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1 Introduction

The overall context of this work is the design of efficient open boundary condi-
tions (OBCs) for limited area models of the ocean circulation. In these limited
areas, complex systems of equations are solved using a high resolution grid.
On the artificial boundaries, boundary conditions with some available exter-
nal information, must be prescribed. Such external information is generally
available from previous simulations of large scale low resolution models. Ide-
ally, the OBC must evacuate the outgoing information reaching the boundary,
and must take into account the incoming part of the external information.

Several OBCs for different equations have been proposed in the past. The
most recent ones rely on Absorbing Boundary Conditions (see Blayo and
Debreu [2005] for a review of methods in oceanographic context). In this
paper, we intend to analyse such conditions from a mathematical point of
view on a model problem, and to propose improvements.

For f in C2([0, 1]), we are interested in computing the finite difference
approximation of the solution of :











Lu = f on (0, 1),

u(0) = 0,

u(1) = 0,

(1)

where L := − d2

dx2 + α is a diffusion operator with α a positive scalar. Note
that other boundary conditions can be considered without changing the main
results of the paper.

The interval [0, 1] is discretized with the uniform mesh (xi)0≤i≤2N such as
xi−xi−1 = h = 1

2N , x0 = 0 and x2N = 1. We also consider the coarse mesh :
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(x2i)0≤i≤N and we denote by I the interpolation operator which is defined
from the coarse grid to the fine grid.

We denote by LH (resp. Lh) the classical three points discrete opera-
tor corresponding to (1) on the coarse (resp. fine) grid. These two opera-
tors are consistent with L and are second order accurate. We assume that
a coarse grid solution has already been computed, that will be denoted
Uext = (Uext

0 , · · · , Uext
2i , · · · , Uext

2N ) ∈ R
N+1 in the following. Thus Uext is

solution of










LHUext = fH ,

Uext
0 = 0,

Uext
2N = 0.

Let assume that we are interested in obtaining a more accurate solution, de-
noted U loc, on a local domain Ωloc = (0, x2i0). We introduce the boundary
operators Bh and BH which come from the discretization of the same dif-
ferential operator but Bh is defined on the fine grid, whereas BH is defined
on the coarse one. We propose to solve the following problem which uses the
informations provided by the exterior problem :











LhU
loc = fh,

U loc
0 = 0,

BhU
loc = BHUext + g,

(2)

with U loc = (U loc
0 , U loc

1 , · · · , U loc
2i0−1, U

loc
2i0

) ∈ R
2i0+1, the local solution.

The boundary condition is said “exact“ if U loc coincides with the reference
solution U ref = (U ref

0 , U ref
1 , · · · , U ref

2N ) ∈ R
2N+1 defined by















LhU
ref = fh,

U ref
0 = 0,

U ref
2N = 0.

A first choice for Bh and BH corresponds to a Dirichlet condition :

BhW = W2i0 , BHW = W2i0 , g = 0. (3)

A more efficient choice appears in Flather [1976] : he proposes to use a Som-
merfeld condition, which is an absorbing boundary condition for the wave
equation. In a more general context, it can be interpreted as :

Bh = Ah, BH = AH , g = 0, (4)

where Ah (resp. AH) denotes an absorbing boundary operator discretized on
the fine (resp. coarse) grid at x2i0 .
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The purpose of this paper is to identify the “exact” boundary condi-
tion, that means we want to find Bh, BH and g such that U loc = U ref

|Ωloc

=

(U ref
0 , U ref

1 , · · · , U ref
2i0−1, U

ref
2i0

).
In Section 2 we build such an exact condition, by relying on ABCs for

an equation with non zero right hand side. The performance of the method
is illustrated by numerical results. In section 3 we propose a variant of the
previous OBC which is theoretically simpler but is more demanding in terms
of numerical computations. Numerical results are given for the 1-D Shallow
Water equations.

2 New Open Boundary Conditions

The subsection 2.1 provides a result which will be useful to the building of
the exact OBC.

2.1 Transparent boundary condition for an equation

with right hand side

The most common boundary conditions introduced to solve such an open
problem are the absorbing boundary conditions (ABC) (see e.g. Engquist
and Majda [1977]). However, these conditions are generally computed when
the support of the source term is strictly included in Ωloc, which is not the
case here. We thus need to revisit the ABC for an equation with a non zero
right hand side.

Theorem 1. Let w0 be a real number and F be in L2(x2i0 , 1). If w is the

solution of the following equation :











Lw = F on (x2i0 , 1),

w(x2i0 ) = w0,

w(1) = 0,

(5)

then w satisfies the following boundary condition :

w′(x2i0 ) + λw(x2i0 ) = p, (6)

where λ = − z′(x2i0
)

z(x2i0
) , p =

∫
1

x2i0

F(σ)z(σ)dσ

z(x2i0
) and z(x) = e

√
α(1−x) − e−

√
α(1−x).
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2.2 Exact Open Boundary Condition

In order to find the exact OBC for problem (2), we consider the equation for
the error :















Lh(U
ref

|Ωloc − U loc) = 0,

U ref
0 − U loc

0 = 0,

Bh(U
ref − U loc) = BhU

ref −BHUext − g,

(7)

so that if we can find Bh, BH and g such that :

BhU
ref −BHUext = g, (8)

then by linearity and by uniqueness of the solution, we have U loc = U ref

|Ωloc .

In order to find such Bh, BH and g, we will interpret the Theorem 1 at
the discrete level : U ref − IUext and F = Lh(U

ref − IUext) will play the role
of w and F .

More precisely, the operators Bh and BH will be an approximation of
the absorbing boundary operator d

dx
+ λ. We propose to use a finite volume

scheme to discretize the derivative : if u is solution of Lu = f , then u′ can
be approximated at point xi by D−

h (U)i = (αh2 + 1
h
)Ui − 1

h
Ui−1 − h

2 f(xi) or
by Dc

h(U)i =
1
2h (Ui+1 − Ui−1).

We propose then to use the following operators :

BhU
loc = D−

h (U
loc)2i0 + λU loc

2i0 , BHUext = Dc
h(IU

ext)2i0 + λUext
2i0 . (9)

In order to find g, we need to know F = Lh(U
ref − IUext). That is the

purpose of the next theorem.

Theorem 2. Let f be in C2([0, 1]). Then, the exterior error projected on the

fine grid, U ref − IUext, satisfies :

Lh(U
ref − IUext) = Fh +O(h4),

with Fh = F 1+h2F 2− h2

2 F 3. The even and odd components of F i are defined

by :

F 1 =









· · ·
u′′(x2i)

−u′′(x2i+1)
· · ·









, F 2 =









· · ·
cu(4)(x2i)

−cu(4)(x2i+1)
· · ·









and F 3 =









· · ·
0

u(4)(x2i+1) + f ′′(x2i+1)
· · ·









, with c a constant.

We are now in position to propose a right hand side :
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g =
Th(F̃

h)

z(x2i0)
, (10)

where (F̃h
2i)i0≤i≤N = (Fh

2iz(x2i))i0≤i≤N and Th(Z) is the trapezoidal rule to

integrate the vector Z : Th(Z) = h
2 (Z2i0 + Z2N) + h

∑2N−1
i=2i0+1 Zi. The term

g will be handled in the next subsection.
The OBC defined by (9)-(10) will be named (ABC)g whereas the one

defined by (9) and g = 0 (corresponding to (4)) will be named (ABC). This
last condition is the one which is usually used in oceanographic context.

2.3 Approximation of g

This section deals with the approximation of g given in (10). Vectors F 1 and
F 2 have similar patterns : Lemma 1 explains how to integrate them, whereas
F 3 is integrated thanks to Lemma 2.

Lemma 1. Let w be a C4([a, b]) function and (xi)0≤i≤2N be a mesh of [a, b]
with xi+1−xi = h. Integrating W = (w(x0),−w(x1), w(x2), · · · ,−w(x2N−1), w(x2N ))

by a trapezoidal rule gives h2

4 (w′(x2N )− w′(x0)) +O(h3).

Lemma 2. Let w be a C4([a, b]) function and (xi)0≤i≤2N be a mesh of [a, b]
with xi+1 − xi = h. Integrating W = (0, w(x1), 0, · · · , w(x2N−1), 0) by a

trapezoidal rule gives 1
2

∫ b

a
w(t)dt+O(h).

We are now in position to compute g given in (10). We have Th(F̃
h) =

Th(F̃
1) + h2

2 Th(F̃
2)− h2

2 Th(F̃
3) with

Th(F̃1) =
h2

4
((u′′z)′(x2N )− (u′′z)′(x0)) +O(h3),

Th(F̃2) = O(h2),

Th(F̃3) =
1

2

∫ 1

x2i0

(u(4)z + f ′′z)(σ)dσ +O(h).

On (x2i0 , 1), we only know Uext, so u will be approximated in this formula
by IUext. The last term which is an integral, will be approximated by a
trapezoidal rule. We also use the equation αu − u′′ = f to make the fourth
order derivative term to disappear. We finally obtain :

g =
h2

4z(x2i0)

(

(αD−
h (IU

ext)2N − f ′(x2N ))z(x2N ) + (αUext
2N − f(x2N ))z′(x2N )

− (αDc
h(IU

ext)2i0 − f ′(x2i0 ))z(x2i0 )− (αUext
2i0 − f(x2i0))z

′(x2i0 )

− α2Th((U
ext
2i z(x2i))i0≤i≤N ) + αTh((f(x2i)z(x2i))i0≤i≤N )

)

.

(11)
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2.4 Numerical Results

In this section α is equal to 10 and f is chosen such that u(x) = sin(2πx)
is the exact solution of (1). Figure 1 shows the difference between the exact
solution and the numerical one on the coarse and fine grids (exterior error
and reference error). For several locations of the interface we can also see
the solution obtained with a Dirichlet (3), (ABC) (4) or (ABC)g (9)-(11)
conditions. We first observe that without correction, the (ABC) solution in
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Fig. 1 Error between the exact solution and the numerical one for the interface at x2i0
=

0.24, x2i0
= 0.44 and x2i0

= 0.64.

not systematically better than the Dirichlet solution. Then we can see that the
corrected condition (9) provides a solution which is as good as the reference
one.

3 Variant for the Open Boundary Condition

3.1 Principle

The method presented in the previous section gives very good results. How-
ever for more complex equations, the right hand side (11) can not be easily
computed. That is why we propose now another way to get this perturbed
term. We first remark that the exact condition (8) is not unique : for every
choice of Bh and BH , we can build a corresponding g such that the condition
is exact. Choosing Bh and BH to be absorbing boundary operators leads
however to a g that does not depend on U ref . If we choose Bh equal to the
identity, i.e. if we consider a Dirichlet condition, then g will depend on U ref :
g = U ref

2i0
− Uext

2i0
and we propose to approximate this term by a Richardson

type procedure. Because the numerical scheme is second order accurate, we
have :

U ref
i = u(xi) + h2c(xi) +O(h4),

Uext
i = u(xi) + 4h2c(xi) +O(h4),



Open Boundary Conditions for Fluid Dynamic Problems 7

which yields g = U ref
2i0

− Uext
2i0

= −3h2c(x2i0 ) + O(h4). If we now solve the

equation on even a coarser grid with a 4h space step, let UEXT denotes this
solution, then we have :

Uext
2i0 − UEXT

2i0 = −12h2c(x2i0 ) +O(h4).

We propose then to approximate g by (Uext
2i0 − UEXT

2i0 )/4.
Numerical tests have been implemented for the Laplacian model prob-

lem and show that this perturbed Dirichlet condition gives the same very
good results as the (ABC)g condition. In the next section, we implement this
strategy for the linear 1-D Shallow Water equations.

3.2 Numerical Results for the linear 1-D Shallow

Water equations

In this section we consider the open boundary problem for the following
equations :























































∂u

∂t
+ u0

∂u

∂x
+ g

∂h

∂x
+ ru = 0 on (−L,L)× (0, T ),

∂h

∂t
+ u0

∂h

∂x
+ h0

∂u

∂x
+Gxu = 0 on (−L,L)× (0, T )

(

√

h0

g
u+ h)(−20, ·) = 0 and (

√

h0

g
u− h)(20, ·) = 0 on (0, T ),

u(·, 0) = 0 and h(·, 0) = 1

4 + 2 cosh(x+5
2 )

on (−L,L),

where u0, Gx, r and g are constants. We make the assumptions u0 + c > 0
and u0 − c < 0, where c =

√
gh0 so that there are two characteristics :

1
2 (u

√

h0/g+ h) travels with the positive velocity u0 + c and 1
2 (u

√

h0/g − h)
travels with the negative velocity u0 − c.

The parameters for the numerical experiment are : L = 20, h0 = 25 m,
c = 16 m.s−1, u0 = 0.1 m.s−1, r = 3.10−3s−1, g = 10 m.s−2 and Gx = 0.095.
The interface is at x2i0 = −13 and we can see on Figure 2-left that a wave
enters the local domain (−20,−13) during the experiment.

Figure 2-right shows the logarithm of the error on the local domain
(−20,−13) between a very fine solution and several numerical ones : exte-
rior solution (coarse grid) and reference solution (fine grid). This figure also
shows the error when the local solution is computed with (4) where Bh and
BH are the operators corresponding to the incoming characteristics and when
this boundary condition is perturbed by a g obtained by a Richardson proce-
dure (see Section 3.1). We can see again that this last method gives a result
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Fig. 2 Left panel : solutions at several instants. Right panel : logarithm of the error in

the local domain at t = 0.72.

very close to the reference solution while the classical ABC (characteristics)
improves just a little bit the coarse solution.

4 Conclusion

For the very simple case of the Laplace equation, we have properly designed
an exact open boundary condition (8). More precisely, we have emphasized
the necessity to correct the usually used absorbing boundary conditions. We
have performed all the exact computations and we have obtained very good
results. If one is ready to solve the exterior problem with a very coarse grid,
one can easily compute numerically the corrected term. We have shown such
encouraging numerical results for the linear Shallow Water equations.
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