(ORBIT) CONFIGURATION SPACES AND HOMOTOPY FIBRES

JOHN GUASCHI

Laboratoire de Mathématiques Nicolas Oresme UMR CNRS 6139, Université de Caen Normandie Email : john.guaschi@unicaen.fr

ABSTRACT. We study some topological aspects of configuration spaces. If M is a surface, the fundamental group of the n^{th} configuration spaces $F_n(M)$ is the *n*-string pure braid group $P_n(M)$ of M. In the cases where M is the 2-sphere \mathbb{S}^2 or the real projective plant $\mathbb{R}P^2$, $F_n(M)$ is particularly interesting, since its higher homotopy groups coincide with those of \mathbb{S}^2 (and \mathbb{S}^3). We study the natural inclusion ι of $F_n(M)$ into the *n*-fold Cartesian product M^n , and we prove that its homotopy fibre is the Cartesian product of an (orbit) configuration space with a product of loop spaces of \mathbb{S}^2 . This enables us to determine the homomorphisms that occur in the long exact sequence of the homotopy fibration of ι . This is joint work with Daciberg Goncalves (São Paulo).