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Abstract. Let C be a Hom-finite triangulated 2-Calabi–Yau category with

a cluster tilting object. Under some constructibility assumptions on C which
are satisfied for instance by cluster categories, by generalized cluster cate-

gories and by stable categories of modules over a preprojective algebra of

Dynkin type, we prove a multiplication formula for the cluster character asso-
ciated with any cluster tilting object. This formula generalizes those obtained

by Caldero–Keller for representation finite path algebras and by Xiao–Xu for

finite-dimensional path algebras. We prove an analogous formula for the clus-
ter character defined by Fu–Keller in the setup of Frobenius categories. It

is similar to a formula obtained by Geiss–Leclerc–Schröer in the context of

preprojective algebras.

Introduction

In recent years, the link between Fomin–Zelevinsky’s cluster algebras [FZ02]
and the representation theory of quivers and finite-dimensional algebras has been
investigated intensely, cf. for example the surveys [BM06], [GLS08b], [Kel]. In its
most tangible form, this link is given by a map taking objects of cluster categories
to elements of cluster algebras. Such a map was first constructed by P. Caldero
and F. Chapoton [CC06] for cluster categories and cluster algebras associated with
Dynkin quivers. Another approach, leading to proofs of several conjectures on
cluster algebras in a more general context, can be found in [DWZ08], [DWZ10].

The results of P. Caldero and B. Keller [CK08] yield two multiplication formulae
for the Caldero–Chapoton map of cluster categories associated with Dynkin quivers.
The first one categorifies the exchange relations of cluster variables and only applies
to objects L and M such that Ext1(L,M) is of dimension 1. The second one gen-
eralizes it to arbitrary dimensions, and yields some new relations in the associated
cluster algebras. These relations very much resemble relations in dual Ringel–Hall
algebras [Sch08, section 5.5]. Motivated by these results, C. Geiss, B. Leclerc and
J. Schröer [GLS07] proved two analogous formulae for module categories over pre-
projective algebras. In this latter situation, the number of isomorphism classes of
indecomposable objects is usually infinite. Generalizations of the first formula were
proved in [CK06] for cluster categories associated with any acyclic quiver, and later
in [Pal08] for 2-Calabi–Yau triangulated categories. The first generalization of the
second multiplication formula, by A. Hubery (see [Huba]), was based on the exis-
tence of Hall polynomials which he proved in the affine case [Hubb], generalizing
Ringel’s result [Rin90] for Dynkin quivers. Staying close to this point of view, J.
Xiao and F. Xu proved in [XX] a projective version of Green’s formula [Rin96]
and applied it to generalize the multiplication formula for acyclic cluster algebras.
Another proof of this formula was found by F. Xu in [Xu10], who used the 2-Calabi–
Yau property instead of Green’s formula. Our aim in this paper is to generalize
the second multiplication formula to more general 2-Calabi–Yau categories for the
cluster character associated with an arbitrary cluster tilting object. This in partic-
ular applies to the generalized cluster categories introduced by C. Amiot [Ami09]
and to stable categories of modules over a preprojective algebra.
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Assume that the triangulated category C is the stable category of a Hom-finite
Frobenius category E . Then C. Fu and B. Keller defined a cluster character on
E , which ”lifts” the one on C. We prove that it satisfies the same multiplication
formula as the one proved by Geiss–Leclerc–Schröer in [GLS07].

The paper is organized as follows: In the first section, we fix some notations and
state our main result: A multiplication formula for the cluster character associated
with any cluster tilting object. In section 2, we recall some definitions and prove
the ‘constructibility of kernels and cokernels’ in modules categories. We apply these
facts to prove that:

• If the triangulated category has constructible cones (see section 1.4), the
sets under consideration in the multiplication formula, and in its proof, are
constructible.

• Stable categories of Hom-finite Frobenius categories have constructible
cones.

• Generalized cluster categories defined in [Ami09] have constructible cones.
Thus, all of the 2-Calabi–Yau triangulated categories related to cluster algebras
which have been introduced so far have constructible cones. Notably this holds for
cluster categories associated with acyclic quivers, and for the stable categories asso-
ciated with the exact subcategories of module categories over preprojective algebras
constructed in [GLS08a] and [BIRS09]. In section 3, we prove the main theorem.
In the last section, we consider the setup of Hom-finite Frobenius categories. We
prove a multiplication formula for the cluster character defined by Fu–Keller in
[FK10].
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1. Notations and main result

Let k be the field of complex numbers. The only place where we will need more
than the fact that k is an algebraically closed field is proposition 2 in section 2.1.
See [Joy06, section 3.3] for an explanation, illustrated with an example, of the
fact that the theory of constructible functions does not extend to fields of positive
characteristic. Let C be a Hom-finite, 2-Calabi–Yau, Krull–Schmidt k-category
which admits a basic cluster tilting object T . In order to prove the main theorem,
a constructibility hypothesis will be needed. This hypothesis is precisely stated
in section 1.3 and it will always be explicitly stated when it is assumed. Stable
categories of Hom-finite Frobenius categories satisfy this constructibility hypothesis,
cf. section 2.4, so that the main theorem applies to cluster categories (thanks to the
construction in [GLS, Theorem 2.1]), to stable module categories over preprojective
algebras... Moreover, the main theorem applies to the generalized cluster categories
of [Ami09], cf. section 2.5.

We let B denote the endomorphism algebra of T in C, and we let F denote the
covariant functor from C to modB co-represented by T . We denote the image in
Q(x1, . . . , xn) of an object M in C under the cluster character associated with T
(see [Pal08]) by XT

M . Recall that it is given by the following formula: Let QT be the
Gabriel quiver of B, and denote by 1, . . . , n its vertices. For each vertex i, denote
by Si (resp. Pi) the corresponding simple (resp. projective) module. Then we have

XT
M = x− coindM

∑
e

χ(Gre FM)
n∏
i=1

x
〈Si,e〉a
i ,

where coindM denotes the coindex of M and 〈 , 〉a the antisymmetric bilinear form
on K0(modB) (for more complete definitions, see sections 1 and 2.1 of [Pal08]).
For any two objects L and M in C, and any morphism ε in C(L,ΣM), we denote
any object Y appearing in a triangle of the form

M −→ Y −→ L
ε−→ ΣM

by mt(ε) (the middle term of ε).

1.1. XT -stratification. Let L and M be objects in C. If an object Y of C oc-
curs as mt(ε) for some morphism ε in C(L,ΣM), we let 〈Y 〉 denote the set of all
isomorphism classes of objects Y ′ ∈ C such that:

• Y ′ is the middle term of some morphism in C(L,ΣM),
• coindY ′ = coindY and
• for all e in K0(modB), we have χ

(
Gre(FY ′)

)
= χ

(
Gre(FY )

)
.

The equality of classes 〈Y 〉 = 〈Y ′〉 yields an equivalence relation on the ‘set’ of
middle terms of morphisms in C(L,ΣM). Fix a set Y of representatives for this
relation. Further, we denote the set of all ε with mt(ε) ∈ 〈Y 〉 by C(L,ΣM)〈Y 〉,
and the set of ε′ ∈ C(L,ΣM) such that XT

mt(ε′) = XT
mt(ε) by 〈ε〉. It will be proven

in section 2.3 that if the cylinders of the morphisms L → ΣM are constructible
with respect to T in the sense of section 1.3 below, then the sets C(L,ΣM)〈Y 〉 are
constructible, and the set Y is finite.

Remark that if Y ′ belongs to 〈Y 〉, then XT
Y ′ = XT

Y . Hence the fibers of the map
sending ε to XT

mt(ε) are finite unions of sets C(L,ΣM)〈Y 〉. Therefore, the sets 〈ε〉
are constructible, we have

C(L,ΣM) =
∐
ε∈R
〈ε〉
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for some finite set R ⊂ C(L,ΣM), and

C(L,ΣM) =
∐
Y ∈Y
C(L,ΣM)〈Y 〉

is a refinement of the previous decomposition.

1.2. The variety repdBQ. Let V be a finite dimensional k-vector space. We
denote by rep′B(V ) the set of morphisms of k-algebras from Bop to Endk(V ). Since
B is finitely generated, the set rep′B(V ) is a closed subvariety of some finite product
of copies of Endk(V ).

Let Q be a finite quiver, and let d = (di)i∈Q0 be a tuple of non-negative integers.
A d-dimensional matrix representation of Q in modB is given by

• a right B-module structure on kdi for each vertex i of Q and
• a B-linear map kdi → kdj for each arrow α : i→ j of Q.

Clearly, for fixed d, the d-dimensional matrix representations of Q in modB form
an affine variety repdBQ on which the group GL(d) =

∏
i∈Q0

GLdi
(k) acts by

changing the bases in the spaces kdi . We write repdBQ/GL(d) for the set of
orbits.

1.3. Constructible cones. Let
−→
A4 be the quiver: 1→ 2→ 3→ 4. Let T , L and

M be objects of C. Let dmax be the 4-tuple of integers

(dimFM, dimFM + dimFL,dimFL,dimFΣM).

Let ΦL,M be the map from C(L,ΣM) to∐
d≤dmax

repd(B
−→
A4)/GL(d)

sending a morphism ε to the orbit of the exact sequence of B-modules

C(T,M) Fi // C(T, Y )
Fp // C(T, L) Fε // C(T,ΣM),

where M i−→ Y
p−→ L

ε−→ ΣM is a triangle in C. The cylinders over the morphisms
L→ ΣM are constructible with respect to T if the map ΦL,M lifts to a constructible
map

ϕL,M : C(L,ΣM) −→
∐

d≤dmax

repd(B
−→
A4)

(see section 2.1). The category C is said to have constructible cones if this holds
for arbitrary objects L,M and T .

1.4. Main result. Let f be a constructible function from an algebraic variety over
k to any abelian group, and let C be a constructible subset of this variety. Then
one defines “the integral of f on C with respect to the Euler characteristic” to be∫

C

f =
∑

x∈f(C)

χ
(
C ∩ f−1(x)

)
x,

cf. for example the introduction of [Lus97]. Our aim in this paper is to prove the
following:

Theorem 1. Let T be any cluster tilting object in C. Let L and M be two objects
such that the cylinders over the morphisms L→ ΣM and M → ΣL are constructible
with respect to T . Then we have:

χ(PC(L,ΣM))XT
LX

T
M =

∫
[ε]∈PC(L,ΣM)

XT
mt(ε) +

∫
[ε]∈PC(M,ΣL)

XT
mt(ε),

where [ε] denotes the class in PC(L,ΣM) of a non zero morphism ε in C(L,ΣM).
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The statement of the theorem is inspired from [GLS07], cf. also [XX]. We will
prove it in section 3. Our proof is inspired from that of P. Caldero and B. Keller
in [CK08]. Note that in contrast with the situation considered there, in the above
formula, an infinite number of isomorphism classes of objects mt(ε) may appear.

2. Constructibility

2.1. Definitions. Let X be a topological space. A locally closed subset of X is the
intersection of a closed subset with an open one. A constructible subset is a finite
(disjoint) union of locally closed subsets. The family of constructible subsets is
the smallest one containing all open (equivalently: closed) subsets of X and stable
under taking finite intersections and complements. A function f from X to an
abelian group is constructible if it is a finite Z-linear combination of characteristic
functions of constructible subsets of X. Equivalently, f is constructible if it takes
a finite number of values and if its fibers are constructible subsets of X.

For an algebraic variety X, the ring of constructible functions from X to Z is
denoted by CF (X). The following proposition will be used, as in [XX], in order to
prove lemma 5 of section 2.3.

Proposition 2. [Dim04, Proposition 4.1.31] Associated with any morphism of com-
plex algebraic varieties f : X −→ Y , there is a well-defined push-forward homo-
morphism CF (f) : CF (X) −→ CF (Y ). It is determined by the property

CF (f)(1Z)(y) = χ(f−1(y) ∩ Z)

for any closed subvariety Z in X and any point y ∈ Y .

Let X and Y be algebraic varieties. A map f : X −→ Y is said to be constructible
if there exists a decomposition of X into a finite disjoint union of locally closed
subsets Xi, i ∈ I, such that the restriction of f to each Xi is a morphism of algebraic
varieties. Note that the composition of two constructible maps is constructible, and
that the composition of a constructible function with a constructible map is again
a constructible function.

2.2. Kernels and cokernels are constructible. In section 2.1 of [Xu10], it is
shown that the kernel and cokernel of a morphism of modules over a path algebra
CQ are constructible. In this section, we give direct proofs in the more general case
where CQ is replaced by a finite dimensional algebra B.

Let L and M be two finite dimensional vector spaces over the field k, of respective
dimensions n and m. Let N be a linear subspace of M . Define EN to be the set of
all morphisms f ∈ Homk(L,M) such that Im f ⊕N = M .

Lemma 3. The set EN is a locally closed subset of Homk(L,M).

Proof. Let (u1, . . . , un) be a basis of L, and let (v1, . . . , vm) be a basis of M whose
p first vectors form a basis of N . Let r be such that r + p = m. Let f : L −→ M
be a k-linear map, and denote by A = (aij) its matrix in the bases (u1, . . . , un) and
(v1, . . . , vm). Denote by A1 the submatrix of A formed by its first p rows and by
A2 the one formed by its last r rows. For t ≤ n, let P (t, n) be the set of all subsets
of {1, . . . , n} of cardinality t.

The map f belongs to EN if and only if:
a) There exists j in P (r, n) such that the submatrix (aij)i>p,j∈j has a non-zero

determinant and
b) if the last r entries of a linear combination of columns of A vanish, then

the combination itself vanishes.
Condition b) is equivalent to the inclusion KerA2 ⊆ KerA1 and so to the inclusion
Im(At

1) ⊆ Im(At
2). Therefore, condition b) can be restated as condition b’):
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b’) For all i0 ≤ p, and all l ∈ P (r + 1, n), the determinant of the submatrix of
A obtained by taking lines in {i0, p+ 1, . . . ,m} and columns in l vanishes.

Let Ωj be the set of all maps that satisfy condition a) with respect to the index set
j, and let F be the set of all maps that satisfy condition b’). For all j ∈ P (r, n),
the set Ωj is an open subset of Homk(L,M) and the set F is a closed subset of
Homk(L,M). Since we have the equality:

EN =
( ⋃
j∈P (r,n)

Ωj
)
∩ F,

the set EN is locally closed in Homk(L,M). �

Let
−→
A2 be the quiver: 1→ 2.

Lemma 4. Let B be a finite dimensional algebra, and let L and M be finitely gener-
ated B-modules of dimensions n and m respectively. The map c from HomB(L,M)
to
∐
d≤m rep(m,d)(B

−→
A2)/GL(m, d) which sends a morphism l to the orbit of the

representation M // // Coker l lifts to a constructible map from HomB(L,M) to∐
d≤m rep(m,d)(B

−→
A2).

Dually, the map from HomB(L,M) to
∐
d≤n rep(d,n)(B

−→
A2)/GL(d, n) which sends

a morphism l to the orbit of the representation Ker l // // L lifts to a constructible

map from HomB(L,M) to
∐
d≤n rep(d,n)(B

−→
A2).

Proof. Let us prove the first assertion. We keep the notations of the proof of
lemma 3. For a subset i of {1, . . . ,m}, let Ni be the linear subspace of M gener-
ated by (vi)i∈i. Then HomB(L,M) is the union of its intersections with each ENi ,
for i ⊆ {1, . . . ,m}. It is thus enough to consider the restriction of the map c to EN ,

where N // iN // M is a given linear subspace of M . Since the set EN is the union
of the locally closed subsets Ωj ∩ F , for j ∈ P (r, n), we can fix such a j and only
consider the restriction of c to Ωj ∩ F . Let f be a morphism in HomB(L,M) and
assume that f is in Ωj ∩ F . Then the cokernel of the k-linear map f is N and the
projection pf of M onto N along Im f is given by the n× p matrix

(
1 − CD−1

)
,

where C is the submatrix (aij)i≤p,j∈j and D is the submatrix (aij)i>p,j∈j . More-
over, if we denote by ρM ∈ rep′B(M) the structure of B-module of M , then the
structure of B-module ρ of N induced by f is given by ρ(b) = pf ◦ ρM (b) ◦ iN , for
all b ∈ B. �

2.3. Constructibility of C(L,ΣM)〈Y 〉. Let k, C and T be as in section 1. Recall
that B denotes the endomorphism algebra EndC(T ). This algebra is the path
algebra of a quiver QT with ideal of relations I. Recall that we denote by 1, . . . , n
the vertices of QT .

The following lemma is a particular case of [Dim04, Proposition 4.1.31], and was
already stated in [XX] for hereditary algebras.

Lemma 5. For any two dimension vectors e and d with e ≤ d, the function

µe : repd(QT , I) −→ Z
M 7−→ χ(GreM)

is constructible.

Proof. Let Gre(d) be the closed subset of

repd(QT , I)×
∏
i∈Q0

Grei
(kdi)
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formed by those pairs (ρ,W ) for which the subspaces Wi ⊆ kdi , i ∈ Q0, form a sub-
representation. Apply proposition 2 to the first projection f : Gre(d)→ repd(QT , I)
and remark that µe = CF (f)(1Gre(d)).

�

Corollary 6. Let L and M be objects in C, and let e ≤ dimFL + dimFM be in
K0(modB). Assume that the cylinders over the morphisms L → ΣM are con-
structible. Then the function

λe : C(L,ΣM) −→ Z
ε 7−→ χ(Gre F mt(ε))

is constructible.

Proof. By our hypothesis, the map sending ε ∈ C(L,ΣM) to the image of its middle
term in

∐
repd(QT , I)/GL(d), where the union is over the dimension vectors d not

greater than dimFL + dimFM , lifts to a constructible map from C(L,ΣM) to∐
repd(QT , I). The claim therefore follows from lemma 5. �

Let M i−→ Y
p−→ L

ε−→ ΣM be a triangle in C, and denote by g the class of
KerFi in the Grothendieck group K0(modB).

Lemma 7. We have:

coindY = coind(L⊕M)−
n∑
i=1

〈Si, g〉a[Pi].

Proof. Let K ∈ C lift KerFi. Using respectively proposition 2.2, lemma 2.1.(2),
lemma 7 and section 3 of [Pal08], we have the following equalities:

coindY = coindL+ coindM − coindK − coind ΣK
= coind(L⊕M) + indK − coindK

= coind(L⊕M)−
n∑
i=1

〈Si, FK〉a[Pi]

= coind(L⊕M)−
n∑
i=1

〈Si, g〉a[Pi].

�

Corollary 8. Let L and M be two objects such that the cylinders over the mor-
phisms L → ΣM are constructible. The map λ : C(L,ΣM) −→ K0(projB) which
sends ε to the coindex (or to the index) of its middle term Y is constructible.

Proof. Note that g is at most the sum of the dimension vectors of FL and FM , so
that by lemma 7 the map λ takes a finite number of values. By our hypothesis and
lemma 4, there exists a constructible map:

C(L,ΣM) −→
∐

d≤dimFM

rep′B(kd)

which lifts the map sending ε to the isomorphism class of the structure of B-
module on KerFi. Moreover, the map sending a module ρ in

⋃
d≤dimFM rep′B(kd)

to
∑n
i=1〈Si, ρ〉a[Pi] in K0(projB) only depends on the dimension vector of ρ and

thus is constructible. Therefore, the map λ is constructible. �

Proposition 9. Let L,M ∈ C be such that the cylinders over the morphisms
L → ΣM are constructible. Then the sets C(L,ΣM)〈Y 〉 are constructible sub-
sets of C(L,ΣM). Moreover, the set C(L,ΣM) is a finite disjoint union of such
constructible subsets.
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Proof. Fix a triangle M i−→ Y
p−→ L

ε−→ ΣM in C. Then ε′ ∈ C(L,ΣM) is in
C(L,ΣM)〈Y 〉 if and only if

• λ(ε′) = λ(ε) and
• For all e ≤ dimFY , λe(ε′) = λe(ε).

Therefore, the claim follows from corollary 6 and corollary 8.
�

2.4. Stable categories have constructible cones. In this section, we assume
moreover that C is the stable category of a Hom-finite, Frobenius, Krull–Schmidt
category E , which is linear over the algebraically closed field k. Our aim is to prove
that such a category has constructible cones.

Let P denote the ideal in E of morphisms factoring through a projective-injective
object. Let T , L and M be objects of the category C. Fix a k-linear section s of the
projection Ext1

E(L,M) // // C(L,ΣM) induced by the canonical functor E Π−→ C.
Fix a conflation M // // IM // // ΣM in E , with IM being projective-injective
in E , and, for any ε in C(L,ΣM), consider its pull-back via sε:

M // ι // Y
π // //

��

L

sε

��
M // // IM // // ΣM.

Via Π, this diagram induces a triangle M i−→ Y
p−→ L

ε−→ ΣM in C.
For any X ∈ E , we have a commutative diagram with exact rows:

0 // E(X,M)
E(X,ι) // E(X,Y )

E(X,π) //

��

E(X,L)

E(X,sε)

��
0 // E(X,M) // E(X, IM) // E(X,ΣM).

Fix X ′ ∈ E and a morphism X ′ → X. Denote by C the endomorphism algebra of
X ′ → X in the category of morphisms of E , and by D′ the set of dimension vectors
d = (d1, d2, d3, d4) such that d1 = dim E(X,M), d3 = dim E(X,L), d2 ≤ d1 + d3

and d4 = dim E(X,ΣM).

Lemma 10. There exists a constructible map

µ : C(L,ΣM) −→
∐
d∈D′

repd C
−→
A4

which lifts the map sending ε to the orbit of the matrix representation of
−→
A4 in

modC given by E(X,M)
E(X,ι) // E(X,Y )

E(X,π)// E(X,L)
E(X,sε)// E(X,ΣM) .

Proof. By definition of a pull-back, the map E(X,Y ) −→ E(X, IM)⊕ E(X,L) is a
kernel for the map E(X, IM) ⊕ E(X,L) −→ E(X,ΣM). Moreover, the morphism

E(X,M)
E(X,ι) // E(X,Y ) is a kernel for E(X,π). Therefore, lemma 4 in section 2.2

applies and such a constructible map µ exists. �

Denote by D the set of dimension vectors d = (d1, d2, d3, d4) such that:
d1 = dim C(T,M), d3 = dim C(T, L), d2 ≤ d1 + d3 and d4 = dim C(T,ΣM).

Proposition 11. There exists a constructible map

ϕ : C(L,ΣM) −→
∐
d∈D

repdB
−→
A4
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which lifts the map sending ε to the orbit of the representation

C(T,M) Fi // C(T, Y )
Fp // C(T, L) Fε // C(T,ΣM) .

Proof. Let T � IT be an inflation from T to a projective-injective object in E . This
inflation induces a commutative diagram (∗) of modules over the endomorphism
algebra B̃ of T � IT in the Frobenius category of inflations of E :

E(IT,M) //

(∗)
��

E(IT, Y ) //

��

E(IT, L) //

��

E(IT,ΣM)

��
E(T,M) // E(T, Y ) // E(T, L) // E(T,ΣM).

The map which sends ε to the orbit of the diagram (∗) lifts to a constructible one.
This is proved by repeating the proof of lemma 10 for the functor

E −→ mod B̃, U 7−→
(
E(IT, U)→ E(T,U)

)
instead of U 7→ E(X,U) and using lemma 4 for B̃.

By applying lemma 4 to B̃ ⊗ kA4, we see that the vertical cokernel of diagram
(∗) is constructible as a B̃⊗ kA4-module. Now the claim follows because the terms
of the cokernel are B-modules and B is also the stable endomorphism algebra of
T � IT in the Frobenius category of inflations of E . �

2.5. Generalized cluster categories have constructible cones. Let (Q,W )
be a Jacobi-finite quiver with potential W in kQ (cf. section 3.3 of [Ami09]), and let
Γ be the Ginzburg dg algebra associated with (Q,W ) (cf. section 4.2 of [Gin]). The
perfect derived category per Γ is the thick subcategory of the derived category DΓ
generated by Γ. The finite dimensional derived category DfdΓ is the full subcategory
of DΓ whose objects are the dg modules whose homology is of finite total dimension.
It is easy to check that an object M belongs to DfdΓ if and only if HomDΓ(P,M)
is finite dimensional for each object P of per Γ.

Lemma 12 (Appendix of [KY]). a) The category DfdΓ is contained in per Γ.
b) An object of DΓ belongs to DfdΓ if and only if it is quasi-isomorphic to a

dg Γ-module of finite total dimension.
c) The category DfdΓ is equivalent to the localization of the homotopy category
HfdΓ of right dg Γ-modules of finite total dimension with respect to its
subcategory of acyclic dg modules.

Note that we stated the previous lemma under some restrictions which do not
appear in the appendix of [KY]. Recall that the generalized cluster category asso-
ciated with (Q,W ), defined in [Ami09], is the localization of the category per Γ by
the full subcategory DfdΓ.

It is proved in [Ami09] that the canonical t-structure on DΓ restricts to a t-
structure on per Γ. We will denote this t-structure by (per≤0,per≥0).

Denote by F the full subcategory of per Γ defined by:

F = per≤0 ∩⊥(per≤−2).

Recall from [Ami09] that the canonical functor from per Γ to CΓ induces a k-linear
equivalence from F to CΓ and that the functor τ≤−1 induces an equivalence from
F to ΣF .

Fix an object T in CΓ. Without loss of generality, assume that T belongs to F .
Note that the canonical cluster tilting object Γ ∈ CΓ does belong to F .
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Lemma 13. Let X be an object of per Γ. If X is left orthogonal to per≤−3, which
happens for instance when X is in F or in ΣF , then there is a functorial isomor-
phism

Homper Γ(τ≤−1T,X) '−→ CΓ(T,X).

Proof. Let X ∈ per Γ be left orthogonal to per≤−3. By [Ami09, Proposition 2.8],
we have CΓ(T,X) = lim−→Homper Γ(τ≤nT, τ≤nX). Moreover, for any n, we have

Homper Γ(τ≤nT, τ≤nX) = Homper Γ(τ≤nT,X).

Let n < −1. The object τ[n+1,−1]T belongs to Dfd(Γ) and X belongs to per Γ,
so that the 3-Calabi–Yau property (see [Kel08]) implies that the morphism space
Homper Γ(Σ−1τ[n+1,−1]T,X) is isomorphic to the dual of Homper Γ(X,Σ2τ[n+1,−1]T ).
This latter vanishes since X belongs to ⊥(per≤−3). The same argument shows that
the space Homper Γ(τ[n+1,−1]T,X) also vanishes. Therefore applying the functor
Homper Γ(?, X) to the triangle

Σ−1τ[n+1,−1]T −→ τ≤nT −→ τ≤−1T −→ τ[n+1,−1]T,

yields an isomorphism Homper Γ(τ≤nT,X) '−→ Homper Γ(τ≤−1T,X). �

Lemma 14. Let X,Y ∈ per Γ and assume that X belongs to ⊥(per≤−3). Then the
functor τ≥−2 induces a bijection Homper Γ(X,Y ) ' HomDfd(Γ)(τ≥−2X, τ≥−2Y ).

Proof. By assumption, X is left orthogonal to the subcategory per≤−3. There-
fore, the space Homper Γ(X,Y ) is isomorphic to Homper Γ(X, τ≥−2Y ), and thus to
Homper Γ(τ≥−2X, τ≥−2Y ). Since X and Y are perfect over Γ, their images under
τ≥−2 are quasi-isomorphic to dg modules of finite total dimension. �

Proposition 15. Let Γ be the Ginzburg dg algebra associated with a Jacobi-finite
quiver. Then the category Dfd(Γ) has constructible cones.

Proof. We write n for the ideal of Γ generated by the arrows of the Ginzburg quiver,
and p for the left adjoint to the canonical functorH(Γ)→ D(Γ). Let L, M and T be
dg modules of finite total dimension. Since HomDfd(Γ)(L,ΣM) is finite dimensional,
there exists a quasi-isomorphism M

w−→ M ′, where M ′ is of finite total dimension
and such that any morphism L→ ΣM may be represented by a fraction:

L

""FFF
FF ΣM.

Σwyyttt
tt

ΣM ′

We thus obtain a surjection Ext1
Hfd(Γ)(L,M

′) // // Ext1
Dfd(Γ)(L,M). Fix a k-

linear section s of this surjection. Choose m such that M ′nm and Lnm vanish.
Then for the cone Y of any morphism from Σ−1M ′ to L, we have Y nm = 0. For
X being any one of L, M ′, Y we thus have isomorphisms

CΓ(T,X) ' HomH(Γ)(pT,X) ' HomHfd(Γ)(T ′, X)

where T ′ denotes the finite dimensional quotient of pT by (pT )nm. The category
Hfd(Γ) is the stable category of a Hom-finite Frobenius category. By section 2.4, the
category Hfd(Γ) has constructible cones: There exists a constructible map ϕL,M ′

(associated with T ′) as in section 1.3. By composing this map with the section s,
we obtain a map ϕL,M as required. �

Proposition 16. Let Γ be the Ginzburg dg algebra associated with a Jacobi-finite
quiver. Then the generalized cluster category CΓ has constructible cones.
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Proof. Let L and M be in CΓ. Up to replacing them by isomorphic objects in CΓ,
we may assume that L belongs to ΣF and M to F . The projection then induces an
isomorphism Homper Γ(L,ΣM) '−→ CΓ(L,ΣM). Let ε be in Homper Γ(L,ΣM), and
let M → Y → L

ε→ ΣM be a triangle in per Γ. Let us denote the sets of morphisms
Homper Γ( , ) by ( , ). There is a commutative diagram

(τ≤−1T,Σ−1L)

��

// (τ≤−1T,M)

��

// (τ≤−1T, Y )

��

// (τ≤−1T, L)

��

// (τ≤−1T,ΣM)

��
CΓ(T,Σ−1L) // CΓ(T,M) // CΓ(T, Y ) // CΓ(T, L) // CΓ(T,ΣM),

where the morphisms in the first two and in the last two columns are isomorphisms
by lemma 13, and the middle one by the five lemma. Note that τ≤−1T belongs to
ΣF , so that, by lemma 14, we have isomorphisms:

Homper Γ(L,ΣM) ' HomDfd(Γ)(τ≥−2L, τ≥−2ΣM)

and
CΓ(T,X) ' HomDfd(Γ)(τ[−2,−1]T, τ≥−2X)

for X ∈
{

Σ−1L,M,L,ΣM
}

and thus also for X being the middle term of any
triangle in Ext1

per Γ(L,M). Let ε ∈ CΓ(L,ΣM) and let M → Y → L
ε→ ΣM be a

triangle in CΓ. Let ε be the morphism in HomDfd(Γ)(τ≥−2L, τ≥−2ΣM) correspond-

ing to ε and let τ≥−2M → Z → τ≥−2L
ε→ τ≥−2ΣM be a triangle in Dfd(Γ). Then

the sequence obtained from Σ−1L→M → Y → L→ ΣM by applying the functor
CΓ(T, ?) is isomorphic to the one obtained from Σ−1τ≥−2L → τ≥−2M → Z →
τ≥−2L → τ≥−2ΣM by applying the functor HomDfd(Γ)(τ[−2,−1]T, ?). By proposi-
tion 15, the cylinders of the morphisms L→ ΣM are constructible with respect to
T . �

3. Proof of theorem 1

Let T be a cluster tilting object of C. Let L and M be two objects in C,
such that the cylinders of the morphisms L → ΣM and M → ΣL are con-
structible with respect to T . Let ε be a morphism in C(L,ΣM)〈Y 〉 for some

Y ∈ C, and let M i−→ Y ′
p−→ L

ε−→ ΣM be a triangle in C. The image of ε
under ϕL,M lifts the orbit of the matrix representation of

−→
A4 in modB given by

FM
Fi // FY ′

Fp // FL
Fε // FΣM . In all of this section, we will take the lib-

erty of denoting by Fi, Fp and FY ′ the image ϕL,M (ε). Denote by ∆ the dimension
vector dimFL + dimFM . For any object Y in C and any non-negative e, f and g
in K0(modB), let WY

LM (e, f, g) be the subset of

PC(L,ΣM)〈Y 〉 ×
∐
d≤∆

n∏
i=1

Grgi
(kdi)

formed by the pairs ([ε], E) such that E is a submodule of FY ′ of dimension vector g,
dim(Fp)E = e and dim(Fi)−1E = f , where FY ′,Fi and Fp are given by ϕL,M (ε).
We let

• WY
LM (g) denote the union of all WY

LM (e, f, g) with e ≤ dimFL and f ≤
dimFM and
• WY

LM (e, f) denote the union of all WY
LM (e, f, g) with g ≤ dimFL+dimFM .

Lemma 17. The sets WY
LM (e, f, g) are constructible.
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Proof. Denote by ∆ the dimension vector dimFL + dimFM , and fix a dimen-
sion vector g. Consider the map induced by ϕL,M which sends a pair (ε, E) in
C(L,ΣM)〈Y 〉 ×

∐
d≤∆

∏
i∈Q0

Grgi
(kdi) to (Fi, Fp, FY ′, E). By our assumption,

this map (exists and) is constructible. Therefore, the subset of

C(L,ΣM)〈Y 〉 ×
∐
d≤∆

∏
i∈Q0

Grgi(k
di)

formed by the pairs (ε, E) such that E is a submodule of FY ′ is a constructible sub-
set. We denote by V YLM (g) this constructible subset. We thus have a constructible
function V YLM (g) −→ Z2n sending the pair (ε, E) to (dim(Fi)−1E,dim(Fp)E).
This function induces a constructible function δ : WY

LM (g) −→ Z2n, and the set
WY
LM (e, f, g) is the fiber of δ above (e, f). �

The fiber above the class [ε] of the first projection WY
LM (g) → PC(L,ΣM)〈Y 〉

is {[ε]} × Grg FY ′ and thus all fibers have Euler characteristics equal to that of
Grg FY . Therefore we have:

(∗∗) χ
(
WY
LM (g)

)
= χ

(
PC(L,ΣM)〈Y 〉

)
χ(Grg FY ).

Define L(e, f) to be the variety PC(L,ΣM)×Gre FL×Grf FM . Consider the
following map: ∐

Y ∈Y
WY
LM (e, f)

ψ−→ L(e, f)

([ε], E) 7−→
(
[ε], (Fp)E, (Fi)−1E

)
.

By our assumption, the map ψ is constructible.
Let L1(e, f) be the subvariety of L(e, f) formed by the points in the image of ψ,

and let L2(e, f) be the complement of L1(e, f) in L(e, f).
We want to compute

dim C(L,ΣM)XLXM = x− coind(L⊕M)
∑
e,f

χ(L(e, f))
n∏
i=1

x
〈Si,e+f〉a
i

=
∑
e,f

χ(L1(e, f))x− coind(L⊕M)
n∏
i=1

x
〈Si,e+f〉a
i

+
∑
e,f

χ(L2(e, f))x− coind(L⊕M)
n∏
i=1

x
〈Si,e+f〉a
i .

Denote by s1 (resp. s2) the first term (resp. second term) in the right hand side of
the last equality above.

As shown in [CC06], the fibers of ψ over L1(e, f) are affine spaces. For the
convenience of the reader, we sketch a proof. Let ([ε], U, V ) be in L1(e, f). Denote
by Y the middle term of ε and by GrU,V the projection of the fiber ψ−1([ε], U, V )
on the second factor GrFY . Let W be a cokernel of the injection of U in FM .

W

FM

π
OOOO

i // FY
p // FL // FΣM

U
?�

iU

OO

// E
?�

OO

// // V
?�
iV

OO

Lemma 18. (Caldero–Chapoton) There is a bijection HomB(V,W ) −→ GrU,V .
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Proof. Define a free transitive action of HomB(V,W ) on GrU,V in the following way:
For any E in GrU,V and any g in HomB(V,W ), define Eg to be the submodule of
FY of elements of the form i(m) + x where m belongs to FM , x belongs to E and
gpx = πm. Note that Eg belongs to GrU,V (since the kernel of i is included in U),
that E0 = E and that (Eg)h = Eg+h. This action is free: An element i(m) + x is
in E if and only if m is in U . This is equivalent to the vanishing of πm, which in
turn is equivalent to px belonging to the kernel of g. This action is transitive: Let
E and E′ be in GrU,V . For any v in V , let g(v) be π(x′ − x) where x ∈ E, x′ ∈ E′
and px = px′ = v. This defines a map g : V −→W such that Eg = E′. �

By lemma 18, we obtain the following equality between the Euler characteristics:∑
〈Y 〉

χ(WY
LM (e, f)) = χ(L1(e, f)),

which implies the equality

s1 =
∑

e,f,〈Y 〉

χ
(
WY
LM (e, f)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i .

If the pair ([ε], E) belongs to WY
LM (e, f, g), then by [Pal08, lemma 5.1], we have

n∑
i=1

〈Si, e+ f〉a[Pi]− coind(L⊕M) =
n∑
i=1

〈Si, g〉a[Pi]− coind(mt(ε))

and coind(mt(ε)) = coindY since the morphism ε is in C(L,ΣM)〈Y 〉. Therefore,

s1 =
∑

e,f,g,〈Y 〉

χ
(
WY
LM (e, f, g)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

=
∑

e,f,g,〈Y 〉

χ
(
WY
LM (e, f, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
g,〈Y 〉

χ
(
WY
LM (g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
〈Y 〉

∑
g

χ
(
PC(L,ΣM)〈Y 〉

)
χ(Grg FY )x− coindY

n∏
i=1

x
〈Si,g〉a
i by (∗∗)

=
∑
〈Y 〉

χ
(
PC(L,ΣM)〈Y 〉

)
XY .

Recall that since C is 2-Calabi–Yau, there is an isomorphism

φL,M : C(Σ−1L,M) −→ DC(M,ΣL).

We denote by φ the induced duality pairing:

φ : C(Σ−1L,M)× C(M,ΣL) −→ k

(a, b) 7−→ φL,M (a)b.

Let Ce,f (Y, g) consist of all pairs
(
([ε], U, V ), ([η], E)

)
in L2(e, f) ×WY

ML(g) such
that φ(Σ−1ε, η) 6= 0, (Fi)−1E = V and (Fp)E = U , where Fi, Fp are given by
ϕM,L(η). The set Ce,f (Y, g) is constructible, by our assumption. Let Ce,f be the
union of all Ce,f (Y, g), where Y runs through the set of representatives Y, and g
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through K0(modB). We then consider the following two projections

Ce,f

p1

��

and Ce,f (Y, g)

p2

��
L2(e, f) WY

ML(f, e, g).

The aim of the next proposition is to show that the projections p1 and p2 are
surjective, and to describe their fibers.

Let U be in Gre FL, and V be in Grf FM . Let U iU−→ L and V
iV−→ M lift

these two inclusions to the triangulated category C. As in section 4 of [Pal08], let
us consider the following two morphisms: α from C(Σ−1L,U) ⊕ C(Σ−1L,M) to
C/(T )

(
Σ−1V,U

)
⊕ (Σ−1V,M)⊕ C/(ΣT )

(
Σ−1L,M

)
and

α′ : (ΣT )(U,ΣV )⊕ C(M,ΣV )⊕ (Σ2T )(M,ΣL) −→ C(U,ΣL)⊕ C(M,ΣL)

defined by:
α(a, b) = (aΣ−1iV , iUaΣ−1iV − bΣ−1iV , iUa− b)

and
α′(a, b, c) =

(
(ΣiV )a+ c iU + (ΣiV )b iU ,−c− (ΣiV )b

)
.

Remark that the maps α and α′ are dual to each other via the pairing φ. In the
following lemma, orthogonal means orthogonal with respect to this pairing.

Proposition 19. [CK08, proposition 3] With the same notations as above, the
following assertions are equivalent:

(i) The triple ([ε], U, V ) belongs to L2(e, f).
(ii) The morphism Σ−1ε is not orthogonal to C(M,ΣL) ∩ Imα′.
(iii) There is an η ∈ C(M,ΣL) such that φ(Σ−1ε, η) 6= 0 and such that if

L
i−→ N

p−→M
η−→ ΣL

is a triangle in C, then there exists E ∈ GrFN with (Fi)−1E = V and
(Fp)E = U .

Proof. Let us start with the equivalence of (i) and (ii). The same proof as that
in [CK08, proposition 3] applies in this setup: Denote by p the canonical projection
of C(Σ−1L,U) ⊕ C(Σ−1L,M) onto C(Σ−1L,M). Then, by [Pal08, lemma 4.2],
assertion (i) is equivalent to Σ−1ε not belonging to p(Kerα). That is, the morphism
Σ−1ε is not in the image of the composition:

q : Kerα −→ C(Σ−1L,U)⊕ C(Σ−1L,M) −→ C(Σ−1L,M).

So (i) holds if and only if Σ−1ε is not in the orthogonal of the orthogonal of the
image of q. The orthogonal of the image of q is the kernel of its dual, which is given
by the composition:

C(M,ΣL) −→ C(U,ΣL)⊕ C(M,ΣL) −→ Cokerα′.

Therefore assertion (i) is equivalent to the morphism Σ−1ε not being in the orthog-
onal of C(M,ΣL) ∩ Imα′ which proves that (i) and (ii) are equivalent.

By [Pal08, lemma 4.2], a morphism in C(M,ΣL) is in the image of α′ if and only
if it satisfies the second condition in (iii). Therefore (ii) and (iii) are equivalent. �

A variety X is called an extension of affine spaces in [CK08] if there is a vector
space V and a surjective morphism X −→ V whose fibers are affine spaces of
constant dimension. Note that extensions of affine spaces have Euler characteristics
equal to 1.

Proposition 20. [CK08, proposition 4]
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a) The projection Ce,f
p1−→ L2(e, f) is surjective and its fibers are extensions

of affine spaces.
b) The projection Ce,f (Y, g)

p2−→ WY
ML(f, e, g) is surjective and its fibers are

affine spaces.
c) If Ce,f (Y, g) is not empty, then we have

n∑
i=1

〈Si, e+ f〉a[Pi]− coind(L⊕M) =
n∑
i=1

〈Si, g〉a[Pi]− coindY.

Proof. Let us first prove assertion a). The projection p1 is surjective by the equiva-
lence of i) and iii) in proposition 19. Let X be the fiber of p1 above some ([ε], U, V )
in L2(e, f). Let V be the set of all classes [η] in P

(
C(M,ΣL) ∩ Imα′

)
such that

φ(Σ−1ε, η) does not vanish. The set V is the projectivization of the complement
in C(M,ΣL) ∩ Imα′ of the hyperplane Kerφ(Σ−1ε, ). Hence V is a vector space.
Let us consider the projection π : X −→ V . This projection is surjective by [Pal08,
lemma 4.2]. Let η represent a class in V , and let Fi, Fp be given by ϕM,L(η). Then
the fiber of π above [η] is given by the submodules E of FY such that (Fi)−1E = V
and (Fp)E = U . Lemma 18 thus shows that the fibers of π are affine spaces of
constant dimension.

Let us prove assertion b). Let ([η], E) be in WY
ML(f, e, g). The fiber of p2 above

([η], E) consists of the elements of the form
(
([ε], U, V ), ([η], E)

)
where U and V are

fixed submodules given by [η] and E, and [ε] ∈ PC(L,ΣM) is such that φ(Σ−1ε, η)
does not vanish. Therefore the projection p2 is surjective and its fibers are affine
spaces.

To prove assertion c), apply [Pal08, lemma 5.1] and remark that if Y ′ belongs
to 〈Y 〉, then Y ′ and Y have the same coindex. �

As a consequence, we obtain the following equalities:

χ(Ce,f ) = χ(L2(e, f)) and χ
(
Ce,f (Y, g)

)
= χ

(
WY
ML(f, e, g)

)
.

We are now able to compute s2 :

s2 =
∑
e,f

χ(L2(e, f))x− coind(L⊕M)
n∏
i=1

x
〈Si,e+f〉a
i

=
∑
e,f

χ(Ce,f )x− coind(L⊕M)
n∏
i=1

x
〈Si,e+f〉a
i by 20 a)

=
∑

e,f,g,〈Y 〉

χ
(
Ce,f (Y, g)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

=
∑

e,f,g,〈Y 〉

χ
(
Ce,f (Y, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i by 20 c)

=
∑

e,f,g,〈Y 〉

χ
(
WY
ML(f, e, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i by 20 b)

=
∑
g,〈Y 〉

χ
(
WY
ML(g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
g,〈Y 〉

χ
(
PC(M,ΣL)〈Y 〉

)
χ(Grg FY )x− coindY

n∏
i=1

x
〈Si,g〉a
i by (∗∗)

=
∑
〈Y 〉

χ
(
PC(M,ΣL)〈Y 〉

)
XY . �
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4. Fu–Keller’s cluster character

In this section, it is proven that the cluster character X ′ defined by C. Fu and
B. Keller, in [FK10], satisfies a multiplication formula similar to that of [GLS07].
Note that the notations used here differ from those of [FK10].

Let k be the field of complex numbers and let E be a k-linear Hom-finite Frobenius
category with split idempotents. Assume that its stable category C is 2-Calabi–Yau
and that E contains a cluster tilting object T . Denote the endomorphism algebra
EndE(T ) by A and recall that the algebra EndC(T ) is denoted by B. The object
T is assumed to be basic with indecomposable summands T1, . . . , Tn where the
projective-injective ones are precisely Tr+1, . . . , Tn. For i = 1, . . . , n, we denote by
Si the simple top of the projective A-module E(T, Ti). The modules in modB are
identified with the modules in modA without composition factors isomorphic to
one of the Si, r < i ≤ n.

4.1. Statement of the multiplication formula. We first recall the definition of
X ′ from [FK10]. For any two finitely generated A-modules L and M , put

〈L , M〉3 =
3∑
i=0

(−1)i dimk ExtiA(L,M).

Proposition [Fu-Keller]: If L,M ∈ modB have the same image in K0(modA),
then we have

〈L , Y 〉3 = 〈M , Y 〉3
for all finitely generated A-module Y .

Therefore, the number 〈L , Si〉3 only depends on the dimension vector of L, for
L ∈ modB. Put 〈dimL , Si〉3 = 〈L , Si〉3, for i = 1, . . . , n.

Recall that F is the functor C(T, ?) from the category C to modB. Denote by G
the functor FΣ ' Ext1

E(T, ?). For a ∈ K0(projA), the notation xa stands for the
product

∏
xai
i , where ai is the multiplicity of [Pi] in a.

Proposition [Fu-Keller] For M ∈ E, define the Laurent polynomial

X ′M = xindM
∑

e∈K0(modA)

χ(Gre(GM))
n∏
i=1

x
−〈e , Si〉
i .

Note that the A-moduleGM does not have composition factors isomorphic to one
of the Si, r < i ≤ n, so that the sum might as well be taken over the Grothendieck
group K0(modB).

Theorem [Fu-Keller] The map M 7→ X ′M is a cluster character on E. It sends Ti
to xi, for all i = 1, . . . , n

For a class ε ∈ Ext1
E(L,M), let mt(ε) be the middle term of a conflation which

represents ε.

Theorem 21. For all L,M ∈ E, we have

χ(P Ext1
E(L,M))X ′LX

′
M =

∫
[ε]∈P Ext1E(L,M)

X ′mt(ε) +
∫

[ε]∈P Ext1E(M,L)

X ′mt(ε).

The proof of this theorem is postponed to section 4.3. The next section is
dedicated to proving that the map sending [ε] to X ′mt(ε) is ”integrable with respect
to χ”.
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4.2. Constructibility. Let L,M be objects in E . For ε ∈ C(L,ΣM), the middle
term in E of the class in Ext1

E(L,M) corresponding to ε will be denoted by mt(ε).
Note that this notation does not coincide with the one in section 1. Nevertheless,
those two definitions yield objects which are isomorphic in C.

Lemma 22. The map

λ : C(L,ΣM) −→ K0(projA)

which sends ε to the index of mt(ε) is constructible.

Proof. Let ε ∈ C(L,ΣM), and let M // i // Y
p // // L be a conflation whose class

in Ext1
E(L,M) corresponds to ε. Let d be the dimension vector of Coker E(T, p).

By the proof of [FK10, lemma 3.4], we have

indY = ind(L⊕M)−
n∑
i=1

〈d , Si〉3[Pi].

Thanks to lemma 10 and lemma 4, the formula above shows that the map λ is
constructible. �

If an object Y occurs as mt(ε) for some ε ∈ Ext1
E(L,M), we let 〈〈Y 〉〉 denote

the set of all isomorphism classes of objects Y ′ ∈ E such that:
• Y ′ is the middle term of some conflation in Ext1

E(L,M),
• indY ′ = indY and
• for all e in K0(modB), we have χ(GreGY ′) = χ(GreGY ).

We denote the set of all ε ∈ C(L,ΣM) with mt(ε) ∈ 〈〈Y 〉〉 by C(L,ΣM)〈〈Y 〉〉. Note
that the set C(L,ΣM)〈〈Y 〉〉 is a (constructible) subset of C(L,ΣM)〈Y 〉.

As for proposition 9, the following proposition follows easily from corollary 6 and
the previous lemma.

Proposition 23. The sets C(L,ΣM)〈〈Y 〉〉 are constructible subsets of C(L,ΣM).
Moreover, the set C(L,ΣM) is a finite disjoint union of such constructible subsets.

This proposition shows that the right hand side in the multiplication formula of
theorem 21 is well-defined.

4.3. Proof of theorem 21. The proof is essentially the same as that in section 3,
where the use of [Pal08, lemma 5.1] is replaced by that of [FK10, lemma 3.4].

Let L and M be two objects in E . Let ε be a morphism in C(L,ΣM)〈〈Y 〉〉 for

some Y ∈ E , and let M −i−→ Y ′
−p−→ L

−ε−→ ΣM be a triangle in C. Remark
that, by section 2.4, the category C has constructible cones. The image of Σε
under ϕΣL,ΣM lifts the orbit of the matrix representation of

−→
A4 in modB given

by GM
Gi // GY ′

Gp // GL
Gε // GΣM . In all of this section, we will take the

liberty of denoting by Gi, Gp and GY ′ the image ϕΣL,ΣM (Σε). Denote by ∆ the
dimension vector dimGL+dimGM . For any non-negative e, f and g in K0(modB),
let WY

LM (e, f, g) be the subset of

PC(L,ΣM)〈〈Y 〉〉 ×
∐
d≤∆

n∏
i=1

Grgi(k
di)

formed by the pairs ([ε], E) such that E is a submodule of GY ′ of dimension vector
g, dim(Gp)E = e and dim(Gi)−1E = f . We let

• WY
LM (g) denote the union of all WY

LM (e, f, g) with e ≤ dimGL and
f ≤ dimGM and

• WY
LM (e, f) denote the union of allWY

LM (e, f, g) with g ≤ dimGL+dimGM .
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Note that, by lemma 17, the sets WY
LM (e, f, g) are constructible.

The fiber above the class [ε] of the first projection WY
LM (g) → PC(L,ΣM)〈〈Y 〉〉

is {[ε]} × Grg GY ′ and thus all fibers have Euler characteristics equal to that of
Grg GY . Therefore we have:

(∗∗) χ
(
WY
LM (g)

)
= χ

(
PC(L,ΣM)〈〈Y 〉〉

)
χ(Grg GY ).

Define L(e, f) to be the variety PC(L,ΣM)×GreGL×Grf GM . Consider the
following map:

∐
〈〈Y 〉〉

WY
LM (e, f)

ψ−→ L(e, f)

([ε], E) 7−→
(
[ε], (Gp)E, (Gi)−1E

)
.

By lemma 10, the map ψ is constructible.
As in section 3, let L1(e, f) be the subvariety of L(e, f) formed by the points in

the image of ψ, and let L2(e, f) be the complement of L1(e, f) in L(e, f).
Using the notations above, we have

PC(L,ΣM)X ′LX
′
M = xind(L⊕M)

∑
e,f

χ(L(e, f))
n∏
i=1

x
−〈e+f,Si〉3
i

For j = 1, 2, denote by σj the term

xind(L⊕M)
∑
e,f

χ(Lj(e, f))
n∏
i=1

x
−〈e+f,Si〉3
i

so that PC(L,ΣM)X ′LX
′
M = σ1 + σ2.

As shown in [CC06], the fibers of ψ over L1(e, f) are affine spaces (see lemma 18).
Therefore we have the following equality between Euler characteristics:

∑
〈〈Y 〉〉

χ(WY
LM (e, f)) = χ(L1(e, f)),

which implies the equality

σ1 =
∑

e,f,〈〈Y 〉〉

χ
(
WY
LM (e, f)

)
xind(L⊕M)

n∏
i=1

x
−〈e+f,Si〉3
i .

If the pair ([ε], E) belongs to WY
LM (e, f, g), then by [FK10, lemma 3.4], we have

ind(L⊕M)−
n∑
i=1

〈e+ f, Si〉3[Pi] = ind(mt(ε))−
n∑
i=1

〈g, Si〉3[Pi]
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and ind(mt(ε)) = indY since the morphism ε is in C(L,ΣM)〈〈Y 〉〉. Therefore,

σ1 =
∑

e,f,g,〈〈Y 〉〉

χ
(
WY
LM (e, f, g)

)
xind(L⊕M)

n∏
i=1

x
−〈e+f,Si〉3
i

=
∑

e,f,g,〈〈Y 〉〉

χ
(
WY
LM (e, f, g)

)
xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑

g,〈〈Y 〉〉

χ
(
WY
LM (g)

)
xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑
〈〈Y 〉〉

∑
g

χ
(
PC(L,ΣM)〈〈Y 〉〉

)
χ(Grg GY )xindY

n∏
i=1

x
−〈g,Si〉3
i by (∗∗)

=
∑
〈〈Y 〉〉

χ
(
PC(L,ΣM)〈〈Y 〉〉

)
X ′Y .

Recall that we denote by φ the duality pairing:

φ : C(Σ−1L,M)× C(M,ΣL) −→ k

(a, b) 7−→ φL,M (a)b

induced by the 2-Calabi–Yau property of C.
Let Ce,f (Y, g) consist of all pairs

(
([ε], U, V ), ([η], E)

)
in L2(e, f)×WY

ML(g) such
that φ(Σ−1ε, η) 6= 0, (Gι)−1E = V and (Gπ)E = U (where Gι, Gπ are given by
ϕΣM,ΣL(Ση)). The set Ce,f (Y, g) is constructible, by lemma 10. Let Ce,f be the
union of all Ce,f (Y, g), where Y runs through a set of representatives for the classes
〈〈Y 〉〉, and g through K0(modB). We then consider the following two projections

Ce,f

ρ1

��

and Ce,f (Y, g)

ρ2

��
L2(e, f) WY

ML(f, e, g).

As shown in section 3, the projections ρ1 and ρ2 are surjective. Moreover, by
[FK10, lemma 3.4], if Ce,f (Y, g) is not empty, then we have

ind(L⊕M)−
n∑
i=1

〈e+ f, Si〉3[Pi] = indY −
n∑
i=1

〈g, Si〉3[Pi].

As a consequence, we obtain the following equalities:

χ(Ce,f ) = χ(L2(e, f)) and χ
(
Ce,f (Y, g)

)
= χ

(
WY
ML(f, e, g)

)
.
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We are now able to compute σ2 :

σ2 =
∑
e,f

χ(L2(e, f))xind(L⊕M)
n∏
i=1

x
−〈e+f,Si〉3
i

=
∑
e,f

χ(Ce,f )xind(L⊕M)
n∏
i=1

x
−〈e+f,Si〉3
i

=
∑

e,f,g,〈〈Y 〉〉

χ
(
Ce,f (Y, g)

)
xind(L⊕M)

n∏
i=1

x
−〈e+f,Si〉3
i

=
∑

e,f,g,〈〈Y 〉〉

χ
(
Ce,f (Y, g)

)
xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑

e,f,g,〈〈Y 〉〉

χ
(
WY
ML(f, e, g)

)
xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑

g,〈〈Y 〉〉

χ
(
WY
ML(g)

)
xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑

g,〈〈Y 〉〉

χ
(
PC(M,ΣL)〈〈Y 〉〉

)
χ(Grg GY )xindY

n∏
i=1

x
−〈g,Si〉3
i

=
∑
〈〈Y 〉〉

χ
(
PC(M,ΣL)〈〈Y 〉〉

)
X ′Y .

�
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