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Definitions
Long’s theorem in type A

Artin groups

Let W be a finite irreducible Coxeter group of rank n ≥ 2 :

W ⊂ GLn() and W is generated by a set R of reflections.
There is a corresponding hyperplane arrangement and hyperplane
complement

A = {Ker(s − 1) | s ∈ R}

X = Cn \
⋃
A

I P = π1(X ) pure Artin group

I B = π1(X/W ) Artin group

1 → P → B → W → 1

I B is torsion-free

I Z (B) = Z (P) ' Z
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Definitions
Long’s theorem in type A

Type A : Long theorem

When W = Sn+1 then B is the braid group on n + 1 strands.

Let G be the braid group or the pure braid group.

Theorem (Long, 1985)

If N1,N2 C G

and N1,N2 6⊂ Z (G ) then

N1 ∩ N2 6⊂ Z (G )
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Definitions
Long’s theorem in type A

Consequences of Long’s theorem

I If G ' X × Y ,

then X ⊂ Z (G ) or Y ⊂ Z (G )

I If R1,R2 ∈ Rep(G ) then

KerR1 ⊕ R2 ⊂ Z (G ) ⇒ KerR1 ⊂ Z (G ) or KerR2 ⊂ Z (G )

Example on 4 strands : Burau faithful iff Hecke faithful.

I R ∈ Rep(G ),

N C G such that N 6⊂ Z (G )

R faithful ⇔ RN&RZ(G) faithful

Example : the pure braid group admits a free normal
subgroup not included in the center.

Using the same ideas, Long proved that the Frattini subgroup
Φ(G ) (= intersection of the proper maximal subgroups) is trivial.
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Definitions
Long’s theorem in type A

Generalizations ?

The proof of Long relies upon the Nielsen-Thurston classification,
and the result also holds for mapping class groups.

Idea : if Ni C G and Ni 6⊂ Z (G ) then Ni contains “many”
pseudo-Anosov maps. Then take (ϕ1, ϕ2) for suitable
pseudo-Anosov ϕi ∈ Ni .

Only one consequence had been generalized to Artin groups :

Theorem (L.Paris 2004)

If B ' X × Y then X ⊂ Z (B) or Y ⊂ Z (B).

L.Paris used combinatorical methods. These methods do not
extend to subgroups.
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Statement
Consequences
Sketch of proof

Density theorem

Artin groups are known to be linear by work of Bigelow and
Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all
types.

Theorem (I.M. 2006)

There exists N ≥ 2, K a (infinite) field, and R : B ↪→ GLN(K )
such that R(B) = GLN(K ) (Zariski-topology).

Assume N ≥ 2.

Definition
G < GLN(K ) torsion-free is called strongly linear (s.l.) if
G ⊃ SLN(K ).

Theorem implies that B is strongly linear.
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Strongly linear groups : hereditary properties

Definition
G < GLN(K ) torsion-free is called strongly linear (s.l.) if
G ⊃ SLN(K ).

I If G is strongly linear, then Z (G ) ⊂ K×

I If G is strongly linear, H C G and H 6⊂ Z (G ), then H is
strongly linear.

I If G is strongly linear, H < G has finite index, then H is
strongly linear.

Theorem implies that “many” subgroups of B are strongly linear.
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Strongly linear groups : consequences

Definition
G < GLN(K ) torsion-free is called strongly linear (s.l.) if
G ⊃ SLN(K ).

I If G is strongly linear and N1,N2 C G with N1 ∩ N2 6⊂ Z (G ).
→ generalization of Long’s theorem.

I If G is strongly linear and G ' X × Y then X ⊂ Z (G ) or
Y ⊂ Z (G ).
→ generalization of Paris theorem

Thus the same consequences as Long theorem :

I If R1,R2 ∈ Rep(G ) then

KerR1 ⊕ R2 ⊂ Z (G ) ⇔ KerR1 ⊂ Z (G ) or KerR2 ⊂ Z (G )

I If R ∈ Rep(G ) and N C G with N ⊂ Z (G )

R faithful ⇔ RN&RZ(G) faithful
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G ⊃ SLN(K ).

I If G is strongly linear and N1,N2 C G with N1 ∩ N2 6⊂ Z (G ).
→ generalization of Long’s theorem.

I If G is strongly linear and G ' X × Y then X ⊂ Z (G ) or
Y ⊂ Z (G ).
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Strongly linear groups : nilpotence

Remark
Nilpotent groups cannot be strongly linear.

Consequences :

I If G is strongly linear, its Fitting subgroup is trivial.

I The Frattini subgroup of B is trivial.

Proof
B linear finitely generated implies that Φ(B) is nilpotent (Platonov
theorem).

Since Φ(B) C B it follows that Φ(B) ⊂ Z (B).
Through the length morphism ` : B → Z we get maximal
subgroups `−1(pZ) for all p. Hence

Φ(B) ⊂ Z (B) ∩Ker` = {e}
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The Krammer representations

Let L = Q[q, q−1, t, t−1].

Theorem (Krammer & Bigelow + Digne & Cohen-Wales)

If B is of type ADE, there exists RK : B ↪→ GLN(L) with N = #R
such that (RK )q=t=1 : B

��@
@@

@@
@@

@
// GLN(Q)

W
permutation on R

::uuuuuuuuu

And it is known (e.g. by Crisp 2000) that for all B there exists B ′

of type ADE such that B � � //

��

B ′

��
W � � // W ′

commutes.
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Localization

Let M = C[[h]],

K = C((h)), and m ∈ C.
One can L M by

q 7→ eh

q 7→ emh

for m 6∈ Q. Then RK : B ↪→ GLN(M) ⊂ GLN(K ).

Interlude
This proves the residual torsion-free nilpotence hence the
biorderability of P, because RK (P) is a subgroup of

GLo
N(M) = {X ∈ GLN(M) | X ≡ 1 mod h}

which has this property.
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Reduction to type ADE

I Types B have finite index in type A.

I Types I2(m) are handled separately, using the Burau
representation.

We are thus reduced to types ADE plus a few exceptional ones.

Now we start from R : B ↪→ GLN(M) for some N. If
B =< σ1, . . . , σn >, let H =< σ2

1, . . . , σ
2
n >. It is sufficient to

show that R(H) = GLN(K ).
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Main steps

We have R(σ2
i ) = 1 + h . . . , so we can define ui = log R(σ2

i )
modulo h, in glN(C).

Lemma

LieR(H) ⊃< u1, . . . , un >Lie ⊗CK

Proposition

< u1, . . . , un >Lie= glN(C)

This implies the theorem.
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For a given B

In fact ui ∈ glN(Z[m]). Then the proposition is true

as soon as dimC < u1, . . . , un >Lie≥ N2 for one m ∈ C,
as soon as dimQ < u1, . . . , un >Lie≥ N2 for one m ∈ Q,
as soon as dimFp < u1, . . . , un >Lie≥ N2 for one m ∈ Z and one
prime p.

By direct computation this proves the theorem for small and
exceptional types.
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Types ADE

Let E =< vs ; s ∈ R > as a Q-vector space, and m ∈ Q.
We define ts ∈ End(E ) by

ts .vs = mvs

ts .vu = vu if su = us, s 6= u
ts .vu = vsus − vs if su 6= us

Let si ∈ W be the image of σi ∈ B.

Lemma
ui = tsi

Lemma
< tsi |1 ≤ i ≤ n >Lie=< ts | s ∈ R >Lie

Prop

< ts | s ∈ R >Lie= gl(E )

By induction on the rank of W .
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Backwards

These formulas are enough to define the (generalized) Krammer
representation in types ADE.
Recall P = π1(X ), B = π1(X/W ).
Let αH ∈ (Cn)∗ such that H = KerαH , for H ∈ A.
Then ωH = dαH

αH
∈ Ω1(X )

Letting tH = ts , then

ω =
1

2iπ
h

∑
H∈A

tHωH ∈ Ω1(X )⊗ glN(M)

is integrable : dω + ω ∧ ω = 0.
By monodromy we get R : B → GLN(M) ⊂ GLN(K ). with
tsi = log R(σ2

i ) modulo h.

Theorem
If m 6∈ Q then R ' RK .

Ivan Marin Artin groups as Zariski-dense subgroups of GLN


	Artin groups
	Definitions
	Long's theorem in type A

	The density theorem
	Statement
	Consequences
	Sketch of proof


