minkowski sum of positive
(resp., nonnegative) dilates of the𝑁 − 𝑛 indecomposable polytopes 𝑃

𝒉(1)
, … , 𝑃

𝒉(𝑁−𝑛)
arising from the

rays 𝒉(1), … , 𝒉(𝑁−𝑛) of 𝕋ℂ().

Note that such a family of polytopes giving rise to unique positive/nonnegative representations
only exists when the type cone is simplicial. We get unicity with any basis, but in general we
cannot guarantee nonnegativity unless we are in the simplicial cone they span. If we take all rays
of the type cone, we get nonnegativity, but the representation is not unique unless the cone is
simplicial.

Example 1.19. Consider the 2-dimensional fan  of Figure 1 (left) whose type cone has been
described in Example 1.4 and represented in Figure 1 (right). As illustrated in Figure 2, the rays
of the closed type cone 𝕋ℂ() are directed by the height vectors (1,2,1,2,1) (corresponding to a
triangle), (0,1,1,0,1) (corresponding to a vertical segment) and (1,0,1,1,0) (corresponding to a hor-
izontal segment). Therefore, any polytope in 𝕋ℂ() is (up to translation) a positive Minkowski
combination of a triangle and two edges. Figure 3 illustrates this property for the polytope of
Figure 1 (middle) corresponding to the height vector (1∕2, 3∕4, 5∕4, 1, 5∕4). Note that  is the normal
fan of Loday’s 2-dimensional associahedron, whose realization as a Minkowski sum of faces of a
simplex was given by Postnikov in [79].
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F IGURE 2 The type cone 𝕋ℂ() of the fan  of Figure 1 (left). On top of each face of 𝕋ℂ(), we depict an
example of polytope with the corresponding normal fan.

F IGURE 3 The polytope of Figure 1 (middle) is a Minkowski sum of a triangle and two edges.

2 APPLICATIONS TO TWO GENERALIZATIONS OF THE
ASSOCIAHEDRON

In this section, we study the type cones of complete simplicial fans arising as normal fans of two
families of generalizations of the associahedron: the generalized associahedra of finite-type cluster
algebras [37, 38, 40, 49, 50] and the gentle associahedra [81]. Both families contain the classical
associahedra 𝖠𝗌𝗌𝗈(𝑛) constructed in [60, 95].

2.1 Classical associahedra

We first describe the associahedra of [60, 95] and their type cones as they are the prototypes of
our constructions.

2.1.1 Associahedra and their normal fans

We quickly recall the combinatorics and the geometric construction of [60, 95] for the associ-
ahedron 𝖠𝗌𝗌𝗈(𝑛). The face lattice of 𝖠𝗌𝗌𝗈(𝑛) is the reverse inclusion lattice of dissections (i.e.,
pairwise noncrossing subsets of diagonals) of a convex (𝑛 + 3)-gon. In particular, its vertices
correspond to triangulations of the (𝑛 + 3)-gon and its facets correspond to internal diagonals of
the (𝑛 + 3)-gon. Equivalently, its vertices correspond to rooted binary trees with (𝑛 + 1) internal
nodes, and its facets correspond to proper intervals of [𝑛 + 1] ∶= {1, … , 𝑛 + 1} (i.e., intervals
distinct from∅ and [𝑛 + 1]). These bijections become clear when the convex (𝑛 + 3)-gon is drawn
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F IGURE 4 The normal fans (2) and (3) of J.-L. Loday’s associahedra. As the rightmost fan is
3-dimensional, we intersect it with the sphere and stereographically project it from the direction (−1, −1, −1).

with its vertices on a concave curve labeled by 0, … , 𝑛 + 2. The following statement provides
three equivalent geometric constructions of 𝖠𝗌𝗌𝗈(𝑛).

Theorem 2.1. The associahedron 𝖠𝗌𝗌𝗈(𝑛) can be described equivalently as follows.

∙ The convex hull of the points 𝐿(𝑇) ∈ ℝ𝑛+1 for all rooted binary trees 𝑇 with 𝑛 + 1 internal nodes,
where the 𝑖th coordinate of 𝐿(𝑇) is the product of the number of leaves in the left subtree by the
number of leaves in the right subtree of the 𝑖th node of 𝑇 in inorder [60].

∙ The intersection of the hyperplane
{
𝒙 ∈ ℝ𝑛+1 || ∑𝓁∈[𝑛+1] 𝒙𝓁 =

(𝑛+2
2

)}
with the halfspaces{

𝒙 ∈ ℝ𝑛+1 || ∑𝑎<𝓁<𝑏 𝒙𝓁 ⩾ (𝑏−𝑎2 )} for all internal diagonals (𝑎, 𝑏) of the (𝑛 + 3)-gon [95].
∙ TheMinkowski sum of the faces△[𝑖,𝑗] of the standard 𝑛-dimensional simplex△[𝑛+1] correspond-
ing to all proper intervals [𝑖, 𝑗] of [𝑛 + 1], [79].

We now focus on the normal fan of 𝖠𝗌𝗌𝗈(𝑛). As 𝖠𝗌𝗌𝗈(𝑛) lives in a hyperplane of ℝ𝑛+1, its nor-
mal fan has a 1-dimensional lineality (spanned by the all-ones vector). To factor out the lineality,
let ℍ ∶=

{
𝒙 ∈ ℝ𝑛+1 || ∑𝓁∈[𝑛+1] 𝒙𝓁 = 0

}
and 𝜋 ∶ ℝ𝑛+1 → ℍ denote the orthogonal projection. We

denote by (𝑛) the intersection of the normal fan of 𝖠𝗌𝗌𝗈(𝑛) with ℍ. Note that (𝑛) is an 𝑛-
dimensional essential complete simplicial fan inℍ, which is actually the normal fan of𝜋(𝖠𝗌𝗌𝗈[𝑛])
in ℍ. With the choice of a basis, we can identify ℍwith ℝ𝑛 and depict (𝑛) and 𝜋(𝖠𝗌𝗌𝗈(𝑛)) in ℝ𝑛.

Theorem 2.2. In the fan (𝑛),

∙ the normal vector of the facet corresponding to an internal diagonal (𝑎, 𝑏) of the (𝑛 + 3)-gon is the
vector g(𝑎, 𝑏) ∶= 𝜋(

∑
𝑎<𝓁<𝑏 𝒆𝓁) = (𝑛 + 1)

∑
𝑎<𝓁<𝑏 𝒆𝓁 − (𝑏 − 𝑎 − 1)

∑
1⩽𝓁⩽𝑛+1 𝒆𝓁 ;

∙ the normal cone of the vertex corresponding to a rooted binary tree 𝑇 is the incidence cone
{𝒙 ∈ ℍ | 𝒙𝑖 ⩽ 𝒙𝑗 for all edges 𝑖 → 𝑗 in 𝑇}.

Theorem 2.2 is illustrated in Figure 4 and Example 2.5 in dimension 2 and 3. Note that in
Figure 4 and Example 2.5 we express the g -vectors in the basis given by g(0, 𝑖 + 1) for 𝑖 ∈ [𝑛]
(to be coherent with the upcoming Definition 2.10).
Let us also recall the linear dependencies in this fan and observe that it has the unique exchange

relation property discussed in Subsection 1.3. Fromnowon,weuse the convention that g(𝑎, 𝑏) = 0
when (𝑎, 𝑏) is a boundary edge of the (𝑛 + 3)-gon.
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F IGURE 5 The facet-defining inequalities of the type cone 𝕋ℂ((𝑛)) correspond to the flips described in
Proposition 2.6. See Sections 2.2 and 3 for a representation theoretic interpretation.

Proposition 2.3. Let (𝑎, 𝑏) and (𝑎′, 𝑏′) be two crossing diagonals with 0 ⩽ 𝑎 < 𝑎′ < 𝑏 < 𝑏′ ⩽ 𝑛 + 2,
and let 𝑇 and 𝑇′ be any two triangulations such that 𝑇 ⧵ {(𝑎, 𝑏)} = 𝑇′ ⧵ {(𝑎′, 𝑏′)}. Then both tri-
angulations 𝑇 and 𝑇′ contain the square 𝑎𝑎′𝑏𝑏′, and the linear dependence between the g -vectors
of 𝑇 ∪ 𝑇′ is given by

g(𝑎, 𝑏) + g(𝑎′, 𝑏′) = g(𝑎, 𝑏′) + g(𝑎′, 𝑏).

In particular, the fan (𝑛) has the unique exchange relation property.

2.1.2 Type cones of associahedra

From the linear dependencies of Proposition 2.3, we obtain a redundant description of the type
cone of the fan (𝑛). To simplify the presentation and write the wall-crossing inequalities in a
uniformway, we embed the type cone in a larger space, adding dummy variables for the boundary
edges of the polygon.

Corollary 2.4. Let 𝑛 ∈ ℕ and 𝑋(𝑛) ∶= {(𝑎, 𝑏) | 0 ⩽ 𝑎 < 𝑏 ⩽ 𝑛 + 2}. Then the type cone of the
normal fan (𝑛) of 𝖠𝗌𝗌𝗈(𝑛) is given by

𝕋ℂ((𝑛)) =

{
𝒉 ∈ ℝ𝑋(𝑛)

||||| 𝒉(0,𝑛+2) = 0, and 𝒉(𝑎,𝑎+1) = 0 for all 0 ⩽ 𝑎 ⩽ 𝑛 + 1
𝒉(𝑎,𝑏) + 𝒉(𝑎′,𝑏′) > 𝒉(𝑎,𝑏′) + 𝒉(𝑎′,𝑏) for all 0 ⩽ 𝑎 < 𝑎′ < 𝑏 < 𝑏′ ⩽ 𝑛 + 2

}
.

Example 2.5. Consider the fan (2) and (3) illustrated in Figure 4. The type cone of (2) has
dimension 5 and a lineality space of dimension 2 (this is the type cone studied in Examples 1.4, 1.14
and 1.19). It has 3 facet-defining inequalities (given below),which correspond to the flips described
in Proposition 2.6 and illustrated in Figure 5 (left).
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In all our tables, we just record the coefficients of the inequalities, which are then easily
reconstructed. For instance, the inequality A© above is given by 𝒉 + 𝒉 > 𝒉 .
The type cone of (3) has dimension 9 and a lineality space of dimension 3. It has 6 facet-

defining inequalities (given below), which correspond to the flips described in Proposition 2.6
and illustrated in Figure 5 (right).

Motivated by Example 2.5, we now describe the facets of this type cone 𝕋ℂ((𝑛)).

Proposition 2.6. Two internal diagonals (𝑎, 𝑏) and (𝑎′, 𝑏′) of the (𝑛 + 3)-gon form an extremal
exchangeable pair for the fan (𝑛) if and only if 𝑎 = 𝑎′ + 1 and 𝑏 = 𝑏′ + 1, or the opposite.

Proof. Let (𝒇(𝑎,𝑏))0⩽𝑎<𝑏⩽𝑛+2 be the canonical basis ofℝ(
𝑛+3
2 ). Consider two crossing internal diago-

nals (𝑎, 𝑏) and (𝑎′, 𝑏′)with 0 ⩽ 𝑎 < 𝑎′ < 𝑏 < 𝑏′ ⩽ 𝑛 + 2. By Proposition 2.3, the linear dependence
between the corresponding g -vectors is given by

g(𝑎, 𝑏) + g(𝑎′, 𝑏′) = g(𝑎, 𝑏′) + g(𝑎′, 𝑏).

Therefore, the inner normal vector of the corresponding inequality of the type cone 𝕋ℂ((𝑛)) is

𝒏(𝑎, 𝑏, 𝑎′, 𝑏′) ∶= 𝒇(𝑎,𝑏) + 𝒇(𝑎′,𝑏′) − 𝒇(𝑎,𝑏′) − 𝒇(𝑎′,𝑏).

Denoting

𝒎(𝑐, 𝑑) ∶= 𝒏(𝑐, 𝑑 − 1, 𝑐 + 1, 𝑑) = 𝒇(𝑐,𝑑−1) + 𝒇(𝑐+1,𝑑) − 𝒇(𝑐,𝑑) − 𝒇(𝑐+1,𝑑−1),

we obtain that

𝒏(𝑎, 𝑏, 𝑎′, 𝑏′) =
∑

𝑐∈[𝑎,𝑎′[
𝑑∈]𝑏,𝑏′]

𝒎(𝑐, 𝑑).

Indeed, on the right-hand side, the basis vector 𝒇(𝑐,𝑑) appears with a positive sign in𝒎(𝑐, 𝑑 + 1)
for (𝑐, 𝑑) ∈ [𝑎, 𝑎′[ × [𝑏, 𝑏′[ and in𝒎(𝑐 − 1, 𝑑) for (𝑐, 𝑑) ∈ ]𝑎, 𝑎′] × ]𝑏, 𝑏′], and with a negative sign
in𝒎(𝑐, 𝑑) for (𝑐, 𝑑) ∈ [𝑎, 𝑎′[ × ]𝑏, 𝑏′] and in𝒎(𝑐 − 1, 𝑑 + 1) for (𝑐, 𝑑) ∈ ]𝑎, 𝑎′] × [𝑏, 𝑏′[. Therefore,
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these contributions all vanish except when (𝑐, 𝑑) is one of the diagonals (𝑎, 𝑏), (𝑎′, 𝑏′), (𝑎, 𝑏′)
or (𝑎′, 𝑏). This shows that any exchange relation is a positive linear combination of the exchange
relations corresponding to all pairs of diagonals (𝑎, 𝑏) and (𝑎′, 𝑏′) of the (𝑛 + 3)-gon such that
𝑎 = 𝑎′ + 1 and 𝑏 = 𝑏′ + 1 or the opposite.
Conversely, as (𝑛) has dimension 𝑛 and 𝑛(𝑛 + 3)∕2 rays (corresponding to the inter-

nal diagonals of the (𝑛 + 3)-gon), we know from Remark 1.6 that there are at least 𝑛(𝑛 +
1)∕2 extremal exchangeable pairs. We thus conclude that all exchangeable pairs of diagonals
{(𝑎, 𝑏 − 1), (𝑎 + 1, 𝑏)} for 1 ⩽ 𝑎 < 𝑏 − 2 ⩽ 𝑛 are extremal. □

Our next statement follows from the end of the previous proof.

Corollary 2.7. The type cone 𝕋ℂ((𝑛)) is simplicial.

Combining Corollaries 1.11 and 2.7 and Proposition 2.6, we derive the following description of
all polytopal realizations of the fan (𝑛), recovering all associahedra of [4, section 3.2]. Note that
the arguments of [4, section 3.2] were quite different from the present approach.

Corollary 2.8 [4, section 3.2]. For 𝑛 ∈ ℕ, define 𝑋(𝑛) ∶= {(𝑎, 𝑏) | 0 ⩽ 𝑎 < 𝑏 ⩽ 𝑛 + 2} and
𝑌(𝑛) ∶= {(𝑎, 𝑏) | 1 ⩽ 𝑎 < 𝑏 ⩽ 𝑛 + 1}. Then for any 𝓵 ∈ ℝ

𝑌(𝑛)
>0

, the polytope

𝑅𝓵(𝑛) ∶=

{
𝒛 ∈ ℝ𝑋(𝑛)

||||| 𝒛 ⩾ 0, 𝒛(0,𝑛+2) = 0 and 𝒛(𝑎,𝑎+1) = 0 for all 0 ⩽ 𝑎 ⩽ 𝑛 + 1
𝒛(𝑎−1,𝑏) + 𝒛(𝑎,𝑏+1) − 𝒛(𝑎,𝑏) − 𝒛(𝑎−1,𝑏+1) = 𝓵(𝑎,𝑏) for all (𝑎, 𝑏) ∈ 𝑌(𝑛)

}

is an 𝑛-dimensional associahedron, whose normal fan is (𝑛). Moreover, the polytopes 𝑅𝓵(𝑛) for
𝓵 ∈ ℝ

𝑌(𝑛)
>0

describe all polytopal realizations of the fan (𝑛).

2.2 Finite-type cluster complexes and generalized associahedra

Cluster algebras were introduced by Fomin and Zelevinsky [37] with motivation coming from
total positivity and canonical bases. Here, we will focus on finite type cluster algebras [38] and
more specifically on properties of their g -vectors [40]. These g -vectors support a complete simpli-
cial fan, which is called g -vector fan or cluster fan. It is known to be the normal fan of a polytope
called generalized associahedron. These polytopal realizations were first constructed for bipar-
tite initial seeds by Chapoton, Fomin, and Zelevinsky [25] using the 𝒅-vector fans of [39], then
for acyclic initial seeds by Hohlweg, Lange, and Thomas [49] using Cambrian lattices and fans
of Reading and Speyer [91, 92], then revisited by Stella [98], and by Pilaud and Stump [87] via
brick polytopes, and finally for arbitrary initial seeds by Hohlweg, Pilaud, and Stella [50]. More
recently in [17], Bazier-Matte, Douville, Mousavand, Thomas, and Yıldırım extended the con-
struction of associahedra of [4, section 3.2] to acyclic seeds of simply laced finite-type cluster
algebras. Here, we extend the construction of [4, section 3.2] to any finite-type (simply laced
or not) cluster algebra with respect to any seed (acyclic or not) by providing a direct proof that
the type cone of the cluster fan of any finite-type cluster algebra with respect to any initial seed
is simplicial.
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2.2.1 Cluster algebras and cluster fans

We present some definitions and properties of finite-type cluster algebras and their cluster fans,
following the presentation of [50].

Cluster algebras
Let ℚ(𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑚) be the field of rational expressions in 𝑛 + 𝑚 variables with ratio-
nal coefficients, and ℙ𝑚 denote its abelian multiplicative subgroup generated by {𝑝𝑖}𝑖∈[𝑚]. For
𝑝 =
∏
𝑖∈[𝑚]

𝑝
𝑎𝑖
𝑖
∈ ℙ𝑚, define {𝑝}+ ∶=

∏
𝑖∈[𝑚]

𝑝
max(𝑎𝑖 ,0)
𝑖

and {𝑝}− ∶=
∏
𝑖∈[𝑚]

𝑝
−min(𝑎𝑖 ,0)
𝑖

.

A seed Σ is a triple (B, P, X) where

∙ the exchange matrix B is an integer 𝑛 × 𝑛 skew-symmetrizable matrix, that is, such that there
exists a diagonal matrix D with −BD = (BD)𝑇 ,

∙ the coefficient tuple P is any subset of 𝑛 elements of ℙ𝑚,
∙ the cluster X is a set of 𝑛 cluster variables in ℚ(𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑚) algebraically independent
over ℚ(𝑝1, … , 𝑝𝑚).

To simplify our notations, we use the convention to label B = (𝑏𝑥𝑦)𝑥,𝑦∈X and P = {𝑝𝑥}𝑥∈X by the
cluster variables of X.
For a seed Σ = (B, P, X) and a cluster variable 𝑥 ∈ X, themutation in direction 𝑥 creates a new

seed 𝜇𝑥(Σ) = Σ′ = (B′, P′, X′) where:

∙ the new cluster X′ is obtained from X by replacing 𝑥 with the cluster variable 𝑥′ defined by the
following exchange relation:

𝑥𝑥′ = {𝑝𝑥}+
∏

𝑦∈X, 𝑏𝑥𝑦>0

𝑦𝑏𝑥𝑦 + {𝑝𝑥}−
∏

𝑦∈X, 𝑏𝑥𝑦<0

𝑦−𝑏𝑥𝑦

and leaving the remaining cluster variables unchanged so that X ⧵ {𝑥} = X′ ⧵ {𝑥′};
∙ the row (resp., column) ofB′ indexed by𝑥′ is the negative of the row (resp., column) ofB indexed
by 𝑥, while all other entries satisfy 𝑏′𝑦𝑧 = 𝑏𝑦𝑧 +

1
2
(|𝑏𝑦𝑥|𝑏𝑥𝑧 + 𝑏𝑦𝑥|𝑏𝑥𝑧|);

∙ the elements of the new coefficient tuple P′ are

𝑝′𝑦 =

⎧⎪⎨⎪⎩
𝑝−1𝑥 if 𝑦 = 𝑥′,
𝑝𝑦{𝑝𝑥}

𝑏𝑥𝑦
− if 𝑦 ≠ 𝑥′ and 𝑏𝑥𝑦 ⩽ 0,

𝑝𝑦{𝑝𝑥}
𝑏𝑥𝑦
+ if 𝑦 ≠ 𝑥′ and 𝑏𝑥𝑦 > 0.

An important point is that mutations are involutions: 𝜇𝑥′(𝜇𝑥(Σ)) = Σ. We say that two seeds are
adjacent (resp.,mutationally equivalent) when they can be obtained fromeach other by amutation
(resp., a sequence of mutations). We also use the same terminology for exchange matrices. We
denote by (B◦, P◦) the collection of all cluster variables in the seeds mutationally equivalent
to an initial seed Σ◦ = (B◦, P◦, X◦) with cluster variables X◦ = {𝑥1, … , 𝑥𝑛}. The (geometric type)
cluster algebra (B◦, P◦) is the ℤℙ𝑚-subring of ℚ(𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑚) generated by the cluster
variables in (B◦, P◦). The cluster complex of (B◦, P◦) is the simplicial complex whose vertices
are the cluster variables of(B◦, P◦) and whose facets are the clusters of(B◦, P◦).
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Finite type
In this paper, we only consider finite type cluster algebras, that is, those with a finite number𝑁 of
cluster variables. It turns out that these finite-type cluster algebras were classified by Fomin and
Zelevinsky [38] using the Cartan-killing classification for crystallographic root systems. Define
the Cartan companion of an exchange matrix B as the matrix A(B) given by 𝑎𝑥𝑦 = 2 if 𝑥 = 𝑦 and
𝑎𝑥𝑦 = −|𝑏𝑥𝑦| otherwise.
Theorem 2.9 [38, Theorem 1.4]. The cluster algebra (B◦, P◦) is of finite type if and only if B◦ is
mutationally equivalent to a matrix B whose Cartan companion A(B) is a Cartan matrix of finite
type. Moreover the type of A(B) is determined by 𝐵◦.

A finite-type exchange matrix B◦ is acyclic if A(B◦) is already a Cartan matrix, and cyclic other-
wise. An acyclic exchange matrix B◦ is bipartite if each row of B◦ consists either of nonpositive or
nonnegative entries. We use the same terminology for the seed Σ◦.
From now on, we fix a finite-type cluster algebra(B◦, P◦) and we consider the root system of

type A(B◦) (again, this root system is finite only when the initial seed B◦ is acyclic). We use the
following classical bases of the underlying vector spaces:

∙ the simple roots {𝜶𝑥}𝑥∈X◦ and the fundamental weights {𝝎𝑥}𝑥∈X◦ are two bases of the same
vector space 𝑉 related by the Cartan matrix A(B◦),

∙ the simple coroots {𝜶∨𝑥}𝑥∈X◦ and the fundamental coweights {𝝎
∨
𝑥}𝑥∈X◦ are two basis of the dual

space 𝑉∨ related by the transpose of the Cartan matrix A(B◦)
𝑇 ,

and the basis of simple roots is dual to the basis of fundamental coweights, while the basis of
fundamental weights is dual to the basis of simple coroots.
The cluster complex of a finite-type cluster algebra (B◦, P◦) is independent of the choice of

coefficients and of the choice of the initial seed (as long at it remains in the same mutation
class), and therefore only depends on the cluster type of (B◦, P◦) (i.e., the Cartan type of A(B)
in Theorem 2.9). Moreover, for B∨◦ ∶= −B◦

𝑇 , then the map sending a cluster variable 𝑥 in a
seed Σ of (B◦, P◦) to the cluster variable 𝑥∨ in the seed Σ∨ of (B∨◦ , P◦) obtained by the same
sequence of mutations defines a natural isomorphism between the cluster complexes of(B◦, P◦)
and(B∨◦ , P◦).

Principal coefficients and g - and 𝒄-vectors
We now consider principal coefficients to define the g - and 𝒄-vectors. As defined in [40, Def-
inition 3.1], the cluster algebra with principal coefficients at B◦ is the cluster algebra (B◦, P◦)

in ℚ(𝑥1, … , 𝑥𝑛, 𝑝1, … , 𝑝𝑛), where P◦ = {𝑝𝑥}𝑥∈X◦ are precisely the generators 𝑝1, … , 𝑝𝑛 of ℙ𝑛 rela-
beled by X◦. For simplicity, we drop the mention of the coefficients for principal cluster algebras
in the notations for seeds Σ = (B, X), for cluster algebras (B◦) and for variables (B◦). Prin-
cipal coefficients cluster algebras are ℤ𝑛-graded (in the fundamental weight basis {𝝎𝑥}𝑥∈X◦
of 𝑉) for the degree function deg(B◦, ⋅) on (B◦) obtained by setting deg(B◦, 𝑥) ∶= 𝝎𝑥 and
deg(B◦, 𝑝𝑥) ∶=

∑
𝑦∈X◦

−𝑏𝑦𝑥𝝎𝑦 for any 𝑥 ∈ X◦.

Definition 2.10 [40]. The g -vector g(𝑥) = g(B◦, 𝑥) of a cluster variable 𝑥 ∈ (B◦) is its degree.
We denote by g(Σ) = g(B◦, Σ) ∶= {g(B◦, 𝑥) | 𝑥 ∈ Σ} the set of g -vectors of a seed Σ.
The next definition gives another family of integer vectors, introduced implicitly in [40], that

are relevant in the structure of(B◦).



538 PADROL et al.

F IGURE 6 Two cluster fans (B◦) for the type 𝐴3 (left) and type 𝐶3 (right) cyclic initial exchange matrices.
As the fans are 3-dimensional, we intersect them with the sphere and stereographically project them from the
direction (−1, −1, −1). Illustration from [50].

Definition 2.11 [40]. The 𝒄-vector of a cluster variable 𝑥 in a seed Σ of (B◦) is the vec-
tor 𝐜(𝑥 ∈ Σ) = 𝐜(B◦, 𝑥 ∈ Σ) ∶=

∑
𝑦∈X◦

𝑐𝑦𝑥 𝜶𝑦 of exponents of 𝑝𝑥 =
∏
𝑦∈X◦

(𝑝𝑦)
𝑐𝑦𝑥 . We denote by

𝐜(Σ) = 𝐜(B◦, Σ) ∶= {𝐜(B◦, 𝑥 ∈ Σ) | 𝑥 ∈ Σ} the set of 𝒄-vectors of a seed Σ.
These two families of vectors are connected via the isomorphism 𝑥 ↦ 𝑥∨ between the cluster

complexes of(B◦) and(B∨◦ ) described above.

Theorem 2.12 [73, Theorem 1.2]. For any seed Σ of (B◦), let Σ∨ be its dual in (B∨◦ ).
Then the set of g -vectors g(B◦, Σ) and the set of 𝒄-vectors 𝐜(B∨◦ , Σ

∨) form dual bases, that is⟨ g(B◦, 𝑥) | 𝐜(B∨◦ , 𝑦∨ ∈ Σ∨) ⟩ = 𝛿𝑥=𝑦 for any two cluster variables 𝑥, 𝑦 ∈ Σ.
Cluster fan and generalized associahedron
The following statement is well-known and admits several possible proofs as discussed in [50,
section 4]. Examples are illustrated in Figure 6.

Theorem 2.13. For any finite-type exchange matrix B◦, the collection of cones{
ℝ⩾0 g(B◦, Σ) || Σ seed of(B◦)},

together with all their faces, forms a complete simplicial fan (B◦), called the g -vector fan or cluster
fan of B◦.

Moreover, this fan is known to be polytopal. More precisely, consider a vector 𝒉 ∈ ℝ(B◦) such
that

𝒉𝑥 + 𝒉𝑥′ > max
( ∑
𝑦∈X∩X′, 𝑏𝑥𝑦<0

−𝑏𝑥𝑦 𝒉𝑦 ,
∑

𝑦∈X∩X′, 𝑏𝑥𝑦>0

𝑏𝑥𝑦 𝒉𝑦

)
for any adjacent seeds (B, X) and (B′, X′) with X ⧵ {𝑥} = X′ ⧵ {𝑥′} (with the usual convention that
an empty sum is 0). Such a vector 𝒉 exists, see the discussion in [50, Proposition 28].
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Theorem 2.14 [50, Theorem 26]. For any finite-type exchange matrix B◦, the cluster fan (B◦) is
the normal fan of the B◦-associahedron 𝖠𝗌𝗌𝗈(B◦, 𝒉) defined equivalently as

(i) the convex hull of the points
∑
𝑥∈Σ 𝒉𝑥 𝐜(B

∨
◦ , 𝑥

∨ ∈ Σ∨) for all seeds Σ of(B◦), or
(ii) the intersection of the halfspaces {𝒗 ∈ 𝑉∨ | ⟨ g(B◦, 𝑥) | 𝒗 ⟩ ⩽ 𝒉𝑥} for all cluster variables 𝑥

of(B◦).

Mutations in the cluster fan
Wenowdiscuss the linear dependences between g -vectors of adjacent seeds. The following lemma
was stated in [50, Lemma 19].

Lemma 2.15. For any finite-type exchange matrix B◦ and any adjacent seeds (B, X) and (B′, X′) in
(B◦) with X ⧵ {𝑥} = X′ ⧵ {𝑥′}, the g -vectors of X ∪ X′ with respect to B◦ satisfy precisely one of the
following two linear dependences

g(B◦, 𝑥) + g(B◦, 𝑥
′) =
∑

𝑦∈X∩X′

𝑏𝑥𝑦<0

−𝑏𝑥𝑦 g(B◦, 𝑦) or g(B◦, 𝑥) + g(B◦, 𝑥
′) =
∑

𝑦∈X∩X′

𝑏𝑥𝑦>0

𝑏𝑥𝑦 g(B◦, 𝑦).

Note that Lemma 2.15 implies Theorem 2.14 because it ensures that the type
cone 𝕋ℂ((B◦)) of the cluster fan contains the cone of height vectors 𝒉 ∈ ℝ(B◦) such that
𝒉𝑥 + 𝒉𝑥′ >

∑
𝑦∈X∩X′, 𝑏𝑥𝑦<0

−𝑏𝑥𝑦 and 𝒉𝑥 + 𝒉𝑥′ >
∑
𝑦∈X∩X′, 𝑏𝑥𝑦>0

𝑏𝑥𝑦 𝒉𝑦 for any seeds (B, X)

and (B′, X′) with X ⧵ {𝑥} = X′ ⧵ {𝑥′}.
Unfortunately, Lemma 2.15 is less precise than Proposition 2.3. Indeed, which of the two pos-

sible linear dependences is satisfied by the g -vectors of X ∪ X′ depends on the initial exchange
matrix B◦. However, for cluster algebras of finite-type, this linear dependence is independent of
the choice of the adjacent seeds containing 𝑥 and 𝑥′. As explained in Corollary 3.30, this statement
follows from [18, Theorem 7.5]. We state it here for future reference. Note that the corresponding
statement for cluster variables, instead of g -vectors, holds by [38, Theorem 1.11].

Proposition 2.16. For any finite-type exchange matrix B◦, the cluster fan has the unique exchange
relation property.

2.2.2 Type cone of finite-type cluster fans

The linear dependences of Lemma 2.15 provide a redundant description of the type cone of the
cluster fan (B◦). We denote by 𝒏(B◦, 𝑥, 𝑥′) the normal vector of the inequality of the type cone
corresponding to two exchangeable cluster variables 𝑥 to 𝑥′ (it is well-defined by Proposition 2.16).
In other words, depending onwhich of the two linear dependences of Lemma 2.15 holds, we have

𝒏(B◦, 𝑥, 𝑥
′) ∶= 𝒇𝑥 + 𝒇𝑥′ −

∑
𝑦∈X∩X′

𝑏𝑥𝑦<0

−𝑏𝑥𝑦 𝒇𝑦 or 𝒏(B◦, 𝑥, 𝑥
′) ∶= 𝒇𝑥 + 𝒇𝑥′ −

∑
𝑦∈X∩X′

𝑏𝑥𝑦>0

𝑏𝑥𝑦 𝒇𝑦,

where (𝒇𝑥)𝑥∈(B◦) denotes the canonical basis of ℝ
(B◦). We obtain the following statement.
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Corollary 2.17. For any finite-type exchange matrix B◦, the type cone of the cluster fan (B◦) is
given by

𝕋ℂ((B◦)) = {𝒉 ∈ ℝ(B◦) | ⟨𝒏(B◦, 𝑥, 𝑥′) | 𝒉 ⟩ > 0 for all exchangeable cluster variables 𝑥, 𝑥′}.
Example 2.18. Consider the cluster fans illustrated in Figure 6. The type cone of the left fan of
Figure 6 lives in ℝ9 and has a lineality space of dimension 3. It has 6 facet-defining inequalities
(given below),which correspond to themeshmutations of Theorem2.23 as illustrated inFigure 7.

variables x 1 x 2 x 3 x
2
+
x
3

x
1

x
1
+
x
3

x
2

x
1
+
x
2

x
3

x
1
+
x
2
+
x
3

x
2
x
3

x
1
+
x
2
+
x
3

x
1
x
3

x
1
+
x
2
+
x
3

x
1
x
2

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [−1
0
1

] [
1
−1
0

] [
0
1
−1

] [
0
0
−1

] [−1
0
0

] [
0
−1
0

]

facet 1 0 0 0 −1 0 0 0 1 A

defining 0 0 −1 1 1 0 0 0 −1 B

inequalities 0 0 1 −1 0 0 0 1 0 C

0 −1 0 1 0 1 0 −1 0 D

0 1 0 0 0 −1 1 0 0 E

−1 0 0 0 1 1 −1 0 0 F

The type cone of the right fan of Figure 6 lives in ℝ12 and has a lineality space of dimension 3.
It has nine facet-defining inequalities (given below), which correspond to the mesh mutations of
Theorem 2.23 as illustrated in Figure 8.
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x
3

x
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+
x
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x
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x
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+
x
2
x
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x
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x
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x
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g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [−1
0
1

] [
1
−1
0

] [
0
2
−1

] [
0
1
−1

] [−1
1
0

] [
0
−1
0

] [
0
0
−1

] [−2
0
1

] [−1
0
0

]

facet 1 0 0 0 −1 0 0 0 1 0 0 0 A

defining 0 0 −1 1 1 0 0 0 −1 0 0 0 B

inequalities 0 0 1 −2 0 0 0 0 0 0 1 0 C

0 −1 0 1 0 0 0 1 0 0 −1 0 D

0 0 0 0 0 1 0 −2 0 0 1 0 E

0 1 0 0 0 0 0 −1 0 0 0 1 F

0 0 0 0 0 −1 1 1 0 0 0 −1 G

0 0 0 0 0 1 −2 0 0 1 0 0 H

−1 0 0 0 1 0 1 0 0 −1 0 0 I

To describe the facets of this type cone, we need the following special mutations.

Definition 2.19. The mutation of a seed Σ = (B, X) in the direction of a cluster variable 𝑥 ∈ X
is a mesh mutation that starts (resp., ends) at 𝑥 if the entries 𝑏𝑥𝑦 for 𝑦 ∈ X are all nonnegative
(resp., all nonpositive). A mesh mutation is initial if it ends at a cluster variable of an initial seed.
We denote by(B◦) the set of all pairs {𝑥, 𝑥′} where 𝑥 and 𝑥′ are two cluster variables of(B◦)
that are exchangeable via a noninitial mesh mutation.

The following statement is proved in Corollary 3.27.

Lemma 2.20. We have that |(B◦)| = |(B◦)| + 𝑛.
The following statement describes the linear dependence in the mesh mutations. It follows

from Lemma 2.15 and Definition 2.19.

Lemma 2.21. Consider two adjacent seeds (B, X) and (B′, X′)withX ⧵ {𝑥} = X′ ⧵ {𝑥′} connected by
a mesh mutation. If the mesh mutation is initial, then

g(B◦, 𝑥) + g(B◦, 𝑥
′) = 0.

Otherwise, the g -vectors of X ∪ X′ with respect to B◦ satisfy the linear dependence

g(B◦, 𝑥) + g(B◦, 𝑥
′) =
∑

𝑦∈X∩X′

|𝑏𝑥𝑦| g(B◦, 𝑦).
For {𝑥, 𝑥′} ∈(B◦) and 𝑦 ∈ (B◦), we denote by 𝛼𝑥,𝑥′ (𝑦) the coefficient of g(B◦, 𝑦) in

the linear dependence between the g -vectors g(B◦, 𝑥) and g(B◦, 𝑥
′). In other words, accord-

ing to Lemma 2.21, if (B, X) and (B′, X′) are two adjacent seeds with X ⧵ {𝑥} = X′ ⧵ {𝑥′}, we
have 𝛼𝑥,𝑥′ (𝑦) = |𝑏𝑥𝑦| for 𝑦 ∈ X ∩ X′ and 𝛼𝑥,𝑥′ (𝑦) = 0 otherwise. The following statement will be
shown in Corollary 3.29.
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Proposition 2.22. For any finite-type exchange matrix B◦ (acyclic or not, simply laced or not),
the linear dependence between the g -vectors of any mutation can be decomposed into positive
combinations of linear dependences between g -vectors of noninitial mesh mutations.

We derive from Proposition 2.22 the following description of the facets of the type cone of the
cluster fan.

Theorem 2.23. For any finite-type exchange matrix B◦ (acyclic or not, simply laced or not), the
noninitial mesh mutations precisely correspond to the extremal exchangeable pairs of the cluster
fan (B◦).

Proof. As (B◦) has dimension 𝑛 and |(B◦)| rays (corresponding to the cluster variables), we
know from Remark 1.6 that there are at least |(B◦)| − 𝑛 extremal exchangeable pairs. More-
over, Proposition 2.22 and Lemma 2.20 ensure that there are at most |(B◦)| = |(B◦)| − 𝑛
extremal exchangeable pairs (corresponding to the noninitial meshmutations). We conclude that
all noninitial mesh mutations are extremal exchangeable pairs. □

Our next statement follows from the end of the previous proof.

Corollary 2.24. The type cone 𝕋ℂ((B◦)) is simplicial.

As a follow-up to Theorem 2.23, we conjecture the following surprising property.

Conjecture 2.25. Any positive dual 𝒄-vector supports exactly one extremal exchangeable pair.

CombiningCorollaries 1.11 and 2.24 andTheorem2.23, we derive the following description of all
polytopal realizations of the cluster fan(B◦). This result was stated in [17] in the special situation
of acyclic seeds in simply laced types. Note that our proof is quite different from [17] as it relies on
our type cone approach.

Theorem 2.26. For any finite-type exchange matrix B◦ (acyclic or not, simply laced or not), and for
any 𝓵 ∈ ℝ

(B◦)
>0

, the polytope

𝑅𝓵(B◦) ∶=
{
𝒛 ∈ ℝ(B◦) ||| 𝒛 ⩾ 0 and 𝒛𝑥 + 𝒛𝑥′ − ∑

𝑦∈(B◦)

𝛼𝑥,𝑥′ (𝑦) 𝒛𝑦 = 𝓵{𝑥,𝑥′} for all {𝑥, 𝑥′} ∈(B◦)
}

is a generalized associahedron, whose normal fan is the cluster fan (B◦). Moreover, the
polytopes 𝑅𝓵(B◦) for 𝓵 ∈ ℝ

(B◦)
>0

describe all polytopal realizations of (B◦).

Example 2.27. To complement Subsection 2.1, let us translate to diagonals and triangula-
tions the result of Theorem 2.26 in type 𝐴. Let 𝑛 ⩾ 3. Consider a convex (𝑛 + 3)-gon whose
vertices are labeled modulo 𝑛 + 3 and whose internal and boundary diagonals are denoted by
Δ(𝑛) ∶=

(ℤ∕(𝑛+3)ℤ
2

)
. Consider a triangulation 𝑇 of this polygon, formed by the 𝑛 + 3 boundary
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edges and 𝑛 internal diagonals of the (𝑛 + 3)-gon. Then for any 𝓵 ∈ ℝ
Δ(𝑛)⧵𝑇
>0

, the polytope

𝑅𝓵(𝑇) ∶=

{
𝒛 ∈ ℝΔ(𝑛)

||||| 𝒛 ⩾ 0 and 𝒛(𝑎,𝑎+1) = 0 for all 𝑎 ∈ ℤ∕(𝑛 + 3)ℤ and
𝒛(𝑎,𝑏) + 𝒛(𝑎−1,𝑏−1) − 𝒛(𝑎,𝑏−1) − 𝒛(𝑎−1,𝑏) = 𝓵(𝑎,𝑏) for all (𝑎, 𝑏) ∉ 𝑇

}
is an associahedronwhose normal fan is the g -vector fan(𝑇)with respect to the triangulation 𝑇.
Moreover, the polytopes 𝑅𝓵(𝑇) for 𝓵 ∈ ℝ

Δ(𝑛)⧵𝑇
>0

describe all polytopal realizations of (𝑇).

2.3 Nonkissing complexes and gentle associahedra

Gentle associahedra were constructed by Palu, Pilaud, and Plamondon [81] in the context of sup-
port 𝜏-tilting for gentle algebras. For a given 𝜏-tilting finite gentle quiver �̄� (defined in the next
section), the �̄�-associahedron 𝖠𝗌𝗌𝗈(�̄�) is a simple polytope that encodes certain representations
of �̄� and their 𝜏-tilting relations. Combinatorially, the �̄�-associahedron is a polytopal realization
of the nonkissing complex of �̄�, defined as the simplicial complex of all collections of walks on
the blossoming quiver �̄�❀ that are pairwise nonkissing. The nonkissing complex encompasses
two families of simplicial complexes studied independently in the literature: on the one hand the
grid associahedra introduced by Petersen, Pylyavskyy, and Speyer in [82] for a staircase shape,
studied by Santos, Stump, and Welker [96] for rectangular shapes, and extended by McConville
in [66] for arbitrary grid shapes; and on the other hand the Stokes polytopes and accordion associ-
ahedra studied by Baryshnikov [11], Chapoton [26], Garver and McConville [42], and Manneville
and Pilaud [70]. These two families naturally extend the classical associahedron, obtained from
a line quiver. Nonkissing complexes are geometrically realized by polytopes called gentle associ-
ahedra, whose normal fan is called the nonkissing fan: its rays correspond to walks in the quiver
and its cones are generated by the nonkissing walks. In this section, we describe the type cone of
the nonkissing fan of a quiver �̄� with no self-kissing walks.

2.3.1 Nonkissing complex and nonkissing fan of a gentle quiver

We present the definitions and properties of the nonkissing complex of a gentle quiver, following
the presentation of [81]. See also [12] for an alternative presentation.

Gentle quivers
Consider a bound quiver �̄� = (𝑄, 𝐼), formed by a finite quiver 𝑄 = (𝑄0, 𝑄1, 𝑠, 𝑡) and an ideal 𝐼 of
the path algebra 𝑘𝑄 (the 𝑘-vector space generated by all paths in 𝑄, including vertices as paths
of length zero, with multiplication induced by concatenation of paths) such that 𝐼 is generated
by linear combinations of paths of length at least two, and 𝐼 contains all sufficiently large paths.
See [9] for background.
Following Butler and Ringel [22], we say that �̄� is a gentle bound quiver when

(i) each vertex 𝑎 ∈ 𝑄0 has at most two incoming and two outgoing arrows,
(ii) the ideal 𝐼 is generated by paths of length exactly two,
(iii) for any arrow 𝛽 ∈ 𝑄1, there is at most one arrow 𝛼 ∈ 𝑄1 such that 𝑡(𝛼) = 𝑠(𝛽) and 𝛼𝛽 ∉ 𝐼

(resp., 𝛼𝛽 ∈ 𝐼) and atmost one arrow 𝛾 ∈ 𝑄1 such that 𝑡(𝛽) = 𝑠(𝛾) and 𝛽𝛾 ∉ 𝐼 (resp., 𝛽𝛾 ∈ 𝐼).

The algebra 𝑘𝑄∕𝐼 is called a gentle algebra.
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F IGURE 9 A blossoming quiver (left), three pairwise kissing walks (middle), and a nonkissing facet (right).
Illustration from [81].

The blossoming quiver �̄�❀ of a gentle quiver �̄� is the gentle quiver obtained by completing
all vertices of �̄�with additional incoming or outgoing blossoms such that all vertices of �̄� become
4-valent. For instance, Figure 9,(left) shows a blossoming quiver: the vertices of �̄� appear in black,
while the blossom vertices of �̄�❀ appear in white. We now always assume that �̄� is a gentle quiver
with blossoming quiver �̄�❀.

Strings and walks
A string in �̄� = (𝑄, 𝐼) is a word of the form 𝜌 = 𝛼

𝜀1
1
𝛼
𝜀2
2
⋯𝛼

𝜀𝓁
𝓁 , where

(i) 𝛼𝑖 ∈ 𝑄1 and 𝜀𝑖 ∈ {−1, 1} for all 𝑖 ∈ [𝓁],
(ii) 𝑡(𝛼𝜀𝑖

𝑖
) = 𝑠(𝛼

𝜀𝑖+1
𝑖+1
) for all 𝑖 ∈ [𝓁 − 1],

(iii) there is no path 𝜋 ∈ 𝐼 such that 𝜋 or 𝜋−1 appears as a factor of 𝜌, and
(iv) 𝜌 is reduced, in the sense that no factor 𝛼𝛼−1 or 𝛼−1𝛼 appears in 𝜌, for 𝛼 ∈ 𝑄1.

The integer 𝓁 is called the length of the string 𝜌. For each vertex 𝑎 ∈ 𝑄0, there is also a string of
length zero, denoted by 𝜀𝑎, that starts and ends at 𝑎. We implicitly identify the two inverse strings 𝜌
and 𝜌−1, and call it an undirected string of �̄�. Let (�̄�) denote the set of strings of �̄�.
A walk of �̄� is a maximal string of its blossoming quiver �̄�❀ (meaning that each endpoint is

a blossom). As for strings, we implicitly identify the two inverse walks 𝜔 and 𝜔−1, and call it an
undirected walk of �̄�. Let(�̄�) denote the set of walks of �̄�.
A substring of a walk 𝜔 = 𝛼𝜀1

1
⋯𝛼

𝜀𝓁
𝓁 of �̄� is a string 𝜎 = 𝛼𝜀𝑖+1

𝑖+1
⋯𝛼

𝜀𝑗−1
𝑗−1

of �̄� for some indices
1 ⩽ 𝑖 < 𝑗 ⩽ 𝓁. Note that by definition,

∙ the endpoints of 𝜎 are not allowed to be blossom endpoints of 𝜔,
∙ the position of 𝜎 as a factor of 𝜔matters (the same string at a different position is considered a
different substring).

∙ the string 𝜀𝑎 is a substring of 𝜔 for each occurrence of 𝑎 as a vertex of 𝜔 (take 𝑗 = 𝑖 + 1).

We denote by Σ(𝜔) the set of substrings of 𝜔. We say that the substring 𝜎 = 𝛼𝜀𝑖+1
𝑖+1

⋯𝛼
𝜀𝑗−1
𝑗−1

is at the
bottom (resp., on top) of the walk 𝜔 = 𝛼𝜀1

1
⋯𝛼

𝜀𝓁
𝓁 if 𝜀𝑖 = 1 and 𝜀𝑗 = −1 (resp., if 𝜀𝑖 = −1 and 𝜀𝑗 = 1).

In other words the two arrows of 𝜔 incident to the endpoints of 𝜎 point toward 𝜎 (resp., outward
from 𝜎). We denote by Σbot(𝜔) and Σtop(𝜔) the sets of bottom and top substrings of 𝜔, respectively.
We use the same notation for undirected walks (of course, substrings of an undirected walk are
undirected).
A peak (resp., deep) of a walk 𝜔 is a substring of 𝜔 of length zero that is on top (resp., at the

bottom) of 𝜔. A walk 𝜔 is straight if it has no peak or deep (i.e., if 𝜔 or 𝜔−1 is a path in �̄�❀),
and bending otherwise. We denote by 𝗉𝖾𝖺𝗄𝗌(𝜔) (resp., 𝖽𝖾𝖾𝗉𝗌(𝜔)) the multisets of vertices of peaks
(resp., deeps) of 𝜔.
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F IGURE 10 A schematic representation of kissing and nonkissing walks. The walks 𝜔 and 𝜔′ kiss (left)
while the walks 𝜇 and 𝜈 share a common substring but do not kiss (right). Illustration from [81].

Nonkissing complex
Let 𝜔 and 𝜔′ be two undirected walks on �̄�. We say that 𝜔 kisses 𝜔′ if Σtop(𝜔) ∩ Σbot(𝜔′) ≠ ∅. In
other words, 𝜔 and 𝜔′ share a common substring 𝜎, and both arrows of 𝜔 (resp., of 𝜔′) incident to
the endpoints of 𝜎 but not in 𝜎 are outgoing (resp., incoming) at the endpoints of 𝜎. See Figure 10
for a schematic representation and Figure 9 (middle) where the three walks are pairwise kissing.
We say that 𝜔 and 𝜔′ are kissing if 𝜔 kisses 𝜔′ or 𝜔′ kisses 𝜔 (or both). Note that we authorize the
situation where the common finite substring is reduced to a vertex 𝑎, that 𝜔 can kiss 𝜔′ several
times, that 𝜔 and 𝜔′ can mutually kiss, and that 𝜔 can kiss itself. For example, the orange walk
in Figure 9 (middle) is self-kissing (at its self-intersection). We say that a walk is proper if it is
not straight nor self-kissing, and improper otherwise. We denote byprop(�̄�) the set of all proper
walks of �̄�.
The (reduced) nonkissing complex of �̄� is the simplicial complex (�̄�) whose faces are the

collections of pairwise nonkissing proper walks of �̄�. For example, Figure 9 (right) represents
a nonkissing facet. As shown in [81, Theorem 2.46], the nonkissing complex is a combinatorial
model for the support 𝜏-tilting complex on 𝜏-rigid modules over 𝑘𝑄∕𝐼. The quiver �̄� is called
𝜏-tilting finite or nonkissing finite when this complex is finite (in other words, �̄� has finitely may
nonkissing walks).

g - and 𝒄-vectors
Wenow define two families of vectors associated to walks in the nonkissing complex. Let (𝒆𝑣)𝑣∈𝑄0
denote the canonical basis of ℝ𝑄0 . For a multiset 𝑉 = {{𝑣1, … , 𝑣𝑘}} of 𝑄0, we denote by
𝒎𝑉 ∶=

∑
𝑖∈[𝑘] 𝒆𝑣𝑖 .

Definition 2.28 [81, Definition 4.8]. The g -vector of a walk 𝜔 is g(𝜔) ∶= 𝒎𝗉𝖾𝖺𝗄𝗌(𝜔) − 𝒎𝖽𝖾𝖾𝗉𝗌(𝜔). We
set g(𝐹) ∶= {g(𝜔) | 𝜔 ∈ 𝐹} for a nonkissing facet 𝐹 ∈(�̄�).

For example, the g -vectors of the blue, green, and yellow walks of Figure 9 (right) are, respec-
tively, (0, −1, 0, 0, 1, 0), (0, 0, 1, −1, 1, 0) and (0, 0, 0, 0, 1, 0). Note that by definition, the g(𝜔) = 0

for a straight walk 𝜔.
To define the other family of vectors, we need to recall the notion of distinguished substring

of a walk defined in [81, Definition 2.25]. Consider an arrow 𝛼 ∈ 𝑄1 contained in two distinct
walks𝜔,𝜔′ of a nonkissing facet𝐹 ∈(�̄�), and let 𝜎 denote the common substring of𝜔 and𝜔′.
We write 𝜔 ≺𝛼 𝜔′ if 𝜔 enters and/or exits 𝜎 with arrows in the direction pointed by 𝛼, while 𝜔′
enters and/or exits 𝜎 with arrows in the direction opposite to 𝛼. For example, in Figure 10, we
have 𝜇 ≺𝛾 𝜈 but 𝜈 ≺𝛿 𝜇. The distinguishedwalk of the nonkissing facet𝐹 ∈(�̄�) at the arrow 𝛼
is the maximum walk of 𝐹 for ≺𝛼. The distinguished arrows of the walk 𝜔 in the nonkissing
facet 𝐹 ∈(�̄�) are the arrows where 𝜔 is the distinguished walk. It is shown in [81, Proposi-
tion 2.28] that each bending walk in a nonkissing facet has precisely two distinguished arrows,
pointing in opposite directions. For example, we have marked in Figure 9 (right) the two distin-
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F IGURE 11 Two nonkissing fans. As the fans are 3-dimensional, we intersect them with the sphere and
stereographically project them from the direction (−1, −1, −1). Illustration from [81].

guished arrows on each walk by triple arrows. The distinguished substring 𝖽𝗌(𝜔, 𝐹) of the walk 𝜔
in the nonkissing facet𝐹 ∈(�̄�) is the substring located between its two distinguished arrows.

Definition 2.29 [81, Definition 4.11]. The 𝒄-vector of a walk 𝜔 in a nonkissing facet 𝐹 ∈(�̄�)

is 𝐜(𝜔 ∈ 𝐹) ∶= 𝜀(𝜔, 𝐹)𝒎𝖽𝗌(𝜔,𝐹), where 𝜀(𝜔, 𝐹) ∈ {−1, 1} is positive if 𝖽𝗌(𝜔, 𝐹) ∈ Σtop(𝜔) and
negative if 𝖽𝗌(𝜔, 𝐹) ∈ Σbot(𝜔). We set 𝐜(𝐹) ∶= {𝐜(𝜔 ∈ 𝐹) | 𝜔 ∈ 𝐹} for a nonkissing facet
𝐹 ∈(�̄�).

For example, the 𝒄-vectors of the blue, green, and yellow walks in the nonkissing facet of
Figure 9 (right) are, respectively, (0, −1, 0, 0, 0, 0), (0, 0, 0, −1, 0, 0) and (0, 1, 0, 1, 1, 0). As the reader
can observe on the example of Figure 9 (right), the g - and 𝒄-vectors also form dual bases.

Proposition 2.30. For any nonkissing facet 𝐹 ∈(�̄�), the set of g -vectors g(𝐹) and the set of
𝒄-vectors 𝐜(𝐹) form dual bases, that is ⟨ g(𝜔) | 𝐜(𝜔′ ∈ 𝐹) ⟩ = 𝛿𝜔=𝜔′ for any two walks 𝜔,𝜔′ ∈ 𝐹.
The following result will also be essential in our discussion.We say that a string 𝜎 is distinguish-

able if it is the distinguished substring of a walk in a nonkissing facet, and we denote by dist(�̄�)
the set of distinguishable strings of �̄�.

Proposition 2.31 [81, Proposition 3.68]. The number of distinguishable strings dist(�̄�) and proper
walksprop(�̄�) of the quiver �̄� are related by

|dist(�̄�)| + |𝑄0| = |prop(�̄�)|.
Nonkissing fan and gentle associahedron
The g -vectors support a complete simplicial fan realization of the nonkissing complex (�̄�).
Examples are illustrated in Figure 11.

Theorem 2.32 [81, Theorem 4.17]. For any nonkissing finite gentle quiver �̄�, the set of cones

(�̄�) ∶= {ℝ⩾0 g(𝐹) | 𝐹 nonkissing face of(�̄�)}

is a complete simplicial fan of ℝ𝑄0 , called nonkissing fan of �̄�, which realizes the nonkissing
complex(�̄�).
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F IGURE 1 2 A schematic representation of a flip. Illustration from [81].

It is proved in [81, Theorem 4.27] that the nonkissing fan comes from a polytope. For a walk 𝜔,
denote by kn(𝜔) the sum over all other walks 𝜔′ of the number of kisses between 𝜔 and 𝜔′.

Theorem2.33 [81, Theorem4.27].For anynonkissing finite gentle quiver �̄�, the nonkissing fan(�̄�)
is the normal fan of the gentle associahedron 𝖠𝗌𝗌𝗈(�̄�) defined equivalently as:

(i) the convex hull of the points
∑
𝜔∈𝐹 kn(𝜔) 𝐜(𝜔 ∈ 𝐹) for all facets 𝐹 ∈(�̄�), or

(ii) the intersection of the halfspaces {𝒙 ∈ ℝ𝑄0 | ⟨ g(𝜔) | 𝒙 ⟩ ⩽ kn(𝜔)} for all walks 𝜔 on �̄�.

Flips in the nonkissing fan
Although we lack a characterization of the exchangeable pairs of the nonkissing complex (see
Remark 2.35), we can still describe the linear dependence among the g -vectors involved in a flip.
The following statement is partially proved in [81, Theorem 4.17]. The notations are illustrated in
Figure 12.

Proposition 2.34. Let 𝜔,𝜔′ be two exchangeable walks on �̄�. Then:

(i) For any nonkissing facets 𝐹, 𝐹′ of (�̄�) with 𝐹 ⧵ {𝜔} = 𝐹′ ⧵ {𝜔′}, the distinguished sub-
strings of 𝜔 in 𝐹 and of 𝜔′ in 𝐹′ coincide to a string 𝜎. Moreover, if we decompose 𝜔 = 𝜌𝜎𝜏
and 𝜔′ = 𝜌′𝜎𝜏′, then the facets 𝐹 and 𝐹′ both contain the walks 𝜇 ∶= 𝜌′𝜎𝜏 and 𝜈 ∶= 𝜌𝜎𝜏′.

(ii) The substring 𝜎 and thus the walks 𝜇 and 𝜈 only depend on the exchangeable walks 𝜔 and 𝜔′,
and not on the adjacent nonkissing facet 𝐹 and 𝐹′.

(iii) The linear dependence between the g -vectors of 𝐹 ∪ 𝐹′ is given by

g(𝜔) + g(𝜔′) = g(𝜇) + g(𝜈).

(iv) The nonkissing fan of �̄� has the unique exchange relation property.
(v) The 𝒄-vector orthogonal to all g -vectors g(𝜆) for 𝜆 ∈ 𝐹 ∩ 𝐹′ is the multiplicity vector𝒎𝜎 of the

vertices of the substring 𝜎 of 𝜔 and 𝜔′.

Proof. Points (i), (iii), and (v) were shown in [81, Proposition 2.33, Theorem 4.17, and Proposi-
tion 4.16].Wepostpone the proof of point (ii) until Corollary 4.45. Finally, point (iv) follows directly
from points (ii) and (iii). □

Remark 2.35. In view of Proposition 2.34, it is tempting to look for a characterization of the
exchangeable pairs 𝜔,𝜔′ using the kisses between 𝜔 and 𝜔′. This question was discussed in [12,
section 9]. However, as illustrated, for instance, in the nonkissing complex of Figure 11 (right),

∙ two exchangeable walks may kiss along more than one string (only one is distinguished),
∙ two nonexchangeable walks can kiss along more than one distinguishable string,
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F IGURE 13 A gentle grid quiver (left), a gentle dissection quiver (middle left), and a path quiver that is
both the gentle grid quiver of a ribbon (middle right) and the dissection quiver of a triangulation (right).
Illustration from [81].

∙ two walks that kiss along a single distinguishable string are not always exchangeable,
∙ not all strings are distinguishable.

In Subsection 2.3.3, we will restrict to a situation that avoids all these pathologies.

Two families of examples: Gentle grid and dissection quivers
The initial motivation for nonkissing complexes came from two families of examples, illustrated
in Figure 13.

(1) Grid quivers: Consider the infinite grid quiver �̄�𝑍2 , whose vertices are all integer points
of ℤ2, whose arrows are (𝑖, 𝑗)⟶ (𝑖, 𝑗 + 1) and (𝑖, 𝑗)⟶ (𝑖 + 1, 𝑗) for any (𝑖, 𝑗) ∈ ℤ2, and
whose relations are (𝑖 − 1, 𝑗)⟶ (𝑖, 𝑗)⟶ (𝑖, 𝑗 + 1) and (𝑖, 𝑗 − 1)⟶ (𝑖, 𝑗)⟶ (𝑖 + 1, 𝑗) for
any (𝑖, 𝑗) ∈ ℤ2. A gentle grid quiver is any subquiver �̄�𝐴 of �̄�𝑍2 induced by a finite sub-
set 𝐴 ⊂ ℤ2 of the integer grid. See Figure 13. The nonkissing complex of gentle grid quivers
were introduced in [66] with motivation coming from [82] and [96].

(2) Dissection quivers: Consider a dissection 𝐷 of a convex polygon 𝑃 (that is a crossing-free
set of diagonals of 𝑃) and its gentle dissection quiver �̄�𝐷 , whose vertices are the internal diag-
onals of 𝐷, whose arrows connect pairs of consecutive internal diagonals along the boundary
of a face of 𝐷, and whose relations correspond to triples of consecutive internal diagonals
along the boundary of a face of 𝐷. See Figure 13. The nonkissing complex of �̄�𝐷 then corre-
sponds to noncrossing sets of accordions of 𝐷, where an accordion is a segment connecting
the middles of two boundary edges of 𝑃 and crossing a connected set of diagonals of 𝐷.
This accordion complex was studied in [42] and [70] with motivation coming from [11],
and [26].

These two families of nonkissing complexes are well-behaved as they avoid all patholo-
gies of Remark 2.35. However, they still provide good examples of nonkissing complexes. In
particular, both families contain the classical associahedron. Namely, the gentle associahe-
dron 𝖠𝗌𝗌𝗈(�̄�) is the classical associahedron of [60, 95] presented in Theorem 2.1 when �̄� = �̄�𝐴
for the path 𝐴 = {(0, 𝑗) | 𝑗 ∈ [𝑛]} or equivalently �̄� = �̄�𝐷 for the fan triangulation 𝐷 (where
all internal diagonals are incident to the same point). More generally, 𝖠𝗌𝗌𝗈(�̄�) is an associa-
hedron of [46] when �̄� = �̄�𝐴 for a ribbon 𝐴 or equivalently �̄� = �̄�𝐷 for a triangulation 𝐷. See
Figure 13.
Note that, it was shown in [80] that the accordion complexes can be extended to dissections

of arbitrary orientable surfaces with marked points and then provide a geometric model for all
nonkissing complexes of gentle quivers.
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F IGURE 14 The facet-defining inequalities of the type cone 𝕋ℂ((�̄�)) of the nonkissing fan, represented
on the Auslander Reiten quiver of the gentle algebra of �̄�. Although they correspond to meshes on the left, they
are not as clear in the general case as on the right. See also Section 4.

2.3.2 Type cones of nonkissing fans

We now discuss the type cones of the nonkissing fans defined in Theorem 2.32. We obtain from
Proposition 2.34 the following redundant description.

Corollary 2.36. For any nonkissing finite gentle quiver �̄�, the type cone of the nonkissing fan (�̄�)

is given by

𝕋ℂ
(
(�̄�)
)
=

{
𝒉 ∈ ℝ(�̄�)

||||| 𝒉𝜔 = 0 for any improper walk 𝜔𝒉𝜔 + 𝒉𝜔′ > 𝒉𝜇 + 𝒉𝜈 for any exchangeable walks 𝜔,𝜔′

}
,

where the walks 𝜇 and 𝜈 for two exchangeable walks 𝜔,𝜔′ are defined in Proposition 2.34.

Example 2.37. Consider the nonkissing fans illustrated in Figure 11. The type cone of the left fan
of Figure 11 lives inℝ8 and has a lineality space of dimension 3. It has 5 facet-defining inequalities
(given below), which correspond to the flips described in Propositions 2.41 and 2.42 and illustrated
in Figure 14 (left).

The type cone of the right fan of Figure 11 lives in ℝ11 and has a lineality space of dimen-
sion 3. It has 9 facet-defining inequalities (given below), which correspond to the flips illustrated
in Figure 14 (right). In particular, it is not simplicial.
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walks

g-vectors

[
1
0
0

] [
0
1
0

] [
0
0
1

] [
1
−1
0

] [
1
0
−1

] [
0
−1
1

] [
0
1
−1

] [−1
0
1

] [−1
0
0

] [
0
−1
0

] [
0
0
−1

]

facet −1 1 0 0 1 0 −1 0 0 0 0 A

defining 1 0 0 0 −1 0 0 0 0 0 1 B

inequalities 0 0 0 1 −1 0 1 0 0 0 0 C

1 0 −1 −1 0 1 0 0 0 0 0 D

0 0 0 −1 1 0 0 0 0 1 −1 E

0 0 1 0 0 −1 0 0 0 1 0 F

0 0 0 1 0 −1 0 1 0 0 0 G

0 0 0 0 0 1 0 −1 1 −1 0 H

0 −1 0 0 0 0 1 1 −1 0 0 K

As illustrated in Example 2.37, the type cone of the nonkissing fan is not always simplicial
and we do not always understand its extremal exchangeable pairs. In the next section, we will
explore a special family of gentle quivers for which we can completely describe the type cone. The
combination of this special family with computer experiments in the general case supports the
following conjecture.

Conjecture 2.38. Consider a distinguishable string 𝜎 ∈ dist(�̄�), and let 𝜔 (resp., 𝜔′) be the walk
obtained from 𝜎 by adding two hooks (resp., two cohooks) at the endpoints of 𝜎. Then:

(1) The 𝒄-vector𝒎𝜎 is the direction of at least one extremal exchangeable pair.
(2) If the walks 𝜔 and 𝜔′ are nonself-kissing and exchangeable, then they form the unique extremal

exchangeable pair directed by 𝜎. These extremal exchangeable pairs correspond to meshes of the
Auslander–Reiten quiver.

2.3.3 Simplicial type cones for brick and 2-acyclic gentle bound quivers

The following family of gentle quivers was considered in [43, Section 4].

Proposition 2.39. The following conditions are equivalent for a gentle quiver �̄�.

(i) Any (nonnecessarily oriented) cycle of �̄� contains at least two relations in 𝐼.
(ii) Each string (resp., walk) is self-avoiding (cannot visit twice the same vertex).
(iii) Any string of �̄� is distinguishable.
(iv) no walk on �̄� is self-kissing.

In this section, we will restrict our attention to the following family of quivers.

Definition 2.40. A gentle quiver �̄� is called:

∙ brick if it satisfies the three equivalent conditions of Proposition 2.39,
∙ 2-acyclic if it contains no cycle of length 2.
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Note that the family of brick and 2-acyclic gentle quivers already contains a lot of relevant exam-
ples, including the gentle grid and dissection quivers discussed in Subsection 2.3.1. In particular,
the classical associahedron is the gentle associahedron of a brick and 2-acyclic gentle quiver. We
will see in Corollary 2.43 that the type cone of the nonkissing fan (�̄�) of a brick and 2-acyclic
gentle quiver �̄� happens to be simplicial, and we will derive in Theorem 2.44 a simple description
of all polytopal realizations of (�̄�).
For a string 𝜎 of �̄� of length at least 1, we denote by 𝜎

✓
(resp., 𝜎✓) the unique string of the

blossoming quiver �̄�❀ of the form 𝜎
✓
= 𝜎𝛼−1

1
𝛼2 …𝛼𝓁 (resp., 𝜎✓ = 𝜎𝛼1𝛼

−1
2
…𝛼−1𝓁 ) with 𝓁 ⩾ 1

and 𝛼1, … , 𝛼𝓁 ∈ 𝑄1 and such that 𝑡(𝛼𝓁) (resp., 𝑠(𝛼𝓁)) is a blossom of �̄�❀. These notations aremoti-
vated by the representation of strings used in [22, 81], and the terminology usually says that 𝜎

✓

(resp., 𝜎✓) is obtained by adding a hook (resp., a cohook) to 𝜎. We define similarly

✓

𝜎 (resp., ✓𝜎).
The walk

✓

(𝜎
✓
) = (

✓

𝜎)
✓
of �̄� is simply denoted by

✓

𝜎
✓
, and we define similarly ✓𝜎✓,

✓

𝜎✓

and ✓𝜎
✓
. For a string 𝜎 = 𝜀𝑎 of length 0, we cannot a priori not distinguish 𝜎

✓
from

✓

𝜎 (resp., 𝜎✓
from ✓𝜎).We thenmake an arbitrary choice enabling us to define the fourwalks

✓

𝜎
✓
, ✓𝜎✓,

✓

𝜎✓

and ✓𝜎
✓
.

Proposition 2.41. For any brick and 2-acyclic gentle quiver �̄� and any string 𝜎 ∈ (�̄�), the
walks ✓𝜎✓ and

✓

𝜎
✓
are exchangeable with distinguished substring 𝜎.

Proof. We fix some notations similar to that of Figure 12. Let 𝜔 ∶= ✓𝜎✓, 𝜔′ ∶=

✓

𝜎
✓
, 𝜇 ∶=

✓

𝜎✓

and 𝜈 ∶= ✓𝜎
✓
. See Figure 12.

As �̄� is brick, these walks are not self-kissing by Proposition 2.39 and as they are bending,
they are proper walks. We want to show that there are nonkissing facets 𝐹, 𝐹′ of the nonkissing
complex(�̄�) containing both 𝜇 and 𝜈 and such that 𝐹 ⧵ {𝜔} = 𝐹′ ⧵ {𝜔′}.
We first show that 𝜇 and 𝜈 are compatible. Let 𝜏 be amaximal common substring of 𝜇 and 𝜈. If 𝜎

and 𝜏 are not disjoint, 𝜎 and 𝜏 must overlap as substrings of both 𝜇 and 𝜈 by Proposition 2.39 (ii),
so that 𝜎 ⊆ 𝜏 by maximality of 𝜏. As 𝜇 and 𝜈 differ at the extremities of 𝜎, this shows that 𝜎 = 𝜏
(as substrings of both 𝜇 and 𝜈). By definition, 𝜇 and 𝜈 are not kissing along 𝜎, hence along 𝜏. We
can therefore assume that 𝜏 appears completely before or completely after 𝜎 in both 𝜇 and 𝜈. We
distinguish two different cases.

∙ If 𝜏 appears before 𝜎 in both 𝜇 and 𝜈, then 𝛼𝜏𝛼′ forms a cycle in �̄�. If 𝜏 is reduced to a vertex,
then we have a 2-cycle. Otherwise, as 𝛼𝜏 is a substring of 𝜈 and 𝛼′𝜏 is a substring of 𝜈, the
cycle 𝛼𝜏𝛼′ contains a unique relation 𝛼′𝛼. This rules out this case under the assumption that �̄�
is brick and 2-acyclic. The case when 𝜏 appears after 𝜎 in both 𝜇 and 𝜈 is symmetric.

∙ If 𝜏 appears before 𝜎 in 𝜇 and after 𝜎 in 𝜈, then 𝜔, 𝜇 and 𝜈 finish at the same blossom so that 𝜇
and 𝜈 are not kissing at 𝜏. The case when 𝜏 appears after 𝜎 in 𝜇 and before 𝜎 in 𝜈 is symmetric.

We conclude that 𝜇 and 𝜈 are nonkissing, which also implies that {𝜇, 𝜈, 𝜔} and {𝜇, 𝜈, 𝜔′} are
nonkissing faces of(�̄�). We can therefore consider a nonkissing facet 𝐹 containing {𝜇, 𝜈, 𝜔}.
We claim that 𝜔 is distinguished at 𝛼 and 𝛽 in 𝐹, that 𝜇 is distinguished at 𝛼′ in 𝐹 and that 𝜈 is

distinguished at 𝛽′ in 𝐹. Let us just prove that 𝜇 is distinguished at 𝛼′, the other statements being
similar. Consider any walk 𝜆 of 𝐹 containing 𝛼′, and let 𝜏 be the maximal common substring of 𝜔
and 𝜆. Note that 𝜔 has the outgoing arrow 𝛼 while 𝜆 has the incoming arrow 𝛼′ at one end of 𝜏.
As 𝜔 and 𝜆 are compatible, it ensures that either 𝜏 ends at a blossom, or 𝜆 has an outgoing arrow
at the other end of 𝜏. This shows that 𝜆 ≺𝛼′ 𝜇 because 𝜆 separates from 𝜇 with an arrow in the
same direction as 𝛼′.
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As this precisely coincideswith the description of the flip in the nonkissing complex (see Propo-
sition 2.34 (i) or [81, Proposition 2.33] for an alternative presentation), we conclude that the flip
of𝜔 in𝐹 creates a facet𝐹′ containing𝜔′. Therefore,𝜔 and𝜔′ are exchangeable with distinguished
substring 𝜎. □

The following statement describes the type cone of the nonkissing fan of a brick and 2-acyclic
gentle quiver. We provide here an elementary combinatorial proof, a more general representation
theoretic perspective is discussed in Theorem 4.46.

Proposition 2.42. For any brick and 2-acyclic gentle quiver �̄�, the extremal exchangeable pairs for
the nonkissing fan of �̄� are precisely the pairs { ✓𝜎✓,

✓

𝜎
✓
} for all strings 𝜎 ∈ (�̄�).

Proof. Let (𝒇𝜔)𝜔∈(�̄�) be the canonical basis of ℝ(�̄�). Consider two exchangeable walks 𝜔
and 𝜔′ with distinguished substring 𝜎 ∈ Σtop(𝜔) ∩ Σbot(𝜔′). Decompose 𝜔 = 𝜌𝜎𝜏 and 𝜔′ = 𝜌′𝜎𝜏′
and define 𝜇 ∶= 𝜌′𝜎𝜏 and 𝜈 ∶= 𝜌𝜎𝜏′ as in Proposition 2.34 (i). Proposition 2.34 (iii) ensures that
the linear dependence between the corresponding g -vectors is given by

g(𝜔) + g(𝜔′) = g(𝜇) + g(𝜈).

Therefore, the inner normal vector of the corresponding inequality of the type cone 𝕋ℂ((�̄�)) is

𝒏(𝜔, 𝜔′) ∶= 𝒇𝜔 + 𝒇𝜔′ − 𝒇𝜇 − 𝒇𝜈.

We claim that this normal vector is always a positive linear combination of the normal vec-
tors𝒎(𝜎) ∶= 𝒏( ✓𝜎✓,

✓

𝜎
✓
) = 𝒇 ✓𝜎✓ + 𝒇

✓

𝜎
✓ − 𝒇 ✓

𝜎✓ − 𝒇 ✓𝜎
✓ for all strings 𝜎 ∈ (�̄�). Our proof

works by descending induction on the length 𝜆(𝜔, 𝜔′) ∶= 𝓁(𝜎) of the common substring of 𝜔
and𝜔′. If 𝜆(𝜔, 𝜔′) is big enough, then thewalk𝜔 (resp.,𝜔′) is just obtained by adding two outgoing
(resp., incoming) blossoms at the end of 𝜎, thus 𝜔 = ✓𝜎✓ (resp., 𝜔′ =

✓

𝜎
✓
), and there is noth-

ing to prove. Assume now that 𝜔 ≠

✓

𝜎
✓
(the situation where 𝜔′ ≠ ✓𝜎✓ is symmetric). If 𝜌 ≠ ✓,

observe that

∙ 𝜔 and ✓𝜎𝜏′ are exchangeable with 𝒏(𝜔, ✓𝜎𝜏′) = 𝒇𝜔 + 𝒇 ✓𝜎𝜏′ − 𝒇 ✓𝜎𝜏 − 𝒇𝜈, and
∙ ✓𝜎𝜏 and 𝜔′ are exchangeable with 𝒏( ✓𝜎𝜏, 𝜔′) = 𝒇 ✓𝜎𝜏 + 𝒇𝜔′ − 𝒇 ✓𝜎𝜏′ − 𝒇𝜇.

We derive that

𝒏(𝜔, 𝜔′) = 𝒏(𝜔, ✓𝜎𝜏′) + 𝒏( ✓𝜎𝜏, 𝜔′).

Observe moreover that as 𝜔 has outgoing arrows at the endpoints of 𝜎, the common substring
of 𝜔 and ✓𝜎𝜏′ strictly contains 𝜎 so that 𝜆(𝜔, ✓𝜎𝜏′) > 𝜆(𝜔, 𝜔′). By induction, 𝒏(𝜔, ✓𝜎𝜏′) is thus
a positive linear combination of𝒎(𝜎) for 𝜎 ∈ (�̄�). By symmetry, we obtain the four equalities

𝒏(𝜔, 𝜔′) =

⎧⎪⎪⎨⎪⎪⎩

𝒏(𝜔, ✓𝜎𝜏′) + 𝒏( ✓𝜎𝜏, 𝜔′) if 𝜌 ≠ ✓,

𝒏(𝜔, 𝜌′𝜎✓) + 𝒏(𝜌𝜎✓,𝜔′) if 𝜏 ≠ ✓,
𝒏(𝜔,

✓

𝜎𝜏′) + 𝒏(

✓

𝜎𝜏, 𝜔′) if 𝜌′ ≠

✓

,

𝒏(𝜔, 𝜌′𝜎
✓
) + 𝒏(𝜌𝜎

✓
,𝜔′) if 𝜏′ ≠

✓
.
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F IGURE 15 Schematic representation of the four equalities in the proof of Proposition 2.42.

These four equalities are illustrated on Figure 15. Moreover, 𝒏(𝜔, ✓𝜎𝜏′), 𝒏( ✓𝜎𝜏,

✓

𝜎✓),
𝒏( ✓𝜎

✓
,

✓

𝜎𝜏′) and 𝒏(

✓

𝜎𝜏, 𝜔′) are all positive combinations of 𝒎(𝜎) for 𝜎 ∈ (�̄�) by induc-
tion hypothesis. Applying these equalities one after the other, we obtain

where we fix the convention 𝒏(𝜆, 𝜆) = 0 in case 𝜌 =

✓

, 𝜌′ = ✓, 𝜏 =
✓
or 𝜏′ = ✓. We conclude

that 𝒏(𝜔, 𝜔′) is a positive combination of 𝒎(𝜎) for 𝜎 ∈ (�̄�), as 𝒏(𝜔, ✓𝜎𝜏′), 𝒏( ✓𝜎𝜏,

✓

𝜎✓),
𝒏( ✓𝜎

✓
,

✓

𝜎𝜏′) and 𝒏(

✓

𝜎𝜏, 𝜔′) are. This shows that all extremal exchangeable pairs are of the
form { ✓𝜎✓,

✓

𝜎
✓
} for 𝜎 ∈ (�̄�).

Conversely, we know from Remark 1.6 that there are at least |prop(�̄�)| − |𝑄0| extremal
exchangeable pairs. As |(�̄�)| = |dist(�̄�)| = |prop(�̄�)| − |𝑄0| by Proposition 2.31, we conclude
that all exchangeable pairs { ✓𝜎✓,

✓

𝜎
✓
} for 𝜎 ∈ (�̄�) are extremal. □

Our next statement follows from the end of the previous proof. See also Corollary 4.49.

Corollary 2.43. For any brick and 2-acyclic gentle quiver �̄�, the type cone 𝕋ℂ((�̄�)) of the
nonkissing fan (�̄�) is simplicial.

Combining Corollaries 1.11 and 2.43 and Proposition 2.42, we derive the following description
of all polytopal realizations of the nonkissing fan (�̄�) of a brick and 2-acyclic quiver �̄�.
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F IGURE 16 The nonkissing fans of two 2-cyclic gentle quivers. Illustration from [81].

Theorem 2.44. For any brick and 2-acyclic gentle quiver �̄� and any 𝓵 ∈ ℝ
(�̄�)
>0

, the polytope

𝑅𝓵(�̄�) ∶=

{
𝒛 ∈ ℝ(�̄�)

||||| 𝒛 ⩾ 0 and 𝒛𝜔 = 0 for any improper walk 𝜔
𝒛 ✓𝜎✓ + 𝒛

✓

𝜎
✓ − 𝒛 ✓

𝜎✓ − 𝒛 ✓𝜎
✓ = 𝓵𝜎 for all 𝜎 ∈ (�̄�)

}

is a realization of the nonkissing fan (�̄�). Moreover, the polytopes 𝑅𝓵(�̄�) for 𝓵 ∈ ℝ
(�̄�)
>0

describe all
polytopal realizations of (�̄�).

We also obtain from Proposition 2.42 the following surprising property.

Corollary 2.45. Any 𝒄-vector supports exactly one extremal exchangeable pair.

Remark 2.46. Although not needed in the proof of Proposition 2.42, we note
that the extremal exchangeable pairs { ✓𝜎✓,

✓

𝜎
✓
} and their linear dependen-

cies g( ✓𝜎✓) + g(
✓

𝜎
✓
) − g(

✓
𝜎✓) − g( ✓𝜎

✓
) precisely correspond to the meshes of the

Auslander–Reiten quiver of �̄�.

Remark 2.47. Note that Propositions 2.41 and 2.42 and therefore Corollary 2.43 and Theorem 2.44
fail when the quiver is not brick or 2-cyclic. The smallest examples are the 2-cycles whose nonkiss-
ing fans are represented in Figure 16. The left one is not brick: it has a nondistinguishable string
and a self-kissing walk. The right one is brick but is 2-cyclic.
In both cases, Proposition 2.41 fails for the string 𝜎 of length 0 at vertex 1 (resp., 2) as the

resulting walks ✓𝜎✓ and

✓

𝜎
✓
have g -vectors g( ✓𝜎✓) = (1, −1) and g(

✓

𝜎
✓
) = (−1, 1) (resp.,

g( ✓𝜎✓) = (−1, 1) and g(

✓

𝜎
✓
) = (1, −1)), and are therefore not exchangeable. Proposition 2.42

also fails as the type cone has dimension 4 and the following 5 inequalities:
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(as the fans are the same, the type cones are the same and we therefore present them together).
Figure 11 (right) gives another example of brick but 2-cyclic gentle quiver for which Propositions
2.41 and 2.42 fail.

PART II. GROTHENDIECK GROUP AND RELATIONS BETWEEN
g -VECTORS

3 RELATIONS FOR g -VECTORS IN FINITE-TYPE CLUSTER
ALGEBRAS VIA 2-CALABI–YAU TRIANGULATED CATEGORIES

In [23] and [10], Butler and Auslander showed that the relations in the Grothendieck group of
an Artin algebra are generated by the ones given by almost-split sequences precisely when the
algebra is of finite representation type. This result was generalized to triangulated categories with
certain finiteness conditions by Xiao and Zhu in [101], to Hom-finite, Krull–Schmidt exact cat-
egories with enough projectives by Enomoto in [33], to (𝑛 + 2)-angulated categories by Fedele
in [34], and to Hom-finite, Krull–Schmidt triangulated categories with a cogenerator by Haug-
land in [45]. Relations in the Grothendieck group of cluster categories have also been studied
in [76]. Inspired by these results, we will show in this section that a similar statement holds (see
Theorem 3.8) for the g -vectors (or indices) of objects in a 2-Calabi–Yau triangulated category.
We will further generalize these results in Section 4 to the setting of Ext-finite, Krull–Schmidt,
extriangulated categories with Auslander–Reiten–Serre duality admitting projective objects with
certain properties.

3.1 Setting

Let 𝕂 be a field. Let  be a 𝕂-linear triangulated category with suspension functor Σ. We fix a
collection ind() of representatives of isomorphism classes of indecomposable objects of . We
will assume the following.

∙  is essentially small (in particular, ind() is a set).
∙  is Hom-finite: for each pair of objects 𝑋 and 𝑌, the 𝕂-vector space (𝑋, 𝑌) is finite-
dimensional.

∙  is Krull–Schmidt: The endomorphism algebra of any indecomposable object is local;
∙  is 2-Calabi–Yau: For each pair of objects 𝑋 and 𝑌, there is an isomorphism of bifunctors

(𝑋, Σ𝑌) → 𝐷(𝑌, Σ𝑋),

where 𝐷 = Hom𝕂(−,𝕂) is the usual duality of vector spaces.
∙  contains a basic cluster-tilting object 𝑇 =

⨁𝑛
𝑖=1 𝑇𝑖:

for any object 𝑋, (𝑇, Σ𝑋) = 0 if and only if 𝑋 ∈ add(𝑇),

where add(𝑇) is the smallest additive full subcategory of  containing the 𝑇𝑖 ’s and closed under
isomorphisms.
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3.2 Statement of the theorem

We need to introduce some notations before stating the main result of this section. Let
Λ ∶= End(𝑇), and let 𝐹 be the functor

𝐹 = (𝑇, −) ∶  4→ modΛ.

Proposition 3.1 [19, 55]. The functor 𝐹 induces an equivalence of 𝕂-linear categories

𝐹 ∶ ∕(Σ𝑇) 4→ modΛ,

where (Σ𝑇) is the ideal of morphisms factoring through an object of add(Σ𝑇) and modΛ is
the category of finite-dimensional right Λ-modules. This equivalence induces further equivalences
between add(𝑇) and the category of projective modules, and between add(Σ2𝑇) and that of
injective modules.

For categories with a cluster-tilting object, the 2-Calabi–Yau condition implies other duality
results that we shall need.

Proposition 3.2 [75]. For any pair of objects 𝑋 and 𝑌 in , there is an isomorphism of bifunctors

(Σ𝑇)(𝑋, Σ𝑌)
≅
4→ (𝑌, Σ𝑋)∕(Σ𝑇),

where (Σ𝑇)(𝑋, Σ𝑌) is the space of morphisms from 𝑋 to 𝑌 factoring through (Σ𝑇).

Remark 3.3. Although the field 𝕂 is assumed to be algebraically closed in [75], this assumption is
not needed in the proof, and the result is valid over any field.

Finally, we need the existence of almost-split triangles in . Recall that a triangle

𝑋
𝑓
4→ 𝑌

g
4→ 𝑍

ℎ
4→ Σ𝑋

in  is almost-split if 𝑋 and 𝑍 are indecomposable, ℎ is nonzero, and any nonsection 𝑋 → 𝑋′

factors through 𝑓 (or equivalently, any nonretraction 𝑍′ → 𝑍 factors through g). We say that a
triangulated category has almost-split triangles if there is an almost-split triangle as above for any
indecomposable object 𝑋.

Proposition 3.4 [94, Proposition I.2.3]. Any triangulated category admitting a Serre functor has
almost-split triangles. In particular, any 2-Calabi–Yau triangulated category has almost-split trian-
gles.

Definition 3.5.

(1) Let 𝐾sp
0
() be the split Grothendieck group of , that is, the free abelian group generated

by symbols [𝑋], where [𝑋] denotes the isomorphism class of 𝑋 in , modulo the following
relations: for any objects 𝑌 and 𝑍, we let [𝑌 ⊕ 𝑍] = [𝑌] + [𝑍].



GENERALIZED ASSOCIAHEDRA ANDMINIMAL RELATIONS BETWEEN g-VECTORS 557

(2) Let 𝐾0(; 𝑇) be the quotient of 𝐾
sp
0
() by the relations [𝑋] + [𝑍] − [𝑌] for all triangles

𝑋 4→ 𝑌 4→ 𝑍
ℎ
4→ Σ𝑋

with ℎ ∈ (Σ𝑇). Denote by g ∶ 𝐾
sp
0
() → 𝐾0(; 𝑇) the canonical projection.

In particular, 𝐾sp
0
() is isomorphic to a free abelian group over the set ind(). Considering the

modified group 𝐾0(; 𝑇) instead of the usual Grothendieck group is motivated by Subsection 3.4,
where we study relations between g -vectors (see also the notion of relative rigidity in [102]).

Definition 3.6. For any two objects 𝑋 and 𝑌 of , define

⟨𝑋,𝑌⟩ ∶= dim𝕂 HomΛ(𝐹𝑋, 𝐹𝑌).

This defines a bilinear form

⟨−,−⟩ ∶ 𝐾sp
0
() × 𝐾

sp
0
() 4→ ℤ.

Notation 3.7.

(1) For any indecomposable object 𝑋 of , let

𝑋 → 𝐸 → Σ−1𝑋 → Σ𝑋

be an almost split triangle (unique up to isomorphism). We let

𝓁𝑋 ∶= [𝑋] + [Σ
−1𝑋] − [𝐸] ∈ 𝐾

sp
0
().

(2) For any indecomposable object 𝑌 of , let

Σ𝑌 → 𝐸′ → 𝑌 → Σ2𝑌

be an almost split triangle (unique up to isomorphism). We let

𝑟𝑌 ∶= [𝑌] + [Σ𝑌] − [𝐸
′] ∈ 𝐾

sp
0
().

We can finally state the main theorem of this section, which is an analogue of the main result
of [10].

Theorem 3.8. Let  be a category satisying the hypotheses of Subsection 3.1. Then  has only finitely
many isomorphism classes of indecomposable objects if and only if the set

𝐿 ∶=
{
𝓁𝑋 || 𝑋 ∈ ind() ⧵ add(Σ𝑇)}

generates the kernel of g ∶ 𝐾sp
0
() → 𝐾0(; 𝑇). In this case, the set 𝐿 is a basis of the kernel of g , and

for any 𝑥 ∈ ker(g), we have that

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
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Corollary 3.9. Assume that ind() is finite. Let𝑋 4→ 𝐸 4→ 𝑌
ℎ
4→ Σ𝑋 be a trianglewithℎ ∈ (Σ𝑇). Then

the element 𝑥 = [𝑋] + [𝑌] − [𝐸] of the kernel of g is a nonnegative linear combination of the 𝓁𝐴,
with 𝐴 ∈ ind() ⧵ add(Σ𝑇).

Proof. We know that 𝑥 =
∑
𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,[𝐴]⟩⟨𝓁𝐴,[𝐴]⟩𝓁𝐴; as ⟨𝓁𝐴, [𝐴]⟩ is positive by Lemma 3.16, we
only need to show that each ⟨𝑥, [𝐴]⟩ is nonnegative. The functor 𝐹 = (𝑇, −) induces an exact
sequence

𝐹𝑋 → 𝐹𝐸 → 𝐹𝑌 → 0,

which in turn induces an exact sequence

0 → HomΛ(𝐹𝑌, 𝐹𝐴) → HomΛ(𝐹𝐸, 𝐹𝐴)
𝑓
4→ HomΛ(𝐹𝑋, 𝐹𝐴) → coker(𝑓) → 0.

Therefore, ⟨𝑥, [𝐴]⟩ = dim𝕂 coker(𝑓) ⩾ 0. □

3.3 Proof of Theorem 3.8

Before we can prove Theorem 3.8, we need to recall the following results and definition from [31,
75].

Proposition 3.10. Let 𝑋 be an object of . Then there exists a triangle

𝑇𝑋1 → 𝑇𝑋0 → 𝑋 → Σ𝑇𝑋1

with 𝑇𝑋
1
and 𝑇𝑋

0
in add(𝑇).

Definition 3.11. The index of an object 𝑋 is the element

ind𝑇(𝑋) ∶= [𝑇
𝑋
0 ] − [𝑇

𝑋
1 ] ∈ 𝐾

sp
0 (add(𝑇)).

The notion of index is very close to the definition of the map g ∶ 𝐾
sp
0
() → 𝐾0(; 𝑇) of

Definition 3.5. The link is given by the following result.

Proposition 3.12 [75]. Let 𝑋 4→ 𝑌 4→ 𝑍
ℎ
4→ Σ𝑋 be a triangle. Then

ind𝑇(𝑋) + ind𝑇(𝑍) − ind𝑇(𝑌) = 0

if and only if ℎ ∈ (Σ𝑇).

Corollary 3.13. There is an isomorphism 𝜙 ∶ 𝐾0(; 𝑇) → 𝐾
sp
0
(add(𝑇)) such that ind𝑇 = 𝜙◦g . In

particular, 𝐾0(; 𝑇) is a free abelian group generated by the [𝑇𝑖].
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Proof. The proposition above can be restated by saying that the kernel of the sujective
group homomorphism ind𝑇 ∶ 𝐾

sp
0
() → 𝐾

sp
0
(add(𝑇)) is the subgroup generated by the relations

defining 𝐾0(; 𝑇). □

We can now begin the proof of Theorem 3.8.

Lemma 3.14. If 𝑋 or 𝑌 lie in add(Σ𝑇), then ⟨𝑋,𝑌⟩ = 0.
Proof. This is because 𝐹Σ𝑇 = 0. □

Lemma 3.15. Let𝑋 4→ 𝑌 4→ Σ−1𝑋
ℎ
4→ Σ𝑋 be an almost-split triangle. Then𝑋 ∉ add(Σ𝑇) if and only

if ℎ ∈ (Σ𝑇).

Proof. If𝑋 ∈ add(Σ𝑇), then ℎ cannot be in (Σ𝑇), otherwise it would be zero because (𝑇, Σ𝑇) = 0.
Assume now that 𝑋 ∉ add(Σ𝑇). Let 𝕂𝑋 be the residue field of the algebra End(𝑋). By def-

inition of an almost-split triangle, ℎ is in the socle of the right End(𝑋)-module (Σ−1𝑋, Σ𝑋).
Moreover, this socle is a 1-dimensional𝕂𝑋-vector space; indeed, the 2-Calabi–Yau condition gives
an isomorphism

(Σ−1𝑋, Σ𝑋) ≅ 𝐷(𝑋, 𝑋).

Thus, the socle of the right module (Σ−1𝑋, Σ𝑋) has the same 𝕂𝑋 dimension as the top of the left
module (𝑋, 𝑋). As 𝑋 is indecomposable, (𝑋, 𝑋) is local, and its top is 1-dimensional over 𝕂𝑋 .
Now, (Σ𝑇)(Σ−1𝑋, Σ𝑋) is a submodule of (Σ−1𝑋, Σ𝑋). Therefore, if (Σ𝑇)(Σ−1𝑋, Σ𝑋) is

nonzero, then it contains the 1-dimensional socle of (Σ−1𝑋, Σ𝑋), and thus contains ℎ. By [75],

(Σ𝑇)(Σ−1𝑋, Σ𝑋) ≅ 𝐷(𝑋, 𝑋)∕(Σ𝑇).

The identity morphism of 𝑋 is not in (Σ𝑇), as 𝑋 is not in add(Σ𝑇). Thus, the right-hand side is
nonzero, and so neither is the left-hand side. By the above, this implies ℎ ∈ (Σ𝑇)(Σ−1𝑋, Σ𝑋),
which finishes the proof. □

Lemma 3.16. Let 𝐴 and 𝐵 be two indecomposable objects of .

(1) If 𝐴 ∉ add(Σ𝑇), then

⟨𝓁𝐴, 𝐵⟩ ={0 if 𝐴 ≇ 𝐵;
dim𝕂 𝕂𝐴 if 𝐴 ≅ 𝐵.

(2) If 𝐵 ∉ add(Σ𝑇), then

⟨𝐴, 𝑟𝐵⟩ ={0 if 𝐴 ≇ 𝐵;
dim𝕂 𝕂𝐵 if 𝐴 ≅ 𝐵.
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Proof. We only prove the first assertion; the second one is proved dually. Assume that
𝐴 ∉ add(Σ𝑇). Let

𝐴
𝑓
4→ 𝐸 4→ Σ−1𝐴

ℎ
4→ Σ𝐴

be an almost-split triangle. By Lemma 3.15, the morphism ℎ is in (Σ𝑇). Applying the functor
𝐹 = (𝑇, −), we get an exact sequence

𝐹𝐴
𝐹𝑓
444→ 𝐹𝐸 4→ 𝐹Σ−1𝐴 4→ 0.

Applying now the functors (−, 𝐵) andHomΛ(−, 𝐹𝐵), we get a commutative diagramwhose rows
are exact sequences and whose vertical maps are surjective by Proposition 3.1.

If 𝐵 ≇ 𝐴, then the definition of an almost-split triangle implies that 𝑓∗ is surjective. Thus,
coker(𝑓∗) = 0, so that coker(𝐹𝑓∗) = 0, and by additivity of the dimension in exact sequences,
we get that ⟨𝓁𝐴, 𝐵⟩ = 0.
If𝐵 ≅ 𝐴, then coker(𝑓∗) is isomorphic to the residue field𝕂𝐴 of (𝐴,𝐴). As𝐴 is not in add(Σ𝑇),

the ideal of endomorphisms of 𝐴 factoring through an object of add(Σ𝑇) is contained in the
maximal ideal of (𝐴,𝐴). Therefore, the rightmost morphism in the commutative diagram is an
isomorphism, so coker(𝐹𝑓∗) is isomorphic to 𝕂𝐴. □

Lemma 3.17. Let 𝑥 ∈ 𝐾sp
0
(), and write

𝑥 =
∑

𝐴∈ind()

𝜆𝐴[𝐴].

Then for any 𝐴 ∈ ind() ⧵ add(Σ𝑇), we have that

𝜆𝐴 =
⟨𝓁𝐴, 𝑥⟩⟨𝓁𝐴,𝐴⟩ = ⟨𝑥, 𝑟𝐴⟩⟨𝐴, 𝑟𝐴⟩ .

Proof. Let 𝐵 ∈ ind() ⧵ add(Σ𝑇). Applying Lemma 3.16, we get that

⟨𝓁𝐵, 𝑥⟩ = ⟨𝓁𝐵, ∑
𝐴∈ind()

𝜆𝐴[𝐴]
⟩
=
∑

𝐴∈ind

𝜆𝐴⟨𝓁𝐵, [𝐴]⟩ = 𝜆𝐵⟨𝓁𝐵, [𝐵]⟩.
The equality 𝜆𝐴 =

⟨𝑥,𝑟𝐴⟩⟨𝐴,𝑟𝐴⟩ is proved in a similar way. □

Corollary 3.18. Let 𝑥 ∈ 𝐾sp
0
(). Then the following are equivalent.

(1) 𝑥 ∈ 𝐾sp
0
(add(Σ𝑇)).
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(2) ⟨𝑥, [𝐴]⟩ = 0 for all 𝐴 ∈ ind().
(3) ⟨[𝐴], 𝑥⟩ = 0 for all 𝐴 ∈ ind().
Proof. Wewill only prove that (1) is equivalent to (2); the proof that (1) is equivalent to (3) is similar.
Assume that (2) holds. Then, by Lemma 3.17, we have that

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝓁𝐴, 𝑥⟩⟨𝓁𝐴,𝐴⟩ [𝐴] +
𝑛∑
𝑖=1

𝜆Σ𝑇𝑖 [Σ𝑇𝑖] =
𝑛∑
𝑖=1

𝜆Σ𝑇𝑖 [Σ𝑇𝑖].

Thus, 𝑥 ∈ 𝐾sp
0
(add(Σ𝑇)), and (1) holds.

Assume now that (1) holds. Then ⟨𝑥, [𝐴]⟩ = 0 for any 𝐴 by Lemma 3.14. Thus, (2) holds. □

Proposition 3.19.

(1) The set {[𝓁𝐴] || 𝐴 ∈ ind() ⧵ add(Σ𝑇)} ∪ {[Σ𝑇𝑖] || 𝑖 ∈ [𝑛]} is free in 𝐾sp0 ().
(2) The set {[𝑟𝐴] || 𝐴 ∈ ind() ⧵ add(Σ𝑇)} ∪ {[Σ𝑇𝑖] || 𝑖 ∈ [𝑛]} is free in 𝐾sp0 ().
Proof. We only prove (1); the proof of (2) is similar. Assume that

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

𝜆𝐴𝓁𝐴 +
𝑛∑
𝑖=1

𝜆𝑖[Σ𝑇𝑖] = 0.

Then ⟨𝑥, [𝐴]⟩ = 0 for all 𝐴 ∈ ind() ⧵ add(Σ𝑇). But ⟨𝑥, [𝐴]⟩ = 𝜆𝐴 by Lemma 3.16. Thus,
𝑥 =

𝑛∑
𝑖=1

𝜆𝑖[Σ𝑇𝑖] = 0.

But the [Σ𝑇𝑖] are linearly independent in 𝐾
sp
0
(). Thus 𝜆𝑖 = 0 for all 𝑖 ∈ [𝑛]. This finishes the

proof. □

Proposition 3.20. Assume that ind() is finite. Then the set {[𝓁𝐴] | 𝐴 ∈ ind() ⧵ add(Σ𝑇)} is a
basis of the kernel of g ∶ 𝐾sp

0
() → 𝐾0(; 𝑇). Moreover, for any 𝑥 ∈ ker g , we have that

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Proof. By Proposition 3.19, the set is free. Let 𝑥 ∈ ker g . Consider the element

𝑧 = 𝑥 −
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Then for any 𝐵 ∈ ind, we have that

⟨𝑧, [𝐵]⟩ = ⟨𝑥 − ∑
𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴, [𝐵]
⟩
= ⟨𝑥, [𝐵]⟩ − ⟨𝑥, [𝐵]⟩ = 0,
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where the second equality is obtained by using Lemma 3.16. By Corollary 3.18, this implies
that 𝑧 ∈ 𝐾sp

0
(add(Σ𝑇)). As 𝑧 ∈ ker(g) and as g is injective on 𝐾sp

0
(add(Σ𝑇)) by Corollary 3.13,

we get that 𝑧 = 0. This finishes the proof. □

Corollary 3.21. If ind() is finite, then the set

{[𝓁𝐴] | 𝐴 ∈ ind() ⧵ add(Σ𝑇)} ∪ {[Σ𝑇𝑖] | 𝑖 ∈ [𝑛]}
is a basis of 𝐾sp

0
().

Proof. By Proposition 3.19, the set is free. It suffices to prove that it generates 𝐾sp
0
().

Let 𝑥 ∈ 𝐾sp
0
(). Consider

𝑧 = 𝑥 −
∑

𝐴∈ind

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Then for any 𝐵 ∈ ind(), we have that ⟨𝑧, [𝐵]⟩ = 0. By Corollary 3.18, this implies that
𝑧 ∈ 𝐾

sp
0
(add(Σ𝑇)), and finishes the proof. □

All that remains is to prove the converse in the statement of Theorem 3.8.

Proposition 3.22. Assume that the set {[𝓁𝐴] | 𝐴 ∈ ind() ⧵ add(Σ𝑇)} is a basis of the kernel of g .
Then ind() is finite.

Proof. Let 𝑥 ∈ ker g , andwrite 𝑥 =
∑
[𝐴]∈ind() 𝜆𝐴[𝐴], where the sumhas finite support. For any𝐵

not in the support of the sum, we have that ⟨𝑥, [𝐵]⟩ = 0.
Now, [𝑇] + [Σ𝑇] is in the kernel of g , but ⟨[𝑇] + [Σ𝑇], [𝐵]⟩ = ⟨[𝑇], [𝐵]⟩ = 0 if and only if

𝐵 ∈ add(Σ𝑇). Thus, ind() has to be finite. □

3.4 Application to g -vectors of cluster algebras of finite type

In this section, we apply the results of Subsection 3.2 in order to prove Propositions 2.16 and 2.22
of Subsection 2.2.
We first recall the results on categorification of cluster algebras that we will use in the proofs.

Theorem 3.23. Let  be the cluster category of a valued quiver of Dynkin type𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 or 𝐺.
Let 𝑇 be a basic cluster-tilting object in , and let 𝑄 be the valued Gabriel quiver of End(𝑇). Then
there is a bijection

𝜙 ∶ ind() 4→ {cluster variables in the cluster algebra of 𝑄},

expressing cluster variables as Laurent polynomials in the variables of the cluster 𝜙(𝑇) and which
has the following properties.

(i) ([18, Proposition 3.2]) For any 𝑋,𝑌 ∈ ind(), 𝜙(𝑋) and 𝜙(𝑌) are compatible if and only
if (𝑋, Σ𝑌) = 0.
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(ii) ([35, Proposition 4.3] and [75, Proposition 2.2], where the proofs alsowork over an arbitrary base
field) For any𝑋 ∈ ind(), the g -vector of 𝜙(𝑋) is g([𝑋]), where we identifyℤ𝑛 and𝐾0(; 𝑇) via
the isomorphism sending (𝑎1, … , 𝑎𝑛) to

∑𝑛
𝑖=1 𝑎𝑖[𝑇𝑖].

(iii) ([18, Theorem 7.5]) For any 𝑋,𝑌 ∈ ind(), 𝜙(𝑋) and 𝜙(𝑌) are exchangeable if and only
if dim𝕂𝑋

(𝑋, Σ𝑌) = dim𝕂𝑌
(𝑋, Σ𝑌) = 1.

(iv) ([14, 20, Theorem 5.1], and [93, Theorem 5.7]) Let𝑇′ be any basic cluster-tilting object of . Then
the matrix 𝐵′ of the associated seed (𝜙(𝑇′), 𝐵′) is given by the multiplicities of the middle terms
of the exchange triangles.

The following definition is a cluster-tilting version of the positive mutation for 𝜏-tilting
modules, or for 2-term silting complexes.

Definition 3.24. Let 𝑥 ∈ X be a cluster variable in a given cluster and let 𝑥′ ∈ X′ be
obtained by mutating X at 𝑥. The pair (𝑥, 𝑥′) is said to be a positive mutation with
respect to some initial cluster X◦ if there are 𝑋,𝑌 ∈ ind() such that 𝜙(𝑋) = 𝑥, 𝜙(𝑌) = 𝑥′,
dim𝕂𝑋

(𝑋, Σ𝑌) = dim𝕂𝑌
(𝑋, Σ𝑌) = 1 and, for any nonsplit triangle

𝑋 4→ 𝐸 4→ 𝑌
ℎ
4→ Σ𝑋

(this triangle is unique up to isomorphism) we have ℎ ∈ (Σ𝑇), where 𝑇 ∈  is any basic cluster-
tilting object such that 𝜙(𝑇) = X◦.
The mutation is a mesh mutation if the triangle can be chosen to be an almost-split triangle

(with no assumption on ℎ).

Lemma 3.25. For every noninitial cluster variable 𝑥, there exists precisely one pair (𝑥, 𝑥′) such that
there exists a positive mesh mutation changing 𝑥 into 𝑥′.

Proof. Up to isomorphism, there is precisely one almost-split triangle of  starting in 𝑋, where 𝑋
is the object such that 𝜙(𝑋) = 𝑥. Thus, there is precisely one mesh relation starting at 𝑥. By
Lemma 3.15, the pair (𝑥, 𝑥′) is a positive mutation if and only 𝑋 ∉ add(Σ𝑇), that is, if and only
if 𝑥 is not an initial variable. □

Lemma 3.26. The set of positive mesh mutations (𝑥, 𝑥′) of Definition 3.24 is in bijection with the
set(B◦) of Definition 2.19.

Proof. If (𝑥, 𝑥′) is a positive mesh mutation, then {𝑥, 𝑥′} is in(B◦). Indeed, if 𝑋 and 𝑋′ are the
corresponding objects in , then there is an almost-split triangle

𝑋 → 𝐸 → 𝑋′ → Σ𝐸,

so that𝑋′ = 𝜏−1𝑋. Moreover, there is a slice of the Auslander–Reiten quiver of  containing𝑋 and
all indecomposable direct factors of 𝐸. The direct sum of indecomposable objects in this slice is a
cluster-tilting object in which𝑋 is a source, and mutation at𝑋 gives 𝑋′. Thus, {𝑥, 𝑥′} is in(B◦).
This gives an injective map from the set of positive mesh mutations to(B◦).
Next, assume that {𝑥, 𝑥′} ∈(B◦) starts in 𝑥. Then there is a cluster-tilting object 𝑇 in  hav-

ing 𝑋 as a direct factor, and such that 𝑋 is a source in 𝑇 and mutation at 𝑋 yields 𝑋′. As 𝑋 is a
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source, the mutation triangle starting and ending in 𝑋 are

𝑋 → 𝐸 → 𝑋′ → Σ𝑋 and 𝑋′ → 0 → 𝑋 → Σ𝑋′.

Therefore, 𝑋′ = Σ−1𝑋 = 𝜏−1𝑋. Thus, the first triangle is the almost-split triangle starting in 𝑋, as
the dimension of (𝑋′, Σ𝑋) is 1 over 𝕂𝑋′ . As the pair {𝑥, 𝑥′} is not initial, 𝜙(𝑋′) is not an initial
variable; in other words, 𝑋′ is not in add(𝑇). Therefore, 𝑋 = 𝜏𝑋′ = Σ𝑋′ is not in addΣ𝑇, so the
mutation is a positive mesh mutation by Lemma 3.15. This gives an injective map from(B◦) to
the set of positive mutations. □

Corollary 3.27 (Lemma 2.20). We have that |(B◦)| is the number |(B◦, P◦)| − 𝑛 of noninitial
cluster variables.

Proof. This is a direct consequence of Lemmas 3.25 and 3.26. □

Lemma 3.28. Let be any cluster algebra admitting a categorification by a Hom-finite, 2-Calabi–
Yau, Krull–Schmidt, triangulated category with cluster-tilting objects. Let 𝑥 ∈ X be a cluster variable
in a given cluster and let 𝑥′ ∈ X′ be obtained by mutating X at 𝑥. Then precisely one of the two
mutations 𝜇𝑥(X) and 𝜇𝑥′(X′) is a positive mutation.

Proof. In view of Theorem 3.23 (iii), it follows from [75, Lemma 3.3]. □

Corollary 3.29 (Proposition 2.22). For any initial exchange matrix B◦ of mutation type 𝐴, 𝐵, 𝐶, 𝐷,
𝐸, 𝐹 or 𝐺, the linear dependence between the g -vectors of any mutation can be decomposed into
positive combinations of linear dependences between g -vectors of noninitial mesh mutations.

Proof. Let  be a cluster category of Dynkin type𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 or𝐺, and let 𝑇 ∈  be some basic
cluster-tilting object categorifying the given initial exchange matrix B◦. By Lemma 3.28, we may
assume that the mutation under consideration is a positive mutation. In view of Theorem 3.23 (ii)

and (iv) it is enough to show that the relation in𝐾0(; 𝑇) given by any triangle𝑋 → 𝐸 → 𝑌
ℎ
4→ Σ𝑋

with ℎ ∈ (Σ𝑇) is a positive linear combination of relations coming from Auslander–Reiten
triangleswith third termnot in add(Σ𝑇). This categorified statement is preciselyCorollary 3.9. □

It also follows fromTheorem 3.23 that any cluster algebra of finite type has the unique exchange
relation property (see Definition 1.8).

Corollary 3.30 (Proposition 2.16). Let B◦ be any finite-type exchange matrix, and let (B◦)
be the associated cluster algebra without coefficients. Then, for any exchangeable cluster vari-
ables 𝑥 and 𝑥′, the linear dependence

∑
𝑦∈X∪X′ 𝛼X,X′(g𝑦) g𝑦 = 0 only depends on the pair (𝑥, 𝑥′)

and not on the specific choice of clusters X and X′ containing 𝑥 and 𝑥′, respectively, and such
that X ⧵ {𝑥} = X′ ⧵ {𝑥′}.

Proof. By the results in additive categorification of cluster algebras recalled in Theorem 3.23, the
statement follows from Lemma 3.31. □
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Lemma 3.31. Let  be a cluster category of Dynkin type 𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹 or 𝐺, and let 𝑋,𝑌 ∈  be
such that 𝜙(𝑌) is obtained by performing a positive mutation at 𝜙(𝑋) in some cluster containing it.
Then the linear dependence between the g -vectors given by the positive mutation is

g𝜙(𝑋) + g𝜙(𝑌) =
∑
𝑖

g𝜙(𝐸𝑖),

where 𝑋 →
⨁

𝑖 𝐸𝑖 → 𝑌
ℎ
4→ Σ𝑋 is a nonsplit triangle and each 𝐸𝑖 is indecomposable.

Proof. Let 𝑇 ∈  be a basic cluster tilting object such that 𝜙(𝑇) is the initial cluster. Accord-
ing to Lemma 3.28, the morphism ℎ belongs to the ideal (Σ𝑇). Therefore, the triangle

𝑋 →
⨁

𝑖 𝐸𝑖 → 𝑌
ℎ
4→ Σ𝑋 induces the relation [𝑋] + [𝑌] =

∑
𝑖[𝐸𝑖] in 𝐾0(; 𝑇). Theorem 3.23 (ii)

gives the equality g𝜙(𝑋) + g𝜙(𝑌) =
∑
𝑖 g𝜙(𝐸𝑖), where the g -vectors are computed with respect to

the initial seed 𝜙(𝑇). By Theorem 3.23 (iii), the middle term of the triangle is uniquely defined,
up to isomorphism, by 𝑋 and 𝑌, and the triangle is therefore an exchange triangle, with respect
to any mutation at 𝑋: it does not depend on the choice of a cluster tilting object containing 𝑋. By
Theorem 3.23 (iv) this equality is one of the two equalities in Lemma 2.15. □

4 RELATIONS FOR g -VECTORS IN BRICK ALGEBRAS VIA
EXTRIANGULATED CATEGORIES

The main definitions and first properties on extriangulated categories are recalled after the
statements of the main results of this section. See Subsection 4.4. The reader that does
not want to dwell into details can safely skip Subsection 4.4 and focus on any of the
first three examples given in Remark 4.1: triangulated categories, exact categories (that are
small or have enough projectives or injectives) and extension-closed subcategories of tri-
angulated categories, such as the category 𝐾[−1,0](proj Λ), are examples of extriangulated
categories.

4.1 Setting

We indifferently call conflations, written 𝑋 ↣ 𝑌 ↠ 𝑍, or extriangles, written 𝑋 ↣ 𝑌 ↠ 𝑍
𝛿
⤏, the

analogues of short exact sequences or triangles in an extriangulated category.

Setting for Subsection 4.2
In that section, we let  be an extriangulated category with a fixed full additive subcategory  ,
stable under isomorphisms, under taking direct summands, and satisfying the following three
properties.

(1) Every 𝑇 ∈  is projective in .
(2) For each 𝑇 ∈  , the morphism 𝑇 → 0 is an inflation for the extriangulated structure of .

(3) For each 𝑋 ∈ , there is an extriangle 𝑇𝑋
1
↣ 𝑇𝑋

0
↠ 𝑋

𝛿𝑋
⤏ in  with 𝑇𝑋

0
, 𝑇𝑋
1
in  .
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Setting for Subsection 4.3
In that section, we keep the previous setting, but assume moreover that  is Krull–Schmidt, 𝕂-
linear, Ext-finite, and has Auslander–Reiten–Serre duality, and that the subcategory  is of the
form add𝑇, where 𝑇 = 𝑇1 ⊕⋯⊕ 𝑇𝑛 is a basic object.

Remark 4.1. Examples of categories satisfying the properties above are

∙ 2-Calabi–Yau triangulated categories admitting a cluster-tilting object (see Subsection 4.7.1);
∙ for any Artin algebra Λ, the category 𝐾[−1,0](proj Λ) of complexes of finitely generated projec-
tiveΛ-modules concentrated in degrees−1 and 0, with morphisms considered up to homotopy
(see Subsection 4.6);

∙ more generally, extriangulated categories  constructed as follows: if  is a rigid subcategory
of an extriangulated category  (with some assumption ensuring that condition (2) holds) we
let  be the full subcategory of  whose objects satisfy condition (3), equipped with the extrian-
gulated structure obtained from that of  by considering those extriangles in  all whose terms
belong to  and whose deflation is  -epi (see Subsection 4.7.2).

4.2 Statement of preliminary results on extriangulated categories

So as to be able to state the main theorem of Section 4, we need a few results on extriangulated
categories. However, all proofs are postponed to Subsection 4.5.
We let  be as in Subsection 4.1.

Notation 4.2. For any object 𝑇 ∈  , we fix an extriangle 𝑇 ↣ 0 ↠ Σ𝑇 ⤏.

Remark 4.3. As will be proven below (Remark 4.32 and Corollary 4.35), this notation extends to
an equivalence of categories from the category  of projective objects in  to the category Σ of
injective objects in .

Notation 4.4. We letMod  denote the category of additive functors from  to Abelian groups,
and mod  its full subcategory of functors that are finitely presented, that is, cokernels of mor-
phisms between representable functors. We let 𝐹 ∶  → Mod  be the functor defined on objects
by sending 𝑋 ∈  to (−, 𝑋)| .
Lemma 4.5. For any 𝑋 ∈ , the functor 𝐹𝑋 is finitely presented. We thus have a functor

𝐹 ∶  → mod  .

Proposition 4.6 extends similar results from [19, 52, 55, 56] (see also Proposition 3.1) to the setting
under consideration. We note that the proof requires minor modifications.

Proposition 4.6. The functor 𝐹 induces an equivalence of categories

𝐹 ∶ ∕(Σ ) → mod  ,

where (Σ ) is the ideal of morphisms factoring through an object of the form Σ𝑇, for some 𝑇 ∈  .
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Remark 4.7. Because the category  does not have weak kernels in general, the category mod 
might not be abelian. However, in all our applications, the subcategory  is of the form add(𝑇)

for some object 𝑇. In that case,mod  is equivalent tomodEnd(𝑇) and thus abelian.

Definition 4.8. We let 𝐾0() denote the Grothendieck group of , that is, the quotient of the free
abelian group generated by symbols [𝑋], for each𝑋 ∈ , by the relations [𝑋] − [𝑌] + [𝑍], for each
conflation 𝑋 ↣ 𝑌 ↠ 𝑍 in .

Remark 4.9. As  is extension-closed in , it inherits an extriangulated structure. Because  is
made of projective objects in , its extriangulated structure splits and we have 𝐾0( ) ≅ 𝐾

sp
0
( ).

The notion of index from [31, 75] generalizes to our current setting.

Definition 4.10. For any object 𝑋 ∈ , fix some extriangle

𝑇𝑋1 ↣ 𝑇𝑋0 ↠ 𝑋
𝛿𝑋
⤏

and define the index of 𝑋 by

ind 𝑋 = [𝑇
𝑋
0 ] − [𝑇

𝑋
1 ] ∈ 𝐾0( ).

Proposition 4.11. The assignment 𝑋 ↦ ind 𝑋 is well-defined and induces an isomorphism

ind ∶ 𝐾0()
≅
⟶ 𝐾0( )

of abelian groups.

4.3 Statement of the theorem

Let  be as in Subsection 4.1.

Remark 4.12. Assumemoreover that is𝕂-linear andExt-finite. By the preliminary results of Sub-
section 4.4, we can apply [51, Proposition 4.2] to obtain thatmod  is Hom-finite. In particular, if
 = add𝑇, then End(𝑇) is a finite-dimensional𝕂-algebra. It thus also follows that Definition 3.6
still makes sense in this more general setup: For any 𝑋,𝑌 ∈ ,

⟨𝑋,𝑌⟩ ∶= dim𝕂 Hom (𝐹𝑋, 𝐹𝑌) = dim𝕂 ∕(Σ )(𝑋, 𝑌).

When this makes sense, we make use of Notation 3.7: if

𝑋 ↣ 𝐸 ↠ 𝑌 ⤏

is an almost-split sequence (see [51] for a definition in this setting), we let

𝓁𝑋 ∶= [𝑋] + [𝑌] − [𝐸] ∈ 𝐾
sp
0
().
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Theorem4.13. Assume that  is a𝕂-linear, Ext-finite, Krull–Schmidt, extriangulated category with
Auslander–Reiten–Serre duality. Assume that𝑇 is a projective object of such that any𝑋 ∈  admits
a conflation 𝑇𝑋

1
↣ 𝑇𝑋

0
↠ 𝑋 with 𝑇𝑋

0
, 𝑇𝑋
1
∈ add(𝑇), and the morphism 𝑇 → 0 is an inflation. Fix

a conflation 𝑇 → 0 → Σ𝑇. Then  has only finitely many isomorphism classes of indecomposable
objects if and only if the set

𝐿 ∶=
{
𝓁𝑋 || 𝑋 ∈ ind() ⧵ add(Σ𝑇)}

generates the kernel of the canonical projection g ∶ 𝐾
sp
0
() → 𝐾0(). In this case, the set 𝐿 is a basis

of the kernel of g , and for any 𝑥 ∈ ker(g), we have that

𝑥 =
∑

𝐴∈ind()⧵add(Σ𝑇)

⟨𝑥,𝐴⟩⟨𝓁𝐴,𝐴⟩𝓁𝐴.
Corollary 4.14. Assume that ind() is finite. Let 𝑋 ↣ 𝐸 ↠ 𝑌 ⤏ be any extriangle. Then the
element 𝑥 = [𝑋] + [𝑌] − [𝐸] of the kernel of g is a nonnegative linear combination of the 𝓁𝐴,
with 𝐴 ∈ ind() ⧵ add(Σ𝑇).

4.4 Recollections on extriangulated categories

Extriangulated categories, recently introduced in [72], axiomatize extension-closed subcategories
of triangulated categories in a (moderately) similar way that Quillen’s exact categories axioma-
tize extension-closed subcategories of abelian categories. They appear in representation theory in
relationwith cotorsion pairs [29, 58, 59, 104], with Auslander–Reiten theory [51], with cluster alge-
bras, mutations, or cluster-tilting theory [29, 63–65, 83, 106], with Cohen–Macaulay dg-modules
in the remarkable [53]. We also note the generalization, called 𝑛-exangulated categories [47, 48],
to a version suited for higher homological algebra.
An extriangulated category is the data of an additive category , of an additive bifunctor

𝔼 ∶ op ×  → 𝐴𝑏modeling the Ext1-bifunctor, and of an additive realization 𝔰 sending each ele-
ment 𝛿 ∈ 𝔼(𝑍, 𝑋) to some (equivalence class of) diagram 𝑋 → 𝑌 → 𝑍 modeling the short exact
sequences or triangles. Some axioms, inspired from the case of extension-closed subcategories of
triangulated categories have to be satisfied.
More specifically: fix an additive category , and an additive bifunctor 𝔼 ∶ op ×  → 𝐴𝑏,

where 𝐴𝑏 is the category of abelian groups.

Definition 4.15. For any 𝑋, 𝑍 ∈ , an element 𝛿 ∈ 𝔼(𝑍, 𝑋) is called an 𝔼-extension. A split
𝔼-extension is a zero element 0 ∈ 𝔼(𝑍, 𝑋), for some objects 𝑋, 𝑍 ∈ . For any two 𝔼-extensions
𝛿 ∈ 𝔼(𝑍, 𝑋), 𝛿′ ∈ 𝔼(𝑍′, 𝑋′), the additivity of , 𝔼 permits to define the 𝔼-extension

𝛿 ⊕ 𝛿′ ∈ 𝔼(𝑍 ⊕ 𝑍′, 𝑋 ⊕ 𝑋′).

Remark 4.16. Let 𝛿 ∈ 𝔼(𝑍, 𝑋) be an 𝔼-extension. By functoriality, any morphisms 𝑓 ∈ (𝑋, 𝑋′)

and ℎ ∈ (𝑍′, 𝑍) induce 𝔼-extensions 𝔼(𝑍, 𝑓)(𝛿) ∈ 𝔼(𝑍, 𝑋′) and 𝔼(ℎ, 𝑋)(𝛿) ∈ 𝔼(𝑍′, 𝑋). For short,
we write 𝑓∗𝛿 and ℎ∗𝛿 instead. Using those notations, we have, in 𝔼(𝑍′, 𝑋′)

𝔼(ℎ, 𝑓)(𝛿) = ℎ∗𝑓∗𝛿 = 𝑓∗ℎ
∗𝛿.
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Definition 4.17. Amorphism (𝑓, ℎ) ∶ 𝛿 → 𝛿′ of 𝔼-extensions 𝛿 ∈ 𝔼(𝑍, 𝑋), 𝛿′ ∈ 𝔼(𝑍′, 𝑋′) is a pair
of morphisms 𝑓 ∈ (𝑋, 𝑋′) and ℎ ∈ (𝑍, 𝑍′) in , such that 𝑓∗𝛿 = ℎ∗𝛿′.

Definition 4.18. Let 𝑋, 𝑍 ∈  be any two objects. Two sequences of morphisms in 

𝑋
𝑥
⟶ 𝑌

𝑦
⟶ 𝑍 and 𝑋

𝑥′

⟶ 𝑌′
𝑦′

⟶ 𝑍

are said to be equivalent if there exists an isomorphism g ∈ (𝑌, 𝑌′) such that the following
diagram commutes.

The equivalence class of 𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍 is denoted by [𝑋

𝑥
4→ 𝑌

𝑦
4→ 𝑍].

Notation 4.19. For any 𝑋,𝑌, 𝑍, 𝐴, 𝐵, 𝐶 ∈ , and any [𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍], [𝐴

𝑎
4→ 𝐵

𝑏
4→ 𝐶], we let

0 = [𝑋

[
1
0

]
⟶𝑋⊕𝑌

[0 1 ]
⟶ 𝑌]

and

[𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍] ⊕ [𝐴

𝑎
4→ 𝐵

𝑏
4→ 𝐶] = [𝑋 ⊕ 𝐴

[
𝑥 0
0 𝑎

]
⟶ 𝑌⊕𝐵

[
𝑦 0
0 𝑏

]
⟶ 𝑍⊕𝐶].

Definition 4.20. An additive realization 𝔰 is a correspondence associating, with 𝔼-extension
𝛿 ∈ 𝔼(𝑍, 𝑋), an equivalence class 𝔰(𝛿) = [𝑋

𝑥
4→ 𝑌

𝑦
4→ 𝑍] and satisfying the following condition:

(∗) Let 𝛿 ∈ 𝔼(𝑍, 𝑋) and 𝛿′ ∈ 𝔼(𝑍′, 𝑋′) be any pair of 𝔼-extensions, with

𝔰(𝛿) = [𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍] and 𝔰(𝛿′) = [𝑋′

𝑥′

44→ 𝑌′
𝑦′

44→ 𝑍′].

Then, for any morphism (𝑓, ℎ) ∶ 𝛿 → 𝛿′, there exists g ∈ (𝑌, 𝑌′) such that the following
diagram commutes:

The sequence 𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍 is said to realize 𝛿 if 𝔰(𝛿) = [𝑋

𝑥
4→ 𝑌

𝑦
4→ 𝑍], and the triple (𝑓, g , ℎ) is

said to realize (𝑓, ℎ) if the diagram in (∗) commutes.
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Definition 4.21. A realization of 𝔼 is called an additive realization if the following conditions are
satisfied.

(1) For any 𝑋, 𝑍 ∈ , the realization of the split 𝔼-extension 0 ∈ 𝔼(𝑍, 𝑋) is given by 𝔰(0) = 0.
(2) For any two 𝔼-extensions 𝛿 ∈ 𝔼(𝑍, 𝑋) and 𝛿′ ∈ 𝔼(𝑍′, 𝑋′), the realization of 𝛿 ⊕ 𝛿′ is given

by 𝔰(𝛿 ⊕ 𝛿′) = 𝔰(𝛿) ⊕ 𝔰(𝛿′).

Definition 4.22 [72, Definition 2.12]. A triple (, 𝔼, 𝔰) is called an extriangulated category if the
following holds.

(ET1) 𝔼 ∶ op ×  → 𝐴𝑏 is an additive bifunctor.
(ET2) 𝔰 is an additive realization of 𝔼.
(ET3) Let 𝛿 ∈ 𝔼(𝑍, 𝑋) and 𝛿′ ∈ 𝔼(𝑍′, 𝑋′) be 𝔼-extensions realized respectively by 𝑋

𝑥
4→ 𝑌

𝑦
4→ 𝑍

and 𝑋′
𝑥′

44→ 𝑌′
𝑦′

44→ 𝑍′. Then, for any commutative square

in , there exists a morphism (𝑓, ℎ) ∶ 𝛿 → 𝛿′ satisfying ℎ◦𝑦 = 𝑦′◦g .
(ET3)op Dual of (ET3).
(ET4) Let 𝛿 ∈ 𝔼(𝑍′, 𝑋) and 𝛿′ ∈ 𝔼(𝑋′, 𝑌) be 𝔼-extensions realized, respectively, by

𝑋
𝑓
⟶ 𝑌

𝑓′

⟶ 𝑍′ and 𝑌
g
⟶𝑍

g′

⟶ 𝑋′.

Then there exist an object 𝑌′ ∈ , a commutative diagram in 

and an 𝔼-extension 𝛿′′ ∈ 𝔼(𝑌′, 𝑋) realized by 𝑋
ℎ
⟶ 𝑍

ℎ′

⟶ 𝑌′, which satisfy the
following compatibilities.

(i) 𝑍′
𝑑
⟶ 𝑌′

𝑒
⟶ 𝑋′ realizes 𝑓′∗𝛿

′.
(ii) 𝑑∗𝛿′′ = 𝛿.
(iii) 𝑓∗𝛿′′ = 𝑒∗𝛿′.

(ET4)op Dual of (ET4).

We use the following terminology.
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Notation 4.23. Let (, 𝔼, 𝔰) be an extriangulated category.

(1) A sequence 𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍 is called a conflation if it realizes some 𝔼-extension in 𝔼(𝑍, 𝑋).

In which case the morphism 𝑋
𝑥
4→ 𝑌 is called an inflation, written 𝑋 ↣ 𝑌, and the

morphism 𝑌
𝑦
4→ 𝑍 is called a deflation, written 𝑌 ↠ 𝑍.

(2) An extriangle is a diagram 𝑋
𝑥
↣ 𝑌

𝑦
↠ 𝑍

𝛿
⤏ where 𝑋

𝑥
↣ 𝑌

𝑦
↠ 𝑍 is a conflation realizing

the 𝔼-extension 𝛿 ∈ 𝔼(𝑍, 𝑋).
(3) Similarly, we call morphism of extriangles any diagram

where (𝑓, ℎ) ∶ 𝛿 → 𝛿′ is a morphism of 𝔼-extensions realized by (𝑓, g , ℎ).

The axioms above ensure that any extriangle induce longish exact sequences after application
of some covariant or contravariant Hom-functor. In particular in any conflation, the inflation is a
weak kernel of the deflation, and the deflation is a weak cokernel of the inflation.

Proposition 4.24 [72, Props. 3.3 & 3.11]. Assume that (, 𝔼, 𝔰) is an extriangulated category, and let

𝑋
𝑥
4→ 𝑌

𝑦
4→ 𝑍

𝛿
⤏ be an extriangle. Then the following sequences of natural transformations are exact:

(𝑍, −)
−◦𝑦
⟶ (𝑌, −)

−◦𝑥
⟶ (𝑋, −)

𝛿♯

⟶ 𝔼(𝑍,−)
𝑦∗

⟶ 𝔼(𝑌,−)
𝑥∗

⟶ 𝔼(𝑋,−),

(−, 𝑋)
𝑥◦−
⟶ (−, 𝑌)

𝑦◦−
⟶ (−, 𝑍)

𝛿♯
⟶ 𝔼(−,𝑋)

𝑥∗
⟶ 𝔼(−,𝑌)

𝑦∗
⟶ 𝔼(−, 𝑍),

where 𝛿♯(𝑓) = 𝑓∗𝛿 and 𝛿♯(g) = g∗𝛿.

Any variant of the axiom (ET4) that would hold in an extension-closed subcategory of a tri-
angulated category by applying the octahedron axiom also holds in any extriangulated category.
See [72, section 3.2] for more details.

Definition 4.25. An almost-split 𝔼-extension 𝛿 ∈ 𝔼(𝑍, 𝑋) is a nonsplit 𝔼-extension such that:

(AS1) 𝑓∗𝛿 = 0 for any nonsection 𝑓 ∈ (𝑋, 𝑋′);
(AS2) g∗𝛿 = 0 for any nonretraction g ∈ (𝑍′, 𝑍).

Definition 4.26. A nonzero object 𝑋 ∈  is said to be endo-local if (𝑋, 𝑋) is local.

Proposition 4.27 [51, Proposition 2.5]. For any nonsplit 𝔼-extension 𝛿 ∈ 𝔼(𝑍, 𝑋), the following
holds.

(1) If 𝛿 satisfies (AS1), then 𝑋 is endo-local.
(2) If 𝛿 satisfies (AS2), then 𝑍 is endo-local.
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Definition 4.28. An object 𝑃 ∈  is called projective if, for any 𝑋 ∈ , we have 𝔼(𝑃, 𝑋) = 0.
Dually, an object 𝐼 ∈  is called injective if for any 𝑋 ∈ , we have 𝔼(𝑋, 𝐼) = 0.

Proposition 4.29 [51, Proposition 8.1]. Let Λ be an Artin algebra and let 𝐾[−1,0](proj Λ) be the full
subcategory of the homotopy category𝐾𝑏(proj Λ) consisting of complexes concentrated in degrees−1
and 0 (using cohomological conventions). Then any endo-local nonprojective object 𝑋 ∈  permits
an almost-split conflation 𝜏𝑋 ↣ 𝐸 ↠ 𝑋 and any endo-local noninjective object 𝑌 ∈  permits an
almost-split conflation 𝑌 ↣ 𝐸′ ↠ 𝜏−𝑌.

4.5 Proofs of preliminary results and of Theorem 4.13

We let  and  satisfy the assumptions (1), (2), and (3) of Subsection 4.1. We will make it explicit
when more assumptions are needed.
We start by stating some immediate implications of the existence of conflations 𝑇 ↣ 0 ↠ Σ𝑇,

for 𝑇 ∈  .

Lemma 4.30. The following holds.

(i) An object belongs to  if and only if it is projective in .
(ii) For any 𝑇, 𝑇′ ∈  , we have (𝑇, Σ𝑇′) = 0.
(iii) For any 𝑋 ∈  and 𝑇 ∈  , (𝑋, Σ𝑇) ≅ 𝔼(𝑋, 𝑇).
(iv) For any 𝑋 ∈  and 𝑇 ∈  , (𝑇, 𝑋) ≅ 𝔼(Σ𝑇, 𝑋).
(v) The full subcategory Σ is rigid in .

Proof.

(i) If 𝑋 is projective in , then the deflation 𝑇𝑋
0
↠ 𝑋 splits and 𝑋 is a summand of 𝑇𝑋

0
.

(ii) This follows from the fact that 𝑇 is projective and 0 ↠ Σ𝑇′ is a deflation.
(iii) and (iv) are obtained from the exact sequences of Proposition 4.24 associated with the

extriangle 𝑇 ↣ 0 ↠ Σ𝑇 ⤏.
(v) For any 𝑇, 𝑇′ ∈  , we have 𝔼(Σ𝑇, Σ𝑇′) ≅ (𝑇, Σ𝑇′) = 0. □

Lemma 4.31. Let 𝑋 ∈  and let

𝑇𝑋1
𝑓𝑋
↣ 𝑇𝑋0

g𝑋
↠ 𝑋

𝛿𝑋
⤏, 𝑇𝑋0 ↣ 0 ↠ Σ𝑇𝑋0

𝛿0
⤏, 𝑇𝑋1 ↣ 0 ↠ Σ𝑇𝑋1

𝛿1
⤏

be extriangles with 𝑇𝑋
0
, 𝑇𝑋
1
∈  . Then there are extriangles

𝑇𝑋0
g𝑋
↣ 𝑋

ℎ𝑋
↠ Σ𝑇𝑋1

(𝑓𝑋)∗𝛿1
⤏ , 𝑋

ℎ𝑋
↣ Σ𝑇𝑋1

Σ𝑓𝑋
↠ Σ𝑇𝑋0

(g𝑋)∗𝛿0
⤏

where ℎ𝑋 is the unique morphism in (𝑋, Σ𝑇𝑋
1
) satisfying (ℎ𝑋)∗𝛿1 = 𝛿𝑋 and Σ𝑓𝑋 is the unique

morphism in (Σ𝑇𝑋
1
, Σ𝑇𝑋

0
) satisfying (Σ𝑓𝑋)∗𝛿0 = (𝑓𝑋)∗𝛿1.

Proof. The first extriangle is obtained by applying the dual of [72, Proposition 3.15] to 𝛿𝑋 and 𝛿1,
and the second one is obtained similarly from 𝛿0 and (𝑓𝑋)∗𝛿1. □
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Remark 4.32. For any 𝑇 ∈  , fix an extriangle 𝑇 ↣ 0 ↠ Σ𝑇
𝜀𝑇
⤏. As noticed in Lemma 4.31, for any

morphism 𝑇
𝑓
→ 𝑇′ in  , there is a unique morphism Σ𝑓 ∈ (Σ𝑇, Σ𝑇′) such that 𝑓∗𝜀𝑇 = (Σ𝑓)∗𝜀𝑇′

(i.e., such that (𝑓, Σ𝑓) is a morphism from 𝜀𝑇 to 𝜀𝑇′), as illustrated below:

This gives an equivalence of additive categories

Σ ∶  → Σ ,

where Σ is the full subcategory of  whose objects are isomorphic to objects of the form Σ𝑇, for
some 𝑇 ∈  .

Lemma 4.33. Every morphism with domain in  is an inflation.

Proof. Let 𝑇
𝑡
→ 𝑋 be a morphism with 𝑇 ∈  . Using the notation of Remark 4.32, there is an

extriangle 𝑇 ↣ 0 ↠ Σ𝑇
𝜀𝑇
⤏. Consider the extriangle 𝑋

g
↣ 𝑌

ℎ
↠ Σ𝑇

𝑡∗𝜀𝑇
⤏ . By [72, Proposition 3.17],

there is a commutative diagram of extriangles

satisfying (𝑡′)∗𝜀𝑇 = 𝑡∗𝜀𝑇 . The long exact sequence associated with the extriangle 𝑇 → 0 → Σ𝑇
𝜀𝑇
⤏

implies injectivity of 𝑠 ↦ 𝑠∗𝜀𝑇 . We thus have 𝑡′ = 𝑡. □

Remark 4.34. It follows from the proof of Lemma 4.33 that conditions (1), (2), (3) in Subsection
4.1 are equivalent to conditions (1), (2), (3’), where

(3′)  =  ∗ Σ .

Proof of Lemma 4.5. Applying the functor 𝐹 to the extriangle 𝑇𝑋
1
↣ 𝑇𝑋

0
↠ 𝑋

𝛿𝑋
⤏ induces an exact

sequence 𝐹𝑇𝑋
1
→ 𝐹𝑇𝑋

0
→ 𝐹𝑋 → 𝔼(𝑇, 𝑇𝑋

1
) = 0, showing that 𝐹𝑋 is finitely presented. □

Proof of Proposition 4.6. Recall that𝐹 ∶  → mod  denotes the functor sending an object𝑋 to the
module (−, 𝑋)| . By Lemma 4.30 (v), the ideal (Σ ) of morphisms factoring through an object
in Σ is included in the kernel of 𝐹. Conversely, let 𝑋

𝑓
4→ 𝑌 be such that 𝐹𝑓 = 0. By Lemma 4.31,
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there is a conflation 𝑇0
g
↣ 𝑋

ℎ
↠ Σ𝑇1 with 𝑇0, 𝑇1 ∈  . By assumption, the composition 𝑓◦g van-

ishes, which implies that 𝑓 factors through Σ𝑇1. The functor 𝐹 thus induces a faithful functor,
still denoted 𝐹, from ∕(Σ ) tomod  . It is well-known (see, for instance, [9, Lemma 3.1]) that 𝐹
restricts to an equivalence of categories  → proj  . Because  consists of projective objects in ,
the image under 𝐹 of every conflation is a right exact sequence. The fact that 𝐹 is full and dense
can thus be proven as in the case of triangulated categories, by using Lemma 4.33. □

Corollary 4.35. The objects in Σ are precisely the injective objects in .

Proof. First note that any injective object belongs to Σ , by Lemma 4.31. Indeed, if 𝑋 is injective,
then the extriangle

𝑋
ℎ𝑋
↣ Σ𝑇𝑋1

Σ𝑓𝑋
↠ Σ𝑇𝑋0

(g𝑋)∗𝛿0
⤏

splits, showing that 𝑋 is a summand of Σ𝑇𝑋
1
. Let us prove that the converse holds.

Let Σ𝑇 ↣ 𝑋
𝑓
↠ 𝑌

𝛿
⤏ be an extriangle with 𝑇 ∈  . As (−, Σ𝑇)| = 0 and 𝔼(−, Σ𝑇)| = 0 (by

Lemma 4.30), the morphism (−, 𝑓)| is an isomorphism in mod  . By Proposition 4.6, there

are morphisms 𝑌
𝑠
→ 𝑋, 𝑌

ℎ
4→ Σ𝑇′, Σ𝑇′

𝑡
4→ 𝑌, for some 𝑇′ ∈  satisfying

𝑓𝑠 = 𝑖𝑑𝑌 + 𝑡ℎ.

By Lemma 4.30 (v), Σ is a rigid subcategory, so that 𝑡∗𝛿 = 0. Equivalently, there is a mor-

phism Σ𝑇′
𝑘
4→ 𝑋 such that 𝑡 = 𝑓𝑘. We thus have 𝑓(𝑠 − 𝑘ℎ) = 𝑖𝑑𝑌 , showing that the extriangle

splits. □

Lemma 4.36. The index is well-defined. More precisely, for any object 𝑋 ∈  and any two con-

flations 𝑇1
𝑓
↣ 𝑇0

g
↠ 𝑋, 𝑇′

1

𝑓′

↣ 𝑇′
0

g′

↠ 𝑋 with 𝑇0, 𝑇1, 𝑇′0, 𝑇
′
1
∈  , we have [𝑇0] − [𝑇1] = [𝑇′0] − [𝑇

′
1
]

in 𝐾0( ).

Proof. Applying [72, Proposition 3.15] gives a commutative diagram made of conflations

As the objects in  are projective, the two conflations with middle term 𝑌 split and there
are isomorphisms 𝑇′

1
⊕ 𝑇0 ≅ 𝑌 ≅ 𝑇1 ⊕ 𝑇′

0
. The equality [𝑇′

1
] + [𝑇0] = [𝑇1] + [𝑇

′
0
] thus holds

in 𝐾0( ). □

Remark 4.37. We note that Lemma 4.36 only requires the subcategory  to be rigid, and not made
of projective objects. However, this stronger assumption is used in the proof of Lemma 4.38.
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Lemma 4.38. The index descends to 𝐾0(): for any conflation 𝑋 ↣ 𝑌 ↠ 𝑍 in , we have
ind 𝑌 = ind 𝑋 + ind 𝑍 in 𝐾0( ).

Proof. Let 𝑋 ↣ 𝑌 ↠ 𝑍 be a conflation in . Fix conflations 𝑇𝑋
1
↣ 𝑇𝑋

0
↠ 𝑋, 𝑇𝑍

1
↣ 𝑇𝑍

0
↠ 𝑍

with 𝑇𝑋
0
, 𝑇𝑋
1
, 𝑇𝑍
0
, 𝑇𝑍
1
∈  . By [72, Proposition 3.15] and axiom (ET4)op, there are commutative

diagrams of conflations

wherewehave used the fact that𝑇𝑍
0
is projective in.Moreover, the conflationwithmiddle term𝐵

splits, which implies that 𝐵 is isomorphic to 𝑇𝑋
1
⊕ 𝑇𝑍

1
. □

Proof of Proposition 4.11. By Lemmas 4.36 and 4.38, the index induces a well-defined mor-
phism of abelian groups ind ∶ 𝐾0() → 𝐾0( ). It remains to prove that it is an isomorphism.
Let 𝜋 ∶ 𝐾0( ) → 𝐾0() send a class [𝑇] ∈ 𝐾0( ) to the class [𝑇] ∈ 𝐾0(). The existence, for
any 𝑇 ∈  , of a conflation 0 ↣ 𝑇 ↠ 𝑇 shows that 𝜋 is right inverse to ind . To see that it is also
a left inverse, note that if 𝑇1 ↣ 𝑇0 ↠ 𝑋 is a conflation in , then the equality [𝑋] = [𝑇0] − [𝑇1]
holds in 𝐾0(). □

Proof of Theorem 4.13. The proof is now similar to the proof of Theorem 3.8, by using Proposi-
tion 4.6 instead of Proposition 3.1, Proposition 4.11 instead of Corollary 3.13, and the fact that  is
made of projective objects instead of Lemma 3.15. □

Proof of Corollary 4.14. The proof is similar to that of Corollary 3.9. □

4.6 Application to 2-term complexes of projectives and to gentle
algebras

LetΛ be an Artin algebra. Then the homotopy category 𝐾𝑏(proj Λ) is a triangulated category, and
we consider its full subcategory 𝐾[−1,0](proj Λ) of complexes concentrated in degrees −1 and 0
(with cohomological conventions).

Proposition 4.39. LetΛ be anyArtin algebra. Then the category𝐾[−1,0](proj Λ) is an extriangulated
category satisfying the assumptions (1) to (3) of Section 4.1, wiht  = add(Λ). If, moreover,Λ is finite-
dimensional over a field 𝕂, then 𝐾[−1,0](proj Λ) satisfies all assumptions of Section 4.1.

Proof. The category 𝐾[−1,0](proj Λ) is closed under extensions in 𝐾𝑏(proj Λ), so it is an extrian-
gulated category whose conflations are induced by triangles in 𝐾𝑏(proj Λ) by [72, Remark 2.18].
Now, the object Λ is projective in 𝐾[−1,0](proj Λ), as if 𝑋 ↣ 𝑌 ↠ 𝑍 is a conflation, then we get a
long exact sequence

Hom𝐾𝑏(Λ, 𝑌) → Hom𝐾𝑏(Λ, 𝑍) → Hom𝐾𝑏(Λ, Σ𝑋),
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and the last term vanishes, as Σ𝑋 is a complex concentrated in degrees −2 and −1, while Λ is in
degree 0. This proves that Λ is projective.

ThemorphismΛ → 0 is an inflation, asΛ ↣ 0 ↠ ΣΛ is a conflation. Moreover, if𝑋 = 𝑃1
𝑓
4→ 𝑃0

is an object of 𝐾[−1,0](proj Λ), then it lies in a conflation 𝑃1
𝑓
↣ 𝑃0 ↠ 𝑋 by definition. We have

proved that properties (1) to (3) of Section 4.1 are satisfied.
Finally, assume that Λ is finite-dimensional over a field 𝕂. Then 𝐾[−1,0](proj Λ) is Krull–

Schmidt,𝕂-linear andExt-finite, as this is true for𝐾𝑏(proj Λ) for any finite-dimensional algebraΛ.
Moreover, it has Auslander–Reiten–Serre duality by [51, Proposition 6.1]. □

The extriangulated category𝐾[−1,0](proj Λ) is the setting inwhichwe can finally prove point (ii)
of Proposition 2.34, using results of [30] on g -vectors. Before doing so, we introduce the notion of
mutation conflation for two-term silting objects.

Definition 4.40. Recall that a two-term silting object is a complex 𝑇 in 𝐾[−1,0](proj Λ) such
that Hom𝐾𝑏(𝑇, Σ𝑇) = 0 and the number of isomorphism classes of indecomposable summands
of 𝑇 is the same as that of Λ.

Remark 4.41. The definition given above is only equivalent to the usual definition of a silting
object for two-term complexes of projectives.

Definition 4.42. A conflation 𝑋 ↣ 𝐸 ↠ 𝑌 of 𝐾[−1,0](proj Λ) is called a mutation conflation if
there are basic, two-term, silting objects 𝑋 ⊕ 𝑅, 𝑌 ⊕ 𝑅, with 𝑋 and 𝑌 indecomposable, such
that the inflation 𝑋 ↣ 𝐸 is a left (add𝑅)-approximation (i.e., any morphism from 𝑋 to an object
in add𝑅 factors through 𝑋 ↣ 𝐸).

Remark 4.43. In Definition 4.42, the requirement that 𝑋 and 𝑌 are indecomposable implies that
the map 𝐸 ↠ 𝑌 is a right (add𝑅)-approximation, and that both approximations are minimal.

Proposition 4.44. LetΛ be a finite-dimensional𝕂-algebra, where𝕂 is a field. Let𝑋 and𝑌 be objects
of 𝐾[−1,0](proj Λ).

(1) If there is a mutation conflation (see Definition 4.42) of the form 𝑋 ↣ 𝐸 ↠ 𝑌, then there can be
no mutation conflation of the form 𝑌 ↣ 𝐸′ ↠ 𝑋.

(2) Assume that 𝑋 ↣ 𝐸 ↠ 𝑌 and 𝑋 ↣ 𝐸′ ↠ 𝑌 are two mutation conflations. Then 𝐸 and 𝐸′ are
isomorphic.

Proof. We first prove (1). Assume that 𝑋 ↣ 𝐸 ↠ 𝑌 and 𝑌 ↣ 𝐸′ ↠ 𝑋 are two mutation confla-
tions. Applying the functorHom𝐾𝑏(Σ

−1𝑌,−) to the second sequence, we get an exact sequence of
abelian groups

Hom𝐾𝑏(Σ
−1𝑌, 𝐸′) → Hom𝐾𝑏(Σ

−1𝑌, 𝑋) → Hom𝐾𝑏(Σ
−1𝑌, Σ𝑌).

By definition of a mutation conflation, we have that Hom𝐾𝑏(Σ
−1𝑌, 𝐸′) = 0. Moreover, as 𝑌

is concentrated in homological degrees −1 and 0, we get that Hom𝐾𝑏(Σ
−1𝑌, Σ𝑌) = 0. There-

fore, Hom𝐾𝑏(Σ
−1𝑌, 𝑋) = 0. However, as the conflation 𝑋 ↣ 𝐸 ↠ 𝑌 is not split, we have

that Hom𝐾𝑏(Σ
−1𝑌, 𝑋) ≠ 0, a contradiction. This proves (1).
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Wenowprove (2). Let𝑋 ↣ 𝐸 ↠ 𝑌 and𝑋 ↣ 𝐸′ ↠ 𝑌 be twomutation conflations. By [30, Theo-
rem 6.5] (based on [31, Thm 2.3]), rigid objects in 𝐾[−1,0](proj Λ) are determined by their g -vector.
The datum of the g -vector of an object of 𝐾[−1,0](proj Λ) is equivalent to that of its class in the
Grothendieck group 𝐾0(𝐾[−1,0](proj Λ)), where 𝐾[−1,0](proj Λ) is viewed as an extriangulated cat-
egory (see Proposition 4.39). In this Grothendieck group, we have that [𝐸] = [𝐸′] = [𝑋] + [𝑌].
Thus 𝐸 and 𝐸′ are isomorphic. □

Corollary 4.45. Point (ii) of Proposition 2.34 holds.

Proof. Let𝜔 and𝜔′ be in facets𝐹 and𝐹′ as in the statement of Proposition 2.34. For everywalk𝜔′′,
let 𝑃(𝜔′′) be the object of 𝐾[−1,0](proj Λ) corresponding to 𝜔′′. Then the walks 𝜇 and 𝜈 defined in
the same statement yield a mutation conflation

𝑃(𝜔) ↣ 𝑃(𝜇) ⊕ 𝑃(𝜈) ↠ 𝑃(𝜔′) or 𝑃(𝜔′) ↣ 𝑃(𝜇) ⊕ 𝑃(𝜈) ↠ 𝑃(𝜔).

Assume that there are other facets 𝐹0 and 𝐹′0 also satisfying the hypotheses of Proposition 2.34.
Then they give rise to walks 𝜇′ and 𝜈′ and an exchange conflation

𝑃(𝜔) ↣ 𝑃(𝜇′) ⊕ 𝑃(𝜈′) ↠ 𝑃(𝜔′) or 𝑃(𝜔′) ↣ 𝑃(𝜇′) ⊕ 𝑃(𝜈′) ↠ 𝑃(𝜔).

By Proposition 4.44, we get that 𝑃(𝜇) ⊕ 𝑃(𝜈) and 𝑃(𝜇′) ⊕ 𝑃(𝜈′) are isomorphic, and that the
mutation conflations either both have the form 𝑃(𝜔) ↣ 𝑃(𝜇) ⊕ 𝑃(𝜈) ↠ 𝑃(𝜔′) or both have
the form 𝑃(𝜔′) ↣ 𝑃(𝜇) ⊕ 𝑃(𝜈) ↠ 𝑃(𝜔). Without loss of generality, assume that they have the
first form.
In particular, the leftmost morphisms of both mutation conflations are minimal

add(𝑃(𝜇) ⊕ 𝑃(𝜈))-approximations of 𝑃(𝜔). As such, they are isomorphic as morphisms.
They determine common substrings of 𝜔 and 𝜇 and of 𝜔 and 𝜈, which in turn determine 𝜎. Point
(ii) of Proposition 2.34 is proved. □

We now come to the main result of this section.

Theorem 4.46. Let Λ be an Artin algebra all of whose indecomposable objects are 𝜏-rigid bricks.
Then the almost-split conflations of 𝐾[−1,0](proj Λ) are mutation conflations if and only if for any
nonprojective indecomposable Λ-module𝑀, the spaceHomΛ(𝑀, 𝜏

2𝑀) vanishes.

Remark 4.47. Assume that Λ is a finite-dimensional brick algebra that is representation-finite.
Then [30, Theorem 6.2] implies that the assumptions of Theorem 4.46 are satisfied.

Corollary 4.48. Let Λ be a finite-dimensional brick algebra of finite representation type. Assume
moreover that, for any indecomposable Λ-module𝑀, the space HomΛ(𝑀, 𝜏

2𝑀) vanishes. Then the
support 𝜏-tilting fan of Λ has the unique exchange relation property and its type cone is simplicial.

As a consequence of Corollary 4.48, the methods of Part I apply and give an explicit description
of all realizations of the support 𝜏-tilting fan of Λ. Another consequence is an algebraic proof of
Corollary 2.43, that we restate below.

Corollary 4.49 (Corollary 2.43). For any brick and 2-acyclic gentle algebra, the type cone of its
support 𝜏-tilting fan is simplicial.
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The remaining part of this section is devoted to proving Theorem 4.46 and Corollary 4.49.

Lemma 4.50. Let Λ be any Artin algebra. Let 𝑋
𝑎
↣ 𝑌

𝑏
↠ 𝑍 be an almost-split con-

flation in 𝐾[−1,0](proj Λ) such that 𝑍 is not in add(ΣΛ). Denote by 𝐹 the functor
Hom𝐾𝑏(Λ,−) ∶ 𝐾

[−1,0](proj Λ) → modΛ. Then there is an almost-split sequence inmodΛ:

0 → 𝐹𝑋 → 𝐹𝑌 → 𝐹𝑍 → 0

Proof. The almost-split conflation induces an exact sequence

𝐹Σ−1𝑌 → 𝐹Σ−1𝑍 → 𝐹𝑋 → 𝐹𝑌 → 𝐹𝑍 → 𝐹Σ𝑋.

Because 𝑋 is concentrated in nonpositive degrees, 𝐹Σ𝑋 = 0. Let us verify that the map

𝐹Σ−1𝑌 → 𝐹Σ−1𝑍 is surjective. Let Λ
𝑓
4→ Σ−1𝑍 be a morphism in 𝐾𝑏(proj Λ). As 𝑌

𝑏
→ 𝑍 is right

almost-split, and 𝑍 is indecomposable not in add(ΣΛ), the morphism Σ𝑓 factors through 𝑏. This
implies the required surjectivity, and we have a short exact sequence

0 → 𝐹𝑋
𝐹𝑎
444→ 𝐹𝑌

𝐹𝑏
44→ 𝐹𝑍 → 0.

Because modΛ and 𝐾𝑏(proj Λ) are Krull–Schmidt, it is immediate to check that 𝐹𝑏 (resp., 𝐹𝑎)
inherits from 𝑏 (resp., 𝑎) the property of being right (resp., left) almost-split. □

Lemma 4.51. Let Λ be an Artin algebra, let 𝜏𝑋 ↣ 𝐸 ↠ 𝑋 be an Auslander–Reiten conflation
in 𝐾[−1,0](proj Λ) and denote 𝐹𝑋 = 𝑀. We make the following assumptions.

(1) 𝑋 ∉ add(ΣΛ).
(2) 𝑀 and 𝜏𝑀 are 𝜏-rigid.
(3) HomΛ(𝑀, 𝜏

2𝑀) = 0.
(4) 𝜏𝑀 is a brick.

Then 𝜏𝑋 ↣ 𝐸 ↠ 𝑋 is a mutation conflation.

Proof. First note that the results [8, Lemmas 3.4 and 3.5], even though stated for finite-dimensional
algebras, hold with the same proofs for any Artin algebra. For convenience of the reader, we
recall those two results: Let 𝑌, 𝑍 ∈ 𝐾[−1,0](proj Λ) be indecomposable and not in add(ΣΛ), and
let 𝑃 ∈ proj Λ. ThenHom𝐾𝑏(𝑌, Σ𝑍) = 0 if and only ifHomΛ(𝐹𝑍, 𝜏𝐹𝑌) = 0 andHom𝐾𝑏(𝑃, 𝑌) = 0

if and only if HomΛ(𝑃, 𝐹𝑌) = 0.
Note also that Lemma 4.50 implies that 𝐹𝜏𝑋 is isomorphic to 𝜏𝑀.
By assumption, 𝑋 is not in add(ΣΛ). The same is true of 𝜏𝑋 because objects in add(ΣΛ) are

injective in 𝐾[−1,0](proj Λ) and an Auslander–Reiten conflation does not split. It thus follows
from [8, Lemma 3.4 ] that 𝑋 and 𝜏𝑋 are rigid in 𝐾[−1,0](proj Λ). We have to prove that both 𝐸 ⊕ 𝑋

and 𝐸 ⊕ 𝜏𝑋 are rigid.

(1) Hom𝐾𝑏(𝐸, Σ𝑋) = 0.

The Auslander–Reiten conflation induces an exact sequence

Hom𝐾𝑏(𝑋, Σ𝑋) → Hom𝐾𝑏(𝐸, Σ𝑋) → Hom𝐾𝑏(𝜏𝑋, Σ𝑋).
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As already remarked, 𝑋 is rigid so that the left-most term vanishes. By assumption

HomΛ(𝐹𝑋, 𝜏𝐹𝜏𝑋) = HomΛ(𝑀, 𝜏
2𝑀) = 0,

so that the right-most term also vanishes by [8, Lemma 3.4 ].

(2) Hom𝐾𝑏(𝜏𝑋, Σ𝐸) = 0.

As Λ is projective in 𝐾[−1,0](proj Λ), the sequence 𝜏𝑀 → 𝐹𝐸 → 𝑀 is short exact. It induces a
sequence

HomΛ(𝑀, 𝜏
2𝑀) → HomΛ(𝐹𝐸, 𝜏

2𝑀) → HomΛ(𝜏𝑀, 𝜏
2𝑀)

from which we deduce that HomΛ(𝐹𝐸, 𝜏
2𝑀) = 0. This implies Hom𝐾𝑏(𝜏𝑋, Σ𝐸) = 0 by [8,

Lemma 3.4 ].

(3) Hom𝐾𝑏(𝑋, Σ𝐸) = 0.

Let us show thatHomΛ(𝐹𝐸, 𝜏𝑀) = 0. Let 𝐹𝐸
𝑓
4→ 𝜏𝑀 be any morphism, and consider the short

exact sequence 0 → 𝜏𝑀
𝑎
4→ 𝐹𝐸

𝑏
4→ 𝑀 → 0 induced by the Auslander–Reiten conflation. As 𝜏𝑀 is

a brick, the composition 𝑓𝑎 is zero. The morphism 𝑓 then factors through the cokernel 𝑏, which
implies 𝑓 = 0 because𝑀 is 𝜏-rigid.

(4) Hom𝐾𝑏(𝐸, Σ𝐸) = 0.

The Auslander–Reiten conflation induces an exact sequence

Hom𝐾𝑏(𝑋, Σ𝐸) → Hom𝐾𝑏(𝐸, Σ𝐸) → Hom𝐾𝑏(𝜏𝑋, Σ𝐸).

We can conclude by (2) and (3).

(5) Hom𝐾𝑏(𝐸, Σ𝜏𝑋) = 0.

We have an exact sequence

Hom𝐾𝑏(𝐸, 𝐸) → Hom𝐾𝑏(𝐸, 𝑋) → Hom𝐾𝑏(𝐸, Σ𝜏𝑋) → Hom𝐾𝑏(𝐸, Σ𝐸).

The first map is surjective because 𝐸 → 𝑋 is right almost-split (note that 𝐸 cannot contain any
summand isomorphic to 𝑋). We can conclude by (4). □

Lemma 4.52. Let Λ be an Artin algebra, and let 𝑌 ↣ 𝐸 ↠ 𝑋 be a conflation in 𝐾[−1,0](proj Λ).
Then:

(1) IfHom𝐾𝑏(𝑌, Σ𝐸) = 0, we haveHomΛ(𝐹𝑋, 𝜏𝐹𝑌) = 0.
(2) If moreover 𝑋 ∉ add(ΣΛ) and the conflation is almost-split, thenHomΛ(𝐹𝑋, 𝜏

2𝐹𝑋) = 0.

Proof. By Lemma 4.50, (2) follows from (1). Let us prove (1). The conflation induces an
exact sequence Hom𝐾𝑏(𝑌, Σ𝐸) → Hom𝐾𝑏(𝑌, Σ𝑋) → Hom𝐾𝑏(𝑌, Σ

2, 𝑌). The complex 𝑌 being
two-term, we have Hom𝐾𝑏(𝑌, Σ

2, 𝑌) = 0. Assuming that Hom𝐾𝑏(𝑌, Σ𝐸) = 0, we deduce
that Hom𝐾𝑏(𝑌, Σ𝑋) = 0, and hence that HomΛ(𝐹𝑋, 𝜏𝐹𝑌) = 0 by [8, Lemma 3.4]. □
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Lemma 4.53. Let Λ be an Artin algebra whose indecomposable injective modules are
𝜏-rigid, and let 𝑃 be an indecomposable projective Λ-module. Then the Auslander–Reiten confla-
tion 𝑌 ↣ 𝐸 ↠ Σ𝑃 in 𝐾[−1,0](proj Λ) is a mutation conflation if 𝐹𝑌 is a brick.

Proof. In this proof, we implicitly identify the projective indecomposable Λ-module 𝑃 with the
complex 𝑃 concentrated in degree 0.
We check that the conflation 𝑌 ↣ 𝐸 ↠ Σ𝑃 is a mutation conflation.

(0) As 𝑃 is concentrated in only 1 degree, it is rigid in 𝐾[−1,0](proj Λ) and so isΣ𝑃. Moreover,𝐹𝑌 is
indecomposable and injective. By assumption, it is 𝜏-rigid, hence 𝑌 is rigid in 𝐾[−1,0](proj Λ)
by [8, Lemma 3.4].

(1) We have Hom𝐾𝑏(𝐸, Σ
2𝑃) = 0 because 𝐸 is concentrated in degrees −1 and 0.

(2) Hom𝐾𝑏(𝑌, Σ𝐸) = 0: There is an exact sequence

Hom𝐾𝑏(𝑌, Σ𝑌) → Hom𝐾𝑏(𝑌, Σ𝐸) → Hom𝐾𝑏(𝑌, Σ
2𝑃),

where the first term vanishes by (0) and the last term vanishes because 𝑌 is in degrees −1, 0
while Σ2𝑃 is concentrated in degree −2.

(3) Hom𝐾𝑏(𝐸, Σ𝑌) = 0: Consider the exact sequence

Hom𝐾𝑏(Σ𝑌, Σ𝑌) → Hom𝐾𝑏(Σ𝑃, Σ𝑌) → Hom𝐾𝑏(𝐸, Σ𝑌) → Hom𝐾𝑏(𝑌, Σ𝑌).

Its last term vanishes by (0). Let us prove that its first morphism is surjective. Composition
with 𝛼 and 𝐹𝛼 yields a commutative square

where the vertical maps are surjective. As Λ is rigid and 𝑌 is two-term, we can apply [52,
Proposition 6.2] to the triangulated category 𝐾𝑏(proj Λ) (or Proposition 4.6 to the extriangu-
lated 𝐾[−1,0](proj Λ)). As a consequence, the right-most vertical map is bijective. Because 𝐹𝑌
is a brick,EndΛ(𝐹𝑌) is a division ring.Moreover,𝐹𝑌 is the indecomposable injectivewith sim-
ple socle the simple top of 𝑃, so that the EndΛ(𝐹𝑌)-module HomΛ(𝐹𝑃, 𝐹𝑌) is 1-dimensional
over EndΛ(𝐹𝑌). It follows that the vertical map (𝐹𝛼)∗ is either zero or bijective. But 𝛼 is
nonzero with domain in addΛ so that 𝐹𝛼 is nonzero ; and (𝐹𝛼)∗(1𝐹𝑌) = 𝐹𝛼 so that (𝐹𝛼)∗ is
nonzero. By commutativity, this implies the surjectivity of the top vertical morphism 𝛼∗. As
the shift functor is an automorphism, the morphism Hom𝐾𝑏(Σ𝑌, Σ𝑌) → Hom𝐾𝑏(Σ𝑃, Σ𝑌) is
also surjective, and Hom𝐾𝑏(𝐸, Σ𝑌) = 0.

(4) Hom𝐾𝑏(𝐸, Σ𝐸) = 0: In the exact sequence

Hom𝐾𝑏(𝐸, Σ𝑌) → Hom𝐾𝑏(𝐸, Σ𝐸) → Hom𝐾𝑏(𝐸, Σ
2𝑃),

the first term is zero by (3) and the last term vanishes because 𝑃 is concentrated in degree 0.

(5) Hom𝐾𝑏(Σ𝑃, Σ𝐸) = 0: Let 𝑃
𝑓
4→ 𝐸 be any morphism.
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As 𝑃 is rigid, 𝑓 factors through the inflation 𝛽 in the conflation 𝑌 ↣ 𝐸 ↠ Σ𝑃, and there
is some morphism g such that 𝑓 = 𝛽g . By (3), the morphism g factors through 𝑃

𝛼
4→ 𝑌: there

is some ℎ ∶ 𝑌 → 𝑌 such that g = ℎ𝛼. We then have 𝑓 = 𝛽g = 𝛽(g − 𝛼) = 𝛽(ℎ − 1)𝛼. As 𝑌 is
endo-local, the morphism ℎ or ℎ − 1 is an automorphism, and we may assume that ℎ is an
automorphism. The morphism 𝛽ℎ is not a section (otherwise 𝛽 would be a section) and 𝛽
is left-almost split: there is an endomorphism ℎ′ of 𝐸 such that 𝛽ℎ = ℎ′𝛽. Therefore, we
have 𝑓 = 𝛽ℎ𝛼 = ℎ′𝛽𝛼 = 0. □

Proof of Theorem 4.46. The theorem follows from the slightlymore general statements of Lemmas
4.51 to 4.53. □

Lemma 4.54. Let Λ be a brick and 2-acyclic gentle algebra. Then, for any indecomposable Λ-
module𝑀 we haveHomΛ(𝑀, 𝜏

2𝑀) = 0.

Proof. Let Λ = 𝕂𝑄∕𝐼 be any gentle algebra of finite representation type, and let 𝑀 be an inde-
composable Λ-module. Write 𝜎 for the string corresponding to 𝜏𝑀. Then the walks (i.e., the
maximal strings in the blossoming bound quiver of (𝑄, 𝐼)) associated with𝑀 and 𝜏𝑀 are, respec-
tively, 𝜔𝑀 =

✓

𝜎
✓
= 𝑝−1𝛼𝜎𝛽−1𝑞 and 𝜔𝜏𝑀 = ✓𝜎✓ = 𝑝′𝛼′−1𝜎𝛽′𝑞′−1, where 𝑝, 𝑝′, 𝑞, 𝑞′ are paths

and 𝛼, 𝛼′, 𝛽, 𝛽′ are arrows in the blossoming quiver.
Assume that HomΛ(𝑀, 𝜏

2𝑀) ≠ 0. By [81, Theorem 2.46] or [12, Theorem 5.1], the walk 𝜔𝑀
kisses the walk 𝜔𝜏𝑀 : there is a substring 𝜌 of 𝜔𝑀 and 𝜔𝜏𝑀 that is strictly on top of 𝜔𝑀 and strictly
at the bottom of 𝜔𝜏𝑀 . Remark that 𝜌 cannot start nor end at some endpoint of 𝜎 (because 𝜌 is a
top substring of 𝜔𝑀).
If the substring 𝜌 of 𝜔𝑀 is contained in 𝜎, by the previous remark it is strictly below 𝜎. This

implies that 𝜔𝑀 kisses itself, hence that 𝑀 is not 𝜏-rigid. Similarly, if 𝜌 is contained in 𝜎 as a
substring of 𝜔𝜏𝑀 , then 𝜏𝑀 is not 𝜏-rigid. In both cases, the brick-𝜏-rigid correspondence of [30]
implies that Λ is not a brick algebra.
Note that 𝜌 cannot contain 𝜎, because 𝜎 is the only common substring of 𝜔𝑀 and 𝜔𝜏𝑀 that

contains 𝜎. Assume now that 𝜌, viewed either as a substring of𝜔𝑀 or of𝜔𝜏𝑀 is not contained in 𝜎.
As 𝜌 is strictly on top of 𝜔𝑀 , it contains the source of 𝛼 or the source of 𝛽. Similarly, 𝜌 contains the
target of 𝛼′ or the target of 𝛽′. Because the target of 𝛼 is the source of 𝛼′ (and the target of 𝛽 is the
source of 𝛽′), this implies that 𝑄 contains either a nonoriented cycle with at most one relation, in
which case Λ is not a brick algebra, or a 2-cycle, in which case Λ is not 2-acyclic. □

Proof of Corollary 4.49. The unique exchange relation property follows from Proposition 4.44 (2).
By Lemma 4.54, the assumptions of Theorem 4.46 are satisfied. We can thus apply Theorem 4.13
and its corollary, which shows that there is the same number of extremal exchange pairs of the
support 𝜏-tilting fan (i.e., the nonkissing fan) as there are meshes in the Auslander–Reiten quiver
of Λ. Hence, the type cone of the support 𝜏-tilting fan is simplicial. □
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4.7 Application to other examples of categories

In this section, we give two more examples of families of categories to which Theorem 4.13 and
Corollary 4.14 apply.

4.7.1 2-Calabi–Yau triangulated categories

Let  be a triangulated category with shift functor Σ. We assume moreover that  is 𝕂-linear,
Krull–Schmidt, Hom-finite, 2-Calabi–Yau, with a cluster-tilting object 𝑇. Then  satisfies all the
assumptions of Subsection 4.1 for Subsection 4.3 but, possibly, assumption (1).
We fix this issue by considering a relative extriangulated structure. Let 𝔼𝑇 be the additive

sub-bifunctor of (−, Σ−) formed by those morphisms that factor through addΣ𝑇. Then (, 𝔼𝑇)
becomes extriangulated by either [47, Propositions 3.16 or 3.19] (this can also be checked directly).

The extriangles of  are precisely the triangles 𝑋
𝑓
→ 𝑌

g
→ 𝑍

ℎ
⤏, for which the morphism ℎ factors

through addΣ𝑇. By construction, Condition (1) is now satisfied.Moreover, the triangles appearing
in Conditions (2) and (3) are extriangles for this relative structure, which shows that those two
conditions are still satisfied for the extriangulated structure (, 𝔼𝑇).

Remark 4.55. The index of an object 𝑋 in the triangulated category , coincide with its class in
the Grothendieck group of  for the relative extriangulated structure given by 𝔼𝑇 .

Remark 4.56. Themain results of Subsection 3.2 can thus be viewed as specific cases of the results
of Section 4: Theorem 3.8 and Corollary 3.9 are consequences of Theorem 4.13 and Corollary 4.14.

4.7.2 Objects presented by a subcategory

We now describe a setup satisfying the assumptions of Subsection 4.1 that, at the same time,
subsumes all examples given so far, while being easily checked in practice.
Let ( , 𝔼, 𝔰) be an extriangulated category (for example, a small exact category or a triangulated

category), and let  be an essentially small subcategory of  .
For any𝑋,𝑌 ∈  , let𝔼 (𝑋, 𝑌) be the subset of𝔼(𝑋, 𝑌) consisting of those 𝛿 that satisfy𝑓∗𝛿 = 0,

for any 𝑇 ∈  and any 𝑇
𝑓
4→ 𝑋. It is easily seen that 𝔼 is an additive subfunctor of 𝔼. Con-

sider ( , 𝔼 , 𝔰 ) endowed with the restriction of the additive realization 𝔰. As the deflations
in ( , 𝔼 , 𝔰 ) are precisely the deflations in ( , 𝔼, 𝔰) that are  -epic, they are closed under com-
position. We can thus apply [47, Proposition 3.16] to obtain that ( , 𝔼 , 𝔰 ) is an extriangulated
category. With that relative structure, the objects in  become projective (alternatively, one can
directly apply [47, Proposition 3.19]). Define  to be the full subcategory of  whose objects 𝑋
admit an 𝔰 -conflation 𝑇1 ↣ 𝑇0 ↠ 𝑋.

Lemma 4.57. The full subcategory  is extension-closed in ( , 𝔼 , 𝔰 ), and thus inherits an
extriangulated structure.

Proof. This follows from the proof of Lemma 4.38. □
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Notation 4.58. Write  ⟂ for the full subcategory of  whose objects are those objects 𝑋 ∈  that
satisfy (𝑇, 𝑋) = 0, for any 𝑇 ∈  .

Proposition 4.59. Assume that, for any 𝑇 ∈  , there is an 𝔰-conflation 𝑇 ↣ 0 ↠ 𝑋𝑇 in  with
𝑋𝑇 ∈  ⟂. Then the extriangulated category  satisfies the assumptions (1) to (3) of Subsection 4.1.

Proof. For any 𝑇 ∈  the existence of an extriangle 0 ↣ 𝑇 ↠ 𝑇
0
⤏ shows that  is a full subcate-

gory of . By Lemma 4.57, the category  is extriangulated and, by definition of this extriangulated
structure, the objects in  are projective in . Assumption (3) is satisfied by the definition of ,
and assumption (2) is equivalent to that of the proposition. □

Remark 4.60. The categories considered in Sections 4.6 and 4.7.1 all fall into the setting of
Proposition 4.59.

4.8 Examples

We conclude with a couple of examples for two associative algebras.

Example 4.61 (A gentle algebra). Consider the algebra Λ given the path algebra of the quiver

modulo the relation 𝛾𝛽𝛼 = 0. The Auslander–Reiten quiver of the extriangulated category
𝐾[−1,0](proj Λ) is depicted below.

The Auslander–Reiten quiver of the module category is obtained by taking the quotient by the
ideal generated by the shifted projective modules.

The conditions of Theorem 4.46 are satisfied.
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Example 4.62 (Preprojective algebra of type 𝐴3). Let Λ be the preprojective algebra of type 𝐴3: it
is the path algebra of the quiver

modulo the relations 𝛼�̄� = 0, 𝛽𝛽 = 0 and �̄�𝛼 + 𝛽𝛽 = 0. The Auslander–Reiten quiver of the
extriangulated category 𝐾[−1,0](proj Λ) is depicted below. Note that it is periodic.

The Auslander–Reiten quiver of the module category mod(Λ) can be obtained by applying the
functor Hom(Λ,−).

One can check directly that the conditions of Theorem 4.46 is not satisfied. For example, the
module 2

1 is 𝜏-rigid because 𝜏( 21 ) = 3
1 , while HomΛ(

2
1 , 𝜏

2( 21 )) = HomΛ(
2
1 ,

1
2 ) ≠ 0.
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