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1 Introduction

In many applications the viscous terms become only important in parts of the
computational domain. A typical example is the flow of air around the wing
of an airplane. It can then be desirable to use an expensive viscous model only
where the viscosity is essential for the solution and an inviscid one elsewhere.
This leads to the interesting problem of coupling partial differential equations
of different types.

The purpose of this paper is to explain several coupling strategies devel-
oped over the last decades, and to introduce a systematic way to compare
them. We will use the following simple model problem to do so:

Logu = —vu'" +au +cu=f in 2= (—Ly, L),
Biu = g1 onx=—L, (1)
Bou = go on x = Lo,

where v and ¢ are strictly positive constants, a,g1,92 € R, f € L2*(2),
Ly,Ly > 0 and Bj, j = 1,2 are suitable boundary operators of Dirichlet,
Neumann or Robin type. If in part of (2, the diffusion plays only a minor
role, one would like to replace the viscous solution v by an inviscid approx-
imation, which leads to two separate problems: a viscous problem on, say,
27 := (—=L1,z0 + ), where ¢ stands for the size of the overlap and z the
position of the interface,

Ladqtad = f in Q_v
Bitad = g1 onxz=—L1,

(2)
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and a pure advection reaction problem on 2% := (zg, La),
Latg := au,, + cug = f in 2F. (3)

Coupling conditions for (2) and (3) need then to be chosen to connect the
two subproblems. In order to compare the quality of the various coupling
strategies, we propose to use as a measure how close the coupled solution
is to the fully viscous solution of (1). The idea behind this quality measure
is that in principle the viscosity should be taken into consideration every-
where, and so it is the viscous solution that we are interested in. However,
for computational savings, one would like to use a simpler, non-viscous model
whenever the viscosity does not play an important role.

We describe in this paper in detail several coupling strategies, and compare
them by testing how close the coupled solution is to the fully viscous one: in
Section 2 we present an overlapping coupling method based on optimization.
In Section 3 we present several non-overlapping coupling strategies based on
coupling conditions at the interface between the two regions. In both sections,
the position of the interface needs to be known a priori. This is in contrast
to Section 4, where we present an adaptive coupling strategy which detects
the partition into viscous and non-viscous regions automatically.

2 Methods based on overlap and optimization

In this section, we present a very general overlapping coupling strategy that
was proposed in Dinh et al. [1988], where the authors considered as the viscous
model the incompressible Navier-Stokes equations, while the inviscid model
was the potential equation (the assumption of a small vorticity is made).

For the model problem (1), the coupling strategy works as follows: in each
subdomain, we solve the corresponding equation with a Dirichlet condition
at the artificial interface,

Uad(zo +0) = A1 and if a > 0, ug(zg) = Ag,
and then determine (A1, \2) to be a solution of the optimization problem
Jo(A1, A2) := ||eaa — uaH%z(%mH) — min.

The authors in Dinh et al. [1988] solve this optimization problem using a
gradient type method, so that the adjoint equation also needs to be computed.

This coupling strategy based on optimization has been studied mathemat-
ically in Gervasio et al. [2001] and Agoshkov et al. [2006] for our model prob-
lem in 2D, see also Discacciati et al. [2010] for a complete description of the
algorithms for the model problem, and also for the coupling of Navier-Stokes
equations with a Darcy model, or the coupling of the Stokes and potential
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equations. In Agoshkov et al. [2006] other cost functionals to be minimized
are proposed, namely

a
Jo(A1, A2) = [[tag = Uall T2 (ag 00 +0) T 5 (A +0(@)A3),

where o(a) is 0 for a < 0 and 1 for a > 0, or

G3( M, A2, A3) = [ltad = UallT2(ng 2o1s) T A+ 0(@)A3 + MW 7200 20-46):

where the equation L,u, = f + w3z is solved in (xg, L2) with w a smooth
function such that 0 < w(z) < 1in 2 and w = 0 outside the overlap.

In order to compare the quality of these coupling strategies, we com-
pute numerically the error between the viscous and the coupled solution
as a function of the viscosity for the case Ly = Ly = 1, xp = —0.6,
fz) = e 1000@+D* and ¢ = 1. We use a centered finite difference scheme to
discretize the two differential operators, with mesh size 2 x 107°. We con-
sider the case of a positive velocity, a = 1, with g; =0, go = 0, B; = Id and
By = 0, — (a — Va? + 4ve) /2v (the absorbing boundary operator) and the
case of a negative velocity, a = —1, with g1 = 0, go = 0, By = Id and By = Id.
In all experiments, the error in the advection domain ||u — ug|| o+ is O(v) for
all coupling strategies, which is natural, since the advection equation is used
instead of the advection-diffusion equation. The numerical error estimates for
the overlapping techniques in the viscous domain {2~ are summarized in Ta-
ble 1. We see that for a > 0 and small overlap, the cost functions Jy and G3

a>0 a<0
Small Overlap|Large Overlap||Small Overlap|Large Overlap
Jo| O@W5/?) O(3/2) O(v) O(v)
Jo| O@Y?) OW3/?) O(v) O(v)
Gs| O@W*/?) O@W3/?) O(v) O(v)

Table 1 Overlapping coupling with optimization: numerically computed error estimate
for ||u — ugall - (we chose oo = 0.5 in Jq)

provide a better coupling, since they lead to coupled solutions substantially
closer to the viscous one than J,. For large overlap, the accuracy is similar
for all cost functions used. For a < 0, all coupling strategies give a result
O(v), since information is coming from the inviscid approximation in 2% to
27, and in 27 the error |[u — u,| o+ is O(v).

The non overlapping case § = 0 is also considered in Gervasio et al. [2001],
namely

Jo,5(A1, A2) = a(tad(mo) — ua(0))? + B(gr — ¢2)?,

where ¢1 = —vul ,(z0) + auqa(zo) and @2 = aus(xo) (see Section 3.1) and
«, B are 0 or 1. Using the same numerical setting, we obtain for v small the
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a>0 [a<0
(@) (uad (x0) — ua(20))? + (¢1 — $2)?|OW*/?)|O(v)
(¢1 — ¢2)? ow'/?)|O®w)
(uqd(®0) — ua(z0))? ow'/?)|O®w)

Table 2 Non overlapping case with optimization: numerically computed error estimates
for [lu — uqqll o~

error estimates shown in Table 2. We observe that for positive advection, the
coupled solution obtained without overlap and optimization is also dependent
on the functional used, and in general inferior to the case with overlap.

3 Methods based on coupling conditions

From now on we assume that there is no overlap, 6 = 0. The coupling tech-
niques in this section are based on coupling conditions, and we will present
three strategies: the first one is based on singular perturbation, the second
one on boundary layer corrections, and the last one on the factorization of
the operator.

3.1 Coupling conditions from singular perturbation

In Gastaldi and Quarteroni [1989/90] the authors propose to find coupling
conditions for (2) and (3) by introducing a regularization of the inviscid
problem using a small artificial viscosity €. They thus consider

—vw! +aw. +cwe = f on (—L1,x),

(4)

—ev! + avl + cv. = f on (xg,La).

This coupling problem which involves two elliptic equations needs to be com-
pleted by two boundary conditions. The first one simply states continuity of
the solution: w,(zp) = vc(zp). For the second one, two choices are possible :
we can impose the continuity of the normal flux, vw.'(z¢) = ev’(zp) (such
boundary conditions are called variational conditions) or we impose the con-
tinuity of the normal derivative, w.'(zg) = v.'(xg) (called non variational
conditions). Letting € tend to 0, it has been rigorously proved in Gastaldi
and Quarteroni [1989/90] that we (resp. v.) tends to ugq (resp. uq). At the
boundary, with the variational conditions, the limiting solution satisfies

(—vuly + atgq) (o) = aue (o), Uad(z0) = ua(zo) for a >0,

(5)

(—Vugq + auqa)(zo) = auq(zo), for a <0,
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while the non variational conditions lead to

Uad(T0) = ua(wo), uLg(wo) = ul(xg), for a >0,

(6)

Uad(T0) = uq(x0), for a < 0.

Rigorous error estimates comparing the coupled solutions obtained with these
approaches were obtained in Gander et al. [2009], and they are summarized
in Table 3, where we observe that the non variational conditions lead to
a better coupled solution for positive advection than the variational ones,
while for negative advection, again there is no difference between the two
approaches. Finally, it has been proved in Discacciati et al. [2010] that the

a>0 la<O0
Variational Conditions O3/ OW)
Non Variational Conditions|O(v®/2)| O(v)

Table 3 Variational versus non-variational coupling conditions: theoretical error estimates
for [lu — uqall -

coupling problem with variational conditions is equivalent to the problem
using optimization on o(a)(uea(0) — ua(0))? + (¢1 — ¢2)?; our observation
is thus consistent. Note that the other non-overlapping coupling conditions
based on optimization yield less accurate coupled solutions.

3.2 Coupling through boundary layer correction

A different approach, only adding a correction for the boundary layer, was
proposed in Coclici et al. [2000]. Here, the authors define the coupled solu-
tion of interest to be the solution of the regularized problem (4), and they
consider the variational solution obtained from (5) as a first approximation
of the regularized one. More precisely the coupled solution is represented as
a perturbation of the variational solution in the form

wﬁ(,r) = uad(x) + Te(x),
V() Ua () + 1 () + sc(z),

where [, is a boundary layer function and r. and s. are the remainders of the
asymptotic expansion. The boundary layer term can be computed analyti-
cally, but integrals that are involved are then approximated numerically. The
numerical solution does not take into account the remainders r. and s. and
thus, compared to the solution obtained with (5), the pure advection solution
in 21 is the only one to be corrected.
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3.8 Coupling conditions from operator factorization

A very accurate set of coupling conditions can be derived from an operator
factorization, see Gander et al. [2009], and requires the solution of a modified
advection equation: if we introduce A* = (a & v/a? + 4vc)/2v, the advection
diffusion equation can be factored, i.e.

Laqu = (05 = AT)(0s = AT Ju=f,

which gives after integration on (xq, L)

Lo
(896 — )\7)’[1,(1'0) = (az — )\*)U(L2)67A+L2 + f(O')ef)‘JrodO'.

o

Introducing the new advection equation (9, — AT)i, = f, we find that the
viscous solution satisfies

(9 — A (o) = (o) + (9 — A )u(Ls) — a(La))e > 2. (7)

Solving the advection-diffusion equation in {2~ with the boundary condi-
tion (7) (replacing u by u.q on the left hand side) would thus yield the exact
coupled solution, i.e. ujg- = usq. However the term in Ly can not be used
directly, and one chooses instead 4 (L2) to be an expansion of (0, — A~ )u(L2)
for v small, so that the proposed coupling condition is

(0z — AN )uad(xo) = o (x0). (8)

This leads to the coupling procedure

1. Solve the new advection equation (9, — AT)a, = f on (zg,Ls) with
Ug(L2) = 20 + z1v + - - + O(¥™).

2. Solve the advection-diffusion equation on (—L1, zg) with the transmission
condition (8).

3. Solve the advection equation (3) on (g, L2) with the condition uqq(z¢) =
ua(xo) if @ > 0.

For our model problem, rigorous error estimates obtained in Gander et al.
[2009] are shown in Table 4. We see that this coupling strategy leads to a
coupled solution which is much closer to the fully viscous one than any of
the other strategies. Even in the case of negative advection, one can now
obtain approximations more accurate than O(v). Note however that AT are
simple constants only in the stationary one dimensional case. In the case of

a>0 |a<0
Factorization of the operator|O(e~*/¥)|O(¥™)

Table 4 Coupling based on factorization: theoretical error estimates for ||u — uqql| o
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evolution, or for higher dimensions, the A* need to be approximated (see for
example Gander et al. [2011]).

4 The x-formulation

A very different approach for coupling viscous and inviscid problems is pro-
posed in Brezzi et al. [1989]: the method called x-formulation decides auto-
matically where the viscous model and where the inviscid one needs to be
used, and solves the equation

—vx(u’) +au +cu=f on (—Ly, La),
u=g1  onx=—L,

Bu=20 on x = Lo,

where the y function is defined by

0 0<s<d—o,
x(s) = (5—5—1—0)3 d—0<s<§,
S s >0,

so that the diffusion term is neglected as soon as it is small enough. This
leads however to a non-linear equation, even if the underlying models are
linear, which requires a Newton type algorithm.

In Brezzi et al. [1989], the method is studied for the model problem at
the continuous level, and well posedness is proved. Several years later, in
Achdou and Pironneau [1993] and Lai et al. [1998], this strategy is used to
solve the Navier-Stokes equations. Note that other cut-off functions can also
be considered. We show in Table 5 numerically computed error estimates for
the y-formulation applied to our model problem.

a>0 |la<0
|X—f0rmulation oW O(v)

Table 5 x-formulation: numerically computed error estimate for ||u — ugqll -

5 Conclusions

For a positive velocity a, among all the strategies presented in this paper, the
best coupling condition is provided by the factorization of the operator in the
non overlapping case: the error between the corresponding coupled solution
and the full viscous solution is exponentially small. Good algebraically small
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errors of O(1°/?) can also be obtained: in the overlapping case by optimization
on Jy and G5 with a small overlap, and in the non overlapping case using the
non variational conditions (6), or with the x-formulation. The other strategies
yield less accurate error estimates. When a < 0, the factorization method is
the only one to provide a better estimate than O(v).
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