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We compute the Grothendieck group of certain 2-Calabi–Yau triangulated categories
appearing naturally in the study of the link between quiver representations and
Fomin–Zelevinsky cluster algebras. In this setup, we also prove a generalization of the
Fomin–Zelevinsky mutation rule.
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0. Introduction

In their study [1] of the connections between cluster algebras (see [2]) and quiver representations, P. Caldero and B. Keller
conjectured that a certain antisymmetric bilinear form is well-defined on the Grothendieck group of a cluster-tilted algebra
associated with a finite-dimensional hereditary algebra. The conjecture was proved in [3] in the more general context of
Hom-finite 2-Calabi–Yau triangulated categories. It was used in order to study the existence of a cluster character on such
a category C, by using a formula proposed by Caldero–Keller.
In the present paper, we restrict ourselves to the case where C is algebraic (i.e. is the stable category of a Frobenius

category). We first use this bilinear form to prove a generalized mutation rule for quivers of cluster-tilting subcategories
in C. When the cluster-tilting subcategories are related by a single mutation, this shows, via the method of [4], that their
quivers are related by the Fomin–Zelevinsky mutation rule. This special case was already proved in [5], without assuming
C to be algebraic.
We also compute the Grothendieck group of the triangulated category C. In particular, this allows us to improve on

results by M. Barot, D. Kussin and H. Lenzing: We compare the Grothendieck group of a cluster category CA with the group
K0(CA). The latter groupwas defined in [6] by only considering the triangles inCA which are induced by those of the derived
category. More precisely, we prove that those two groups are isomorphic for any cluster category associated with a finite-
dimensional hereditary algebra, with its triangulated structure defined by Keller in [7].
This paper is organized as follows: The first section is dedicated to notation and necessary background from [8,4,9,3]. In

Section 2, we compute the Grothendieck group of the triangulated categoryC. In Section 3, we prove a generalizedmutation
rule for quivers of cluster-tilting subcategories in C. In particular, this yields a new way to prove, under the restriction that
C is algebraic, that the quiver of the mutation of a cluster-tilting object T is given by the Fomin–Zelevinsky mutation of the
quiver of T . We finally show that K0(CA) = K0(CA) for any finite-dimensional hereditary algebra A.
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1. Notations and background

Let E be a Frobenius category whose idempotents split and which is linear over a given algebraically closed field k. By a
result of Happel [10], its stable categoryC = E is triangulated.We assumemoreover, thatC is Hom-finite, 2-Calabi–Yau and
has a cluster-tilting subcategory (see Section 1.2), and we denote byΣ its suspension functor. Note that we do not assume
that E is Hom-finite.
We writeX( , ), or HomX( , ), for the morphisms in a categoryX and HomX( , ) for the morphisms in the category of

X-modules. We also denote by Xˆ the projectiveX-module represented by X: Xˆ = X(?, X).

1.1. Fomin–Zelevinsky mutation for matrices

Let B = (bij)i,j∈I be a finite or infinitematrix, and let k be in I . The Fomin and Zelevinskymutation of B (see [8]) in direction
k is the matrix

µk(B) = (b′ij)

defined by

b′ij =

{
−bij if i = k or j = k,

bij +
|bik|bkj + bik|bkj|

2
else.

Note that µk (µk(B)) = B and that if B is skew-symmetric, then so is µk(B).
We recall two lemmas of [4], stated for infinite matrices, which will be useful in Section 3. Note that Lemma 7.2 is a

restatement of [11, (3.2)]. Let S = (sij) be the matrix defined by

sij =

{
−δij +

|bij| − bij
2

if i = k,
δij else.

Lemma 7.1 ([4, Geiss–Leclerc–Schröer]). Assume that B is skew-symmetric. Then, S2 = 1 and the (i, j)-entry of the transpose of
the matrix S is given by

stij =

{
−δij +

|bij| + bij
2

if j = k,
δij else.

The matrix S yields a convenient way to describe the mutation of B in the direction k:

Lemma 7.2 ([4, Geiss–Leclerc–Schröer], [11, Berenstein–Fomin–Zelevinsky]). Assume that B is skew-symmetric. Then we have:

µk(B) = StBS.

Note that the product is well-defined since the matrix S has a finite number of non-vanishing entries in each column.

1.2. Cluster-tilting subcategories

A cluster-tilting subcategory (see [9]) of C is a full subcategory T such that:

(a) T is a linear subcategory;
(b) for any object X in C, the contravariant functor C(?, X)|T is finitely generated;
(c) for any object X in C, we have C(X,ΣT ) = 0 for all T in T if and only if X belongs to T .

We now recall some results from [9], which we will use in what follows. Let T be a cluster-tilting subcategory of C, and
denote by M its preimage in E . In particular M contains the full subcategory P of E formed by the projective–injective
objects, and we haveM = T .
The following proposition will be used implicitly, extensively in this paper.

Proposition ([9, Keller–Reiten]).

(a) The categorymodM of finitely presentedM-modules is abelian.
(b) For each object X ∈ C, there is a triangle

Σ−1X −→ MX1 −→ MX0 −→ X

of C, with MX0 and M
X
1 inM.
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Recall that the perfect derived category perM is the full triangulated subcategory of the derived category ofD ModM
generated by the finitely generated projectiveM-modules.

Proposition ([9, Keller–Reiten]).

(a) For each X ∈ E , there are conflations

0 −→ M1 −→ M0 −→ X −→ 0 and 0 −→ X −→ M0 −→ M1 −→ 0

in E , with M0, M1, M0 and M1 inM.
(b) Let Z be inmodM. Then Z considered as anM-module lies in the perfect derived category perM.

1.3. The antisymmetric bilinear form

In Section 3, we will use the existence of the antisymmetric bilinear form 〈 , 〉a on K0(modM). We thus recall its
definition from [1].
Let 〈 , 〉 be a truncated Euler form on modM defined by

〈M,N〉 = dimHomM(M,N)− dim Ext1M(M,N)

for anyM,N ∈ modM. Define 〈 , 〉a to be the antisymmetrization of this form:

〈M,N〉a = 〈M,N〉 − 〈N,M〉.

This bilinear form descends to the Grothendieck group K0(modM):

Lemma ([3, Section 3]). The antisymmetric bilinear form

〈,〉a : K0(modM)× K0(modM) −→ Z

is well-defined.

2. Grothendieck groups of algebraic 2-CY categories with a cluster-tilting subcategory

We fix a cluster-tilting subcategory T of C, and we denote by M its preimage in E . In particular M contains the full
subcategory P of E formed by the projective–injective objects, and we haveM = T .
We denote by Hb (E) and Db (E) respectively the bounded homotopy category and the bounded derived category of

E . We also denote by Hb
E−ac (E), H

b (P ), Hb (M) and Hb
E-ac (M) the full subcategories of Hb (E) whose objects are the

E-acyclic complexes, the complexes of projective objects in E , the complexes of objects ofM and the E-acyclic complexes
of objects ofM, respectively.

2.1. A short exact sequence of triangulated categories

Lemma 1. Let A1 andA2 be thick, full triangulated subcategories of a triangulated categoryA and let B beA1 ∩ A2. Assume
that for any object X in A there is a triangle X1 −→ X −→ X2 −→ ΣX1 in A, with X1 in A1 and X2 in A2. Then the induced
functor A1/B −→ A/A2 is a triangle equivalence.

Proof. Under these assumptions, denote by F the induced triangle functor fromA1/B toA/A2. We are going to show that
the functor F is a full, conservative, dense functor. Since any full conservative triangle functor is fully faithful, F will then be
an equivalence of categories.
We first show that F is full. Let X1 and X ′1 be two objects inA1. Let f be a morphism from X1 to X ′1 inA/A2 and let

be a left fraction which represents f . The morphism w is in the multiplicative system associated withA2 and thus yields a
triangle Σ−1A2 → Y

w
−→ X ′1 → A2 where A2 lies in the subcategory A2. Moreover, by assumption, there exists a triangle
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Y1 → Y → Y2 → ΣY1with Yi inAi. Applying the octahedral axiom to the composition Y1 → Y → X ′1 yields a commutative
diagram whose two middle rows and columns are triangles inA

Since Y2 and A2 belong toA2, so does Z . And since X ′1 and Y1 belong toA1, so does Z . This implies, that Z belongs toB. The
morphism Y1 → X ′1 is in the multiplicative system ofA1 associated withB and the diagram

is a left fraction which represents f . This implies that f is the image of a morphism inA1/B. Therefore the functor F is full.
We now show that F is conservative. Let X1

f
−→ Y1 → Z1 → ΣX1 be a triangle inA1. Assume that Ff is an isomorphism

inA/A2, which implies that Z1 is an object ofA2. Therefore, Z1 is an object ofB and f is an isomorphism inA1/B.
We finally show that F is dense. Let X be an object of the categoryA/A2, and let X1 → X → X2 → ΣX1 be a triangle inA

with Xi inAi. Since X2 belongs toA2, the image of the morphism X1 → X inA/A2 is an isomorphism. Thus X is isomorphic
to the image by F of an object inA1/B. �

As a corollary, we have the following:

Lemma 2. The following sequence of triangulated categories is short exact:

0 −→ Hb
E-ac (M) −→ Hb (M) −→ Db (E) −→ 0.

Remark. This lemma remains true if C is d-Calabi–Yau andM is (d− 1)-cluster-tilting, using Section 5.4 of [9].

Proof. For any object X in Hb (E), the existence of an object M in Hb (M) and of a quasi-isomorphism w from M to X is
obtained using the approximation conflations of Keller–Reiten (see Section 1.2). Since the cone of the morphismw belongs
toHb

E−ac (E), Lemma 1 applies to the subcategoriesH
b
E-ac (M),Hb (M) andHb

E−ac (E) ofH
b (E). �

Proposition 3. The following diagram is commutative with exact rows and columns:

Proof. The column on the right side has been shown to be exact in [12] and [13]. The second row is exact by Lemma 2. The
subcategories Hb

E-ac (M) and Hb (P ) of Hb (M) are left and right orthogonal to each other. This implies that the induced
functors iM and iP are fully faithful and that taking the quotient ofHb (M) by those two subcategories either in one order
or in the other gives the same category. Therefore the first row is exact. �
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2.2. Invariance under mutation

A natural question is then to which extent the diagram (D) depends on the choice of a particular cluster-tilting
subcategory. Thus let T ′ be another cluster-tilting subcategory of C, and let M′ be its preimage in E . Let ModM (resp.
ModM′) be the category ofM-modules (resp.M′-modules), i.e. of k-linear contravariant functors fromM (resp.M′) to the
category of k-vector spaces.
Let X be theM′–M-bimodule which sends the pair of objects (M ′,M) to the k-vector space E(M ′,M). The bimodule X

induces a functor F = ?⊗M X : ModM −→ ModM′ denoted by TX in [14, Section 6.1].
Recall that the perfect derived category perM is the full triangulated subcategory of the derived category D ModM

generated by the finitely generated projectiveM-modules.

Proposition 4. The left derived functor

LF : D Mod M −→ D Mod M′

is an equivalence of categories.
Proof. Recall that if X is an object in a categoryX, we denote by Xˆ the functorX(?, X) represented by X . By [14, 6.1], it is
enough to check the following three properties:
1. For all objectsM , N ofM, the group HomD Mod M′

(
LFM ,̂ LFN [̂n]

)
vanishes for n 6= 0 and identifies with HomM (M,N)

for n = 0;
2. for any objectM ofM, the complex LFMˆbelongs to perM′;
3. the set

{
LFM ,̂ M ∈M

}
generatesD Mod M′ as a triangulated category with infinite sums.

LetM be an object ofM, and let be a conflation in E , withM ′0 andM
′

1 inM′, and whose deflation is
a rightM′-approximation (cf. Section 4 of [9]). The surjectivity of the map (M ′0)̂ −→ E(?,M)|M′ implies that the complex
P = (· · · → 0→ (M ′1)̂ → (M ′0)̂ → 0→ · · ·) is quasi-isomorphic to LFMˆ = E(?,M)|M′ . Therefore LFMˆ belongs to the
subcategory perM′ ofD Mod M′. Moreover, we have, for any n ∈ Z and any N ∈M, the equality

HomD Mod M′
(
LFM ,̂LFN [̂n]

)
= HomHbModM (P, E(?,N)|M′ [n])

where the right-hand side vanishes for n 6= 0, 1. In case n = 1 it also vanishes, since Ext1E (M,N) vanishes. Now,

HomHbModM′ (P, E(?,N)|M′) ' Ker
(
E(M ′0,N)→ E(M ′1,N)

)
' E(M,N).

It only remains to be shown that the set R =
{
LFM ,̂ M ∈M

}
generatesD Mod M′. Denote byR the full triangulated

subcategory with infinite sums of D Mod M′ generated by the set R. The set
{
(M ′)̂ , M ′ ∈M′

}
generates D Mod M′ as

a triangulated category with infinite sums. Thus it is enough to show that, for any object M ′ of M′, the complex (M ′)̂

concentrated in degree 0 belongs to the subcategory R. Let M ′ be an object of M′, and let be a
conflation of E withM0 andM1 inM. Since Ext1E (?,M

′)|M′ vanishes, we have a short exact sequence ofM′-modules

0 −→ E(?,M ′)|M′ −→ E(?,M0)|M′ −→ E(?,M1)|M′ −→ 0,

which yields the triangle

(M ′)̂ −→ LFM0ˆ −→ LFM1ˆ −→ Σ(M ′).̂ �

As a corollary of Proposition 4, up to equivalence the diagram (D) does not depend on the choice of a cluster-tilting
subcategory. To be more precise: The functor LF restricts to a functor from perM to perM′. Let G be the functor from
Hb (M) toHb

(
M′
)
induced by this restriction via the Yoneda equivalence.

Corollary 5. The following diagram is commutative
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and the functor G is an equivalence of categories.

We denote by perM M the full subcategory of perM whose objects are the complexes with homologies in modM. The
following lemma will allow us to compute the Grothendieck group of perM M in Section 2.3:

Lemma 6. The canonical t-structure onD Mod M restricts to a t-structure on perM M, whose heart ismodM.

Proof. By [15], it is enough to show that for any objectM• of perM M, its truncation τ≤0M• inD Mod M belongs to perM M.
Since M• is in perM M, τ≤0M• is bounded, and is thus formed from the complexes Hi(M•) concentrated in one degree by
taking iterated extensions. But, for any i, theM-module Hi(M•) actually is anM-module. Therefore, by [9] (see Section 1.2),
it is perfect as anM-module and it lies in perM M. �

The next lemma already appears in [16]. For the convenience of the reader, we include a proof.

Lemma 7. The Yoneda equivalence of triangulated categories Hb (M) −→ perM induces a triangle equivalence
Hb

E-ac (M) −→ perM M.

Proof. We first show that the cohomology groups of an E-acyclic bounded complex M vanish on P . Let P be a projective
object in E and let E be a kernel in E of themapMn −→ Mn+1. SinceM is E-acyclic, such an object exists, andmoreover, it is
an image of the mapMn−1 −→ Mn. Any map from P toMn whose composition withMn → Mn+1 vanishes factors through
the kernel E � Mn. Since P is projective, this factorization factors through the deflationMn−1 � E.

Therefore, we have Hn(Mˆ)(P) = 0 for all projective objects P , and Hn(Mˆ) belongs to modM. Thus the Yoneda functor
induces a fully faithful functor fromHb

E-ac (M) to perM M. To prove that it is dense, it is enough to prove that any object of
the heart modM of the t-structure on perM M is in its essential image.
But this was proved in [9, Section 4] (see Section 1.2). �

Proposition 8. There is a triangle equivalence of categories

perM′ M
′ '
−→ perM M.

Proof. Since the categoriesHb (P ) andHb
E−ac

(
M′
)
are left–right orthogonal inHb

(
M′
)
, this is immediate fromCorollary 5

and Lemma 7. �

2.3. Grothendieck groups

For a triangulated (resp. additive, resp. abelian) category A, we denote by Ktri0 (A) or simply K0(A) (resp. K
add
0 (A), resp.

Kab0 (A)) its Grothendieck group (with respect to the mentioned structure of the category). For an object A in A, we also
denote by [A] its class in the Grothendieck group ofA.
The short exact sequence of triangulated categories

0 −→ Hb
E-ac (M) −→ Hb (M) /Hb (P ) −→ E −→ 0

given by Proposition 3 induces an exact sequence in the Grothendieck groups

(∗) K0
(
Hb

E-ac (M)
)
−→ K0

(
Hb (M) /Hb (P )

)
−→ K0

(
E
)
−→ 0.

Lemma 9. The exact sequence (∗) is isomorphic to an exact sequence

(∗∗) Kab0
(
modM

) ϕ
−→ Kadd0

(
M
)
−→ Ktri0

(
E
)
−→ 0.
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Proof. First, note that, by [16], see also Lemma7,wehave an isomorphismbetween theGrothendieck groupsK0
(
Hb

E-ac (M)
)

and K0
(
perM M

)
. The t-structure on perM M whose heart is modM, see Lemma 6, in turn yields an isomorphism between

the Grothendieck groups Ktri0
(
perM M

)
and Kab0

(
modM

)
. Next, we show that the canonical additive functor M

α
−→

Hb (M) /Hb (P ) induces an isomorphism between the Grothendieck groups Kadd0
(
M
)
and Ktri0

(
Hb (M) /Hb (P )

)
. For this,

let us consider the canonical additive functorM
β
−→ Hb

(
M
)
and the triangle functorHb (M)

γ
−→ Hb

(
M
)
. The following

diagram describes the situation:

The functor γ vanishes on the full subcategory Hb (P ), thus inducing a triangle functor, still denoted by γ , from
Hb (M) /Hb (P ) toHb

(
M
)
. Furthermore, the functorβ induces an isomorphismat the level of Grothendieck groups,whose

inverse K0(β)−1 is given by

Ktri0
(
Hb (M))

−→ Kadd0
(
M
)

[M] 7−→
∑
i∈Z

(−1)i[M i].

As the group Ktri0
(
Hb (M) /Hb (P )

)
is generated by objects concentrated in degree 0, it is straightforward to check that the

morphisms K0(α) and K0(β)−1 K0(γ ) are inverse to each other. �

As a consequence of the exact sequence (∗∗), we have an isomorphism between Ktri0
(
E
)
and Kadd0

(
M
)
/ Imϕ. In order to

compute Ktri0
(
E
)
, the map ϕ has to be made explicit. We first recall some results from Iyama–Yoshino [17] which generalize

results from [18]: For any indecomposableM ofM not in P , there existsM∗ unique up to isomorphism such that (M,M∗)
is an exchange pair, i.e.
(a) M∗ is an indecomposable object, not isomorphic toM and
(b) the full additive subcategory of C generated byM∗ andM/M is cluster-tilting.

Moreover, there exist two (non-split) exchange triangles

M∗ → BM → M → ΣM∗ and M → BM∗ → M∗ → ΣM.

Wemay now state the following:

Theorem 10. The Grothendieck group of the triangulated category E is the quotient of that of the additive subcategoryM by all
relations [BM∗ ] − [BM ]:

Ktri0
(
E
)
' Kadd0

(
M
)
/([BM∗ ] − [BM ])M .

Proof. We denote by SM the simple M-module associated to the indecomposable object M . This means that SM(M ′)
vanishes for all indecomposable objectsM ′ inM not isomorphic toM and that SM(M) is isomorphic to k. The abelian group
Kab0

(
modM

)
is generated by all classes [SM ]. In view of Lemma 9, it is sufficient to prove that the image of the class [(SM)⊕d]

under ϕ is [BM∗ ] − [BM ], where d is the dimension of E(M,ΣM∗). First note that theM-module Ext1E (?,M
∗)|M vanishes on

the projectives; it can thus be viewed as anM-module, and as such, is isomorphic to (SM)⊕d. After replacing BM and BM ′ by
isomorphic objects ofE , we can assume that the exchange trianglesM∗ → BM → M → ΣM∗ andM → BM∗ → M∗ → ΣM
come from conflations and . The spliced complex

(· · · → 0→ M → BM∗ → BM → M → 0→ · · ·)

denoted by C•, is then an E-acyclic complex, and it is the image of (SM)⊕d under the functormodM ⊂ perM M ' Hb
E-ac (M).

Indeed, we have two long exact sequences induced by the conflations above:

0→M(?,M)→M(?, BM∗)→ E(?,M∗)|M → Ext1E (?,M)|M = 0 and

0→ E(?,M∗)|M →M(?, BM)→M(?,M)→ Ext1E (?,M
∗)|M → Ext1E (?, BM)|M.

Since BM belongs toM, the functor Ext1E (?, BM) vanishes onM, and the complex:

(Cˆ): (· · · → 0→ Mˆ→ (BM∗ )̂ → (BM )̂ → Mˆ→ 0→ · · ·)

is quasi-isomorphic to (SM)⊕d.
Now, in the notations of the proof of Lemma 9, ϕ (d[SM ]) is the image of the class of the E-acyclic complex complex C•

under the morphism K0(β)−1 K0(γ ). This is [M] − [BM ] + [BM∗ ] − [M]which equals [BM∗ ] − [BM ] as claimed. �
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3. The generalized mutation rule

Let T and T ′ be two cluster-tilting subcategories of C. Let Q and Q ′ be the quivers obtained from their Auslander–Reiten
quivers by removing all loops and oriented 2-cycles.
Our aim, in this section, is to give a rule relating Q ′ to Q , and to prove that it generalizes the Fomin–Zelevinsky mutation

rule.

Remark. . Assume that C has cluster-tilting objects. Then it is proved in [5, Theorem I.1.6], without assuming that C
is algebraic, that the Auslander–Reiten quivers of two cluster-tilting objects having all but one indecomposable direct
summands in common (up to isomorphism) are related by the Fomin–Zelevinsky mutation rule.
. To prove that the generalized mutation rule actually generalizes the Fomin–Zelevinsky mutation rule, we use the ideas
of Section 7 of [4].

3.1. The rule

As in Section 2, we fix a cluster-tilting subcategory T of C, and writeM for its preimage in E , so that T = M. Define Q
to be the quiver obtained from the Auslander–Reiten quiver ofM by deleting its loops and its oriented 2-cycles. Its vertex
corresponding to an indecomposable object Lwill also be labelled by L. We denote by aLN the number of arrows from vertex
L to vertex N in the quiver Q . Let BM be the matrix whose entries are given by bLN = aLN − aNL.
Let RM be the matrix of 〈 , 〉a : K0(modM)×K0(modM) −→ Z in the basis given by the classes of the simple modules.

Lemma 11. The matrices RM and BM are equal: RM = BM .

Proof. Let L and N be two non-projective indecomposable objects inM. Then dimHom(SL, SN)− dimHom(SN , SL) = 0 and
we have:

〈[SL], [SN ]〉a = dim Ext1(SN , SL)− dim Ext1(SL, SN) = bL,N . �

Let T ′ be another cluster-tilting subcategory of C, and let M′ be its preimage in the Frobenius category E . Let
(M ′i )i∈I (resp. (Mj)j∈J ) be representatives for the isoclasses of non-projective indecomposable objects inM′ (resp.M). The
equivalence of categories perM M

∼
−→ perM′ M′ of Proposition 8 induces an isomorphism between the Grothendieck

groups K0(modM) and K0(modM′) whose matrix, in the bases given by the classes of the simple modules, is denoted
by S. The equivalence of categories D Mod M

∼
−→ D Mod M′ restricts to the identity on Hb (P ), so that it induces an

equivalence perM/ perP
∼
−→ perM′/ perP . Denote by projP (resp. projM, resp. projM′) the full subcategory of modP

(resp. ModM, resp. ModM′) whose objects are the representable functors. Let T be the matrix of the induced isomorphism
fromK0(projM)/K0(projP ) to K0(projM′)/K0(projP ), in the bases given by the classes [M(?,Mj)], j ∈ J , and [M′(?,M ′i )],
i ∈ I . The matrix T is much easier to compute than the matrix S. Its entries tij are given by the approximation triangles of
Keller and Reiten in the following way: For all j, there exists a triangle of the form

Σ−1Mj −→
⊕
i

βijM ′i −→
⊕
i

αijM ′i −→ Mj.

Then, we have:

Theorem 12. (a) (Generalized mutation rule). The following equalities hold:
tij = αij − βij

and

BM′ = TBMT t .
(b) The category C has a cluster-tilting object if and only if all its cluster-tilting subcategories have a finite number of pairwise
non-isomorphic indecomposable objects.

(c) All cluster-tilting objects of C have the same number of indecomposable direct summands (up to isomorphism).

Note that point (c) was shown in [19, 5.3.3(1)] (see also [5, I.1.8]) and, in amore general context, in [20]. Note also that, for
the generalized mutation rule to hold, the cluster-tilting subcategories do not need to be related by a sequence of mutation.
Proof. Assertions (b) and (c) are consequences of the existence of an isomorphism between the Grothendieck groups
K0(modM) and K0(modM′). Let us prove the equalities (a). Recall from [3, Section 3.3], that the antisymmetric bilinear
form 〈 , 〉a on modM is induced by the usual Euler form 〈 , 〉E on perM M. The following commutative diagram
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thus induces a commutative diagram

This proves the equality RM = StRM′S, or, by Lemma 11,

(1) BM = StBM′S.

Any object of perM M becomes an object of perM/ perP through the composition perM M ↪→ perM � perM/ perP .
LetM and N be two non-projective indecomposable objects inM. Since SN vanishes on P , we have

HomperM/ perP (M(?,M), SN) = HomperM (M(?,M), SN)
= HomModM (M(?,M), SN)
= SN(M).

Thus dimHomperM/ perP (M(?,M), SN) = δMN , and the commutative diagram

induces a commutative diagram

In other words, the matrix S is the inverse of the transpose of T :

(2) S = T−t .

Equalities (1) and (2) imply what was claimed, that is

BM′ = TBMT t .

Let us compute the matrix T : LetM be indecomposable non-projective inM, and let

Σ−1M −→ M ′1 −→ M ′0 −→ M

be a Keller–Reiten approximation triangle of M with respect toM′, which we may assume to come from a conflation in E .
This conflation yields a projective resolution

0 −→ (M ′1)̂ −→ (M ′0)̂ −→ E(?,M)|M′ −→ Ext1E (?,M
′

1)|M′ = 0

so that T sends the class ofMˆ to [(M ′0)̂ ] − [(M
′

1)̂ ]. Therefore, tij equals αij − βij. �

3.2. Examples

3.2.1
As a first example, let C be the cluster category associated with the quiver of type A4: 1 → 2 → 3 → 4. Its

Auslander–Reiten quiver is the Moebius strip:
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LetM = M1 ⊕M2 ⊕M3 ⊕M4, where the indecomposableMi corresponds to the vertex labelled by i in the picture. Let also
M ′ = M ′1 ⊕ M

′

2 ⊕ M
′

3 ⊕ M
′

4, whereM
′

1 = M1, and where the indecomposableM
′

i corresponds to the vertex labelled by i
′ if

i 6= 1. One easily computes the following Keller–Reiten approximation triangles:

Σ−1M1 −→ 0 −→ M ′1 −→ M1,

Σ−1M2 −→ M ′2 −→ M ′1 −→ M2,

Σ−1M3 −→ M ′4 −→ 0 −→ M4 and

Σ−1M4 −→ M ′4 −→ M ′3 −→ M4;

so that the matrix T is given by:

T =

1 1 0 0
0 −1 0 0
0 0 0 1
0 0 −1 −1

 .
We also have

BM ′ =

 0 −1 1 0
1 0 −1 0
−1 1 0 −1
0 0 1 0

 .
Let maple compute

T−1BM ′T−t =

 0 1 0 0
−1 0 −1 1
0 1 0 −1
0 −1 1 0

 ,
which is BM .

3.2.2
Let us look at a more interesting example, where one cannot easily read the quiver of M ′ from the Auslander–Reiten

quiver of C. Let C be the cluster category associated with the quiver Q :

For i = 0, 1, 2, letMi be (the image inC of) the projective indecomposable (right) kQ -module associated with vertex i. Their
dimension vectors are respectively [1, 0, 0], [2, 1, 0] and [2, 0, 1]. Let M be the direct sum M0 ⊕ M1 ⊕ M2. Let M ′ be the
direct sum M ′0 ⊕ M

′

1 ⊕ M
′

2, where M
′

0,M
′

1 and M
′

2 are (the images in C of) the indecomposable regular kQ -modules with
dimension vectors [1, 2, 0], [0, 1, 0] and [2, 4, 1] respectively. As one can check, using [21],M andM ′ are two cluster-tilting
objects of C. Computation of Keller–Reiten approximation triangles, amounts to computing projective resolutions in mod
kQ , viewed as mod EndC(M). One easily computes these projective resolutions, by considering dimension vectors:

0 −→ 8M0 −→ M2 ⊕ 4M1 −→ M ′2 −→ 0,
0 −→ 2M0 −→ M1 −→ M ′1 −→ 0 and
0 −→ 3M0 −→ 2M1 −→ M ′0 −→ 0.

By applying the generalized mutation rule, one gets the following quiver

which is therefore the quiver of EndC(M ′) since by [22], there are no loops or 2-cycles in the quiver of the endomorphism
algebra of a cluster-tilting object in a cluster category.
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3.3. Back to the mutation rule

We assume in this section that the Auslander–Reiten quiver of M has no loops or 2-cycles. Under the notations of
Section 3.1, let k be in I and let (Mk,M ′k) be an exchange pair (see Section 2.3). We choose M′ to be the cluster-tilting
subcategory of C obtained fromM by replacing Mk by M ′k, so that M

′

i = Mi for all i 6= k. Recall that T is the matrix of the
isomorphism K0(projM)/K0(projP ) −→ K0(projM′)/K0(projP ).

Lemma 13. Then, the (i, j)-entry of the matrix T is given by

tij =

{
−δij +

|bij| + bij
2

if j = k
δij else.

Proof. Let us apply Theorem 12 to compute the matrix T . For all j 6= k, the triangle Σ−1Mj → 0 → M ′j = Mj is a
Keller–Reiten approximation triangle of Mj with respect to M′. We thus have tij = δij for all j 6= k. There is a triangle
unique up to isomorphism

M ′k −→ BMk −→ Mk −→ ΣM ′k
where BMk −→ Mk is a rightM∩M′-approximation. Since the Auslander–Reiten quiver ofM has no loops and no 2-cycles,
BMk is isomorphic to the direct sum:

⊕
i∈I(M

′

j )
aik . We thus have tik = −δik + aik, which equals

|bik|+bik
2 . Remark that, by

Lemma 7.1 of [4], as stated in Section 1.1, we have T 2 = Id, so that S = T t and

sij =

{
−δij +

|bij| − bij
2

if i = k
δij else. �

Theorem 14. The matrix BM′ is obtained from the matrix BM by the Fomin–Zelevinsky mutation rule in the direction M.

Proof. By [11] (see Section 1.1), and by Lemma 13, we know that the mutation of the matrix BM in directionM is given by
TBM′T t , which is BM , by the generalized mutation rule (Theorem 12). �

3.4. Cluster categories

In [6], the authors study the Grothendieck group of the cluster category CA associated with an algebra A which is either
hereditary or canonical, endowed with any admissible triangulated structure. A triangulated structure on the category
CA is said to be admissible in [6] if the projection functor from the bounded derived category Db (mod A) to CA is exact
(triangulated). They define a Grothendieck group K0(CA)with respect to the triangles induced by those ofDb (mod A), and
show that it coincides with the usual Grothendieck group of the cluster category in many cases:

Theorem 15 (Barot–Kussin–Lenzing).We have K0(CA) = K0(CA) in each of the following three cases:

(i) A is canonical with weight sequence (p1, . . . , pt) having at least one even weight.
(ii) A is tubular,
(iii) A is hereditary of finite representation type.

Under some restriction on the triangulated structure of CA, we have the following generalization of case (iii) of
Theorem 15:

Theorem 16. Let A be a finite-dimensional hereditary algebra, and let CA be the associated cluster category with its triangulated
structure defined in [7]. Then we have K0(CA) = K0(CA).

Proof. By Lemma 3.2 in [6], this theorem is a corollary of the following lemma. �

Lemma 17. Under the assumptions of Section 3.1, and if moreover M has a finite number n of non-isomorphic indecomposable
objects, then we have an isomorphism K0(C) ' Zn/ Im BM .

Proof. This is a restatement of Theorem 10. �
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