Artin groups as Zariski-dense subgroups of $\mathrm{GL}_{\it N}$

Ivan Marin

Definitions
Long's theorem in type *A*

The density theorem

Statement Consequences

Sketch of proof

Let W be a finite irreducible Coxeter group of rank $n \ge 2$:

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset GL_n(\mathbb{R})$ and W is generated by a set \mathcal{R} of reflections.

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections.

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset GL_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \} \qquad \mathcal{X} = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

▶ $P = \pi_1(X)$ pure Artin group

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- ▶ $P = \pi_1(X)$ pure Artin group
- ▶ $B = \pi_1(X/W)$ Artin group

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- ▶ $P = \pi_1(X)$ pure Artin group
- ▶ $B = \pi_1(X/W)$ Artin group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

- ▶ $P = \pi_1(X)$ pure Artin group
- ▶ $B = \pi_1(X/W)$ Artin group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

B is torsion-free

Let W be a finite irreducible Coxeter group of rank $n \geq 2$: $W \subset \mathrm{GL}_n(\mathbb{C})$ and W is generated by a set \mathcal{R} of reflections. There is a corresponding hyperplane arrangement and hyperplane complement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \} \qquad X = \mathbb{C}^n \setminus \bigcup \mathcal{A}$$

- ▶ $P = \pi_1(X)$ pure Artin group
- ▶ $B = \pi_1(X/W)$ Artin group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

- B is torsion-free
- $ightharpoonup Z(B) = Z(P) \simeq \mathbb{Z}$

When $W = \mathfrak{S}_{n+1}$ then B is the braid group on n+1 strands.

When $W = \mathfrak{S}_{n+1}$ then B is the braid group on n+1 strands. Let G be the braid group or the pure braid group.

When $W = \mathfrak{S}_{n+1}$ then B is the braid group on n+1 strands. Let G be the braid group or the pure braid group.

Theorem (Long, 1985) If
$$N_1, N_2 \triangleleft G$$

When $W = \mathfrak{S}_{n+1}$ then B is the braid group on n+1 strands. Let G be the braid group or the pure braid group.

Theorem (Long, 1985)

If $N_1, N_2 \triangleleft G$ and $N_1, N_2 \not\subset Z(G)$ then

When $W = \mathfrak{S}_{n+1}$ then B is the braid group on n+1 strands. Let G be the braid group or the pure braid group.

Theorem (Long, 1985)

If $N_1, N_2 \lhd G$ and $N_1, N_2 \not\subset Z(G)$ then

$$N_1 \cap N_2 \not\subset Z(G)$$

▶ If $G \simeq X \times Y$,

▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands : Burau faithful iff Hecke faithful.

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands: Burau faithful iff Hecke faithful.

R ∈ Rep(G),

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands: Burau faithful iff Hecke faithful.

▶ $R \in Rep(G)$, $N \triangleleft G$ such that $N \not\subset Z(G)$

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands: Burau faithful iff Hecke faithful.

▶ $R \in Rep(G)$, $N \triangleleft G$ such that $N \not\subset Z(G)$

$$R$$
 faithful $\Leftrightarrow R_N \& R_{Z(G)}$ faithful

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands: Burau faithful iff Hecke faithful.

▶ $R \in Rep(G)$, $N \triangleleft G$ such that $N \not\subset Z(G)$

$$R$$
 faithful $\Leftrightarrow R_N \& R_{Z(G)}$ faithful

Example: the pure braid group admits a free normal subgroup not included in the center.

- ▶ If $G \simeq X \times Y$, then $X \subset Z(G)$ or $Y \subset Z(G)$
- ▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Rightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Example on 4 strands: Burau faithful iff Hecke faithful.

▶ $R \in Rep(G)$, $N \triangleleft G$ such that $N \not\subset Z(G)$

$$R$$
 faithful $\Leftrightarrow R_N \& R_{Z(G)}$ faithful

Example: the pure braid group admits a free normal subgroup not included in the center.

Using the same ideas, Long proved that the Frattini subgroup $\Phi(G)$ (= intersection of the proper maximal subgroups) is trivial.

Generalizations?

The proof of Long relies upon the Nielsen-Thurston classification, and the result also holds for mapping class groups.

Generalizations?

The proof of Long relies upon the Nielsen-Thurston classification, and the result also holds for mapping class groups.

Idea : if $N_i \triangleleft G$ and $N_i \not\subset Z(G)$ then N_i contains "many" pseudo-Anosov maps. Then take (φ_1, φ_2) for suitable pseudo-Anosov $\varphi_i \in N_i$.

Generalizations?

The proof of Long relies upon the Nielsen-Thurston classification, and the result also holds for mapping class groups.

Idea : if $N_i \triangleleft G$ and $N_i \not\subset Z(G)$ then N_i contains "many" pseudo-Anosov maps. Then take (φ_1, φ_2) for suitable pseudo-Anosov $\varphi_i \in N_i$.

Only one consequence had been generalized to Artin groups :

Theorem (L.Paris 2004)

If
$$B \simeq X \times Y$$
 then $X \subset Z(B)$ or $Y \subset Z(B)$.

L.Paris used combinatorical methods. These methods do not extend to subgroups.

Artin groups are known to be linear by work of Bigelow and Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all types.

Artin groups are known to be linear by work of Bigelow and Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all types.

Theorem (I.M. 2006)

There exists $N \ge 2$, K a (infinite) field, and $R: B \hookrightarrow \operatorname{GL}_N(K)$ such that $\overline{R(B)} = \operatorname{GL}_N(K)$ (Zariski-topology).

Artin groups are known to be linear by work of Bigelow and Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all types.

Theorem (I.M. 2006)

There exists $N \ge 2$, K a (infinite) field, and $R: B \hookrightarrow \operatorname{GL}_N(K)$ such that $\overline{R(B)} = \operatorname{GL}_N(K)$ (Zariski-topology).

Assume $N \geq 2$.

Artin groups are known to be linear by work of Bigelow and Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all types.

Theorem (I.M. 2006)

There exists $N \ge 2$, K a (infinite) field, and $R: B \hookrightarrow \operatorname{GL}_N(K)$ such that $\overline{R(B)} = \operatorname{GL}_N(K)$ (Zariski-topology).

Assume $N \geq 2$.

Definition

 $\overline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

Artin groups are known to be linear by work of Bigelow and Krammer (2000) for type A, Cohen-Wales and Digne (2002) for all types.

Theorem (I.M. 2006)

There exists $N \ge 2$, K a (infinite) field, and $R : B \hookrightarrow \operatorname{GL}_N(K)$ such that $\overline{R(B)} = \operatorname{GL}_N(K)$ (Zariski-topology).

Assume $N \ge 2$.

Definition

 $\underline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

Theorem implies that *B* is strongly linear.

Strongly linear groups : hereditary properties

Definition

 $G < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

Strongly linear groups : hereditary properties

Definition

 $G < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

▶ If G is strongly linear, then $Z(G) \subset K^{\times}$

Strongly linear groups : hereditary properties

Definition

 $\overline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If G is strongly linear, then $Z(G) \subset K^{\times}$
- ▶ If G is strongly linear, $H \triangleleft G$ and $H \not\subset Z(G)$, then H is strongly linear.

Strongly linear groups : hereditary properties

Definition

 $G < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If *G* is strongly linear, then $Z(G) \subset K^{\times}$
- ▶ If G is strongly linear, $H \triangleleft G$ and $H \not\subset Z(G)$, then H is strongly linear.
- ▶ If *G* is strongly linear, *H* < *G* has finite index, then *H* is strongly linear.

Strongly linear groups : hereditary properties

Definition

 $G < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If *G* is strongly linear, then $Z(G) \subset K^{\times}$
- ▶ If G is strongly linear, $H \triangleleft G$ and $H \not\subset Z(G)$, then H is strongly linear.
- If G is strongly linear, H < G has finite index, then H is strongly linear.

Theorem implies that "many" subgroups of B are strongly linear.

Definition

 $G < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

Definition

```
\overline{G} < \operatorname{GL}_N(K) torsion-free is called strongly linear (s.l.) if \overline{G} \supset \operatorname{SL}_N(K).
```

- ▶ If G is strongly linear and $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 \not\subset Z(G)$.
 - \rightarrow generalization of Long's theorem.

Definition

 $\underline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If G is strongly linear and $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 \not\subset Z(G)$. \rightarrow generalization of Long's theorem.
- ▶ If G is strongly linear and $G \simeq X \times Y$ then $X \subset Z(G)$ or $Y \subset Z(G)$.
 - \rightarrow generalization of Paris theorem

Definition

 $\underline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If G is strongly linear and $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 \not\subset Z(G)$. \rightarrow generalization of Long's theorem.
- ▶ If G is strongly linear and $G \simeq X \times Y$ then $X \subset Z(G)$ or $Y \subset Z(G)$.
 - \rightarrow generalization of Paris theorem

Thus the same consequences as Long theorem :

Definition

 $\overline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If G is strongly linear and $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 \not\subset Z(G)$. \rightarrow generalization of Long's theorem.
- ▶ If *G* is strongly linear and $G \simeq X \times Y$ then $X \subset Z(G)$ or $Y \subset Z(G)$.
 - \rightarrow generalization of Paris theorem

Thus the same consequences as Long theorem :

▶ If $R_1, R_2 \in Rep(G)$ then

$$\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Leftrightarrow \operatorname{Ker} R_1 \subset Z(G)$$
 or $\operatorname{Ker} R_2 \subset Z(G)$

Definition

 $\overline{G} < \operatorname{GL}_N(K)$ torsion-free is called strongly linear (s.l.) if $\overline{G} \supset \operatorname{SL}_N(K)$.

- ▶ If G is strongly linear and $N_1, N_2 \triangleleft G$ with $N_1 \cap N_2 \not\subset Z(G)$. \rightarrow generalization of Long's theorem.
- ▶ If G is strongly linear and $G \simeq X \times Y$ then $X \subset Z(G)$ or $Y \subset Z(G)$.
 - → generalization of Paris theorem

Thus the same consequences as Long theorem :

- ▶ If $R_1, R_2 \in Rep(G)$ then $\operatorname{Ker} R_1 \oplus R_2 \subset Z(G) \Leftrightarrow \operatorname{Ker} R_1 \subset Z(G)$ or $\operatorname{Ker} R_2 \subset Z(G)$
- ▶ If $R \in Rep(G)$ and $N \triangleleft G$ with $N \subset Z(G)$

R faithful $\Leftrightarrow R_N \& R_{Z(G)}$ faithful $\Rightarrow P_N \& P_{Z(G)}$

Remark

Nilpotent groups cannot be strongly linear.

Remark

Nilpotent groups cannot be strongly linear.

Consequences:

▶ If *G* is strongly linear, its Fitting subgroup is trivial.

Remark

Nilpotent groups cannot be strongly linear.

Consequences:

- ▶ If *G* is strongly linear, its Fitting subgroup is trivial.
- ▶ The Frattini subgroup of *B* is trivial.

Remark

Nilpotent groups cannot be strongly linear.

Consequences:

- ▶ If *G* is strongly linear, its Fitting subgroup is trivial.
- ▶ The Frattini subgroup of *B* is trivial.

Proof

B linear finitely generated implies that $\Phi(B)$ is nilpotent (Platonov theorem).

Remark

Nilpotent groups cannot be strongly linear.

Consequences:

- ▶ If *G* is strongly linear, its Fitting subgroup is trivial.
- ▶ The Frattini subgroup of *B* is trivial.

Proof

B linear finitely generated implies that $\Phi(B)$ is nilpotent (Platonov theorem). Since $\Phi(B) \triangleleft B$ it follows that $\Phi(B) \subset Z(B)$.

Remark

Nilpotent groups cannot be strongly linear.

Consequences:

- ▶ If *G* is strongly linear, its Fitting subgroup is trivial.
- ▶ The Frattini subgroup of *B* is trivial.

Proof

B linear finitely generated implies that $\Phi(B)$ is nilpotent (Platonov theorem). Since $\Phi(B) \lhd B$ it follows that $\Phi(B) \subset Z(B)$. Through the length morphism $\ell: B \to \mathbb{Z}$ we get maximal subgroups $\ell^{-1}(p\mathbb{Z})$ for all p. Hence

$$\Phi(B) \subset Z(B) \cap \mathrm{Ker} \ell = \{e\}$$

The Krammer representations

Let
$$\mathcal{L} = \mathbb{Q}[q, q^{-1}, t, t^{-1}].$$

The Krammer representations

Let
$$\mathcal{L} = \mathbb{Q}[q, q^{-1}, t, t^{-1}].$$

Theorem (Krammer & Bigelow + Digne & Cohen-Wales)

If B is of type ADE, there exists $R_K: B \hookrightarrow \operatorname{GL}_N(\mathcal{L})$ with $N = \#\mathcal{R}$

such that $(R_K)_{q=t=1}$:

The Krammer representations

Let
$$\mathcal{L} = \mathbb{Q}[q, q^{-1}, t, t^{-1}].$$

Theorem (Krammer & Bigelow + Digne & Cohen-Wales)

If B is of type ADE, there exists $R_K : B \hookrightarrow GL_N(\mathcal{L})$ with $N = \#\mathcal{R}$ such that $(R_K)_{n=t=1} : B \longrightarrow GL_N(\mathbb{Q})$

And it is known (e.g. by Crisp 2000) that for all B there exists B' of type ADE such that $B \longleftrightarrow B'$ commutes.

Let
$$\mathcal{M} = \mathbb{C}[[h]]$$
,

Let
$$\mathcal{M} = \mathbb{C}[[h]]$$
, $K = \mathbb{C}((h))$,

Let
$$\mathcal{M}=\mathbb{C}[[h]]$$
, $K=\mathbb{C}((h))$, and $m\in\mathbb{C}$.

Let
$$\mathcal{M}=\mathbb{C}[[h]]$$
, $K=\mathbb{C}((h))$, and $m\in\mathbb{C}$.
One can send \mathcal{L} to \mathcal{M} by

$$q \mapsto e^{mh}$$
 $q \mapsto e^{mh}$

Let
$$\mathcal{M}=\mathbb{C}[[h]]$$
, $K=\mathbb{C}((h))$, and $m\in\mathbb{C}$.
One can embed \mathcal{L} into \mathcal{M} by

$$\begin{array}{ccc} q & \mapsto & e^h \\ q & \mapsto & e^{mh} \end{array}$$

for $m \notin \mathbb{Q}$.

Let $\mathcal{M} = \mathbb{C}[[h]]$, $K = \mathbb{C}((h))$, and $m \in \mathbb{C}$. One can embed \mathcal{L} into \mathcal{M} by

$$q \mapsto e^h$$
 $q \mapsto e^{mh}$

for $m \notin \mathbb{Q}$. Then $R_K : B \hookrightarrow GL_N(\mathcal{M}) \subset GL_N(K)$.

Let $\mathcal{M} = \mathbb{C}[[h]]$, $K = \mathbb{C}((h))$, and $m \in \mathbb{C}$. One can embed \mathcal{L} into \mathcal{M} by

$$q \mapsto e^h$$
 $q \mapsto e^{mh}$

for $m \notin \mathbb{Q}$. Then $R_K : B \hookrightarrow \operatorname{GL}_N(\mathcal{M}) \subset \operatorname{GL}_N(K)$.

Interlude

This proves the residual torsion-free nilpotence hence the biorderability of P, because $R_K(P)$ is a subgroup of

$$\operatorname{GL}_N^o(\mathcal{M}) = \{ X \in \operatorname{GL}_N(\mathcal{M}) \mid X \equiv 1 \mod h \}$$

which has this property.

► Types *B* have finite index in type A.

- Types B have finite index in type A.
- ▶ Types $I_2(m)$ are handled separately, using the Burau representation.

- Types B have finite index in type A.
- ▶ Types $l_2(m)$ are handled separately, using the Burau representation.

We are thus reduced to types ADE plus a few exceptional ones.

- ► Types *B* have finite index in type A.
- ▶ Types $l_2(m)$ are handled separately, using the Burau representation.

We are thus reduced to types ADE plus a few exceptional ones.

Now we start from $R: B \hookrightarrow GL_N(\mathcal{M})$ for some N.

- Types B have finite index in type A.
- ▶ Types $I_2(m)$ are handled separately, using the Burau representation.

We are thus reduced to types ADE plus a few exceptional ones.

Now we start from $R: B \hookrightarrow \operatorname{GL}_N(\mathcal{M})$ for some N. If $B = \langle \sigma_1, \dots, \sigma_n \rangle$, let $H = \langle \sigma_1^2, \dots, \sigma_n^2 \rangle$. It is sufficient to show that $\overline{R(H)} = \operatorname{GL}_N(K)$.

Main steps

We have $R(\sigma_i^2) = 1 + h \dots$, so we can define $u_i = \log R(\sigma_i^2)$ modulo h, in $\mathfrak{gl}_N(\mathbb{C})$.

Lemma

$$\mathrm{Lie}\overline{R(H)} \supset < u_1, \dots, u_n >_{\mathrm{Lie}} \otimes_{\mathbb{C}} K$$

Proposition

$$< u_1, \ldots, u_n >_{\operatorname{Lie}} = \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

This implies the theorem.

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true as soon as $\dim_{\mathbb{C}} < u_1, \ldots, u_n >_{\text{Lie}} \geq N^2$

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true as soon as $\dim_{\mathbb{C}} < u_1, \ldots, u_n >_{\text{Lie}} \geq N^2$ for one $m \in \mathbb{C}$,

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true as soon as $\dim_{\mathbb{C}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{C}$, as soon as $\dim_{\mathbb{Q}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{Q}$,

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true as soon as $\dim_{\mathbb{C}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{C}$, as soon as $\dim_{\mathbb{Q}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{Q}$, as soon as $\dim_{\mathbb{F}_p} < \overline{u_1}, \ldots, \overline{u_n} >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{Z}$ and one prime p.

In fact $u_i \in \mathfrak{gl}_N(\mathbb{Z}[m])$. Then the proposition is true as soon as $\dim_{\mathbb{C}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{C}$, as soon as $\dim_{\mathbb{Q}} < u_1, \ldots, u_n >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{Q}$, as soon as $\dim_{\mathbb{F}_p} < \overline{u_1}, \ldots, \overline{u_n} >_{\mathrm{Lie}} \geq N^2$ for one $m \in \mathbb{Z}$ and one prime p.

By direct computation this proves the theorem for small and exceptional types.

Types ADE

Let $E = \langle v_s; s \in \mathcal{R} \rangle$ as a \mathbb{Q} -vector space, and $m \in \mathbb{Q}$. We define $t_s \in \operatorname{End}(E)$ by

$$\begin{cases} t_s.v_s &= mv_s \\ t_s.v_u &= v_u & \text{if } su = us, s \neq u \\ t_s.v_u &= v_{sus} - v_s & \text{if } su \neq us \end{cases}$$

Let $s_i \in W$ be the image of $\sigma_i \in B$.

Lemma

$$u_i = t_{s_i}$$

Lemma

$$< t_{s_i} | 1 \le i \le n >_{Lie} = < t_s | s \in \mathcal{R} >_{Lie}$$

Prop

$$< t_s \mid s \in \mathcal{R} >_{Lie} = \mathfrak{gl}(E)$$

By induction on the rank of W.

Backwards

These formulas are enough to define the (generalized) Krammer representation in types ADE.

Recall
$$P = \pi_1(X)$$
, $B = \pi_1(X/W)$.

Let $\alpha_H \in (\mathbb{C}^n)^*$ such that $H = \operatorname{Ker} \alpha_H$, for $H \in \mathcal{A}$.

Then
$$\omega_H = \frac{d\alpha_H}{\alpha_H} \in \Omega_1(X)$$

Letting $t_H = t_s$, then

$$\omega = \frac{1}{2\mathrm{i}\pi} h \sum_{H \in \mathcal{A}} t_H \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathcal{M})$$

is integrable : $d\omega + \omega \wedge \omega = 0$.

By monodromy we get $R: B \to GL_N(\mathcal{M}) \subset GL_N(K)$. with $t_{s_i} = \log R(\sigma_i^2)$ modulo h.

Theorem

If $m \notin \mathbb{Q}$ then $R \simeq R_K$.

