
EXTRIANGULATED CATEGORIES,
HOVEY TWIN COTORSION PAIRS

AND MODEL STRUCTURES.

Hiroyuki Nakaoka and Yann Palu

Résumé. Nous proposons une généralisation simultanée de la notion de
catégorie exacte et de celle de catégorie triangulée, qui est bien adaptée à
l’étude des paires de cotorsion, et que nous appelons catégorie extriangulée.
Les sous-catégories pleines, stables par extension, d’une catégorie triangulée
sont également des exemples de catégories extriangulées. Nous montrons
une correspondance bijective entre certaines paires de cotorsion, que nous
appelons paires de cotorsion jumelles de Hovey, et structures de modèle ad-
missibles, généralisant ainsi la correspondance de Hovey. En passant à la
catégorie homotopique, cette approche permet de relier certaines localisa-
tions à des quotients par des idéaux. Bien que ces structures de modèle ne
soient généralement pas stables, nous montrons que la catégorie homotopique
est triangulée. Nous donnons ainsi un cadre naturel pour formuler les notions
de réduction et de mutation de paires de cotorsion, s’appliquant à la fois aux
catégories exactes et aux catégories triangulées. Ces résultats peuvent être
vus comme des arguments corroborant l’hypothèse que les catégories extrian-
gulées sont une axiomatisation agréable pour écrire des démonstrations val-
ables pour les catégories exactes et pour les catégories (stables par extension
dans une catégorie) triangulée.
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Abstract. We give a simultaneous generalization of exact categories and
triangulated categories, which is suitable for considering cotorsion pairs, and
which we call extriangulated categories. Extension-closed, full subcategories
of triangulated categories are examples of extriangulated categories. We give
a bijective correspondence between some pairs of cotorsion pairs which we
call Hovey twin cotorsion pairs, and admissible model structures. As a conse-
quence, these model structures relate certain localizations with certain ideal
quotients, via the homotopy category which can be given a triangulated struc-
ture. This gives a natural framework to formulate reduction and mutation
of cotorsion pairs, applicable to both exact categories and triangulated cate-
gories. These results can be thought of as arguments towards the view that ex-
triangulated categories are a convenient setup for writing down proofs which
apply to both exact categories and (extension-closed subcategories of) trian-
gulated categories.
Keywords. Extriangulated categories, Quillen exact categories, triangulated
categories, cotorsion pairs, model structures, localisation, mutation.
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1. Introduction and Preliminaries

Cotorsion pairs, first introduced in [Sal], are defined on an exact category
or a triangulated category, and are related to several homological structures,
such as: t-structures [BBD], cluster tilting subcategories [KR, KZ], co-t-
structures [Pau], functorially finite rigid subcategories. A careful look re-
veals that what is necessary to define a cotorsion pair on a category is the
existence of an Ext1 bifunctor with appropriate properties. In this article,
we formalize the notion of an extriangulated category by extracting those
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properties of Ext1 on exact categories and on triangulated categories that
seem relevant from the point-of-view of cotorsion pairs.

The class of extriangulated categories not only contains exact categories
and extension-closed subcategories of triangulated categories as examples,
but it is also closed under taking some ideal quotients (Proposition 3.30).
This will allow us to construct an extriangulated category which is not ex-
act nor triangulated. Moreover, this axiomatization rams down the problem
of the non-existence of a canonical choice of the middle arrow in the ax-
iom (TR3) to the ambiguity of a representative of realizing sequences (Sec-
tion 2.2) and the exactness of the associated sequences of natural transfor-
mations (Proposition 3.3).

Let us motivate a bit more the use of extriangulated categories. Many
results which are homological in nature apply (after suitable adaptation) to
both setups: exact categories and triangulated categories. In order to transfer
a result known for triangulated categories to a result that applies to exact
categories, the usual strategy is the following (non-chronological):

(1) Specify to the case of stable categories of Frobenius exact categories.

(2) Lift all definitions and statements from the stable category to the Fro-
benius category.

(3) Adapt the proof so that it applies to any exact categories (with suitable
assumptions).

Conversely, a result known for exact categories might have an analog for
triangulated categories proven as follows:

(1) Specify to the case of a Frobenius exact category.

(2) Descend all definitions and statements to the stable category.

(3) Adapt the proof so that it applies to any triangulated categories (with
suitable assumptions).

Even though step (2) might be far from trivial, the main difficulty often lies
in step (3) for both cases. The use of extriangulated categories somehow
removes that difficulty. It is not that this difficulty has vanished into thin air,
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but that it has already been taken care of in the first results on extriangulated
categories obtained in Section 3.

The term “extriangulated” stands for externally triangulated by means of
a bifunctor. It can also be viewed as the mixing of exact and triangulated,
or as an abbreviation of Ext-triangulated. The precise definition will be
given in Section 2. Fundamental properties including several analogs of the
octahedron axiom in an extriangulated category, will be given in Section 3.

On an extriangulated category, we can define the notion of a cotorsion
pair, which generalizes that on exact categories [Ho1, Ho2, Liu, S] and on
triangulated categories [AN, Na1]. Basic properties are stated in Section 4.

In Section 5, we give a bijective correspondence between Hovey twin
cotorsion pairs and admissible model structures. This result is inspired
from [Ho1, Ho2, G], where the case of exact categories is studied in more
details. We note that an analog of Hovey’s result in [Ho1, Ho2] has been
proven for triangulated categories in [Y]. The use of extriangulated cate-
gories allows for a uniform proof.

As a result, we can realize the associated homotopy category by a certain
ideal quotient, on which we can give a triangulated structure as in Section 6.
This triangulation can be regarded as a simultaneous generalization of those
given by Happel’s theorem on stable categories of Frobenius exact categories
and of Iyama-Yoshino reductions, and gives a link to the one given by the
Verdier quotient. As a consequence, the homotopy category of any exact
model structure on a weakly idempotent complete exact category is trian-
gulated. This result was previously known in the case of hereditary exact
model structures [G, Proposition 5.2].

With this view, in Section 7, we propose a natural framework to for-
mulate reduction and mutation of cotorsion pairs, applicable to both exact
categories and triangulated categories. Indeed, we establish a bijective cor-
respondence between the class of mutable cotorsion pairs associated with a
Hovey twin cotorsion pair and the class of all cotorsion pairs on the triangu-
lated homotopy category.

2. Extriangulated category

In this section, we abstract the properties of extension-closed subcategory of
triangulated or exact category, to formulate it in an internal way by means
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of an Ext1 functor. This gives a simultaneous generalization of triangulated
categories and exact categories, suitable for dealing with cotorsion pairs.

2.1 E-extensions

Throughout this paper, let C be an additive category.

Definition 2.1. Suppose C is equipped with a biadditive functor E : C op ×
C → Ab. For any pair of objects A,C ∈ C , an element δ ∈ E(C,A) is
called an E-extension. Thus formally, an E-extension is a triplet (A, δ, C).

Remark 2.2. Let (A, δ, C) be any E-extension. Since E is a bifunctor, for
any a ∈ C (A,A′) and c ∈ C (C ′, C), we have E-extensions

E(C, a)(δ) ∈ E(C,A′) and E(c, A)(δ) ∈ E(C ′, A).

We abbreviately denote them by a∗δ and c∗δ. In this terminology, we have

E(c, a)(δ) = c∗a∗δ = a∗c
∗δ in E(C ′, A′).

Definition 2.3. Let (A, δ, C), (A′, δ′, C ′) be any pair of E-extensions. A
morphism (a, c) : (A, δ, C) → (A′, δ′, C ′) of E-extensions is a pair of mor-
phisms a ∈ C (A,A′) and c ∈ C (C,C ′) in C , satisfying the equality

a∗δ = c∗δ′.

We simply denote it as (a, c) : δ → δ′.
We obtain the category E-Ext(C ) of E-extensions, with composition and

identities naturally induced from those in C .

Remark 2.4. Let (A, δ, C) be any E-extension. We have the following.

(1) Any morphism a ∈ C (A,A′) gives rise to a morphism of E-extensions

(a, idC) : δ → a∗δ.

(2) Any morphism c ∈ C (C ′, C) gives rise to a morphism of E-extensions

(idA, c) : c
∗δ → δ.
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Definition 2.5. For any A,C ∈ C , the zero element 0 ∈ E(C,A) is called
the split E-extension.

Definition 2.6. Let δ = (A, δ, C), δ′ = (A′, δ′, C ′) be any E-extensions. Let
C

ιC−→ C ⊕C ′ ιC′←− C ′ and A
pA←− A⊕A′ pA′−→ A′ be coproduct and product

in C , respectively. Remark that, by the biadditivity of E, we have a natural
isomorphism

E(C ⊕ C ′, A⊕ A′) ∼= E(C,A)⊕ E(C,A′)⊕ E(C ′, A)⊕ E(C ′, A′).

Let δ⊕δ′ ∈ E(C⊕C ′, A⊕A′) be the element corresponding to (δ, 0, 0, δ′)
through this isomorphism.

If A = A′ and C = C ′, then the sum δ+ δ′ ∈ E(C,A) of δ, δ′ ∈ E(C,A)
is obtained by

δ + δ′ = E(∆C ,∇A)(δ ⊕ δ′),

where ∆C =
[
1
1

]
: C → C ⊕ C, ∇A = [1 1] : A⊕ A→ A.

2.2 Realization of E-extensions

Let C ,E be as before.

Definition 2.7. Let A,C ∈ C be any pair of objects. Two sequences of

morphisms A
x−→ B

y−→ C and A
x′
−→ B′ y′−→ C in C are said to be

equivalent if there exists an isomorphism b ∈ C (B,B′) which makes the
following diagram commutative.

A

B

B′

C

x
77ooooooo

y

''OO
OOO

OO

x′ ''OO
OOO

OO

y′

77ooooooo

b∼=
��

⟳ ⟳

We denote the equivalence class of A x−→ B
y−→ C by [A

x−→ B
y−→ C].

Definition 2.8.

(1) For any A,C ∈ C , we denote as 0 = [A

[
1

0

]
−→ A⊕ C

[0 1]−→ C].
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(2) For any two classes [A
x−→ B

y−→ C] and [A′ x′
−→ B′ y′−→ C ′],

we denote as [A
x−→ B

y−→ C] ⊕ [A′ x′
−→ B′ y′−→ C ′] the class

[A⊕ A′ x⊕x′
−→ B ⊕B′ y⊕y′−→ C ⊕ C ′].

Definition 2.9. Let s be a correspondence which associates an equivalence
class s(δ) = [A

x−→ B
y−→ C] to any E-extension δ ∈ E(C,A). This s is

called a realization of E, if it satisfies the following condition (∗). In this
case, we say that sequence A

x−→ B
y−→ C realizes δ, whenever it satisfies

s(δ) = [A
x−→ B

y−→ C].

(∗) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions, with

s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→ B′ y′−→ C ′]. Then, for any

morphism (a, c) ∈ E-Ext(C )(δ, δ′), there exists b ∈ C (B,B′) which
makes the following diagram commutative.

A B C

A′ B′ C ′

x // y //

a
��

b
��

c
��

x′
//

y′
//

⟳ ⟳ (1)

Remark that this condition does not depend on the choices of the represen-
tatives of the equivalence classes. In the above situation, we say that (1) (or
the triplet (a, b, c)) realizes (a, c).

Definition 2.10. Let C ,E be as above. A realization of E is said to be
additive, if it satisfies the following conditions.

(i) For any A,C ∈ C , the split E-extension 0 ∈ E(C,A) satisfies

s(0) = 0.

(ii) For any pair of E-extensions δ = (A, δ, C) and δ′ = (A′, δ′, C ′),

s(δ ⊕ δ′) = s(δ)⊕ s(δ′) holds.

Remark 2.11. If s is an additive realization of E, then the following holds.

(1) For any A,C ∈ C , if 0 ∈ E(C,A) is realized by A x−→ B
y−→ C, then

there exist a retraction r ∈ C (B,A) of x and a section s ∈ C (C,B)

of y which give an isomorphism
[
r
y

]
: B

∼=−→ A⊕ C.
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(2) For any f ∈ C (A,B), the sequence

A

[
1

−f

]
−→ A⊕B

[f 1]−→ B

realizes the split E-extension 0 ∈ E(B,A).

2.3 Definition of extriangulated categories

Definition 2.12. We call the pair (E, s) an external triangulation of C if it
satisfies the following conditions. In this case, we call s an E-triangulation
of C , and call the triplet (C ,E, s) an externally triangulated category, or for
short, extriangulated category.

(ET1) E : C op × C → Ab is a biadditive functor.

(ET2) s is an additive realization of E.

(ET3) Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions,

realized as s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→ B′ y′−→ C ′].

For any commutative square in C

A B C

A′ B′ C ′

x // y //

a
��

b
� �

x′
//

y′
//

⟳ (2)

there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).

(ET3)op Let δ ∈ E(C,A) and δ′ ∈ E(C ′, A′) be any pair of E-extensions,

realized by A
x−→ B

y−→ C and A′ x′
−→ B′ y′−→ C ′ respectively. For

any commutative square in C

A B C

A′ B′ C ′

x // y //

b
��

c
��

x′
//

y′
//

⟳

there exists a morphism (a, c) : δ → δ′ which is realized by (a, b, c).
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(ET4) Let (A, δ,D) and (B, δ′, F ) be E-extensions respectively realized by

A
f−→ B

f ′
−→ D and B

g−→ C
g′−→ F . Then there exist an object

E ∈ C , a commutative diagram

A B D

A C E

F F

f // f ′
//

g

��
d

��

h
//

h′
//

g′

��
e

��

⟳ ⟳

⟳

(3)

in C , and an E-extension δ′′ ∈ E(E,A) realized by A
h−→ C

h′
−→ E,

which satisfy the following compatibilities.

(i) D
d−→ E

e−→ F realizes E(F, f ′)(δ′),

(ii) E(d,A)(δ′′) = δ,

(iii) E(E, f)(δ′′) = E(e,B)(δ′).

By (iii), (f, e) : δ′′ → δ′ is a morphism of E-extensions, realized by

(f, idC , e) : [A
h−→ C

h′
−→ E]→ [B

g−→ C
g′−→ F ].

(ET4)op Dual of (ET4) (see Remark 2.22).

Example 2.13. Exact categories (with a condition concerning the smallness)
and triangulated categories are examples of extriangulated categories. See
also Remark 2.18. We briefly show how an exact category can be viewed
as an extriangulated category. As for triangulated categories, see the con-
struction in Proposition 3.22. For the definition and basic properties of an
exact category, see [Bu] and [Ke]. Let A,C ∈ C be any pair of objects. Re-
mark that, as shown in [Bu, Corollary 3.2], for any morphism of short exact
sequences (=conflations in [Ke]) of the form

A B C

A B′ C

x // y //

b
��

x′
//

y′
//

⟳ ⟳ ,
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the morphism b in the middle automatically becomes an isomorphism. Con-
sider the same equivalence relation as in Definition 2.7, and define the class
Ext1(C,A) to be the collection of all equivalence classes of short exact se-
quences of the form A

x−→ B
y−→ C. We denote the equivalence class by

[A
x−→ B

y−→ C] as before.
This becomes a small set, for example in the following cases.

• C is skeletally small.

• C has enough projectives or injectives.

In such a case, we obtain a biadditive functor Ext1 : C op × C → Ab, as
stated in [S, Definitions 5.1]. Its structure is given as follows.

- For any δ = [A
x−→ B

y−→ C] ∈ Ext1(C,A) and any a ∈ C (A,A′),
take a pushout in C , to obtain a morphism of short exact sequences

A B C

PO

A′ M C

x // y //

a
�� ��

m
//

e
//

⟳ .

This gives Ext1(C, a)(δ) = a∗δ = [A′ m−→M
e−→ C].

- For any c ∈ C (C ′, C), the map Ext1(c, A) = c∗ : Ext1(C,A) →
Ext1(C ′, A) is defined dually by using pullbacks.

- The zero element in Ext1(C,A) is given by the split short exact se-
quence

0 = [A

[
1

0

]
−→ A⊕ C

[0 1]−→ C].

For any pair δ1 = [A
x1−→ B1

y1−→ C], δ2 = [A
x2−→ B2

y2−→ C] ∈
Ext1(C,A), its sum δ1 + δ2 is given by the Baer sum

∆∗
C(∇A)∗(δ1⊕ δ2) = ∆∗

C(∇A)∗([A⊕A
x1⊕x2−→ B1⊕B2

y1⊕y2−→ C⊕C]).

This shows (ET1). Define the realization s(δ) of δ = [A
x−→ B

y−→ C]
to be δ itself. Then (ET2) is trivially satisfied. For (ET3) and (ET4), the
following fact is useful.

- 127 -



H. NAKAOKA AND Y. PALU EXTRIANGULATED CATEGORIES

Fact 2.14. ([Bu, Proposition 3.1]) For any morphism, (∗) below, of short
exact sequences in C , there exists a commutative diagram (∗∗) whose middle
row is also a short exact sequence, the upper-left square is a pushout, and
the lower-right square is a pullback.

Remark that this means a∗[A
x−→ B

y−→ C] = c∗[A′ x′
−→ B′ y′−→ C ′].

(∗)
A B C

A′ B′ C ′

x // y //

a
��

b
��

c
��

x′
//

y′
//

⟳ ⟳ (∗∗)

A B C

A′ ∃M C

A′ B′ C ′

PO

PB

x // y //

a
�� ��

m
//

e
//

��
c
��

x′
//

y′
//

⟳

⟳

By Fact 2.14, (ET3) follows immediately from the universality of cok-
ernel. Similarly, (ET4) follows from [Bu, Lemma 3.5]. Dually for (ET3)op

and (ET4)op.

2.4 Terminology in an extriangulated category

To allow an argument with familiar terms, we introduce terminology from
both exact categories and triangulated categories (cf. [Ke, Bu, Ne]).

Definition 2.15. Let (C ,E, s) be a triplet satisfying (ET1) and (ET2).

(1) A sequence A
x−→ B

y−→ C is called a conflation if it realizes some
E-extension δ ∈ E(C,A). For the ambiguity of such an E-extension,
see Corollary 3.8.

(2) A morphism f ∈ C (A,B) is called an inflation if it admits some
conflation A

f−→ B → C. For the ambiguity of such a conflation, see
Remark 3.10.

(3) A morphism f ∈ C (A,B) is called a deflation if it admits some con-
flation K → A

f−→ B.

Remark 2.16. Condition (ET4) implies that inflations are closed under com-
position. Dually, (ET4)op implies the composition-closedness of deflations.
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Definition 2.17. Let D ⊆ C be a full additive subcategory, closed under
isomorphisms. The subcategory D is said to be extension-closed if, for any
conflation A→ B → C which satisfies A,C ∈ D, then B ∈ D.

The following can be checked in a straightforward way.

Remark 2.18. Let (C ,E, s) be an extriangulated category, and let D ⊆ C
be an extension-closed subcategory. If we define ED to be the restriction of
E onto Dop × D, and define sD by restricting s, then (D,ED, sD) becomes
an extriangulated category.

Definition 2.19. Let (C ,E, s) be a triplet satisfying (ET1) and (ET2).

(1) If a conflation A
x−→ B

y−→ C realizes δ ∈ E(C,A), we call the pair
(A

x−→ B
y−→ C, δ) an E-triangle, and write it in the following way.

A
x−→ B

y−→ C
δ99K (4)

(2) Let A x−→ B
y−→ C

δ99K and A′ x′
−→ B′ y′−→ C ′ δ′99K be any pair of

E-triangles. If a triplet (a, b, c) realizes (a, c) : δ → δ′ as in (1), then
we write it as

A B C

A′ B′ C ′

x // y // δ //___

a
��

b
��

c
��

x′
//

y′
//

δ′
//___

⟳ ⟳

and call (a, b, c) a morphism of E-triangles.

Caution 2.20. Although the abbreviated expression (4) looks superficially
asymmetric, we remark that the definition of an extriangulated category is
completely self-dual.

Remark 2.21. (ET3) means that any commutative square (2) bridging E-
triangles can be completed into a morphism of E-triangles. Dually for
(ET3)op.

Condition (∗) in Definition 2.9 means that any morphism of E-extensions
can be realized by a morphism of E-triangles.

In the above terminology, condition (ET4)op can be stated as follows.
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Remark 2.22. (Paraphrase of (ET4)op) Let D
f ′
−→ A

f−→ B
δ99K and

F
g′−→ B

g−→ C
δ′99K be E-triangles. Then there exist an E-triangle

E
h′
−→ A

h−→ C
δ′′99K and a commutative diagram in C , as on the left

below, satisfying the compatibilities on the right:

D E F

D A B

C C

d // e //

h′
��

g′

��

f ′
//

f
//

h
��

g
��

⟳ ⟳

⟳

(i) D d→ E
e→ F

g′∗δ99K is an E-triangle,

(ii) δ′ = e∗δ
′′,

(iii) d∗δ = g∗δ′′.

3. Fundamental properties

3.1 Associated exact sequence

In this section, we will associate exact sequences of natural transformations

C (C,−)C (y,−)
=⇒ C (B,−)C (x,−)

=⇒ C (A,−) δ♯
=⇒E(C,−)E(y,−)

=⇒ E(B,−)E(x,−)
=⇒ E(A,−)

C (−, A)
C (−,x)
=⇒ C (−, B)

C (−,y)
=⇒ C (−, C)

δ♯
=⇒E(−, A)

E(−,x)
=⇒ E(−, B)

E(−,y)
=⇒ E(−, C)

to any E-triangle A
x−→ B

y−→ C
δ99K in an extriangulated category

(C ,E, s) (Corollary 3.12). Here, δ♯ and δ♯ are defined in the following.

Definition 3.1. Assume C and E satisfy (ET1). By Yoneda’s lemma, any
E-extension δ ∈ E(C,A) induces natural transformations δ♯ : C (−, C) ⇒
E(−, A) and δ♯ : C (A,−)⇒ E(C,−). For any X ∈ C , these (δ♯)X and δ♯X
are given as follows.

(1) (δ♯)X : C (X,C)→ E(X,A) ; f 7→ f ∗δ.

(2) δ♯X : C (A,X)→ E(C,X) ; g 7→ g∗δ.

We abbreviately denote (δ♯)X(f) and δ♯X(g) by δ♯f and δ♯g, when there is no
confusion.
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Lemma 3.2. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op. Then

for any E-triangle A
x−→ B

y−→ C
δ99K, the following hold:

(1) y ◦ x = 0, (2) x∗δ(= δ♯x) = 0 and (3) y∗δ(= δ♯y) = 0.

Proof. (1) By (ET2), the conflation A
id−→ A → 0 realizes 0 ∈ E(0, A).

Applying (ET3) similarly as for triangulated categories gives the result.
(2) Similarly, applying (ET3) we obtain a morphism of E-extensions

(x, 0) : δ → 0. Especially we have x∗δ = 0. (3) is dual to (2).

Proposition 3.3. Assume (C ,E, s) satisfies (ET1),(ET2). Then the follow-
ing are equivalent.

(1) (C ,E, s) satisfies (ET3) and (ET3)op.

(2) For any E-triangle A
x−→ B

y−→ C
δ99K, the following sequences of

natural transformations are exact:

(2-i) C (C,−) C (y,−)
=⇒ C (B,−) C (x,−)

=⇒ C (A,−) δ♯
=⇒ E(C,−) E(y,−)

=⇒ E(B,−)
in Mod(C ). Here Mod(C ) denotes the abelian category of additive
functors from C to Ab.

(2-ii) C (−, A) C (−,x)
=⇒ C (−, B)

C (−,y)
=⇒ C (−, C)

δ♯
=⇒E(−, A) E(−,x)

=⇒ E(−, B) in
Mod(C op).

Remark 3.4. In the above (2-i), the category Mod(C ) is not locally small
in general. The “exactness” of the sequence in (2-i) simply means that

C (C,X)
C (y,X)−→ C (B,X)

C (x,X)−→ C (A,X)
δ♯X−→ E(C,X)

E(y,X)−→ E(B,X)

is exact in Ab for any X ∈ C . Similarly for (2-ii).

Proof of Proposition 3.3. First we assume (1). We only show the exactness
of (2-i), since (2-ii) can be shown dually. By Lemma 3.2, composition of
any consecutive morphisms in (2-i) is equal to 0. Let us show the exactness

of C (C,X)
C (y,X)−→ C (B,X)

C (x,X)−→ C (A,X)
δ♯X−→ E(C,X)

E(y,X)−→ E(B,X)
for any X ∈ C .
Exactness at C (B,X) is shown similarly as for triangulated categories.
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Exactness at C (A,X)

Let a ∈ C (A,X) be any morphism satisfying δ♯X(a) = a∗δ = 0. This
means that (a, 0) : δ → 0 is a morphism of E-extensions. Since s realizes
E, there exists b ∈ C (B,X) which gives the following morphism of E-
triangles.

A B C

X X 0

x // y // δ //___

a
��

b
�� ��

idX
// //

0
//___

⟳ ⟳

Especially we have a = b ◦ x = C (x,X)(b).
Exactness at E(C,X)

Let θ ∈ E(C,X) be any E-extension satisfying E(y,X)(θ) = y∗θ = 0.

Realize them as E-triangles X
f−→ Y

g−→ C
θ99K and X

m−→ Z
e−→ B

y∗θ99K.
Then the morphism (idX , y) : y

∗θ → θ can be realized by (∗) below

(∗)
X Z B

X Y C

m // e // y∗θ //___

e′
��

y
��

f
//

g
//

θ
//___

⟳ ⟳ (∗∗)
A B C

X Y C

x // y // δ //___

e′◦s
��

f
//

g
//

θ
//___

⟳

with some e′ ∈ C (Z, Y ). Since y∗θ splits by assumption, e has a section
s. Applying (ET3)op to (∗∗) above, we obtain a ∈ C (A,X) which gives a
morphism (a, idC) : δ → θ. This means θ = a∗δ = δ♯a.

Conversely, let us assume (2) and show (ET3). Let A x−→ B
y−→ C

δ99K
and A′ x′

−→ B′ y′−→ C ′ δ′99K be any pair of E-triangles. Suppose that we are
given a commutative diagram (α) below.

(α)

A B C

A′ B′ C ′

x // y //

a
��

b
��

x′
//

y′
//

⟳ (β)

A B C

A′ B′ C ′

x // y // δ //___

a
��

b′
��

c′
��

δ′
//___

x′
//

y′
//

⟳ ⟳

Remark that E(−, x) ◦ δ♯ = 0 is equivalent to x∗δ = 0 by Yoneda’s lemma.

Similarly, y′∗δ′ vanishes. By the exactness of the sequence C (C,C ′)
(δ′♯)C−→

E(C,A′)
E(C,x′)−→ E(C,B′) and the equality E(C, x′)(a∗δ)=x′

∗a∗δ=b∗x∗δ=0
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there is c′ ∈ C (C,C ′) satisfying a∗δ = δ′♯c
′ = c′∗δ′. Thus (a, c) : δ → δ′ is a

morphism of E-extensions. Take its realization as in (β) above.

Then by the exactness of C (C,B′)
C (y,B′)−→ C (B,B′)

C (x,B′)−→ C (A,B′)
and the equality (b− b′) ◦x = x′ ◦a−x′ ◦a = 0, there exists c′′ ∈ C (C,B′)
satisfying c′′ ◦ y = b− b′. If we put c = c′ + y′ ◦ c′′, this satisfies

c ◦ y = c′ ◦ y + y′ ◦ c′′ ◦ y = y′ ◦ b′ + (y′ ◦ b− y′ ◦ b′) = y′ ◦ b,
c∗δ′ = c′∗δ′ + c′′∗y′∗δ′ = a∗δ.

Dually, (2) implies (ET3)op.

The following two corollaries are direct consequences of the long exact
sequences of Proposition 3.3.

Corollary 3.5. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op. Let

A B C

A′ B′ C ′

x // y // δ //___

a
��

b
��

c
��

x′
//

y′
//

δ′
//___

⟳ ⟳ (5)

be any morphism of E-triangles. Then a factors through x if and only if
a∗δ = c∗δ′ = 0 if and only if c factors through y′.

In particular, in the case δ = δ′ and (a, b, c) = (id, id, id), we obtain

x has a retraction ⇔ δ splits ⇔ y has a section.

Corollary 3.6. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op. The
following holds for any morphism (a, b, c) of E-triangles.

(1) If a and c are isomorphisms in C (equivalently, if (a, c) is an isomor-
phism in E-Ext(C ) in Definition 2.3), then so is b.

(2) If a and b are isomorphisms in C , then so is c.

(3) If b and c are isomorphisms in C , then so is a.

Proposition 3.7. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op and

let A x−→ B
y−→ C

δ99K be any E-triangle. If a ∈ C (A,A′) and c ∈
C (C ′, C) are isomorphisms, then A′ x◦a−1

−→ B
c−1◦y−→ C ′ a∗c∗δ99K is again an E-

triangle.
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Proof. Put s(a∗c∗δ) = [A′ x′
−→ B′ y′−→ C ′]. Since (c−1)∗

(
a∗c

∗δ
)
= (c ◦

c−1)∗a∗δ = a∗δ, we see that (a, c−1) : δ → c∗a∗δ is a morphism of E-
extensions. Take a morphism of E-triangles (a, b, c−1) realizing (a, c−1).

Then b is an isomorphism by Corollary 3.6. Thus [A′ x′
−→ B′ y′−→ C ′] =

[A′ x◦a−1

−→ B
c−1◦y−→ C ′].

Corollary 3.8. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op. Let

A
x−→ B

y−→ C
δ99K be any E-triangle. Then for any δ′ ∈ E(C,A), the

following are equivalent.

(1) s(δ) = s(δ′).

(2) δ′ = a∗δ for some automorphism a ∈ C (A,A) satisfying x ◦ a = x.

(3) δ′ = c∗δ for some automorphism c ∈ C (C,C) satisfying c ◦ y = y.

(4) δ′ = a∗c
∗δ for some automorphisms a ∈ C (A,A) and c ∈ C (C,C)

satisfying x ◦ a = x and c ◦ y = y.

Proof. (2) ⇒ (4) is trivial. Similarly for (3) ⇒ (4). Proposition 3.7 shows
(4) ⇒ (1). The implications (1) ⇒ (2) and (1) ⇒ (3) follow from Corol-
lary 3.6.

Definition 3.9. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op.

(1) For an inflation f ∈ C (A,B), take a conflation A
f−→ B → C, and

denote this C by Cone(f).

(2) For a deflation f ∈ C (A,B), take a conflation K → A
f−→ B. We

denote this K by CoCone(f).

Cone(f) is determined uniquely up to isomorphism by the following re-
mark. They are not functorial in general, as the case of triangulated category
suggests. Dually for CoCone(f).

Remark 3.10. Let f ∈ C (A,B) be an inflation, and suppose

A
f−→ B

g−→ C
δ99K, A

f−→ B
g′−→ C ′ δ′99K
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are E-triangles. Then, by (ET3) applied to (idA, idB) : f → f , there ex-
ists c ∈ C (C,C ′) which gives a morphism of E-triangles (idA, idB, c). By
Corollary 3.6, this c is an isomorphism.

Proposition 3.11. Assume (C ,E, s) satisfies (ET1),(ET2),(ET3),(ET3)op.

Let A x−→ B
y−→ C

δ99K be an E-triangle. Then, we have the following.

(1) If (C ,E, s) satisfies (ET4), then E(−, A)E(−,x)
=⇒ E(−, B)

E(−,y)
=⇒ E(−, C)

is exact.

(2) If (C ,E, s) satisfies (ET4)op, then E(C,−)E(y,−)
=⇒ E(B,−)E(x,−)

=⇒ E(A,−)
is exact.

Proof. (1) E(−, y) ◦ E(−, x) = 0 follows from Lemma 3.2. Let X ∈ C be
any object. Let θ ∈ E(X,B) be any E-extension, realized by an E-triangle

B
f−→ Y

g−→ X
θ99K. By (ET4), there exist E ∈ C , θ′ ∈ E(E,A) and a

commutative diagram which satisfies

A B C

A Y E

X X

x // y //

f

��
d

��

h
//

h′
//

g

��
e

��

⟳ ⟳

⟳

s(y∗θ) = [C
d→ E

e→ X],

s(θ′) = [A
h→ Y

h′
→ E],

x∗θ
′ = e∗θ.

Thus if E(X, y)(θ) = y∗θ = 0, then e has a section s ∈ C (X,E). If we put
ρ = s∗θ′, then this satisfies E(x,X)(ρ) = x∗s

∗θ′ = s∗x∗θ
′ = s∗e∗θ = θ.

(2) is dual to (1).

Corollary 3.12. Let (C ,E, s) be an extriangulated category. For any E-

triangle A
x−→ B

y−→ C
δ99K, the following sequences of natural transfor-

mations are exact.

C (C,−)C (y,−)
=⇒ C (B,−)C (x,−)

=⇒ C (A,−) δ♯
=⇒E(C,−)E(y,−)

=⇒ E(B,−)E(x,−)
=⇒ E(A,−)

C (−, A)
C (−,x)
=⇒ C (−, B)

C (−,y)
=⇒ C (−, C)

δ♯
=⇒E(−, A)

E(−,x)
=⇒ E(−, B)

E(−,y)
=⇒ E(−, C)
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Proof. This immediately follows from Propositions 3.3 and 3.11.

The following lemma shows that the upper-right square of Diagram (3)
obtained by (ET4) is a weak pushout.

Lemma 3.13. Let (3) be a commutative diagram in C , where

A
f−→ B

f ′
−→ D

d∗δ′′99K , B
g−→ C

g′−→ F
δ′99K

A
h−→ C

h′
−→ E

δ′′99K , D
d−→ E

e−→ F
f ′
∗δ

′

99K

are E-triangles, which satisfy e∗δ′ = f∗δ
′′.

Then, for any commutative square y ◦ f ′ = x ◦ g in C , there exists
z ∈ C (E, Y ) which makes the following diagram commutative.

B D

C E

Y

f ′
//

g

��
d

��

h′
//

z ��?
?

?

y

� �
x --

⟳

⟳

⟳

Proof. By (f ′
∗δ

′)♯(y) = y∗f
′
∗δ

′ = x∗g∗δ
′ = 0 and the exactness of

C (E, Y )
C (d,Y )−→ C (D,Y )

(f ′
∗δ

′)♯Y−→ E(F, Y )→ 0,

there exists z1 ∈ C (E, Y ) satisfying z1 ◦ d = y. Then by (x− z1 ◦ h′) ◦ g =
y ◦ f ′ − z1 ◦ d ◦ f ′ = 0 and the exactness of

C (F, Y )
C (g′,Y )−→ C (C, Y )

C (g,Y )−→ C (B, Y ),

there exists z2 ∈ C (F, Y ) satisfying z2 ◦ g′ = x − z1 ◦ h′. If we put z =
z1 + z2 ◦ e, this satisfies the desired commutativity.

3.2 Shifted octahedrons

Condition (ET4) in Definition 2.12 is an analog of the octahedron axiom
(TR4) for a triangulated category. As in the case of a triangulated category,
we can make it slightly more rigid as follows.
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Lemma 3.14. Let (C ,E, s) be an extriangulated category. Let

A
f−→ B

f ′
−→ D

δf99K, B g−→ C
g′−→ F

δg99K, A h−→ C
h0−→ E0

δh99K
be any triplet of E-triangles satisfying h = g ◦ f . Then there are morphisms
d0, e0 in C which make the diagram below commutative, with the following
compatibilities:

(i) D d0→ E0
e0→ F

f ′
∗(δg)99K is an E-triangle,

(ii) d∗0(δh) = δf ,

(iii) f∗(δh) = e∗0(δg).

A B D

A C E0

F F

f // f ′
//

g

��
d0
��

h
//

h0

//

g′

��
e0

��

⟳ ⟳

⟳

(6)

Proof. By (ET4), there exist an object E ∈ C , a commutative diagram (3)

in C , and an E-triangle A
h−→ C

h′
−→ E

δ′′99K, which satisfy the following

compatibilities. (i′) D d−→ E
e−→ F

f ′
∗(δg)99K is an E-triangle, (ii′) d∗(δ′′) = δf ,

(iii′) f∗(δ′′) = e∗(δg). By Remark 3.10, we obtain a morphism of E-triangles

A C E

A C E0

h // h′
// δ′′ //___

u
��

h
//

h0

//
δh

//___

⟳ ⟳

in which u is an isomorphism. In particular we have δ′′ = u∗(δh). If we put
d0 = u◦d and e0 = e◦u−1, then the commutativity of (6) follows from that of
(3). By the definition of the equivalence relation, we have [D

d0−→ E0
e0−→

F ] = [D
d−→ E

e−→ F ]. It is straightforward to check that (i′),(ii′),(iii′)
imply (i),(ii),(iii).

Proposition 3.15. Let (C ,E, s) be an extriangulated category. Then the
following (and its dual) holds.

Let C be any object, and let A1
x1−→ B1

y1−→ C
δ199K, A2

x2−→ B2
y2−→

C
δ299K be any pair of E-triangles. Then there is a commutative diagram in C
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which satisfies:

s(y∗2δ1) = [A1
m1→M

e1→ B2],

s(y∗1δ2) = [A2
m2→M

e2→ B1],

m1∗δ1 +m2∗δ2 = 0.

A2 A2

A1 M B2

A1 B1 C

m2

��
x2

��m1 // e1 //

e2
��

y2

��
x1

//
y1

//

⟳

⟳ ⟳ (7)

Proof. By the additivity of s, we have s(δ1 ⊕ δ2) = [A1 ⊕ A2
x1⊕x2−→ B1 ⊕

B2
y1⊕y2−→ C ⊕ C]. Let A1 A1 ⊕ A2 A2

ι1 //
p1

oo
oo ι2

//
p2

be a biproduct in C . Put

µ = (∆C)
∗(δ1 ⊕ δ2) and take s(µ) = [A1 ⊕ A2

j−→ M
k−→ C]. Then µ

satisfies
p1∗µ = δ1 and p2∗µ = δ2. (8)

Applying (ET4) to s(0) = [A1
ι1−→ A1 ⊕ A2

p2−→ A2] and s(µ) = [A1 ⊕
A2

j−→ M
k−→ C], we obtain B′

2 ∈ C , θ1 ∈ E(B′
2, A1) and a commutative

diagram such that:

A1 A1 ⊕ A2 A2

A1 M B′
2

C C

ι1 // p2 //

j

��
x′
2

��

m1

//
e′1

//

k

��
y′2
��

⟳ ⟳

⟳

s(p2∗µ) = [A2

x′
2−→ B2

y′2−→ C],

x∗
2θ1 = 0,

s(θ1) = [A1
m1−→M

e′1−→ B′
2],

and (ι1, idM , y′2) is a morphism of E-triangles. Especially, we have an equal-
ity y′∗2 µ = ι1∗θ1. In particular, we have

[A2

x′
2−→ B2

y′2−→ C] = s(δ2) = [A2
x2−→ B2

y2−→ C].

Thus there is an isomorphism b2 ∈ C (B2, B
′
2) satisfying b2 ◦ x2 = x′

2 and
y′2 ◦ b2 = y2. If we put e1 = b−1

2 ◦ e′1, then s(b∗2θ1) = [A1
m1−→ M

e1−→ B2]
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by Proposition 3.7. Thus we obtain a commutative diagram (a) below

(a)

A1 A1 ⊕ A2 A2

A1 M B2

C C

ι1 // p2 //

j

��
x2

��

m1

//
e1

//

k

��
y2

��

⟳ ⟳

⟳

(b)

A2 A1 ⊕ A2 A1

A2 M B1

C C

ι2 // p1 //

j

��
x1

��

m2

//
e2

//

k

��
y1

��

⟳ ⟳

⟳

which satisfies y∗2δ1 = b∗2y
′∗
2 p1∗µ = b∗2p1∗y

′∗
2 µ = b∗2p1∗ι1∗θ1 = b∗2θ1. Thus

we obtain s(y∗2δ1) = [A1
m1−→ M

e1−→ B2]. Similarly, from s(0) = [A2
ι2−→

A1 ⊕ A2
p1−→ A1] and s(µ) = [A1 ⊕ A2

j−→ M
k−→ C], we obtain a

commutative diagram (b) above, which satisfies s(y∗1δ2) = [A2
m2−→ M

e2−→
B1]. Since e2 ◦m1 = e2 ◦ j ◦ ι1 = x1 ◦ p1 ◦ ι1 = x1, e1 ◦m2 = e1 ◦ j ◦ ι2 =
x2 ◦ p2 ◦ ι2 = x2 and y2 ◦ e1 = k = y1 ◦ e2, diagram (7) is commutative.
Moreover, we have

m1∗δ1+m2∗δ2 = j∗
(
ι1∗δ1+ι2∗δ2

)
= j∗

(
(ι1◦p1)∗+(ι2◦p2)∗

)
(µ) = j∗µ = 0

by (8) and Lemma 3.2.

Corollary 3.16. Let x ∈ C (A,B), f ∈ C (A,D) be any pair of morphisms.
If x is an inflation, then so is

[
f
x

]
∈ C (A,D ⊕B). Dually for deflations.

Proof. Let A x−→ B
y−→ C

δ99K be an E-triangle. Realize f∗δ by an E-

triangle D
d−→ E

e−→ C
f∗δ99K. By Proposition 3.15, we obtain a commu-

tative diagram (∗), below, made of E-triangles satisfying m∗δ + k∗f∗δ = 0.
Since y∗f∗δ = f∗y

∗δ = 0, we may assume M = D⊕B, k = [ 10 ], ℓ = [0 1],

and take p ∈ C (M,D), i ∈ C (B,M) which make D M B
k //
p

oo
oo i

//
ℓ

a biproduct. By the exactness of C (B,M)
C (x,M)−→ C (A,M)

δ♯−→ E(C,M)
and the equality δ♯(m+k◦f) = m∗δ+k∗f∗δ = 0, there exists b ∈ C (B,M)
satisfying b ◦ x = m + k ◦ f . Modifying A

m−→ M
e−→ E by the automor-

phism

n =

[
−1 p ◦ b
0 1

]
=

[
−1 0
0 1

]
◦ (idM − k ◦ p ◦ b ◦ ℓ) : M

∼=−→M,
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we obtain a conflation A
n◦m−→ D ⊕B

e◦n−1

−→ E. Then, since

p ◦ (n ◦m) = −p ◦ (idM − k ◦ p ◦ b ◦ ℓ) ◦m
= p ◦ k ◦ p ◦ b ◦ ℓ ◦m− p ◦m
= p ◦ b ◦ x− p ◦m = p ◦ k ◦ f = f

and ℓ ◦ (n ◦ m) = ℓ ◦ (idM − k ◦ p ◦ b ◦ ℓ) ◦ m = ℓ ◦ m = x, we have
n ◦m =

[
f
x

]
.

(∗)

A A

D M B

D E C

m

��
x

��
k //

ℓ
// y∗f∗δ //___

e

��
y

��

d
//

e
//

f∗δ
//___

e∗δ

���
�
�

δ

���
�
�

⟳

⟳ ⟳

Proposition 3.17. Suppose we are given E-triangles D
f−→ A

f ′
−→ C

δf99K,
A

g−→ B
g′−→ F

δg99K, E h−→ B
h′
−→ C

δh99K satisfying h′ ◦ g = f ′.

Then there is an E-triangle D
d−→ E

e−→ F
θ99K which makes diagram (9)

commutative in C and satisfy the following equalities:

(i) d∗(δf ) = δh,

(ii) f∗(θ) = δg,

(iii) g′∗(θ) + h′∗(δf ) = 0.

D A C

E B C

F F

f // f ′
/ /

d

��
g

��
h // h′

//

e

��
g′

��

⟳ ⟳

⟳

(9)

Proof. By axiom (ET4), we have two E-triangles D
g◦f−→ B

a−→ G
µ99K

and C
b−→ G

c−→ F
ν99K which make the following diagram commutative
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D A C

D B G

F F

f // f ′
//

g

��
b

��

g◦f
//

a
//

g′

��
c

��

⟳ ⟳

⟳

(10)

and satisfy f ′
∗(δg) = ν, b∗µ = δf , c∗(δg) = f∗µ. It follows from Lemma 3.2

that ν = f ′
∗(δg) = h′

∗g∗(δg) = 0. Thus, up to equivalence, we may assume
G = C ⊕ F , b = [ 10 ], c = [0 1] from the start. Then a = [ a1a2 ] : B →
G = C ⊕ F satisfies a1 ◦ g = f ′ and a2 = g′ by the commutativity of (10).
Since h′ − a1 ∈ C (B,C) satisfies (h′ − a1) ◦ g = f ′ − f ′ = 0, there exists
z ∈ C (F,C) satisfying z ◦ g′ = h′ − a1. Put z′ = [ −z

1 ]. Applying the dual
of Lemma 3.14 to the following diagram (∗) made of E-triangles,

(∗)

E F

D B G

C C

h

��
z′

��

g◦f
// a // µ //___

h′

��
[1 z]

��

δh

���
�
�

0

���
�
�

⟳

(∗∗)

D E F

D B G

C C

d // e //

h

��
z′

��

g◦f
//

a
//

h′

��
[1 z]

��

⟳ ⟳

⟳

we obtain an E-triangle D
d−→ E

e−→ F
θ99K which makes diagram (∗∗)

above commutative, and satisfies θ = z′∗µ, d∗µ = [1 z]∗(δh). Then the
commutativity of (9) can be checked in a straightforward way. Let us show
the equalities (i),(ii),(iii).

(i) follows from d∗(δf ) = d∗b
∗µ = b∗[1 z]∗(δh) = ([1 z] ◦ b)∗(δh) = δh.

(ii) follows from the injectivity of E(c, A) = c∗ and

c∗f∗(θ) = c∗f∗z
′∗µ = f∗(z

′ ◦ c)∗µ

= f∗

[
0 −z
0 1

]∗
µ = f∗(1− b ◦ [1 z])∗µ

= f∗µ− f∗[1 z]
∗(δf ) = f∗µ− [1 z]∗f∗(δf ) = f∗µ = c∗(δg).
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(iii) follows from

g′∗(θ) + h′∗(δf ) = g′∗z′∗µ+ h′∗b∗µ =
([−z ◦ g′

g′

]
+
[
h′

0

])∗
µ

=
[
a1
g′
]∗
µ = a∗µ = 0.

As in Example 2.13, an exact category (with some smallness assump-
tion) can be regarded as an extriangulated category, whose inflations are
monomorphic and whose deflations are epimorphic. Conversely, the fol-
lowing holds.

Corollary 3.18. Let (C ,E, s) be an extriangulated category, in which any
inflation is monomorphic, and any deflation is epimorphic. If we let S be
the class of conflations given by the E-triangles (see Definition 2.15), then
(C ,S ) is an exact category in the sense of [Bu].

Proof. By the exact sequences obtained in Proposition 3.3, for any confla-
tion A

x−→ B
y−→ C, the pair (A, x) gives a weak kernel of y. Since x

is monomorphic by assumption, it is a kernel of y. Dually (C, y) gives a
cokernel of x, and A

x−→ B
y−→ C becomes a kernel-cokernel pair.

Thus S consists of some kernel-cokernel pairs. Moreover, it is closed

under isomorphisms. Indeed, let A x−→ B
y−→ C

δ99K be any E-triangle,

let A′ x′
−→ B′ y′−→ C ′ be a kernel-cokernel pair, and suppose that there

are isomorphisms a ∈ C (A,A′), b ∈ C (B,B′) and ∈ C (C,C ′) satisfying
x′ ◦ a = b ◦ x and y′ ◦ b = c ◦ y. By Proposition 3.7, we obtain an E-triangle

A′ x◦a−1

−→ B
c◦y−→ C ′ (c−1)∗a∗δ99K . This gives s(δ) = [A′ x◦a−1

−→ B
c◦y−→ C ′] =

[A′ x′
−→ B′ y′−→ C ′], which means that A′ x′

−→ B′ y′−→ C ′ belongs to S .
Let us confirm conditions [E0],[E1],[E2] in [Bu, Definition 2.1]. Since

our assumptions are self-dual, the other conditions [E0op],[E1op],[E2op] can
be shown dually.

[E0] For any object A ∈ C , the split sequence A
idA−→ A→ 0 belongs to

S by (ET2).
[E1] The class of inflations (= admissible monics) is closed under com-

position by (ET4), as in Remark 2.16.
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[E2] Let A x−→ B
y−→ C

δ99K be any E-triangle, and let a ∈ C (A,A′)
be any morphism. By Corollary 3.16, there exists a conflation

A
s−→ B ⊕ A′

∃[b x′]−→ ∃B′,

where s =
[
x
−a

]
. Since it becomes a kernel-cokernel pair by the above argu-

ment, it follows that (a) is a pushout square. By the dual of Proposition 3.17,
we obtain a commutative diagram (b) made of conflations, which shows that
x′ is an inflation.

(a)

A B

A′ B′

x //

a

��
b
��

x′
//

⟳ (b)

A′ A′

A B ⊕ A′ B′

A B C

[ ]
0
1

��
x′

��
s //

[b x′]
//

[1 0]

��
∃y′

��
x

//
y

//

⟳

⟳ ⟳

3.3 Relation with triangulated categories

In this section, let C be an additive category equipped with an equivalence
[1] : C

≃−→ C , and let E1 : C op × C → Ab be the bifunctor defined by
E1 = Ext1(−,−) = C (−,−[1]).

Remark 3.19. As usual, we use notations like X[1] and f [1] for objects X
and morphisms f in C . The n-times composition of [1] is denoted by [n].

We will show that, to give a triangulation of C with shift functor [1], is
equivalent to give an E1-triangulation of C (Proposition 3.22).

Remark 3.20. Let C , [1],E1 be as above. Then for any δ ∈ E1(C,A) =
C (C,A[1]), we have the following.

(1) δ♯ = C (−, δ) : C (−, C)⇒ C (−, A[1]).

(2) δ♯ is given by δ♯X : C (A,X) → C (C,X[1]) ; f 7→ (f [1]) ◦ δ, for any
X ∈ C .
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Lemma 3.21. Let C , [1],E1 be as above. Suppose that s is an E1-triangula-
tion of C . Then for any A ∈ C , the E1-extension 1 = idA[1] ∈ E1(A[1], A)
= C (A[1], A[1]) can be realized as s(1) = [A → 0 → A[1]]. Namely,

A→ 0→ A[1]
199K is an E1-triangle.

Proof. Put s(1) = [A
x−→ X

y−→ A[1]]. By Proposition 3.3, C (−, A) C (−,x)
=⇒

C (−, X)
C (−,y)
=⇒ C (−, A[1])

1♯=id
=⇒ C (−, A[1]) C (−,x[1])

=⇒ C (−, X[1]) is exact.
In particular idX ∈ C (X,X) satisfies y = (1♯)X ◦ C (X, y)(idX) = 0.
Similarly x[1] = 0 implies x = 0. Thus 0⇒ C (−, X)⇒ 0 becomes exact,
which shows X = 0.

Proposition 3.22. As before, let C be an additive category equipped with an
auto-equivalence [1], and put E1 = C (−,−[1]). Then we have the following.

(1) Suppose C is a triangulated category with shift functor [1]. For any
δ ∈ E1(C,A) = C (C,A[1]), take a distinguished triangle

A
x−→ B

y−→ C
δ−→ A[1]

and define as s(δ) = [A
x−→ B

y−→ C]. Remark that this s(δ) does
not depend on the choice of the distinguished triangle above. With this
definition, (C ,E1, s) becomes an extriangulated category.

(2) Suppose we are given an E1-triangulation s of C . Define that A x−→
B

y−→ C
δ−→ A[1] is a distinguished triangle if and only if it satisfies

s(δ) = [A
x−→ B

y−→ C]. With this class of distinguished triangles,
C becomes a triangulated category.

By construction, distinguished triangles correspond to E1-triangles by the
above (1) and (2).

Proof. (1) is straightforward. For (2), all the axioms except for (TR2) are
easily confirmed. Let us show (TR2).

Let A x−→ B
y−→ C

δ99K be any E1-triangle. Applying Proposition 3.15
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to A→ 0→ A[1]
199K and δ, we obtain

A B C

0 ∃M C

A[1] A[1]

x // y //

��
m′

��
// e //

��
e′

��

⟳ ⟳

⟳

with

(i) [0→M
e−→ C] = 0∗δ = 0,

(iii) s(x[1]) = s(x∗1) = [B
m′
−→M

e′−→ A[1]].

(ii) e∗δ + e′∗1 = 0,

Condition (i) shows that e is an isomorphism, by Remark 2.11 (1). Condition
(ii) means δ ◦ e + e′ = 0 in C (M,A[1]), namely e′ ◦ e−1 = −δ. Thus we
have s(x[1]) = [B

y−→ C
−δ−→ A[1]] by condition (iii), which means that

B
y−→ C

−δ−→ A[1]
x[1]−→ B[1] is a distinguished triangle. This is isomorphic

to B
y−→ C

δ−→ A[1]
−x[1]−→ B[1].

3.4 Projectives and injectives

If (C ,E, s) has enough “projectives”, then the bifunctor E can be described
in terms of them. Throughout this section, let (C ,E, s) be an extriangulated
category. Duals of the results in this section hold true for “injectives”.

Definition 3.23. An object P ∈ C is called projective if, for any E-triangle

A
x−→ B

y−→ C
δ99K and any morphism c in C (P,C), there exists b ∈

C (P,B) satisfying y ◦ b = c.
We denote the full subcategory of projective objects in C by Proj(C ).

Dually, the full subcategory of injective objects in C is denoted by Inj(C ).

Proposition 3.24. An object P ∈ C is projective if and only if it satisfies
E(P,A) = 0 for any A ∈ C .

Proof. Sufficiency of E(P,A) = 0 follows from the exact sequence of Pro-
position 3.3. Conversely, suppose P is projective. Let A ∈ C be any object,
and let δ ∈ E(P,A) be any element, with s(δ) = [A

x−→ M
y−→ P ].

Since P is projective, there exists m ∈ C (P,M) which makes the following
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diagram commutative.

0 P P

A M P

// idP //

m �� idP��
x

//
y

//
⟳

By (ET3)op, the triplet (0,m, idP ) realizes the morphism (0, idP ) : 0 → δ.
Especially we have δ = E(P, 0)(0) = 0.

Definition 3.25. Let (C ,E, s) be an extriangulated category, as before. We
say that it has enough projectives if, for any object C ∈ C , there exists an

E-triangle A
x−→ P

y−→ C
δ99K satisfying P ∈ Proj(C ).

Example 3.26. (1) If (C ,E, s) is an exact category, then these agree with
the usual definitions.

(2) If (C ,E1, s) is a triangulated category as in the previous section, then
Proj(C ) consists of zero objects. Moreover it always has enough pro-
jectives.

(3) If (C ,E1, s) is a triangulated category with a rigid subcategory R (i.e.
for all R1, R2 ∈ R,Ext1(R1, R2) = 0), let D be its full subcategory
whose objects are those objects X that satisfy Ext1(R,X) = 0 for all
R ∈ R. Then D is an additive and extension-closed subcategory of
C , which is thus extriangulated by Remark 2.18. We then have:

(a) R ⊆ Proj(D);

(b) Proj(D) = R and D has enough projectives if and only if R is
contravariantly finite.

Corollary 3.27. Assume that (C ,E, s) has enough projectives. For any ob-

ject C ∈ C and any E-triangle A
x−→ P

y−→ C
δ99K with P ∈ Proj(C ), the

sequence C (P,−) C (x,−)
=⇒ C (A,−) δ♯

=⇒ E(C,−) ⇒ 0 is exact. Namely, we
have a natural isomorphism E(C,−) ∼= Cok

(
C (x,−)

)
.

Proof. This immediately follows from Propositions 3.3 and 3.24.

The isomorphism in Corollary 3.27 is natural in C, in the following
sense.
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Remark 3.28. Assume that (C ,E, s) has enough projectives. Let c : C → C ′

be any morphism, and let A x−→ P
y−→ C

δ99K, A′ x′
−→ P ′ y′−→ C ′ δ′99K be

any pair of E-triangles satisfying P, P ′ ∈ Proj(C ). By the projectivity of P
and (ET3)op, we obtain a morphism of E-triangles, and thus a morphism of
exact sequences, as follows:

A P C

A′ P ′ C ′

x // y // δ //___

a
��

p
��

c
��

x′
//

y′
//

δ′
//___

⟳ ⟳

C (P,−) C (A,−) E(C,−) 0

C (P ′,−) C (A′,−) E(C ′,−) 0.

C (x,−)+3 δ♯ +3 +3

C (p,−)

KS
C (a,−)

KS
E(c,−)

KS

C (x′,−)
+3

δ
′♯
+3 +3

⟳ ⟳

Lemma 3.29. Let A x−→ B
y−→ C

δ99K be any E-triangle, and let i in
C (A, I) be any morphism with I ∈ Inj(C ). Write pC for the projection
C ⊕ I → C. Then the E-extension p∗Cδ is realized by an E-triangle of the
form

A
xI−→ B ⊕ I

yI−→ C ⊕ I
p∗Cδ
99K, (xI =

[
x
i

]
, yI =

[
y ∗
∗ ∗

]
). (11)

Proof. By Corollary 3.16, we have an E-triangle A
xI−→ B ⊕ I

d−→ D
ν99K.

By the dual of Proposition 3.17, we obtain the following commutative dia-
gram (α) made of E-triangles

(α)
I I

A B ⊕ I D

A B C

��

[ ]
0
1

e

��xI //
d

// ν //____

[1 0]

��
f

��
x

//
y

//
δ

//____

0

���
�
�

∃θ

���
�
�

⟳

⟳ ⟳

(β)

A B ⊕ I C ⊕ I

A B C

xI // n−1◦d// n∗ν //___

[1 0]

��
[1 0]=pC
��

x
//

y
//

δ
//____

⟳ ⟳

satisfying f ∗δ = ν. Since I ∈ Inj(C ), we have θ = 0. Thus there is some
isomorphism n : C ⊕ I

∼=−→ D satisfying n ◦ [ 01 ] = e and f ◦ n = [1 0].
Then for pC = [1 0] : C ⊕ I → C, diagram (β) above is a morphism of
E-triangles. Then n−1 ◦ d satisfies pC ◦ n−1 ◦ d ◦ [ 01 ] = y ◦ [1 0] ◦ [ 01 ] = y,
and thus is of the form [ y ∗

∗ ∗ ].
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The following construction gives extriangulated categories which are not
exact nor triangulated in general.

Proposition 3.30. Let I ⊆ C be a full additive subcategory, closed under
isomorphisms. If I satisfies I ⊆ Proj(C ) ∩ Inj(C ), then the ideal quo-
tient C /I has the structure of an extriangulated category, induced from that
of C . In particular, we can associate a “reduced” extriangulated category
C ′ = C /(Proj(C ) ∩ Inj(C )) satisfying Proj(C ′) ∩ Inj(C ′) = 0, to any
extriangulated category (C ,E, s).

Proof. Put C = C /I. Let us confirm conditions (ET1),(ET2),(ET3),(ET4).
The other conditions (ET3)op,(ET4)op can be shown dually.

(ET1) Since E(I,C ) = E(C , I) = 0, one can define the biadditive
functor E : C

op × C → Ab given by

• E(C,A) = E(C,A) (∀A,C ∈ C ),

• E(c, a) = E(c, a) (∀a ∈ C (A,A′), c ∈ C (C,C ′)). Here, a and c
denote the images of a and c in C /I.

(ET2) For any E-extension δ ∈ E(C,A) = E(C,A), define

s(δ) = s(δ) = [A
x0−→ B

y0−→ C],

using s(δ) = [A
x0−→ B

y0−→ C]. Let us show that s is an additive realization
of E.

Let (a, c) : δ = (A, δ, C) → δ′ = (A′, δ′, C ′) be any morphism of E-
extensions. By definition, this is equivalent to that (a, c) : δ → δ′ is a mor-

phism of E-extensions. Put s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→

B′ y′−→ C ′]. Since the condition in Definition 2.9 does not depend on the
representatives of the equivalence classes of sequences in C , we may as-

sume s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→ B′ y′−→ C ′]. Then there

is b ∈ C (B,B′) with which (a, b, c) realizes (a, c). It follows that (a, b, c)
realizes (a, c).

As for the additivity, the equality s(0) = 0 is trivially satisfied. Since
s(δ) ⊕ s(δ′) only depends on the equivalence classes s(δ) and s(δ′), the
equality s(δ ⊕ δ′) = s(δ)⊕ s(δ′) follows from s(δ ⊕ δ′) = s(δ)⊕ s(δ′).
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(ET3) Suppose we are given s(δ) = [A
x−→ B

y−→ C], s(δ′) = [A′ x′
−→

B′ y′−→ C ′], and morphisms a ∈ C (A,A′), b ∈ C (B,B′) satisfying x′ ◦ a =

b ◦ x. As in the proof of (ET2), we may assume s(δ) = [A
x−→ B

y−→ C],

s(δ′) = [A′ x′
−→ B′ y′−→ C ′]. By x′ ◦ a = b ◦ x, there exist I ∈ I, i ∈

C (A, I), j ∈ C (I, B′) which satisfy x′ ◦ a = b ◦ x+ j ◦ i. By Lemma 3.29,
we obtain an E-triangle (11). This gives the following isomorphism of E-
triangles.

A B ⊕ I C ⊕ I

A B C

xI // yI //
p∗Cδ

//___

pB
��

pC
��

x
//

y
//

δ
//____

⟳ ⟳ (12)

On the other hand, by axiom (ET3) for (C ,E, s), we have a morphism of
E-triangles as follows.

A B ⊕ I C ⊕ I

A′ B′ C ′

xI // yI //
p∗Cδ

//___

[b j]
��

c
��

x′
//

y′
//

δ′
//____

⟳ ⟳ (13)

From the two diagrams (12) and (13), we obtain a morphism of E-extensions
(a, c ◦ pC−1) : δ → δ′ which satisfies (c ◦ pC−1) ◦ y = y′ ◦ b.

(ET4) Let A
f−→ B

f ′
−→ D

δ99K and B
g−→ C

g′−→ F
δ′99K be E-

triangles. As in the above arguments, we may assume A
f−→ B

f ′
−→ D

δ99K
and B

g−→ C
g′−→ F

δ′99K are E-triangles. Then by (ET4) for (C ,E, s), we
obtain a commutative diagram (3) made of conflations, satisfying s(f ′

∗δ
′) =

[D
d−→ E

e−→ F ], d∗δ′′ = δ and f∗δ
′′ = e∗δ′. The image of this diagram in

C shows (ET4) for (C ,E, s).

Remark 3.31. Proposition 3.30 applied to an exact category, together with
Corollary 3.18, gives an another proof 3 of [DI, Theorem 3.5].

Corollary 3.32. Let I ⊆ C be a strictly full additive subcategory, satisfying
E(I, I) = 0. Let Z ⊆ C be the full subcategory of those Z ∈ C satisfying
E(Z, I) = E(I, Z) = 0. Then, Z/I is extriangulated.

3The first author wishes to thank Professor Osamu Iyama for informing this to him.
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Proof. This follows from Remark 2.18 and Proposition 3.30.

4. Cotorsion pairs

In the rest of this article, let (C ,E, s) be an extriangulated category.

4.1 Cotorsion pairs

Definition 4.1. Let U ,V ⊆ C be a pair of full additive subcategories, closed
under isomorphisms and direct summands. The pair (U ,V) is called a cotor-
sion pair on C if it satisfies the following conditions.

(1) E(U ,V) = 0.

(2) For any C ∈ C , there exists a conflation V C → UC → C satisfying
UC ∈ U , V C ∈ V .

(3) For any C ∈ C , there exists a conflation C → VC → UC satisfying
UC ∈ U , VC ∈ V .

Definition 4.2. Let X ,Y ⊆ C be any pair of full subcategories closed under
isomorphisms. Define full subcategories Cone(X ,Y) and CoCone(X ,Y) of
C as follows. These are closed under isomorphisms.

(i) C ∈ C belongs to Cone(X ,Y) if and only if it admits a conflation
X → Y → C satisfying X ∈ X , Y ∈ Y .

(ii) C ∈ C belongs to CoCone(X ,Y) if and only if it admits a conflation
C → X → Y satisfying X ∈ X , Y ∈ Y .

If X and Y are additive subcategories of C , then so are Cone(X ,Y) and
CoCone(X ,Y), by condition (ET2).

Remark 4.3. In the case of exact categories, cotorsion pairs satisfying (2)
and (3) are often called complete cotorsion pairs. Since all cotorsion pairs
considered in this article are complete, this adjective is omitted. Also re-
mark that completeness is equivalent to the equalities C = Cone(V ,U) =
CoCone(V ,U), in the notation of Definition 4.2.
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Remark 4.4. Let (U ,V) be a cotorsion pair on (C ,E, s). By Remark 2.11,
for any C ∈ C : C ∈ U ⇔ E(C,V) = 0 and C ∈ V ⇔ E(U , C) = 0.

Corollary 4.5. Let (U ,V) be a cotorsion pair on (C ,E, s). Let C ∈ C ,
U ∈ U be any pair of objects. If there exists a section C → U or a retraction
U → C, then C also belongs to U . Similarly for V .

Proof. In either case, there are s ∈ C (C,U) and r ∈ C (U,C) satisfying
r ◦ s = idC . This gives the following commutative diagram of natural trans-
formations.

E(C,−)

E(U,−)

E(C,−)

E(r,−) 7?vvvv
vvvv

E(s,−)

�'H
HH

H
HH

HH

E(idC ,−)=id

.6
⟳

Thus E(U,V) = 0 implies E(C,V) = 0, and thus C ∈ U by Remark 4.4.

Remark 4.6. Let (U ,V) be a cotorsion pair on C . By Proposition 3.11, the
subcategories U and V are extension-closed in C .

Remark 4.7. By Proposition 3.24 and Remark 4.4, we have: (X ,C ) is a
cotorsion pair for some subcategory X ⊆ C if and only if (Proj(C ),C ) is
a cotorsion pair, if and only if C has enough projectives. A dual remark
concerning injectives holds.

4.2 Associated adjoint functors

Definition 4.8. For a cotorsion pair (U ,V) on C , put I = U ∩ V , and call it
the core of (U ,V). For any full additive subcategory X ⊆ C containing I,
let X/I denote the ideal quotient. The image of a morphism f in the ideal
quotient is denoted by f .

Lemma 4.9. For any cotorsion pair (U ,V), we have (C /I)(U/I,V/I) = 0.
Namely, for any U ∈ U and V ∈ V , any morphism f ∈ C (U, V ) factors
through some I ∈ I.

Proof. By Proposition 3.3 a proof similar as that for triangulated categories
apply.
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Proposition 4.10. Let C ∈ C be any object, and let λ be an E-extension

with s(λ) = [V C vC−→ UC uC

−→ C], where UC ∈ U and V C ∈ V . Then for
any U ∈ U , the map uC ◦ − is bijective:

uC ◦ − : (C /I)(U,UC)→ (C /I)(U,C) (14)

Proof. By exactness of C (U,UC)
C (U,uC)−→ C (U,C)

(λ♯)U−→ E(U, V ) = 0, the
map C (U,UC) → C (U,C) is surjective. This implies the surjectivity of
(14). Let us show the injectivity of (14). Let g ∈ C (U,UC) be any mor-
phism which satisfies uC ◦ g = uC ◦ g = 0. By definition, there exist I ∈ I,
i1 ∈ C (U, I) and i2 ∈ C (I, C) which makes the following diagram commu-
tative.

U I

V C UC C

i1 //

g
��

i2
��

vC
//

uC
//

⟳

Since E(I, V C) = 0, C (I, V C)
C (I,vC)−→ C (I, UC)

C (I,uC)−→ C (I, C) → 0 is
exact. Thus there exists j ∈ C (I, UC) satisfying uC ◦ j = i2. Then by
uC ◦ (g− j ◦ i1) = 0, we obtain h ∈ C (U, V C) satisfying vC ◦h = g− j ◦ i1.

By Lemma 4.9, this h factors through some I ′ ∈ I. It follows that
g = vC ◦ h+ j ◦ i1 factors through I ⊕ I ′ ∈ I.

Proposition 4.10 means that (UC , uC) is coreflection of C ∈ C /I along
the inclusion functor U/I ↪→ C /I ([Bo, Definition 3.1.1]). We thus obtain:

Corollary 4.11. The inclusion functor U/I ↪→ C /I has a right adjoint
ωU : C /I → U/I, which assigns ωU(C) = UC for any C ∈ C /I, where

V C vC−→ UC uC

−→ C is a conflation with UC ∈ U , V C ∈ V . Moreover
εU = {uC}C∈Ob(C /I) gives the counit of this adjoint pair.

4.3 Concentric twin cotorsion pairs

Definition 4.12. Let (S, T ) and (U ,V) be cotorsion pairs on C . Then
the pair P = ((S, T ), (U ,V)) is called a twin cotorsion pair if it satisfies
E(S,V) = 0. (Pairs of cotorsion pairs are considered in abelian/exact cate-
gories in [Ho1, Ho2], and in triangulated categories in [Na2, Na3].)
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If moreover it satisfies S∩T = U∩V(= I), thenP is called a concentric
twin cotorsion pair similarly as in the triangulated case [Na4]. In this case,
we put Z = T ∩ U .

Remark 4.13. LetP = ((S, T ), (U ,V)) be a concentric twin cotorsion pair.
By Corollary 4.11, the inclusion U/I ↪→ C /I has a right adjoint ωU . Dually
the inclusion T /I ↪→ C /I has a left adjoint σT .

These restrict to yield the following.

- Left adjoint σ of the inclusion Z/I ↪→ U/I.

- Right adjoint ω of the inclusion Z/I ↪→ T /I.

Definition 4.14. Let P = ((S, T ), (U ,V)) be a twin cotorsion pair on C .
We define full subcategories N i,N fof C as follows.

N i = Cone(V ,S) and N f = CoCone(V ,S).

Remark 4.15. The notation N i, N f is motivated by Section 5. Morally, an
object X belongs to N i if and only if the morphism 0 → X from the initial
object is a weak equivalence. For a precise statement, see Proposition 5.7.

Remark 4.16. If P is concentric, then for any C ∈ C , we have:

C ∈ N i ⇔ ωU(C) ∈ S/I and C ∈ N f ⇔ σT (C) ∈ V/I.

Remark 4.17. Let P = ((S, T ), (U ,V)) be a twin cotorsion pair. Then the
following holds:

S ⊆ N i,V ⊆ N f ,U ∩ N i = S and T ∩ N f = V .

If moreover P is concentric, then S ⊆ N f and V ⊆ N i.

Lemma 4.18. Let P = ((S, T ), (U ,V)) be a concentric twin cotorsion pair.
Then the following holds:

(1) Cone(V ,N i) ⊆ N i and (2) CoCone(N f ,S) ⊆ N f .

Proof. We only prove (1) since (2) is dual. By definition, C ∈ Cone(V ,N i)
admits a conflation V → N → C, where V ∈ V and N ∈ N i. Resolve N
by a conflation V N → SN → N with SN ∈ S , V N ∈ V .
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By (ET4)op, we obtain a commutative diagram in C

V N V N

∃E SN C

V N C

�� ��
// //

�� ��
// //

⟳

⟳ ⟳

in which V N → E → V and E → SN → C are conflations. Since V ⊆ C
is extension-closed, it follows that E ∈ V . This means C ∈ N i.

Lemma 4.19. Let P = ((S, T ), (U ,V)) be a concentric twin cotorsion pair.
Let U ∈ U be any object. Assume there is a conflation M → U → S
satisfying M ∈ N f and S ∈ S . Then U belongs to N f .

Dually, if T ∈ T appears in a conflation V → T → N satisfying V ∈
V , N ∈ N i, then T belongs to N i.

Proof. By definition, M admits a conflation M → VM → SM with VM ∈
V , SM ∈ S . By Proposition 3.15, we obtain a commutative diagram

M U S

VM
∃X S

SM SM

// //

�� ��
// //

�� ��

⟳ ⟳

⟳

consisting of conflations. Since U is extension-closed, it follows that X ∈ U .
Since E(S, VM) = 0, the E-extension realized by VM → X → S splits.
Especially VM is a direct summand of X , and thus it follows that VM ∈
U ∩ V = I. By the extension-closedness of S, we obtain X ∈ S . Thus
U ∈ N f follows from Remark 4.17 and Lemma 4.18 (2).

Lemma 4.20. Let P be as in Lemma 4.19. Let T ∈ T ,M ∈ N f be any
pair of objects. If there is a section T → M or a retraction M → T , then T
belongs to V .

Proof. In either case, we have morphisms s ∈ C (T,M) and r ∈ C (M,T )
satisfying r ◦ s = id. By definition, M admits a conflation M

v−→ V → S.
By E(S, T ) = 0, the morphism r factors through v. Then v ◦ s ∈ C (T, V )
becomes a section, and thus it follows from Corollary 4.5 that T ∈ V .
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5. Bijective correspondence with model structures

In the rest, let (C ,E, s) be an extriangulated category.
In this section, we give a bijective correspondence between Hovey twin

cotorsion pairs and admissible model structures which we will soon define.
This gives a unification of the following preceding works.

• For an abelian category, Hovey has shown their correspondence in
[Ho1, Ho2] (abelian model structure). This has been generalized to
an exact category by Gillespie [G] (exact model structure), and inves-
tigated by Šťovı́ček [S].

• For a triangulated category, Yang [Y] has introduced an analogous
notion of triangulated model structure and showed its correspondence
with cotorsion pairs.

5.1 Hovey twin cotorsion pair

We recall that N i (resp. N f ) is the collection of all objects X ∈ C which
are part of a conflation V −→ S −→ X (resp. X −→ V −→ S), for some
V ∈ V and S ∈ S .

Definition 5.1. Let P = ((S, T ), (U ,V)) be a twin cotorsion pair. We call
P a Hovey twin cotorsion pair if it satisfies N f = N i. We denote this
subcategory by N .

Remark 5.2. Any Hovey twin cotorsion pair is concentric. In fact, we have
U ∩ V = U ∩ (N f ∩ T ) = (U ∩ N i) ∩ T = S ∩ T by Remark 4.17.

For any Hovey twin cotorsion pair, the subcategoryN ⊆ C is extension-
closed. More strongly, it satisfies the following.

Proposition 5.3. Let P = ((S, T ), (U ,V)) be a Hovey twin cotorsion pair.
For any conflation A

x−→ B
y−→ C, if two out of A,B,C belong toN , then

so does the third.

Proof. We prove (1) A,C ∈ N ⇒ B ∈ N , (2) A,B ∈ N ⇒ C ∈ N and
(3) B,C ∈ N ⇒ A ∈ N .
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(1) Resolve A,C by conflations A → VA → SA and V C → SC → C
with SA, S

C ∈ S , VA, V
C ∈ V respectively. By Proposition 3.15, we obtain

the two commutative diagrams on the left of:

V C V C

A ∃X SC

A B C

�� ��
// //

�� ��
// //

⟳

⟳ ⟳

,

A X SC

VA
∃Y SC

SA SA

// //

�� ��
// //

�� ��

⟳ ⟳

⟳

,

A B C

VA
∃G C

SA SA

// //

�� ��
// //

�� ��

⟳ ⟳

⟳

which are made of conflations. Since E(SC , VA) = 0, the conflation VA →
Y → SC realizes the split E-extension. It follows that Y ∼= VA ⊕ SC ∈ N .
We obtain X ∈ N by Lemma 4.18 (2), and thus B ∈ N by Lemma 4.18 (1).

(2) Resolve A by a conflation A → VA → SA with SA ∈ S , VA ∈ V .
Then by Proposition 3.15, we obtain the rightmost commutative diagram
above, made of conflations. Since B, SA ∈ N , we have G ∈ N by (1).
From Lemma 4.18 (1), it follows that C ∈ N .

(3) is dual to (2).

Remark 5.4. As a corollary, N becomes an extriangulated category by Re-
mark 2.18. Almost by definition, the pair (S,V) is a cotorsion pair on N .

5.2 From admissible model structure to Hovey twin cotorsion pair

Throughout this section, let M = (Fib,Cof ,W) be a model structure on
C , where Fib,Cof ,W are the classes of fibrations, cofibrations, and weak
equivalences. Let wFib = Fib ∩ W and wCof = Cof ∩ W denote the
classes of acyclic fibrations and acyclic cofibrations, respectively. Associate
full subcategories S, T ,U ,V ⊆ C as follows.

C ∈ S ⇔ (0→ C) ∈ wCof ,

C ∈ T ⇔ (C → 0) ∈ Fib,

C ∈ U ⇔ (0→ C) ∈ Cof ,

C ∈ V ⇔ (C → 0) ∈ wFib.

Remark that these are full additive subcategories of C , closed under iso-
morphisms and direct summands. In particular, the definition below makes
sense.
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Definition 5.5. M is called an admissible model structure if it satisfies the
following conditions for any morphism f ∈ C (A,B).

(1) f ∈ wCof if and only if it is an inflation with Cone(f) ∈ S .

(2) f ∈ Fib if and only if it is a deflation with CoCone(f) ∈ T .

(3) f ∈ Cof if and only if it is an inflation with Cone(f) ∈ U .

(4) f ∈ wFib if and only if it is a deflation with CoCone(f) ∈ V .

We note that the model structures which might appear in [Pal] are not
admissible.

Proposition 5.6. Let M be an admissible model structure. Then P =
((S, T ), (U ,V)) is a twin cotorsion pair on (C ,E, s).

Proof. S ⊆ U is obvious from the definition. Since a similar argument
works for (S, T ), we show that (U ,V) is a cotorsion pair. Let us confirm the
conditions (1) and (2) in Definition 4.1 since (3) is dual to (2).

(1) Let (U, V ) ∈ U × V be any pair of objects, and let δ ∈ E(U, V ) be

any element. Realize it as an E-triangle V
v−→ B

u−→ U
δ99K. Since U ∈ U

and u ∈ wFib, there exists a section s ∈ C (U,B) of u. Thus δ splits by
Corollary 3.5.

(2) Let C ∈ C be any object. Factorize the zero morphism 0: 0→ C as
a cofibration i ∈ Cof followed by an acyclic fibration u ∈ wFib. SinceM
is admissible, we have conflations 0 i−→ D

j−→ U and V → D
u−→ C with

U ∈ U , V ∈ V . This shows that j is an isomorphism, and thus we obtain a
conflation V → U → C.

Proposition 5.7. LetM be an admissible model structure as above. Then
the associated twin cotorsion pair P obtained in Proposition 5.6 is a Hovey
twin cotorsion pair. Indeed, if we let N i,N f ⊆ C be as in Definition 4.14,
then the following are equivalent for any object N ∈ C :

(1) N ∈ N i; (2) (0→ N) ∈W; (3) (N → 0) ∈W; (4) N ∈ N f .

Proof. (1) ⇒ (2) If N ∈ N i, there is a conflation V → S
s−→ N with

V ∈ V , S ∈ S by definition. Thus 0 → N can be factorized as an acyclic
cofibration 0→ S followed by an acyclic fibration S

s−→ N .
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It follows that (0→ N) ∈ wFib ◦ wCof = W.
(2) ⇒ (1) Factorize 0 → N as an acyclic cofibration 0

i−→ D followed
by an acyclic fibration D

u−→ N . A similar argument as in the proof (2) of
Proposition 5.6 gives a conflation V → S → N .

(2)⇔ (3) follows from the 2-out-of-3 property of W.
(3)⇔ (4) is dual to (1)⇔ (2).

5.3 From Hovey twin cotorsion pair to admissible model structure

Throughout this section, let P = ((S, T ), (U ,V)) be a Hovey twin cotorsion
pair on (C ,E, s). In addition, we assume the following condition, analogous
to the weak idempotent completeness ([Bu, Proposition 7.6]).

Condition 5.8 (WIC). Let (C ,E, s) be an extriangulated category. Consider
the following conditions.

(1) Let f ∈ C (A,B), g ∈ C (B,C) be any composable pair of mor-
phisms. If g ◦ f is an inflation, then so is f .

(2) Let f ∈ C (A,B), g ∈ C (B,C) be any composable pair of mor-
phisms. If g ◦ f is a deflation, then so is g.

With the assumption of Condition (WIC), we have the following analog
of the nine lemma.

Lemma 5.9. Assume (C ,E, s) is an extriangulated category satisfying Con-
dition (WIC). Let

K K ′

A B C

A′ B′ C ′

k

��
k′

��
x // y // δ //___

a

��
b
��

x′
//

y′
// δ′ //___

κ

���
�
�

κ′

���
�
�

⟳

be a diagram made of E-triangles. Then for some X ∈ C , we obtain E-
triangles

K
m−→ K ′ n−→ X

ν99K and X
i−→ C

c−→ C ′ τ99K
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which make the following diagram commutative,

K K ′ X

A B C

A′ B′ C ′

m // n // ν //___

k

��
k′

��
i

��
x // y // δ //___

a

��
b
��

c

��

x′
//

y′
// δ′ //___

κ

���
�
�

κ′

���
�
�

τ

���
�
�

⟳ ⟳

⟳ ⟳ (15)

in which, those (k, k′, i), (a, b, c), (m,x, x′), (n, y, y′) are morphisms of E-
triangles.

Proof. By (ET4)op, we obtain an E-triangle E
f−→ B′ y′◦b−→ C ′ θ99K and a

commutative diagram (α) as in:

(α)

K ′ E A′

K ′ B B′

C ′ C ′

d // e //

f

��
x′

��

k′
//

b
//

y′◦b
��

y′

��

⟳ ⟳

⟳

(β)

A

E B

A′ B′

f
//

e

��
b
��

x′
//

g ��?
??

?? x

""

a

��
⟳

⟳

⟳

in C , satisfying the following compatibilities:

(i) K ′ d−→ E
e−→ A′ x′∗κ′

99K is an E-triangle, (ii) δ′ = e∗θ, and (iii) d∗κ′ = y′∗θ.
By the dual of Lemma 3.13, the upper-right square x′ ◦ e = b ◦ f is a

weak pullback. Thus there exists a morphism g ∈ C (A,E) which makes the
diagram (β) commutative. By Condition (WIC), this g becomes an inflation.
Complete it into an E-triangle A

g−→ E
h−→ X

µ99K . By Lemma 3.14, we
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obtain a commutative diagram (γ)

(γ)

A E X

A B C

C ′ C ′

g // h //

f

��
i

��
x

//
y

//

y′◦b
��

c

��

⟳ ⟳

⟳

(δ)

K A A′

K ′ E A′

X X

k // a //

m

��
g

��
d // e //

n

��
h

��

⟳ ⟳

⟳

made of conflations, which satisfies:
(iv) X i−→ C

c−→ C ′ h∗θ99K is an E-triangle, (v) µ = i∗δ, (vi) g∗δ = c∗θ.
By Proposition 3.17, we obtain an E-triangle K

m−→ K ′ n−→ X
ν−→

which makes the diagram (δ) commutative in C , and satisfies:
(vii) m∗κ = x′∗κ′, (viii) µ = k∗ν, (ix) h∗ν + e∗κ = 0.

Put τ = h∗θ. It is straightforward to show that the diagram (15) is indeed
commutative. Moreover, (v) and (viii) show k∗ν = i∗δ, (ii) and (vi) show
a∗δ = c∗δ′, (vii) shows m∗κ = x′∗κ′, (iii) shows n∗κ

′ = y′∗τ .

Remark 5.10. In the proof of Lemma 5.9, we have obtained an extra compat-
ibility (ix). This can be interpreted by the following analog of Ext2-group.

Let A,D ∈ C be any pair of objects. We denote triplet of X ∈ C , σ ∈
E(D,X), τ ∈ E(X,A) by (σ,X, τ). For any pair of such triplets (σ,X, τ)
and (σ′, X ′, τ ′), we write as

(σ,X, τ)⇝
x
(σ′, X ′, τ ′) (or simply (σ,X, τ)⇝ (σ′, X ′, τ ′))

if and only if there exists x ∈ C (X,X ′) satisfying x∗σ = σ′ and τ = x∗τ ′.
Let∼ be the equivalence relation generated by⇝, and denote the equiv-

alence class of (σ,X, τ) by τ ◦
X
σ. Let us denote their collection by

E2(D,A) =

( ⨿
X∈C

E(D,X)× E(X,A)

)
/ ∼ .

The proof of Lemma 5.9 shows

(δ′, A′,−κ) ⇝
e

(θ, E, h∗ν)⇝
h

(τ,X, ν)

and thus(−κ)◦
A′

δ′=ν◦
X

τholds inE2(C′, K).
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Definition 5.11. Define classes of morphisms Fib, wFib,Cof , wCof and W
in C as follows.

(1) f ∈ Fib if it is a deflation with CoCone(f) ∈ T .

(2) f ∈ wFib if it is a deflation with CoCone(f) ∈ V .

(3) f ∈ Cof if it is an inflation with Cone(f) ∈ U .

(4) f ∈ wCof if it is an inflation with Cone(f) ∈ S .

(5) W = wFib ◦ wCof .

Claim 5.12.

(1) If a conflation A
f−→ B → N satisfies N ∈ N , then f belongs to W.

(2) If a conflation N → A
f−→ B satisfies N ∈ N , then f belongs to W.

Proof. This follows from Proposition 3.15.

Proposition 5.13. Fib, wFib,Cof , wCof are closed under composition.

Proof. For Fib, this follows from (ET4) and the extension-closedness of T .
Similarly for the others.

Proposition 5.14. We have the following.

(1) wCof satisfies the left lifting property against Fib.

(2) wFib satisfies the right lifting property against Cof .

Proof. (1) Suppose we are given a commutative square

A C

B D

a //

f
��

g
��

b
//

⟳ (16)

in C , satisfying f ∈ wCof and g ∈ Fib. By definition, there are E-triangles

A
f−→ B

s−→ S
δ99K and T

t−→ C
g−→ D

κ99K . By Corollary 3.12,
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C (B, T )
C (f,T )−→ C (A, T )→ 0→ E(B, T )

E(f,T )−→ E(A, T ), (17)

C (A, T )
C (A,t)−→ C (A,C)

C (A,g)−→ C (A,D), (18)

C (B,C)
C (B,g)−→ C (B,D)

(κ♯)B−→ E(B, T ) (19)

are exact. By the commutativity of (16), we have E(f, T )(b∗κ) = f ∗b∗κ =
a∗g∗κ = 0 by Lemma 3.2. Exactness of (17) shows κ♯b = b∗κ = 0. Thus by
the exactness of (19), there exists c ∈ C (B,C) satisfying g ◦ c = b. Then
a − c ◦ f ∈ C (A,C) satisfies g ◦ (a − c ◦ f) = g ◦ a − b ◦ f = 0. By the
exactness of (18), there is c′ ∈ C (A, T ) satisfying t ◦ c′ = a− c ◦ f . By the
exactness of (17), there is c′′ ∈ C (A, T ) satisfying c′′ ◦ f = c′. If we put
h = c+t◦c′′ ∈ C (B,C), it satisfies h◦f = c◦f+t◦c′′◦f = c◦f+t◦c′ = a
and g ◦ h = g ◦ c+ g ◦ t ◦ c′′ = b.

(2) is dual to (1).

Proposition 5.15. Mor(C ) = wFib ◦ Cof = Fib ◦ wCof .

Proof. We only show Mor(C ) = wFib ◦ Cof . Let f ∈ C (A,B) be any
morphism. Resolve A by a conflation A

vA−→ VA
uA−→ UA with UA ∈ U ,

VA ∈ V , and put f ′ =
[
f
vA

]
: A → B ⊕ VA. By Corollary 3.16, it admits

some conflation
A

f ′
−→ B ⊕ VA → C.

Resolve C by a conflation V C → UC → C with U ∈ U and V ∈ V . Then
by Proposition 3.15, we obtain a diagram made of conflations as follows.

V C V C

A M UC

A B ⊕ VA C

�� ��
m // //

e

�� ��

f ′
// //

⟳

⟳ ⟳

We have m ∈ Cof . Moreover, for pB = [1 0] ∈ C (B ⊕ VA, B), we have
pB ◦ e ∈ wFib ◦ wFib = wFib. Thus f = (pB ◦ e) ◦ m gives the desired
factorization.

- 162 -



H. NAKAOKA AND Y. PALU EXTRIANGULATED CATEGORIES

Proposition 5.16. Fib, wFib,Cof , wCof are closed under retraction.

Proof. We only show the result for Fib. Suppose we are given a commuta-
tive diagram

A C A

B D B

a
--ZZZZZZ

c
11dddddd

id

''

f

��

g
��

f

��b 11ddddd d --ZZZZZ

id

77

⟳ ⟳

⟳

⟳

in C , satisfying g ∈ Fib. By definition, there is an E-triangle T
t−→ C

g−→
D

θ99K with T ∈ T . By Condition (WIC), d ◦ b = id implies that d is
a deflation. Thus d ◦ g becomes a deflation by (ET4)op. Again by Condi-
tion (WIC), it follows that f is a deflation. Thus there exists an E-triangle

X
x−→ A

f−→ B
δ99K. By (ET3)op, we obtain the following two morphisms

of E-triangles (on the left below).

X A B

T C D

x // f // δ //___

k
��

a
��

b
��

t
//

g
//

θ
//___

⟳ ⟳

T C D

X A B

t // g // θ //___

ℓ
��

c
��

d
��

x
//

f
//

δ
//___

⟳ ⟳

X A B

X A B

x // f // δ //___

ℓ◦k
��

id
��

id
��

x
//

f
//

δ
//___

⟳ ⟳

Composing them, we obtain a morphism of E-triangles (on the right above).
By Corollary 3.6, it follows that ℓ ◦ k is an isomorphism. Especially k is a
section, and thus X ∈ T . This means that f belongs to Fib.

Lemma 5.17. Suppose that two morphisms f ∈ C (A,B) and g ∈ C (B,C)
satisfy f ∈ wCof , g ∈ Fib and g ◦ f ∈ wCof . Then g belongs to wFib.

Proof. Let h = g◦f . By assumption, there are conflations A
f−→ B

s1−→ S1,
T

t−→ B
g−→ C, A h−→ C

s2−→ S2 where S1 ∈ S , T ∈ T and S2 ∈ S .
By the dual of Lemma 3.17, we obtain the following commutative diagram
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made of conflations.
T T

A B S1

A C S2

t
�� ��f // s1 //

g
�� ��

h
//

s2
//

⟳

⟳ ⟳

By Lemma 4.18 (2) and Remark 4.17, we obtain T ∈ T ∩ N = V . This
means g ∈ wFib.

Proposition 5.18. W is closed under composition.

Proof. It suffices to show that wCof ◦ wFib ⊆ W. Let a ∈ wFib and
x′ ∈ wCof . By Proposition 5.15, there are some x ∈ wCof and b ∈ Fib
such that b ◦x = x′ ◦ a. It is thus enough to show that b belongs to wFib. By
definition, there is a commutative diagram of E-triangles:

V T

A B S

A′ B′ S ′

k

��
k′

��
x // y // δ //___

a

��
b
��

x′
//

y′
// δ′ //___

κ

���
�
�

κ′

���
�
�

⟳

with V ∈ V , T ∈ T and S, S ′ ∈ S . Applying Lemma 5.9 gives some X ∈ C

and two conflations X i−→ S
c−→ S ′ and V

m−→ T
n−→ X . The existence

of the first conflation (and Lemma 4.18(2)) shows that X belongs toN ; that
of the latter conflation and the dual of Lemma 4.19 imply that T belongs to
V , and therefore that b ∈ wFib.

Lemma 5.19. Suppose that two morphisms f ∈ C (A,B) and g ∈ C (B,C)
satisfy f ∈ wCof , g ∈ Fib and g ◦ f ∈ wFib. Then g belongs to wFib.

Proof. Let h = g ◦ f . By assumption, there are conflations A
f−→ B

s−→ S,
T

t−→ B
g−→ C, V v−→ A

h−→ C with S ∈ S , T ∈ T and V ∈ V .
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By Proposition 3.17, we obtain a conflation V → T → S. Thus from
Proposition 5.3 and Remark 4.17, it follows T ∈ T ∩ N = V . This means
g ∈ wFib.

Lemma 5.20. Suppose that two morphisms f ∈ C (A,B) and g ∈ C (B,C)
satisfy f ∈ wFib, g ∈ Fib and g ◦ f ∈ wFib. Then g belongs to wFib.

Proof. Let h = g ◦ f . By assumption, there are conflations Vf → A
f−→ B,

T → B
g−→ C, Vh → A

h−→ C with Vf ∈ V , T ∈ T and Vh ∈ V . By
(ET4)op, we obtain a conflation Vf → Vh → T . Thus from Lemma 4.18
(1) and Remark 4.17, it follows that T ∈ T ∩ N = V . This means g ∈
wFib.

Proposition 5.21. Suppose that f ∈ C (A,B) and g ∈ C (B,C) satisfy
f ∈W and g ◦ f ∈W. Then g also belongs to W.

Proof. Let h = g ◦ f . By definition and the dual of Proposition 5.15, the
morphisms f, g, h can be factorized as

A B

Xf

f //

f1
��6

66
66

6 DD

f2
��
��
��⟳ ,

B C

Xg

g //

g1
��6

66
66

6 DD

g2
��
��
��⟳ ,

A C

Xh

h //

h1

��6
66
66
66 DD

h2

��
��
��
�⟳ ,

with f1, g1, h1 ∈ wCof , f2, h2 ∈ wFib and g2 ∈ Fib.
By Proposition 5.18, the morphism g1 ◦ f2 belongs to W and can thus

be factorized as an acyclic cofibration w1 : Xf → X followed by an acyclic
fibration w2 : X → Xg. By Proposition 5.14, there is k ∈ C (Xh, X) which
makes (∗) commutative in C . By Proposition 5.15, we can factorize k as
an acyclic cofibration k1 : Xh → Xk followed by a fibration k2 : Xk → X .
Thus we obtain the following commutative diagram on the right

(∗)

A X

Xh C

w1◦f1 //

h1

��

g2◦w2

��

h2

//

k
���

??���⟳

⟳

A X

XgXk

Xh C

w1◦f1 //
w2%%LL

L

h1

��

k2

;;vvvv

g2��
k1

;;vvv

h2

/ /

⟳
⟳

(k1, h1, w1 ◦ f1 ∈ wCof )

(w2, h2 ∈ wFib)

(k2, g2 ∈ Fib)

Lemma 5.17 shows k2 ∈ wFib. On the other hand, Lemma 5.19 shows
g2 ◦ w2 ◦ k2 ∈ wFib. Thus Lemma 5.20 shows g2 ∈ wFib.
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Corollary 5.22. The class W satisfies the 2-out-of-3 condition.

Proof. This follows from Proposition 5.18, Proposition 5.21 and its dual.

When a category has enough pull-backs or enough push-outs, the fact
that weak equivalences are stable under retracts follows from the other ax-
ioms (e.g. [Joy, Proposition E.1.3], attributed to Joyal–Tierney). However,
that proof does not carry over to the setup of extriangulated categories4. The
following lemma will thus be used for proving that the class W is closed
under retracts.

Lemma 5.23. Let A x−→ B
y−→ C

δ99K and A
x′
−→ B′ y′−→ C ′ δ′99K be E-

triangles. Suppose that b ∈ C (B,B′) belongs to W and satisfies b ◦ x = x′.
Then there is c ∈ C (C,C ′) which belongs to W and gives a morphism of
E-triangles as follows.

A B C

A B′ C ′

x // y // δ //___

b
��

c
��

x′
//

y′
//

δ′
//___

⟳ ⟳

Proof. By definition, b can be factorized as b = v ◦ s, using E-triangles

B
s−→ P → S

θ99K and V → P
v−→ B′ τ99K with S ∈ S, V ∈ V . By

(ET4), and then by the dual of Proposition 3.17, we obtain the following
commutative diagrams made of E-triangles,

A B C

A P ∃Q

S S

x // y // δ //___

s

��
∃c1
��

s◦x
//

∃p
//

∃ν //___

�� ��

θ

���
�
�

y∗θ

���
�
�

⟳ ⟳

⟳

,

A A

V P B′

V Q C ′

s◦x
��

x′

��
//

v
// τ //___

p

��
y′

��
//

∃c2

// //___

ν

���
�
�

δ′

���
�
�

⟳

⟳ ⟳

4It turns out that mere existence of finite products and finite coproducts is enough, as
follows from [Eg] and the fact that weak equivalences are precisely the morphisms that
become isomorphisms in the localisation C [W−1]. This is explained in detail in Pierre
Cagne’s PhD Thesis [Ca, Section 2.2]. We nonetheless include a different proof.
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in which c∗1ν = δ holds. Then c = c2 ◦ c1 belongs to W, satisfies c ◦ y =
c2 ◦ p ◦ s = y′ ◦ v ◦ s = y′ ◦ b and c∗δ′ = c∗1c

∗
2δ

′ = c∗1ν = δ.

Proposition 5.24. The class W is closed under retracts.

Proof. Suppose we are given a commutative diagram (a) in C

(a)
A C A

B D B

id

$$
a

//
c

//

f
��

g
��

f
��

id

99b
//

d
//

⟳

⟳ ⟳

⟳

(b)

A C A

M N M

B D B

a // c //

i
��

j
��

i
��

m
//

n
//

x
��

y
��

x
��

b
//

d
//

⟳ ⟳

⟳ ⟳

in which g ∈W. Let us show that f ∈W. If we decompose f and g as

A B

M

f //

i ��6
66
66 CC

x
��
��
�⟳ ,

C D

N

g //

j ��6
66
66 CC

y
��
��
�⟳

(
i ∈ Cof , j ∈ wCof ,

x, y ∈ wFib

)

by Proposition 5.15, then there exist morphisms m,n which make diagram
(b) commutative by Proposition 5.14.

By Corollary 5.22 applied to the lower half, it follows n ◦ m ∈ W.
By definition of Cof and wCof , there are E-triangles A i−→M

p−→ U
ρ99K,

C
j−→ N

q−→ S
τ99Kwith U ∈ U , S ∈ S . It suffices to show U ∈ S . Realize

c∗τ by an E-triangle A
j′−→ N ′ q′−→ S

c∗τ99K. Put c′ =
[−c
j

]
: C → A ⊕ N .

Then by an argument similar to that of the proof of Corollary 3.16, we can
find a morphism of E-triangles as on the left of (20) below which gives an

E-triangle C
c′−→ A ⊕ N

[j′ n1]−→ N ′ q′∗τ99K (cf. [LN, Proposition 1.20]). Since
we have [i n] ◦ c′ = n ◦ j− i ◦ c = 0, there is n′ ∈ C (N ′,M) which satisfies
n′ ◦ [j′ n1] = [i n], namely n′ ◦ j′ = i and n′ ◦ n1 = n.

Put m′ = n1 ◦m. This satisfies n′ ◦m′ = n ◦m ∈ W and m′ ◦ i = j′.
Resolve N ′ by an E-triangle T ′ → S ′ s′−→ N ′ θ99K, with S ′ ∈ S , T ′ ∈ T .
Then by the dual of Corollary 3.16, the morphism [m′ s′] : M⊕S ′ → N ′ can

be completed into an E-triangle ∃L → M ⊕ S ′ [m′ s′]−→ N ′ 99K. By the dual
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of Proposition 3.17, we obtain the following commutative diagram (right)
made of conflations.

C N S

A N ′ S

j // q // τ //___

c

��
n1

��

j′
//

q′
//

c∗
//___

⟳ ⟳

A A

L M ⊕ S ′ N ′

L U ⊕ S ′ S

��

[ ]
i
0 j′

��
// [m′ s′]//

p⊕id

��
q′

��

∃ℓ
//

∃k
//

⟳

⟳ ⟳ (20)

If we put m0 = n′ ◦ [m′ s′], then since n′ ◦ m′ = m0 ◦ [ 10 ], we see that
m0 ∈ W follows from [ 10 ] ∈ wCof and n′ ◦ m′ ∈ W by Corollary 5.22.
Applying Lemma 5.23 to

A M ⊕ S ′ U ⊕ S ′

A M U

//

[ ]
i
0 p⊕id // //__

m0

��

i
//

p
// //___

⟳

we obtain u ∈ C (U ⊕S ′, U) which belongs to W satisfying u ◦ (p⊕ idS′) =
p ◦m0. Then since u ◦ ℓ = 0, we see that u factors through S, in the bottom
E-triangle in (20). Thus if we apply the functor σ : U/I → Z/I, it follows
σ(u) = 0. On the other hand, it can be easily seen that u ∈ W implies

that u can be written as composition of U ⊕ S ′ u′
−→ U ⊕ I

[1 0]−→ U , with
u′ ∈ wCof and I ∈ I. By (ET4), we can show that σ(u′) is an isomorphism,
and thus σ(u) is an isomorphism. This means σ(U) = 0 in Z/I, which
shows U ∈ U ∩ CoCone(I,S) ⊆ U ∩N = S.

By the argument so far, admissible model structures and Hovey twin
cotorsion pairs on (C ,E, s) correspond bijectively. Remark that, a model
structure induces an equivalence

Ccf /∼
≃−→ C [W−1].

Here, the right hand side is the localization ℓ : C → C [W−1]. The left
hand side is the category of fibrant-cofibrant objects modulo homotopies.
Let us describe it in terms of the corresponding Hovey twin cotorsion pair
P = ((S, T ), (U ,V)).
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- X ∈ C is fibrant if and only if (X → 0) ∈ Fib, if and only if X ∈ T .
Dually, X is cofibrant if and only if X ∈ U . Thus the full subcategory
of fibrant-cofibrant objects in C agrees with Z ⊆ C .

- For any X,Y ∈ Z , morphisms f, g ∈ Z(X,Y ) satisfy f ∼ g if and
only if f − g factors through some object I ∈ I.

Thus we have Ccf /∼ = Z/I. In summary, we obtain the following. This
gives an explanation for the equivalence in [Na4, Proposition 6.10] and [IYa,
Theorem 4.1].

Corollary 5.25. Let (C ,E, s) be an extriangulated category, and let P =
((S, T ), (U ,V)) be a Hovey twin cotorsion pair. Then for W = wFib◦wCof
defined as above, we have an equivalence Z/I ≃−→ C [W−1] which makes
the following diagram commutative up to natural isomorphism.

Z C

Z/I C [W−1]

inclusion //

ideal
quotient

��
ℓ

��

≃
//

⟳

In particular, the map

(Z/I)(X,Y )→ C [W−1](X,Y ) ; f 7→ ℓ(f)

is an isomorphism for any X,Y ∈ Z .

Remark 5.26. By the generality of a model structure, we can also deduce
that

(C /I)(U, T )→ C [W−1](U, T ) ; f 7→ ℓ(f)

is an isomorphism for any U ∈ U and T ∈ T . (This also follows from the
adjoint property given in Remark 4.13.)

Remark 5.27. If C is abelian, then we can show easily that W agrees with
the class of morphisms f satisfying Ker(f) ∈ N and Cok(f) ∈ N . Remark
that N ⊆ C becomes a Serre subcategory only when N = C . Indeed,
if N ⊆ C is a Serre subcategory, then the localization ℓ : C → C [W−1]
becomes an exact functor between abelian categories. Since any C ∈ C
admits an inflation C → V to some V ∈ V , this shows that C = 0 holds in
C [W−1], which means C ∈ N .
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6. Triangulation of the homotopy category

In this section, we assume ((S, T ), (U ,V)) to be a Hovey twin cotorsion
pair. Put C̃ = C [W−1] and let ℓ : C → C̃ be the localization functor. We
will show that C̃ is triangulated (Theorem 6.20).

Remark 6.1. We note that the category C is usually not complete and co-
complete, so that the model structure is not stable. However, axiom (ET4)
gives specific choices of weak bicartesian squares which will compensate for
the lack of stability.

6.1 Shift functor

We first aim at defining a shift functor on the category C̃ .

Definition 6.2. Let us fix a choice, for any object A ∈ C , of an E-triangle
A

vA−→ VA
uA−→ UA

ρA99K, with VA ∈ V and UA ∈ U . The functor [1] : C → C̃

is defined on objects by A[1] = UA, and on morphisms as follows: Let A
f−→

B be a morphism in C . Then there exists uf ∈ C (UA, UB) which gives a
morphism of E-extensions (f, uf ) : ρA → ρB. Indeed, since E(UA, VB) = 0,
one shows, by using the long exact sequence of Proposition 3.3 that there is
a morphism VA

vf−→ VB such that vf ◦ vA = vB ◦ f . There is an induced
morphism of E-triangles as follows.

A VA UA

B VB UB

vA // uA // ρA //___

f
��

vf
��

uf
��

vB
//

uB

//
ρB

//___

⟳ ⟳

Define f [1] to be the image ℓ(uf ) of uf in C̃ . Since f∗ρA = u∗
fρB, the

morphism uf is uniquely defined in C /V by Corollary 3.5. This implies that
f [1] = ℓ(uf ) is well-defined.

Claim 6.3. The functor [1] does not essentially depend on the choices made.

More precisely, fix any other choice of E-triangles A
v′A−→ V ′

A

u′
A−→ U ′

A

ρ′A99K
and let {1} be the functor defined as above by means of these E-triangles.
Then [1] and {1} are naturally isomorphic.
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Proof. The identity on A induces two morphisms of E-extensions

(id, ∃tA) : ρA → ρ′A and (id, ∃t′A) : ρ
′
A → ρA.

Then, since both (id, t′A ◦ tA), (id, id) : ρA → ρA are morphisms of E-
extensions, we have ℓ(t′A ◦ tA) = ℓ(id) = id as in the argument in Def-
inition 6.2. Similarly we have ℓ(tA ◦ t′A) = id, and thus ℓ(tA) is an iso-
morphism. Put τA = ℓ(tA), and let us show the naturality of τ = {τA ∈
C̃ (A[1], A{1})}A∈C . Let f ∈ C (A,B) be any morphism. By definition,
f [1] = ℓ(u) and f{1} = ℓ(u′) are given by morphisms of E-extensions
(f, u) : ρA → ρB and (f ′, u′) : ρ′A → ρ′B. Then, since both (f, tB ◦ u) and
(f, u′◦tA) are morphisms ρA → ρ′B, we obtain ℓ(tB ◦u) = ℓ(u′◦tA), namely
τB ◦ f [1] = f{1} ◦ τA.

We would like to show that [1] : C → C̃ induces an endofunctor of C̃ .
For this, it is enough to show that [1] sends weak equivalences to isomor-
phisms. Since weak equivalences are compositions of a morphism in wCof
followed by a morphism in wFib, it is enough to show that [1] inverts all
morphisms in wCof and in wFib.

Lemma 6.4. Let j ∈ wCof . Then j[1] is an isomorphism in C̃ .

Proof. Let A
j−→ B be a morphism in wCof . There is an E-triangle A

j−→
B → S 99K, with S ∈ S . Then (ET4) gives morphisms (∗) of E-triangles:

(∗)
A B S

A VB C

UB UB

j // // //___

vB
�� ��

v′A

//
u′
A

// ρ′ //___

uB

��
w

��

ρB

���
�
�

���
�
�

⟳ ⟳

⟳

(∗∗)
A VB C

B VB UB

v′A //
u′
A // ρ′A ..\\\

j

��
w

��

vB
//

uB

//
ρB

00bbb

⟳ ⟳

Since S and UB belong to U , so does C. Moreover, w is a weak equivalence
by Claim 5.12 (2). Claim 6.3 allows to conclude that j[1] is an isomorphism
in C̃ , since (∗∗) is a morphism of E-triangles.
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Lemma 6.5. Let q ∈ wFib. Then q[1] is an isomorphism in C̃ .

Proof. Let X
q−→ Y be a morphism in wFib. It induces a morphism of

E-triangles:

X VX UX

Y VY UY

vX // uX // ρX //___

q
��

n
��

q[1]
��

vY
//

uY

//
ρY

//___

⟳ ⟳

Since VX → 0 and VY → 0 are acyclic fibrations, in particular they are
weak equivalences. By the 2-out-of-3 property, this implies that VX

n−→ VY

is a weak equivalence. Factor n as an acyclic cofibration j followed by an
acyclic fibration p. Then (ET4) gives a diagram (α) of E-triangles:

(α)

X VX UX

X B C

S S

vX // uX //

j

�� ��

j◦vX
// //

�� ��

⟳ ⟳

⟳

(β)

V V ′ D

X B C

Y VY UY

// // //___

�� �� ��j◦vX // // //___

q

��
p

��
q′

��vY // uY // ρY //___

���
�
�

� ��
�
�

���
�
�

⟳ ⟳

⟳ ⟳

where S ∈ S . We have B ∈ N (since VX , S ∈ N ) and C ∈ U (since
UX , S ∈ U ). The nine Lemma 5.9 gives morphisms of E-triangles as in (β),
with V, V ′ ∈ V , and thus B ∈ V . This implies D ∈ N and thus q′ is a weak
equivalence by Claim 5.12 (2). We conclude that q[1] is an isomorphism in
C̃ in the same manner as in the end of the proof of Lemma 6.4.

Corollary 6.6. The functor [1] : C → C̃ induces an endofunctor of C̃ , which
we denote by the same symbol [1]. Thus f [1] for a morphism f in C will be
denoted also by ℓ(f)[1] in the rest.

Proof. By Lemma 6.4 and Lemma 6.5, the functor [1] : C → C̃ inverts
all weak equivalences. By the universal property of the localization of a
category, it induces a functor [1] : C̃ → C̃ .
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Definition 6.7. By using E-triangles TC tC−→ SC sC−→ C
λC

99K one can de-
fine dually a functor [−1] : C → C̃ with C[−1] = TC , which induces an
endofunctor [−1] of C̃ .

6.2 Connecting morphism

Define the bifunctor Ẽ : C̃ op × C̃ → C̃ by Ẽ = C̃ (−,−[1]). In this section,
we will construct a homomorphism ℓ̃ = ℓ̃C,A : E(C,A)→ Ẽ(C,A) for each
pair A,C ∈ C . For any A ∈ C , we continue to use the E-triangle

A
vA−→ VA

uA−→ UA

ρA99K (21)

chosen to define the shift functor [1].

Lemma 6.8. Let A,C ∈ C be any pair of objects. If f1, f2 ∈ C (X,UA)
satisfy f ∗

1ρA = f ∗
2ρA, then ℓ(f1) = ℓ(f2) holds.

Proof. This immediately follows from the exactness of

C (X,VA)
uA◦−−→ C (X,UA)

(ρA)♯−→ E(X,A) shown in Proposition 3.3.

Definition 6.9. For any E-extension δ ∈ E(C,A), define ℓ̃(δ) ∈ Ẽ(C,A) by
the following. Take a span of morphisms (C

w←− D
d−→ UA) from some

D ∈ C , which satisfy

w ∈ wFib and w∗δ = d∗ρA. (22)

Then, define as ℓ̃(δ) = ℓ(d) ◦ ℓ(w)−1.

Claim 6.10. For any δ ∈ E(C,A), the morphism ℓ̃(δ) in Definition 6.9 is
well-defined. More precisely, the following holds.

(1) Take any D ∈ C , w ∈ C (D,C). If both d1, d2 ∈ C (D,UA) satisfy
w∗δ = d∗i ρA (i = 1, 2), then ℓ(d1) = ℓ(d2) holds.

(2) If both spans (C
w1←− D1

d1−→ UA) and (C
w2←− D2

d2−→ UA) satisfy
(22), then ℓ(d1) ◦ ℓ(w1)

−1 = ℓ(d2) ◦ ℓ(w2)
−1 holds.

(3) There exists at least one span (C
w←− D

d−→ UA) satisfying (22).
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Proof. (1) This immediately follows from Lemma 6.8.
(2) Let Vi

vi−→ Di
wi−→ C (i = 1, 2) be conflations. By Proposition 3.15,

we have a commutative diagram made of conflations as follows.

V2 V2

V1
∃D D2

V1 D1 C

m2

��
v2
��m1 // e1 //

e2
��

w2

��
v1

//
w1

//

⟳

⟳ ⟳

If we put w = w1 ◦ e2 = w2 ◦ e1, then we have w ∈ wFib ◦ wFib = wFib.
If we put k1 = d2 ◦ e1 and k2 = d1 ◦ e2, then they give

ℓ(k1) ◦ ℓ(w)−1 = ℓ(d2 ◦ e1) ◦ ℓ(w2 ◦ e1)−1 = ℓ(d2) ◦ ℓ(w2)
−1,

ℓ(k2) ◦ ℓ(w)−1 = ℓ(d1 ◦ e2) ◦ ℓ(w1 ◦ e2)−1 = ℓ(d1) ◦ ℓ(w1)
−1.

Since both k1, k2 satisfy k∗
1δ = e∗1d

∗
2δ = e∗1w

∗
2δ = w∗δ, k∗

2δ = e∗2d
∗
1δ =

e∗2w
∗
1δ = w∗δ, we obtain ℓ(k1) = ℓ(k2) by (1). Thus it follows that ℓ(d2) ◦

ℓ(w2)
−1 = ℓ(d1) ◦ ℓ(w1)

−1.

(3) Realize δ by an E-triangle A
x−→ B

y−→ C
δ99K. Then Proposi-

tion 3.15 gives a commutative diagram made of E-triangles

A B C

VA
∃D C

UA UA

x // y // δ //___

vA
�� ��

//
w

//
(vA)∗δ

//___

uA

��
e

��

ρA

���
�
�

x∗ρA

���
�
�

⟳ ⟳

⟳

satisfying w∗δ + e∗ρA = 0. Thus the span (C
w←− D

−e−→ UA) satisfies
(22).

Proposition 6.11. For any A,C ∈ C , the map ℓ̃ : E(C,A)→ Ẽ(C,A) is an
additive homomorphism.
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Proof. Let δ1, δ2 ∈ E(C,A) be any pair of elements. By (3) of Claim 6.10,
we can find spans (C

w1←− D1
d1−→ UA), (C

w2←− D2
d2−→ UA) which give

ℓ̃(δ1), ℓ̃(δ2). As in the proof of (2) in Claim 6.10, replacing (wi, Di) by a
common (w,D), we may assume D1 = D2 = D and w1 = w2 = w from
the start. Then by w∗δ1 = d∗1ρA and w∗δ2 = d∗2ρA, we have w∗(δ1 + δ2) =

(d1 + d2)
∗ρA. Thus the span (C

w←− D
d1+d2−→ UA) satisfies (22) for δ1 + δ2.

This shows ℓ̃(δ1 + δ2) = ℓ(d1 + d2) ◦ ℓ(w)−1 = ℓ(d1) ◦ ℓ(w)−1 + ℓ(d2) ◦
ℓ(w)−1 = ℓ̃(δ1) + ℓ̃(δ2).

Lemma 6.12. For any U ∈ U and T ∈ T , the map ℓ̃ : E(U, T ) → Ẽ(U, T )
is monomorphic.

Proof. Let δ ∈ E(U, T ) be any E-extension. Realize it by an E-triangle

T
x−→ A

y−→ U
δ99K. Let T vT−→ VT

uT−→ UT

ρT99K be the chosen E-triangle,
as before. By Proposition 3.15, we obtain a diagram made of E-triangles

T A U

VT M U

UT UT

x // y // δ //___

vT
��

m

��
m′

//
e′

//
(vT )∗δ

//___

uT

��
e

��

ρT

���
�
�

x∗(ρT )

���
�
�

⟳ ⟳

⟳

satisfying e∗(ρT ) + e′∗δ = 0. As the proof of (3) of Claim 6.10 suggests, we
have ℓ̃(δ) = −ℓ(e) ◦ ℓ(e′)−1. By E(U, VT ) = 0, we have (vT )∗δ = 0. Thus,
replacing M by an isomorphic object, we may assume

M = VT ⊕ U, m′ = ιVT
: VT →M, e′ = pU : M → U,

where

VT VT ⊕ U U
ιVT //
pVT
oo

oo ιU
//

pU

is a biproduct. Put q = −e◦ιU : U → UT . Then we have e = uT ◦pVT
−q◦e′.

Since ℓ(pVT
) = 0, this gives ℓ(e) = −ℓ(q) ◦ ℓ(e′), namely

ℓ̃(δ) = ℓ(q). (23)
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On the other hand, since the morphism e′∗ is a monomorphism, the equality

e′∗δ = −e∗(ρT ) = −p∗VT
u∗
T (ρT ) + e′∗q∗(ρT ) = e′∗q∗(ρT )

implies
δ = q∗(ρT ). (24)

By (23) and (24), it suffices to show ℓ(q) = 0 ⇒ q∗(ρT ) = 0. Assume
ℓ(q) = 0. Take E-triangles UT

z−→ Z → S 99K (Z ∈ Z, S ∈ S),
T ′ → I

i−→ Z 99K (I ∈ I, T ′ ∈ T ). Then by ℓ(z ◦ q) = ℓ(z) ◦ 0 = 0, the
morphism z ◦ q ∈ C (U,Z) factors through i by Remark 5.26. Namely, there
exists k ∈ C (U, I) such that z ◦ q = i ◦ k. By (ET4)op, we obtain a diagram
(a) made of conflations in which, N belongs to N by Lemma 4.18 (2). By
the dual of Lemma 3.13, we obtain j ∈ C (U,N) which makes diagram (b)
commutative. By N ∈ N = Cone(V ,S) and E(U,V) = 0, this j factors
through some S0 ∈ S , as in (c).

(a)

T ′ ∃N UT

T ′ I Z

S S

//
∃p //

∃n
��

z

��
//

i
//

�� ��

⟳ ⟳

⟳

(b)

U

N UT

I Z

p
//

n

��
z

��

i
//

j ��?
??

??
q

##

k

��
⟳

⟳

⟳ (c)
U

S0

N UT����
��
��
� j

��?
??

??

∃r

55jjjjjj
p

//

q

""⟳ ⟳

By E(S0, T ) = 0, the morphism p ◦ r factors through uT . This implies
q∗(ρT ) = 0 by Lemma 3.2.

Lemma 6.13. Let (A, δ, C), (A′, δ′, C ′) be E-extensions, and let (a, c) : δ →
δ′ be a morphism of E-triangles. Then (ℓ(a), ℓ(c)) : ℓ̃(δ) → ℓ̃(δ′) is a mor-
phism of Ẽ-extensions. Namely,

C UA= A[1]

C ′ UA′= A′[1]

ℓ̃(δ) //

ℓ(c)
��

ℓ(a)[1]
��

ℓ̃(δ′)

/ /

⟳

is commutative in C̃ .
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Proof. Take spans (C w←− D
d−→ UA) and (C ′ w′

←− D′ d′−→ UA′) satisfying
w,w′ ∈ wFib, w∗δ = d∗ρA, w

′∗δ′ = d′∗ρA′ . By definition, we have ℓ̃(δ) =

ℓ(d) ◦ ℓ(w)−1, ℓ̃(δ′) = ℓ(d′) ◦ ℓ(w′)−1. Remark that ℓ(a)[1] = ℓ(u) is given
by a morphism of E-triangles (α) below.

(α)

A VA UA

A′ VA′ UA′

vA // uA // ρA //___

a
��

v
��

u
��

vA′
//

uA′
//

ρA′
//__

⟳ ⟳ (β)

V ′ ∃D′′ C

V ′ D′ C ′

//
∃w′′

// c∗ν′ //___

∃f
��

c
��

//
w′

//
ν′

//___

⟳ ⟳

Since w′ ∈ wFib, there exists an E-triangle V ′ → D′ w′
−→ C ′ ν′99K with

V ′ ∈ V . By realizing c∗ν ′, we obtain a morphism (β) of E-triangles. Then

both spans (C w←− D
u◦d−→ UA′) and (C

w′′
←− D′′ d′◦f−→ UA′) satisfy

w∗(c∗δ′) = w∗a∗δ = a∗w
∗δ

= a∗d
∗ρA = d∗u∗ρA′ = (u ◦ d)∗ρA′ ,

w′′∗(c∗δ′) = f ∗w′∗δ′ = f ∗d′∗ρA′ = (d′ ◦ f)∗ρA′ .

Thus by Claim 6.10 (2), we obtain

ℓ(u ◦ d) ◦ ℓ(w)−1 = ℓ(d′ ◦ f) ◦ ℓ(w′′)−1

= ℓ(d′) ◦ (ℓ(f) ◦ ℓ(w′′)−1) = ℓ(d′) ◦ (ℓ(w′)−1 ◦ ℓ(c)),

which means ℓ(u) ◦ ℓ̃(δ) = ℓ̃(δ′) ◦ ℓ(c).

Proposition 6.14. The functor [1] : C̃ → C̃ is an auto-equivalence, with
quasi-inverse [−1].
Proof. By the definitions of [−1] and [1], for each C ∈ C , there are E-

triangles C[−1]→ SC → C
λC

99K and C[−1]→ VC[−1] → (C[−1])[1]
ρC[−1]99K ,

where SC ∈ S , VC[−1] ∈ V . Then by Proposition 3.15, we have a commuta-
tive diagram (∗) made of conflations

(∗)

C[−1] SC C

VC[−1] ∃D C

(C[−1])[1] (C[−1])[1]

// //

�� ��
// w //

��
e
��

⟳ ⟳

⟳

(∗∗)
C (C[−1])[1]

C ′ (C ′[−1])[1]

ℓ̃(λC)//

ℓ(f)

��
ℓ(g)[1]=(ℓ(f)[−1])[1]
��

ℓ̃(λC′
)

//

⟳
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which gives ℓ̃(λC) = −ℓ(e) ◦ ℓ(w)−1 as in the proof of (3) in Claim 6.10.
Since e ∈W, it follows that ℓ̃(λC) is an isomorphism in C̃ . Let us show the
naturality of {ℓ̃(λC) : C → (C[−1])[1]}C∈C̃ . For this purpose, it suffices to
show the naturality with respect to the morphisms in C . For any morphism
f ∈ C (C,C ′), the morphism ℓ(f)[−1] = ℓ(g) ∈ C̃ (C[−1], C ′[−1]) is given
by a morphism of E-extensions (g, f) : λC → λC′ , dually to Definition 6.2.
Thus by Lemma 6.13, the diagram (∗∗) becomes commutative. This shows
[1] ◦ [−1] ∼= Id. The isomorphism [−1] ◦ [1] ∼= Id can be shown dually.

6.3 Triangulation

Definition 6.15. For an E-triangle A
x−→ B

y−→ C
δ99K, its associated

standard triangle in C̃ is defined to be A
ℓ(x)−→ B

ℓ(y)−→ C
ℓ̃(δ)−→ A[1]. A distin-

guished triangle in C̃ is a triangle isomorphic to some standard triangle.

Proposition 6.16. Any morphism of E-triangles (left, below) gives the fol-
lowing morphism between standard triangles (right, below):

A B C

A′ B′ C ′

x // y // δ //___

a
��

b
��

c
��

x′
//

y′
//

δ′
//___

⟳ ⟳

A B C A[1]

A′ B′ C ′ A′[1]

ℓ(x) // ℓ(y) // ℓ(δ) //

ℓ(a)
��

ℓ(b)
��

ℓ(c)
��

ℓ(a)[1]
��

ℓ(x′)
//

ℓ(y′)
//

ℓ(δ′)
//

⟳ ⟳ ⟳

Proof. This immediately follows from Lemma 6.13.

This gives a cofibrant replacement of a standard triangle, as follows.

Corollary 6.17. Assume (C ,E, s) satisfies Condition (WIC) as before. Any
standard triangle is isomorphic to a standard triangle associated to an E-
triangle U → U ′ → U ′′ 99K whose terms satisfy U,U ′, U ′′ ∈ U .

Proof. Let A x−→ B
y−→ C

δ99K be any E-triangle. Resolve A by an

E-triangle V
v−→ U

a−→ A
λ99K satisfying U ∈ U and V ∈ V . By

Proposition 5.15, we have x ◦ a ∈ wFib ◦ Cof . Namely, there are E-

triangles U
x′
−→ B′ y′−→ U0

δ′99K and V0
v′−→ B′ b−→ B 99K satisfying

U0 ∈ U , V0 ∈ V and x ◦ a = b ◦ x′.
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Since U is extension-closed, it follows that B′ ∈ U . Moreover, by
Lemma 5.9 and Lemma 4.18 (1), we obtain a morphism (α) of E-triangles

(α)

U B′ U0

A B C

x′
// y′ // δ′ //___

a
��

b
��

c
��

x
//

y
//

δ
//___

⟳ ⟳ (β)

U B′ U0 U [1]

A B C A[1]

ℓ(x′) // ℓ(y′) // ℓ̃(δ′) //

ℓ(a) ∼=
��

ℓ(b)∼=
��

ℓ(c)∼=
��

ℓ(a)[1]∼= ��

ℓ(x)
//

ℓ(y)
//

ℓ̃(δ)

//

⟳ ⟳ ⟳

which admits an E-triangle N → U0
c−→ C 99K with some N ∈ N . By

Claim 5.12, it follows that c ∈ W. By Proposition 6.16, we obtain an iso-
morphism (β) of standard triangles in C̃ .

Remark 6.18. Similarly, for any E-triangle A
x−→ B

y−→ C
δ99K, we can

construct a morphism of E-triangles

A B C

TA TB TC

x // y // δ //___

a
��

b
��

c
��

// // //___

⟳ ⟳

which satisfies TA, TB, TC ∈ T and a, b, c ∈W.

Lemma 6.19. Let A x−→ B
y−→ C

δ99K be any E-triangle. From the E-
triangle A

vA−→ VA
uA−→ UA

ρA99K, we obtain an E-triangle

A

[
x
vA

]
−→ B ⊕ VA → X

θ99K (25)

by Corollary 3.16. Then the standard triangles associated to the E-triangles
(x, y, δ), and (25) are isomorphic. Moreover we have VA ∈ I if A ∈ U .

Proof. By the dual of Proposition 3.17, we obtain a commutative diagram
made of E-triangles, as follows.

VA VA

A B ⊕ VA X

A B C

�� ��
//

[ ]
x

vA // θ //____

[1 0]
��

∃e
��

x
//

y
//

δ
//____

0

���
�
�

0

���
�
�

⟳

⟳ ⟳
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Remark that ℓ([1 0]) : B → B ⊕ VA and ℓ(e) : C → Z are isomorphisms in
C̃ . Thus Lemma 6.19 follows from Proposition 6.16.

Theorem 6.20. The shift functor in Definition 6.2 and the class of distin-
guished triangles in Definition 6.15 give a triangulation of C̃ .

Proof. (TR1) By definition, the class of distinguished triangles is closed un-
der isomorphisms. From the E-triangle A

idA−→ A → 0 99K, we obtain a
distinguished triangle A

idA−→ A→ 0→ A[1].
Let α ∈ C̃ (A,B) be any morphism, and let us show the existence of

a distinguished triangle of the form A
α−→ B → C → A[1]. Up to iso-

morphism in C̃ , we may assume A ∈ U , B ∈ T from the start. As in
Remark 5.26, then there is a morphism f ∈ C (A,B) satisfying ℓ(f) = α.

By Corollary 3.16, we have an E-triangle A→ B⊕VA
g→ C

δ99K, where
the first morphism is

[
f
vA

]
, which gives a standard triangle compatible with

ℓ(f) as follows.

A B ⊕ VA C A[1]

B

//

[ ]
ℓ(f)

ℓ(vA) ℓ(g) // ℓ̃(δ) //

ℓ(f) %%KK
KKK

KKK
KK

∼=
��

⟳

(TR2) It suffices to show this axiom for standard triangles. Let A x−→
B

y−→ C
δ99K be an E-triangle, and let A

ℓ(x)−→ B
ℓ(y)−→ C

ℓ̃(δ)−→ A[1] be its as-

sociated standard triangle. Let us show that B
ℓ(y)−→ C

ℓ̃(δ)−→ A[1]
−ℓ(x)[1]−→ B[1]

is distinguished. By Proposition 3.15, we obtain a commutative diagram
made of E-triangles

A B C

VA
∃D C

UA UA

x // y // δ //___

vA
��

m
��

//
w

//
(vA)∗δ

//___

uA
��

e
��

ρA

���
�
�

x∗ρA

���
�
�

⟳ ⟳

⟳
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satisfying w∗δ + e∗ρA = 0. In particular, we obtain a distinguished triangle

B
ℓ(m)−→ D

ℓ(e)−→ A[1]
ℓ̃(x∗ρA)−→ B[1]. Remark that we have the following equality

ℓ̃(δ) = −ℓ(e) ◦ ℓ(w)−1, as the proof of (3) of Claim 6.10 suggests. Thus it
remains to show the commutativity in C̃ of the right-most square of (a).

(a)
B D A[1] B[1]

B C A[1] B[1]

ℓ(m) // ℓ(e) // ℓ̃(x∗ρA)//

ℓ(w)∼=
��

−1∼= ��

ℓ(y)
//

ℓ̃(δ)

//
−ℓ(x)[1]

//

⟳ ⟳ ⟳ (b)
A VA UA

B VB UB

vA // uA // ρA //___

x
��

v
��

u
��

vB
//

uB

//
ρB

//___

⟳ ⟳

Let (b) be a morphism of E-triangles, which gives ℓ(x)[1] = ℓ(u). Then,
since the span (UA

id←− UA
u−→ UB) satisfies id∗(x∗ρA) = x∗ρA = u∗ρB, it

follows that ℓ̃(x∗ρA) = ℓ(u) = ℓ(x)[1].
(TR3) Up to isomorphism of triangles, it suffices to show this axiom for

standard triangles. Let A x−→ B
y−→ C

δ99K, A′ x′
−→ B′ y′−→ C ′ δ′99K be

E-triangles, and suppose we are given a commutative diagram (∗)

(∗)
A B

A′ B′

ℓ(x) //

α
��

β
��

ℓ(x′)
//

⟳ (∗∗)
A B ⊕ VA

A′ B′

x0 //

a
��

[b j]
� �

x′
//

⟳

in C̃ . By Corollary 6.17 and Remark 6.18, we may assume A,B,C ∈ U and
A′, B′, C ′ ∈ T from the start. In that case, α and β can be written as α =
ℓ(a), β = ℓ(b) for some a ∈ C (A,A′) and b ∈ C (B,B′) by Remark 5.26.
Moreover, the commutativity of (∗) means that b ◦ x− x′ ◦ a factors through
some I ∈ I. By exactness of C (VA, I)

−◦vA−→ C (A, I) → E(UA, I) = 0, this
shows that there exists j ∈ C (VA, B

′) which makes (∗∗) commutative in C ,
where x0 = [ x

vA ]. By Lemma 6.19, replacing A
x−→ B by A

x0−→ B ⊕ VA,
we may assume b ◦ x = x′ ◦ a in C from the start. Now (TR3) follows from
(ET3) and Proposition 6.16.

(TR4) Let A α−→ B → D → A[1], B
β−→ C → F → B[1] and

A
γ−→ C → E → A[1] be any distinguished triangles in C̃ satisfying

β ◦ α = γ. In a similar way as in the proof of (TR3), we may assume that

they are standard triangles associated to E-triangles A
f→ B

f ′
→ D

δf99K,
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B
g−→ C

g′−→ F
δg99K, A h−→ C

h′
−→ E

δh99K, satisfying g ◦ f = h. By
Lemma 3.14, we obtain a commutative diagram (α) made of E-triangles:

(α)

A B D

A C E

F F

f // f ′
//

δf //___

g

��
∃d

��

h
//

h′
// δh //___

g′

��
∃e

��

δg
���
�

f ′
∗δg���

�

⟳ ⟳

⟳

(β)

A B D A[1]

A C E A[1]

F F B[1]

B[1] D[1]

ℓ(f) // ℓ(f ′) //
ℓ̃(δf )//

ℓ(g)

��
ℓ(d)

��

ℓ(h)
// ℓ(h′) // ℓ̃(δh)//

ℓ(g′)

��
ℓ(e)

��
ℓ(f)[1]

��

ℓ̃(δg)

//

ℓ̃(δg)
��

ℓ̃(f ′
∗δg)

��

ℓ(x′)[1]
//

⟳ ⟳ ⟳

⟳ ⟳

⟳

Thus by Proposition 6.16, we obtain a diagram (β) made of distinguished
triangles, as desired.

The following argument ensures the dual arguments concerning distin-
guished triangles, in the following sections. Recall that the endofunctor [−1]
of C̃ induced from the chosen E-triangle TC tC−→ SC sC−→ C

λC

99K with
SC ∈ S , TC ∈ T , TC = C[−1], for each C, gives a quasi-inverse of [1] by
Proposition 6.14. Its proof shows that the isomorphisms ℓ̃(λC) : C → TC [1]

give a natural isomorphism Id
∼=

=⇒ [1] ◦ [−1].
The dual construction of Definition 6.9 goes as follows.

Definition 6.21. For any E-triangle A
x−→ B

y−→ C
δ99K, take a cospan of

morphisms
(TC m−→ E

n←− A) (26)

to some T ∈ C satisfying

n ∈ wCof and n∗δ = m∗λ
C . (27)

Then, ℓ†(δ) = ℓ(n)−1 ◦ ℓ(m) ∈ C̃ (C[−1], A) is well-defined.

With this definition, we can give a triangulation of C̃ by requiring the

diagram TC ℓ†(δ)−→ A
ℓ(x)−→ B

ℓ(y)−→ C to be a left triangle. The following
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proposition (and its dual) shows that the resulting triangulation is the same
as that defined in Definition 6.15.

Proposition 6.22. For any E-triangle A
x−→ B

y−→ C
δ99K, the diagram

TC ℓ†(δ)−→ A
ℓ(x)−→ B

ℓ̃(λC)◦ℓ(y)−→ TC [1] becomes a distinguished triangle in C̃ ,
with respect to the triangulation given in Definition 6.15.

Proof. Take the standard triangle A
ℓ(x)−→ B

ℓ(y)−→ C
ℓ̃(δ)−→ A[1]. Since C̃ is

triangulated, by the converse of (TR2), it suffices to show the commutativity
of the following diagram.

A B TC [1] A[1]

C

ℓ(x) // ℓ̃(λC)◦ℓ(y)// −ℓ†(δ)[1] //

ℓ(y)
##H

HH
HH

HH
HH

HH
H

∼= ℓ̃(λC)

OO

ℓ̃(δ)

;;vvvvvvvvvvv

⟳ ⟳

As ℓ†(δ) does not depend on the choice of a cospan (26), we may take it in
the following way: By Proposition 3.15, we obtain a commutative diagram
made of E-triangles (a) below

(a)
TC TC

A ∃E SC

A B C

k
��

tC

��
n // // (sC)∗δ //___

��
sC

��
x

//
y

//
δ

//___

y∗λC

���
�
�

λC

���
�
�

⟳

⟳ ⟳

(b)

C C C

TC [1] E[1] A[1]

ℓ̃(λC)
��

ℓ̃(θ)
��

ℓ̃(δ)
��

−ℓ(k)[1]
//

ℓ(n)[1]
oo

⟳ ⟳

satisfying n∗δ + k∗λ
C = 0. Then the cospan (TC −k−→ E

n←− A) satisfies
the desired property (27), and thus gives ℓ†(δ) = −ℓ(n)−1 ◦ ℓ(k). If we put
θ = n∗δ = −k∗λC , then (n, idC) : δ → θ and (−k, idC) : λ

C → θ are mor-
phisms of E-extensions. Thus (b) becomes commutative by Lemma 6.13.
This shows (ℓ†(δ)[1]) ◦ ℓ̃(λC) = (−ℓ(n)−1[1] ◦ ℓ(k)[1]) ◦ ℓ̃(λC) = ℓ̃(δ).
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7. Reduction and mutation via localization

7.1 Happel and Iyama-Yoshino’s construction

Definition 7.1. An extriangulated category (C ,E, s) is said to be Frobenius
if it satisfies the following conditions.

(1) (C ,E, s) has enough injectives and enough projectives.

(2) Proj(C ) = Inj(C ).

Example 7.2. (1) If (C ,E, s) is an exact category, then this agrees with
the usual definition ([Ha, section I.2]).

(2) Suppose that T is a triangulated category and (Z,Z) is an I-mutation
pair in the sense of [IYo, Definition 2.5]. Then Z becomes a Frobe-
nius extriangulated category, with the extriangulated structure given in
Remark 2.18.

Remark 7.3. Let (C ,E, s) be an extriangulated category, as before. By
Remark 4.7, ((I,C ), (C , I)) is a twin cotorsion pair for some subcategory
I ⊆ C if and only if (C ,E, s) is Frobenius. Moreover, in that case I =
Proj(C ) = Inj(C ).

The following can be regarded as a generalization of the constructions
by Happel [Ha] and Iyama-Yoshino [IYo]. See also [Li] for the triangulated
case.

Corollary 7.4. Let (F ,E, s) be a Frobenius extriangulated category satis-
fying Condition (WIC), with I = Inj(F ). Then its stable category, namely
the ideal quotient F/I, becomes triangulated.

Proof. Since ((I,F ), (F , I)) becomes a Hovey twin cotorsion pair with
Cone(I, I) = CoCone(I, I) = I, this follows from Corollary 5.25 and
Theorem 6.20.

Remark 7.5. A direct proof for Corollary 7.4 is not difficult either, by imi-
tating the proofs by [Ha] or [IYo], even without assuming Condition (WIC).

Corollary 7.6. Let C be a category. Then (C ,E, s) is triangulated, as in
Proposition 3.22 if and only if (C ,E, s) is a Frobenius extriangulated cate-
gory and Proj(C ) = Inj(C ) = 0.

Proof. This follows from Corollary 7.4.
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7.2 Mutable cotorsion pairs

Lemma 7.7.

(1) For any weak equivalence f ∈ C (U,U ′) between U,U ′ ∈ U , there
exist I ∈ I and i ∈ C (U, I), with which

[
f
i

]
: U → U ′ ⊕ I becomes

an acyclic cofibration.

(2) Dually, for any weak equivalence g ∈ C (T, T ′) between T, T ′ ∈ T ,
there exist J ∈ I and j ∈ C (J, T ′), with which [g j] : T ⊕ J → T ′

becomes an acyclic fibration.

Proof. We only show (1). Since f ∈ W = wFib ◦ wCof , there are E-
triangles

U
m−→ E → S 99K, (28)

V → E
e−→ U ′ δ99K (29)

satisfying S ∈ S, V ∈ V and e ◦m = f . By E(U ′, V ) = 0, we have δ = 0.
Thus we may assume E = U ′ ⊕ V and e = [1 0] in (29), from the start.

By the extension-closedness of U ⊆ C , the E-triangle (28) gives U ′ ⊕
V = E ∈ U , which implies V ∈ I. Moreover by e ◦ m = f , the acyclic
cofibration m : U → U ′ ⊕ V should be of the form m =

[
f
i

]
, with some

i ∈ C (U, V ).

The following is an immediate consequence of the existence of the model
structure.

Remark 7.8. For any morphism f ∈ C (A,B) in C , we have f ∈ W if and
only if ℓ(f) is an isomorphism in C̃ .

For any extriangulated category (C ,E, s), let CP(C ) denote the class of
cotorsion pairs on C . Since C̃ is triangulated as shown in Theorem 6.20, we
may use the usual notation Ext1

C̃
for Ẽ.

Definition 7.9. Let P = ((S, T ), (U ,V)) be a Hovey twin cotorsion pair on
C and let ℓ : C → C̃ be the associated localization functor as before. Define
the class of mutable cotorsion pairs on C with respect to P by

MP =

{
(A,B) ∈ CP(C )

∣∣∣∣ S ⊆ A ⊆ UV ⊆ B ⊆ T , Ext1
C̃
(ℓ(A), ℓ(B)) = 0

}
.

- 185 -



H. NAKAOKA AND Y. PALU EXTRIANGULATED CATEGORIES

Here, ℓ(A), ℓ(B) ⊆ C̃ denote the essential images of A,B under ℓ. Re-
mark that S ⊆ A is equivalent to B ⊆ T , andA ⊆ U is equivalent to V ⊆ B,
for any (A,B) ∈ CP(C ).

Theorem 7.10. For any Hovey twin cotorsion pair P = ((S, T ), (U ,V)) on
C , we have mutually inverse bijective correspondences

R = RP : MP → CP(C̃ ), I = IP : CP(C̃ )→MP

given by

R((A,B)) = (ℓ(A), ℓ(B)), I((L,R)) = (U ∩ ℓ−1(L), T ∩ ℓ−1(R)).

Proof. It suffices to show the following. (1) For any mutable (A,B) ∈MP ,
we have R((A,B)) ∈ CP(C̃ ). (2) For any (L,R) ∈ CP(C̃ ), we have
I((L,R)) ∈MP . (3) I ◦ R = id. (4) R ◦ I = id.

To distinguish, in this proof, let ℓ(X) ∈ C̃ denote the image under ℓ of
an object X ∈ C .

(1) Since ℓ(A) is the essential image of A under ℓ, it is closed under
isomorphisms and finite direct sums. The equality C = Cone(B,A) implies
C̃ = ℓ(A) ∗ ℓ(B)[1], by Definition 6.15. Moreover Ext1

C̃
(ℓ(A), ℓ(B)) = 0

follows from the definition of MP .
It remains to show that ℓ(A), ℓ(B) ⊆ C̃ are closed under direct sum-

mands. To show that ℓ(A) ⊆ C̃ is closed under direct summands, it suf-
fices to show ℓ(A) = ⊥ℓ(B)[1]. Take any X ∈ C , and suppose it satisfies
Ext1

C̃
(ℓ(X), ℓ(B)) = 0.

Let us show ℓ(X) ∈ ℓ(A). By a cofibrant replacement, we may assume

X belongs to U . Resolve X by an E-triangle in C : B → A → X
δ99K,

with A ∈ A, B ∈ B. Since ℓ(δ) = 0 by assumption, we obtain δ = 0 by
Lemma 6.12. Thus X is a direct summand of A, which implies that X itself
belongs to A. Similarly for ℓ(B) ⊆ C̃ .

(2) Put A = U ∩ ℓ−1(L), B = T ∩ ℓ−1(R). Since both U and ℓ−1(L)
are closed under isomorphisms, finite direct sums and direct summands, so
is their intersection A. Similarly for B. By ℓ(S) ⊆ ℓ(N ) = 0, we have
S ⊆ A ⊆ U . By Lemma 6.12, Ext1

C̃
(ℓ(A), ℓ(B)) = 0 implies E(A,B) = 0.

It remains to show that C = Cone(B,A) = CoCone(B,A). Let us show
that C = Cone(B,A).
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Let X ∈ C be any object. By assumption, there exist R ∈ ℓ−1(R), L ∈
ℓ−1(L) and a distinguished triangle ℓ(R) → ℓ(L) → ℓ(X) → ℓ(R)[1] in
C̃ . By definition, it is isomorphic to the standard triangle associated to an
E-triangle, which we may assume to be of the form

R0
x−→ L0

y−→ Z
δ99K (30)

satisfying R0, L0, Z ∈ Z , by a fibrant-cofibrant replacement (Corollary 6.17
and Remark 6.18). Thus we have an E-triangle (30) satisfying R0 ∈ Z ∩
ℓ−1(R), L0 ∈ Z ∩ ℓ−1(L) and Z ∈ Z , together with an isomorphism
ζ : ℓ(Z)

∼=−→ ℓ(X) in C̃ . Resolve X by an E-triangle X
tX→ TX

sX→ SX

ρX99K,
with TX ∈ T , SX ∈ S . Then there exists a morphism z ∈ C (Z, TX) which
satisfies ζ = ℓ(tX)

−1 ◦ ℓ(z). Since ζ is an isomorphism, it follows that z ∈
W. By Lemma 7.7 (2), there exists an E-triangle V → Z ⊕ I

[z i]−→ TX 99K,
with V ∈ V , I ∈ I. On the other hand by (ET2), we have an E-triangle
R0

x0−→ L0 ⊕ I
y0−→ Z ⊕ I 99K from (30), where x0 =

[
x
0

]
, y0 = y ⊕ idI .

Thus by (ET4)op, we obtain a diagram (∗)

(∗)

R0
∃E V

R0 L0 ⊕ I Z ⊕ I

TX TX

∃r // //

∃e
�� ��

x0

//
y0
//

d

��
[z i]

��

⟳ ⟳

⟳

(∗∗)

E ∃F X

E L0 ⊕ I TX

SX SX

// //

∃f

��
tX

��

e
//

d
//

��
sX

��

⟳ ⟳

⟳

made of conflations, where d = [z i] ◦ y0 = [z ◦ y i]. Since ℓ(r) is an
isomorphism in C̃ , we have E ∈ ℓ−1(R). Besides, R0, V ∈ T implies
E ∈ T . By (ET4)op, we obtain a diagram (∗∗) made of conflations. Since
ℓ(f) is an isomorphism in C̃ , this shows F ∈ ℓ−1(L). Resolve F by an
E-triangle V F → UF → F 99K, with UF ∈ U , V F ∈ V . By (ET4)op, we
obtain a diagram (A), below, made of conflations. Then in the E-triangle
G → UF → X 99K, we have the equalities UF ∈ U ∩ ℓ−1(L) = A and
G ∈ T ∩ ℓ−1(R) = B.
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(A)

V F ∃G E

V F UF F

X X

// //

�� ��
// //

�� ��

⟳ ⟳

⟳

(3) For any (A,B) ∈MP , we have

I ◦ R((A,B)) = (U ∩ ℓ−1(ℓ(A)), T ∩ ℓ−1(ℓ(B))).

Obviously, A ⊆ U ∩ ℓ−1(ℓ(A)) and B ⊆ T ∩ ℓ−1(ℓ(B)) hold. Since
both (A,B) and I ◦ R((A,B)) are cotorsion pairs, this means (A,B) =
I ◦ R((A,B)).

(4) For any (L,R) ∈ CP(C̃ ), we have

R ◦ I((L,R)) = (ℓ(U ∩ ℓ−1(L)), ℓ(T ∩ ℓ−1(R))),

which obviously satisfies ℓ(U ∩ ℓ−1(L)) ⊆ L and ℓ(T ∩ ℓ−1(R)) ⊆ R.
Similarly as in (3), it follows that (L,R) = R ◦ I((L,R)).

Claim 7.11. For any (A,B) ∈ CP(C ) satisfying S ⊆ A ⊆ U (or equiva-
lently V ⊆ B ⊆ T ), we have

U ∩ ℓ−1ℓ(A) = U ∩ CoCone(A,S),
T ∩ ℓ−1ℓ(B) = T ∩ Cone(V ,B).

Proof. We only show U ∩ ℓ−1ℓ(A) = U ∩ CoCone(A,S).
U ∩CoCone(A,S) ⊆ U ∩ ℓ−1ℓ(A) is obvious. For the converse, let U ∈

U be any object satisfying ℓ(U) ∼= ℓ(A) in C̃ for some A ∈ A. Resolve U
by an E-triangle U → Z → S 99K, with Z ∈ Z , S ∈ S . Then ℓ(A) ∼= ℓ(Z)

holds in C̃ . Since A ∈ U , Z ∈ T , there is a morphism f ∈ C (A,Z) which
gives the isomorphism ℓ(f) : ℓ(A) → ℓ(Z) by Remark 5.26. Factorize this
f ∈ W as f = h ◦ g, with g ∈ wCof , h ∈ wFib. By definition, we have
E-triangles V0 → E

h−→ Z 99K and A
g−→ E → S0 99K, where V0 ∈ V ,

S0 ∈ S . Since E(Z, V0) = 0, it follows that V0⊕Z ∼= E ∈ A, which implies
Z ∈ A.
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The class MP can be rewritten as follows.

Corollary 7.12. Let P be a Hovey twin cotorsion pair on C . For any
(A,B) ∈ CP(C ) satisfying S ⊆ A ⊆ U (or equivalently V ⊆ B ⊆ T ),
the following are equivalent.

(1) (A,B) ∈MP i.e., it satisfies Ext1
C̃
(ℓ(A), ℓ(B)) = 0.

(2) U ∩ ℓ−1ℓ(A) = A. (2′) U ∩ ℓ−1ℓ(A) ⊆ A.

(3) T ∩ ℓ−1ℓ(B) = B. (3′) T ∩ ℓ−1ℓ(B) ⊆ B.

Thus by Claim 7.11, we have

MP = {(A,B) ∈ CP(C ) | S ⊆ A ⊆ U , U ∩ CoCone(A,S) ⊆ A}
= {(A,B) ∈ CP(C ) | V ⊆ B ⊆ T , T ∩ Cone(V ,B) ⊆ B}.

Proof. We only show (1)⇔ (2)⇔ (2)′. The implication (1)⇒ (2) follows
from Theorem 7.10 and (2)⇒ (2)′ is obvious. Suppose that (2)′ is satisfied.
Let us show Ext1

C̃
(ℓ(A), ℓ(B)) = 0 for any pair of objects A ∈ A, B ∈ B.

Resolve A by an E-triangle TA t−→ SA → A 99K, with TA ∈ T , SA ∈ S
and TA by V T → ZT z−→ TA 99K, with ZT ∈ Z , V T ∈ V . Then we have
ℓ(A)[−1] ∼= ℓ(TA) ∼= ℓ(ZT ), and thus

Ext1
C̃
(ℓ(A), ℓ(B)) ∼= C̃ (ℓ(ZT ), ℓ(B)) ∼= (C /I)(ZT , B)

by Remark 5.26. Let us show that (C /I)(ZT , B) = 0. Factorize t ◦ z as
t ◦ z = h ◦ g, where g ∈ Cof , h ∈ wFib, to obtain a diagram

V T ∃V0

ZT ∃E ∃U0

TA SA A

�� ��g // //

z

��
h
��

t
// //

⟳
(U0 ∈ U , V0 ∈ V)

made of conflations. Since E(SA, V0) = 0, we have E ∼= SA ⊕ V0. Besides,
by the extension-closedness of U ⊆ C , we have E ∈ U , which shows that
V0 ∈ V ∩ U = I. Thus it follows that E ∈ S .
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By Lemma 5.9, we obtain X ∈ C and conflations V T → V0 → X
and X → U0

u−→ A. By Lemma 4.18 (1), we have X ∈ N , and thus
u ∈ W by Claim 5.12. This shows ℓ(U0) ∼= ℓ(A), which means that U0 ∈
U ∩ ℓ−1ℓ(A) ⊆ A by assumption. Thus we obtain an exact sequence

C (E,B)
C (g,B)−→ C (ZT , B)→ E(U0, B) = 0.

This shows that any morphism f ∈ C (ZT , B) factors through E ∈ S , and
thus f = 0 holds in (C /I)(ZT , B).

The above arguments allow us to define the mutation of cotorsion pairs
as follows.

Definition 7.13. Let P = ((S, T ), (U ,V)) be a Hovey twin cotorsion pair
on C . We define mutation with respect to (S,V) as a Z-action on MP given,
for any n ∈ Z, by µn = I ◦ [n] ◦ R, i.e.,

µn : MP →MP ; (A,B) 7→
(
U ∩ ℓ−1(ℓ(A)[n]), T ∩ ℓ−1(ℓ(B)[n])

)
.
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