Krammer representations for complex braid groups

Ivan Marin

June 2008

Introduction

Two generalizations of braid groups Complex braid groups

Complex braid groups

Structure Representations

Monodromy representations

General construction
Hecke algebra representations
A new integrable 1-form

Krammer representations for CRG

The monodromy representation Main conjecture Implications of the conjecture From a conjecture to another

General goal:

General goal : extend what is known for the usual braid groups to their natural generalizations. For instance :

Braid groups are linear (Krammer, Bigelow)

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).

- ▶ Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).
- Braid groups are residually finite (folklore).

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).
- Braid groups are residually finite (folklore).
- ▶ Braid groups have cyclic center (Chow).

- Braid groups are linear (Krammer, Bigelow)
- ▶ Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).
- Braid groups are residually finite (folklore).
- ▶ Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.** . .

- Braid groups are linear (Krammer, Bigelow)
- Braid groups admit Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent (Falk-Randell).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- ▶ ... (torsion-free, Frattini subgroups, ...)

- ▶ Braid groups are linear (Krammer, Bigelow)
- Braid groups have Garside structures (Garside).
- ▶ Pure braid groups are residually torsion-free nilpotent.
- Braid groups are residually finite.
- Braid groups have cyclic center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.**..

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- Braid groups have Garside structures (Garside).
- ▶ Pure braid groups are residually torsion-free nilpotent.
- Braid groups are residually finite.
- Braid groups have cyclic center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.**..

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- MCG have Garside-like properties (Krammer).
- ▶ Pure braid groups are residually torsion-free nilpotent.
- Braid groups are residually finite.
- Braid groups have cyclic center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- MCG have Garside-like properties (Krammer).
- Torelli groups are residually torsion-free nilpotent.
- Braid groups are residually finite.
- Braid groups have cyclic center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- MCG have Garside-like properties (Krammer).
- ► Torelli groups are residually torsion-free nilpotent.
- MCG are residually finite.
- Braid groups have cyclic center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- MCG have Garside-like properties (Krammer).
- ► Torelli groups are residually torsion-free nilpotent.
- MCG are residually finite.
- MCG have small center.
- Normal subgroups of Braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► MCG of genus ≤ 2 are linear (Bigelow-Budney, Korkmaz)
- ▶ MCG have Garside-like properties (Krammer).
- Torelli groups are residually torsion-free nilpotent.
- MCG are residually finite.
- MCG have small center.
- Normal subgroups of MCG usually intersect non-trivially (Long)
- **.** . . .

- ▶ Braid groups are linear (Krammer, Bigelow)
- Braid groups have Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent .
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► Artin groups are linear (Digne, Cohen-Wales)
- Braid groups have Garside structures (Garside).
- Pure braid groups are residually torsion-free nilpotent .
- ▶ Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **>** . . .

- ► Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Deligne).
- Pure braid groups are residually torsion-free nilpotent .
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.**..

- ► Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Deligne).
- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- Braid groups are residually finite (folklore).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.**..

- ► Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Deligne).
- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- ► Artin groups are residually finite (consequence of linearity).
- Braid groups have cyclic center (Chow).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Deligne).
- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- ▶ Artin groups are residually finite (consequence of linearity).
- Artin groups have cyclic center (Brieskorn, Deligne).
- Normal subgroups of braid groups usually intersect non-trivially (Long)
- **.** . . .

- ► Artin groups are linear (Digne, Cohen-Wales)
- Artin groups have Garside structures (Deligne).
- ▶ Pure Artin groups are residually torsion-free nilpotent (I.M.).
- Artin groups are residually finite (consequence of linearity).
- Artin groups have cyclic center (Brieskorn, Deligne).
- Normal subgroups of Artin groups usually intersect non-trivially (I.M.)
- **.**..

 $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if

- $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if
 - ▶ Ker(s-1) is an hyperplane.

- $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if
 - ▶ Ker(s-1) is an hyperplane.
 - $s^2 = 1.$

- $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if
 - ▶ Ker(s-1) is an hyperplane.
 - $ightharpoonup s^2 = 1.$

Relaxing the second condition to s of finite order defines the notion of pseudo-reflection.

- $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if
 - ▶ Ker(s-1) is an hyperplane.
 - $ightharpoonup s^2 = 1.$

Relaxing the second condition to *s* of finite order defines the notion of pseudo-reflection.

 $W < \mathrm{GL}_n(\mathbb{C})$ is called a reflection group if it is finite and generated by a set \mathcal{R} of reflections.

- $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if
 - ▶ Ker(s-1) is an hyperplane.
 - $s^2 = 1$.

Relaxing the second condition to s of finite order defines the notion of pseudo-reflection.

 $W < \mathrm{GL}_n(\mathbb{C})$ is called a reflection group if it is finite and generated by a set \mathcal{R} of reflections.

Remark : if $W < \mathrm{GL}_n(\mathbb{R}) < \mathrm{GL}_n(\mathbb{C})$ is a reflection group, then it is a Coxeter group.

 $s \in \mathrm{GL}_n(\mathbb{C})$ is called a reflection if

- ▶ Ker(s-1) is an hyperplane.
- $s^2 = 1$.

Relaxing the second condition to s of finite order defines the notion of pseudo-reflection.

 $W < \mathrm{GL}_n(\mathbb{C})$ is called a reflection group if it is finite and generated by a set \mathcal{R} of reflections.

Remark : if $W < \mathrm{GL}_n(\mathbb{R}) < \mathrm{GL}_n(\mathbb{C})$ is a reflection group, then it is a Coxeter group.

Fact: every reflection group is a direct product of irreducible ones.

Shephard-Todd classification : first series.

Shephard-Todd classification : first series.

For $e, n \geq 1$,

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

 they are monomial (one nonzero coefficient in each line and column)

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases:

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups),

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups),

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- ▶ the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups), e = 2 (type D_n).

Shephard-Todd classification: first series.

For $e, n \ge 1$, G(e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_e(\mathbb{C})$
- the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups), e = 2 (type D_n).

In general 1 class of reflections.

Shephard-Todd classification : second series.

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

they are monomial (one nonzero coefficient in each line and column)

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases:

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Shephard-Todd classification : second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget:

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

Plus, not to forget: 15 exceptions!

 $G_{12}, G_{13}, G_{22},$

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

$$G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29},$$

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

$$G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33},$$

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

$$G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33}, G_{34},$$

Shephard-Todd classification: second series.

For $e, n \ge 1$, G(2e, e, n) is the group of $n \times n$ matrices such that

- they are monomial (one nonzero coefficient in each line and column)
- ▶ they have their nonzero coefficients in $\mu_{2e}(\mathbb{C})$
- ▶ the product of their nonzero coefficients is ± 1 .

Coxeter cases : for e = 1, Coxeter group B_n .

In general, 2 classes of reflections.

$$G_{12}, G_{13}, G_{22}, G_{23} = H_3, G_{24}, G_{27}, G_{28} = F_4, G_{29}, G_{30} = H_4, G_{31}, G_{33}, G_{34}, G_{35} = E_6, G_{36} = E_7, G_{37} = E_8.$$

Let $W < GL_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

Let $W < GL_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement

$$\mathcal{A} = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

 $ightharpoonup P = \pi_1(X)$ pure (complex) braid group

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- ▶ $P = \pi_1(X)$ pure (complex) braid group
- ▶ $B = \pi_1(X/W)$ braid group

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- $ightharpoonup P = \pi_1(X)$ pure (complex) braid group
- ▶ $B = \pi_1(X/W)$ braid group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- ▶ $P = \pi_1(X)$ pure (complex) braid group
- ▶ $B = \pi_1(X/W)$ braid group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

B is torsion-free

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- ▶ $P = \pi_1(X)$ pure (complex) braid group
- ▶ $B = \pi_1(X/W)$ braid group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

- B is torsion-free
- (W irreducible.) $Z(B) \simeq \mathbb{Z}$, $Z(P) \simeq \mathbb{Z}$

Let $W < \operatorname{GL}_n(\mathbb{C})$ a complex reflection group, and \mathcal{R} the set of reflections of W.

There is a corresponding hyperplane arrangement and hyperplane complement

$$A = \{ \operatorname{Ker}(s-1) \mid s \in \mathcal{R} \}$$
 $X = \mathbb{C}^n \setminus \bigcup A$

- $ightharpoonup P = \pi_1(X)$ pure (complex) braid group
- ▶ $B = \pi_1(X/W)$ braid group

$$1 \rightarrow P \rightarrow B \rightarrow W \rightarrow 1$$

- B is torsion-free
- (W irreducible.) $Z(B) \simeq \mathbb{Z}$, $Z(P) \simeq \mathbb{Z}$ (except maybe G_{31})

W preserves some hermitian scalar product on \mathbb{C}^n .

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let
$$V = U^{\perp}$$
.

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V=U^{\perp}$. (Steinberg) $W_0<\operatorname{GL}(V)$ is a complex reflection group,

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V=U^{\perp}$. (Steinberg) $W_0<\mathrm{GL}(V)$ is a complex reflection group, $\mathcal{R}_0\subset\mathcal{R}$

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$.

(Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group, $\mathcal{R}_0 \subset \mathcal{R}$

(Broué-Malle-Rouquier) B_0 embeds in B

W preserves some hermitian scalar product on \mathbb{C}^n . To any vector space $U \subset \mathbb{C}^n$, is associated a parabolic subgroup

$$W_0 = \{ w \in W \mid \forall u \in U \ w.u = u \}$$

Let $V = U^{\perp}$.

(Steinberg) $W_0 < \operatorname{GL}(V)$ is a complex reflection group, $\mathcal{R}_0 \subset \mathcal{R}$

(Broué-Malle-Rouquier) B_0 embeds in B

(uniquely up to P-conjugation)

Special case:

Special case:

Let
$$s \in \mathcal{R}$$
, $U = Ker(s-1)$.

Special case : Let $s \in \mathcal{R}$, $U = \operatorname{Ker}(s-1)$. Then $V = U^{\perp} \simeq \mathbb{C}$

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V=U^{\perp}\simeq \mathbb{C}$ and $B_0\simeq \mathbb{Z}$ is the braid groups on two strands.

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V = U^{\perp} \simeq \mathbb{C}$ and $B_0 \simeq \mathbb{Z}$ is the braid groups on two strands.

The image in B of the positive generator of B_0 are the braided reflections associated to s.

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V = U^{\perp} \simeq \mathbb{C}$ and $B_0 \simeq \mathbb{Z}$ is the braid groups on two strands.

The image in B of the positive generator of B_0 are the braided reflections associated to s.

(Broué-Malle-Rouquier) Complex braid groups are generated by braided reflections.

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V = U^{\perp} \simeq \mathbb{C}$ and $B_0 \simeq \mathbb{Z}$ is the braid groups on two strands.

The image in B of the positive generator of B_0 are the braided reflections associated to s.

(Broué-Malle-Rouquier) Complex braid groups are generated by braided reflections.

Compare with:

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V = U^{\perp} \simeq \mathbb{C}$ and $B_0 \simeq \mathbb{Z}$ is the braid groups on two strands.

The image in B of the positive generator of B_0 are the braided reflections associated to s.

(Broué-Malle-Rouquier) Complex braid groups are generated by braided reflections.

Compare with: MCG are generated by Dehn twists,

Special case:

Let $s \in \mathcal{R}$, U = Ker(s-1).

Then $V=U^{\perp}\simeq \mathbb{C}$ and $B_0\simeq \mathbb{Z}$ is the braid groups on two strands.

The image in B of the positive generator of B_0 are the braided reflections associated to s.

(Broué-Malle-Rouquier) Complex braid groups are generated by braided reflections.

Compare with : MCG are generated by Dehn twists, and have special subgroups fixing curve systems.

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$,

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for: Coxeter groups (Tits),

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR),

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank

When it holds:

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank

When it holds : $Rep(W) \rightsquigarrow Rep H_W(q)$

The Hecke algebra $H_W(q)$ is the quotient of the group algebra $\mathbb{C}(q)B$ by the relations $(\sigma - q)(\sigma + q^{-1})$, for σ braided reflections.

Conjecture

 $H_W(q)$ is isomorphic to the group algebra $\mathbb{C}(q)W$ (Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR), exceptional groups of low rank

When it holds: $Rep(W) \rightsquigarrow Rep(H_W(q) \rightsquigarrow Rep(B)$

General construction Hecke algebra representations A new integrable 1-form

Holonomy Lie algebras

The Holonomy Lie algebra is

The Holonomy Lie algebra is

$$\mathcal{T}=< t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

The Holonomy Lie algebra is

$$\mathcal{T}=< t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

for $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

The Holonomy Lie algebra is

$$\mathcal{T}=< t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

for $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

The Holonomy Lie algebra is

$$\mathcal{T}=< t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

for $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

W acts on \mathcal{T} by $w.t_H = t_{w(H)}$,

The Holonomy Lie algebra is

$$\mathcal{T}=< t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 >$$

for $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

W acts on \mathcal{T} by $w.t_H = t_{w(H)}$, or $w.t_s = t_{wsw^{-1}}$ by $\mathcal{R} \leftrightarrow \mathcal{A}$.

The Holonomy Lie algebra is

$$\mathcal{T} = \langle t_H, H \in \mathcal{A} \mid [t_{H_0}, t_Z] = 0 \rangle$$

for $\operatorname{codim} Z = 2$, $Z \subset H_0$, $H_0 \in \mathcal{A}$ and

$$t_Z = \sum_{Z \subset H} t_H$$

W acts on \mathcal{T} by $w.t_H = t_{w(H)}$, or $w.t_s = t_{wsw^{-1}}$ by $\mathcal{R} \leftrightarrow \mathcal{A}$.

Remark. When $W = \mathfrak{S}_n$, \mathcal{T} is the Lie algebra of (horizontal) chord diagrams.

Monodromy representations

Let $\check{\rho}:W\to \mathrm{GL}_{\mathcal{N}}(\mathbb{C})$.

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$. If $\rho:\mathcal{T}\to\mathfrak{gl}_N(\mathbb{C})$ is equivariant,

Let $otin : W \to \operatorname{GL}_N(\mathbb{C})$. If $\rho : \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then $\omega_\rho = \frac{1}{\mathrm{i}\pi} h \sum_{H \in \Lambda} \rho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_N(\mathbb{C})$

Let $\check{\rho}: W \to \mathrm{GL}_N(\mathbb{C})$. If $\rho: \mathcal{T} \to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$,

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$. If $\rho:\mathcal{T}\to\mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \text{Ker}\alpha_H$,

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C}).$ If $\rho:\mathcal{T}\to\mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno).

Let $\check{\rho}:W\to \mathrm{GL}_{\mathcal{N}}(\mathbb{C}).$ If $\rho:\mathcal{T}\to\mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$$

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$. If $\rho:\mathcal{T}\to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \operatorname{GL}_N(A) \subset \operatorname{GL}_N(K)$$
 with $A = \mathbb{C}[[h]]$

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$. If $\rho:\mathcal{T}\to \mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \mathrm{GL}_N(A) \subset \mathrm{GL}_N(K)$$
 with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

Let $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$. If $\rho:\mathcal{T}\to\mathfrak{gl}_N(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \mathrm{GL}_N(A) \subset \mathrm{GL}_N(K)$$
 with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

such that $R(\sigma)$ is conjugated to $\check{\rho}(s) \exp(h\rho(t_s))$

Let $\check{\rho}:W\to \mathrm{GL}_{\mathcal{N}}(\mathbb{C})$. If $\rho:\mathcal{T}\to\mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$ is equivariant, then

$$\omega_{
ho} = rac{1}{\mathrm{i}\pi} h \sum_{H \in \mathcal{A}}
ho(t_H) \omega_H \in \Omega^1(X) \otimes \mathfrak{gl}_{\mathcal{N}}(\mathbb{C})$$

with $\omega_H = d\alpha_H/\alpha_H$, $H = \mathrm{Ker}\alpha_H$, is integrable and equivariant (Kohno). It yields

$$R: B \to \mathrm{GL}_N(A) \subset \mathrm{GL}_N(K)$$
 with $A = \mathbb{C}[[h]], K = \mathbb{C}((h))$

such that $R(\sigma)$ is conjugated to $\check{\rho}(s) \exp(h\rho(t_s))$ if σ is a braided reflection associated to $s \in \mathcal{R}$.

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$,

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})$.

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked :

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0 t_Z s_0^{-1} =$$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0t_Zs_0^{-1} = s_0.(\sum_{H\supset Z}t_H) =$$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)}$$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

Proof:

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence
$$[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$$

$$R(\sigma)$$
 has eigenvalues $q = \exp(h)$

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence
$$[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$$

$$R(\sigma)$$
 has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$,

For $\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

Proof:

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence $[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$, hence factors through $H_W(q)$.

For
$$\check{\rho}:W\to \mathrm{GL}_N(\mathbb{C})$$
, let $\rho(t_s)=\check{\rho}(s)\in \mathrm{GL}_N(\mathbb{C})\subset \mathfrak{gl}_N(\mathbb{C})$.

Easily checked : ρ is a representation of \mathcal{T} .

Proof:

$$s_0 t_Z s_0^{-1} = s_0 \cdot (\sum_{H \supset Z} t_H) = \sum_{H \supset Z} t_{s_0(H)} = t_Z$$

hence
$$[t_{H_0}, t_Z] = [s_0, t_Z] = 0.$$

 $R(\sigma)$ has eigenvalues $q = \exp(h)$ and $-q^{-1} = -e^{-h}$, hence factors through $H_W(q)$.

This was the only contruction known so far which worked for arbitrary complex reflection groups.

A new integrable 1-form

Let $N = \#\mathcal{R}$, and $\check{\rho} : W \to \operatorname{GL}_N(\mathbb{C})$ the natural permutation representation on \mathcal{R} .

Basis of $V = \mathbb{C}^N : v_s, s \in \mathcal{R}$, with $w.v_s = v_{wsw^{-1}}$. Let $m \in \mathbb{C}$.

Theorem

The formulas

$$\begin{cases} t_s.v_s = mv_s \\ t_s.v_u = v_{sus} - \alpha(s, u)v_s \text{ if } s \neq u \end{cases}$$

define an equivariant representation of \mathcal{T} , where

$$\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$$

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s, u)v_s$ define an equivariant representation of \mathcal{T} , where $\alpha(s, u) = \#\{y \in \mathcal{R} \mid yuy = s\}$

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s,u)v_s$ define an equivariant representation of \mathcal{T} , where $\alpha(s,u) = \#\{y \in \mathcal{R} \mid yuy = s\}$ For $c \in \mathcal{R}/W$, define $V_c = \langle v_s, s \in c \rangle$

Theorem

Theorem

Theorem

The formulas $t_s.v_s = mv_s$, $t_s.v_u = v_{sus} - \alpha(s,u)v_s$ define an equivariant representation of \mathcal{T} , where $\alpha(s,u) = \#\{y \in \mathcal{R} \mid yuy = s\}$ For $c \in \mathcal{R}/W$, define $V_c = < v_s, s \in c >$ and $(v_s|v_s) = 1 - m$, $(v_s|v_u) = \alpha(s,u)$ on each V_c . Then :

▶ ρ is the direct sum of ρ_c , $c \in \mathcal{R}/W$.

Theorem

- ▶ ρ is the direct sum of ρ_c , $c \in \mathcal{R}/W$.
- $ightharpoonup
 ho_c$ is irreducible iff (|) is nondegenerate on V_c

Theorem

- ▶ ρ is the direct sum of ρ_c , $c \in \mathcal{R}/W$.
- $ightharpoonup
 ho_c$ is irreducible iff $(\ |\)$ is nondegenerate on V_c (for m
 eq -1)

Theorem

- ▶ ρ is the direct sum of ρ_c , $c \in \mathcal{R}/W$.
- ightharpoonup ho_c is irreducible iff $(\ |\)$ is nondegenerate on V_c (for m
 eq -1)
- ▶ For generic values of m, $\rho_c(\mathcal{T}) = \mathfrak{gl}(V_c)$

Irreducibility and decompositions

Let $R: B \to GL_N(K)$ be the corresponding representation.

Irreducibility and decompositions

Let $R: B \to \operatorname{GL}_N(K)$ be the corresponding representation. We have

Irreducibility and decompositions

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c$$

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

• R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

- R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$
- ▶ If $W_0 \subset W$ parabolic, then

$$Res_{B_0}R \simeq R_0 \oplus Hecke(\mathcal{R} \setminus \mathcal{R}_0)$$

Let $R: B \to GL_N(K)$ be the corresponding representation. We have

$$R = \bigoplus_{c \in \mathcal{R}/W} R_c, \ R_c : B \to \mathrm{GL}_{\#c}(K)$$

Theorem

For generic values of m,

- R_c is irreducible and $\overline{R_c(P)} = \operatorname{GL}(V_c \otimes K)$
- ▶ If $W_0 \subset W$ parabolic, then

$$\mathit{Res}_{B_0} R \simeq R_0 \oplus \mathit{Hecke}(\mathcal{R} \setminus \mathcal{R}_0)$$

•
$$Sp R(\sigma) = \{q, -q^{-1}, q^m\}$$

Faithfulness

If W is a Coxeter group of type ADE, then W has a single class of reflections.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when #R/W > 1.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$. At least, the following seems plausible.

If W is a Coxeter group of type ADE, then W has a single class of reflections.

Theorem

If W is a Coxeter group of type ADE, then R is isomorphic to the Krammer representation, hence is faithful.

We do not know if R can be unfaithful when $\#\mathcal{R}/W > 1$. At least, the following seems plausible.

Conjecture

If W has a single class of reflections, then R is faithful.

Group-theoretic properties

Let W be an irreducible pseudo-reflection group.

Group-theoretic properties

Let W be an irreducible pseudo-reflection group.

Theorem

Group-theoretic properties

Let W be an irreducible pseudo-reflection group.

Theorem

If the conjecture is true, then

B is linear, residually finite, etc.

Let W be an irreducible pseudo-reflection group.

Theorem

- B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)

Let W be an irreducible pseudo-reflection group.

Theorem

- ▶ B is linear, residually finite, etc.
- P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)
- Normal subgroups of B "usually" intersect

Let W be an irreducible pseudo-reflection group.

Theorem

- ▶ B is linear, residually finite, etc.
- ► P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)
- Normal subgroups of B "usually" intersect
- ▶ The Fitting subgroup of B equals its center

Let W be an irreducible pseudo-reflection group.

Theorem

- ▶ B is linear, residually finite, etc.
- ► P is residually torsion-free nilpotent (hence biorderable, residually p, etc.)
- ▶ Normal subgroups of B "usually" intersect
- ▶ The Fitting subgroup of B equals its center
- ▶ The Frattini subgroup of B is trivial.

The statements concerning B are consequences of the following

The statements concerning B are consequences of the following

Theorem

If the conjecture holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

The statements concerning B are consequences of the following

Theorem

If the conjecture holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

▶ By considering pseudo-reflection groups, no new *B* arise, so we can assume that *W* is a reflection group.

The statements concerning B are consequences of the following

Theorem

If the conjecture holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new *B* arise, so we can assume that *W* is a reflection group.
- ▶ All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.

The statements concerning B are consequences of the following

Theorem

If the conjecture holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new *B* arise, so we can assume that *W* is a reflection group.
- ▶ All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.
- ▶ This theorem is true when *W* is Coxeter (I.M.).

The statements concerning B are consequences of the following

Theorem

If the conjecture holds and W is irreducible, then B embeds in some GL_r as a Zariski-dense subgroup.

- ▶ By considering pseudo-reflection groups, no new *B* arise, so we can assume that *W* is a reflection group.
- ▶ All groups of type G(2e, e, n) can be embedded in the usual braid group as finite-index subgroups.
- ▶ This theorem is true when W is Coxeter (I.M.).
- ▶ Among exceptional groups, only G_{13} has $\#\mathcal{R}/W > 1$, and its braid group is isomorphic to the one of Coxeter type $I_2(6)$.

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups : infinite series G(de,e,n) plus 34 exceptions.

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups: infinite series G(de,e,n) plus 34 exceptions. Fortunately, the following phenomena occur:

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups: infinite series G(de,e,n) plus 34 exceptions. Fortunately, the following phenomena occur:

▶ All P arising in the infinite series are either of type G(e, e, n) or Coxeter.

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups: infinite series G(de,e,n) plus 34 exceptions. Fortunately, the following phenomena occur:

- ▶ All P arising in the infinite series are either of type G(e, e, n) or Coxeter.
- ▶ All P arising in the exceptional types are either fiber-type or correspond to reflection groups with $\#\mathcal{R}/W = 1$, except G_{25}, G_{26}, G_{32}

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups: infinite series G(de,e,n) plus 34 exceptions. Fortunately, the following phenomena occur:

- ▶ All P arising in the infinite series are either of type G(e, e, n) or Coxeter.
- ▶ All P arising in the exceptional types are either fiber-type or correspond to reflection groups with $\#\mathcal{R}/W = 1$, except G_{25} , G_{26} , G_{32}

So it is sufficient to prove it for reflection groups with $\#\mathcal{R}/W=1$, provided that :

In order to prove that P is residually torsion-free nilpotent, we need to consider pseudo-reflection groups: infinite series G(de,e,n) plus 34 exceptions. Fortunately, the following phenomena occur:

- ▶ All P arising in the infinite series are either of type G(e, e, n) or Coxeter.
- ▶ All P arising in the exceptional types are either fiber-type or correspond to reflection groups with $\#\mathcal{R}/W = 1$, except G_{25} , G_{26} , G_{32}

So it is sufficient to prove it for reflection groups with $\#\mathcal{R}/W=1$, provided that :

Proposition

(I.M.) If W is a Coxeter group, or of type G_{25} , G_{26} , G_{32} , then P is residually torsion-free nilpotent.

Residual nilpotence and representations

Residual nilpotence and representations

How do we prove residual torsion-free nilpotence?

Residual nilpotence and representations

How do we prove residual torsion-free nilpotence? Idea: use faithful representations,

How do we prove residual torsion-free nilpotence? Idea : use faithful representations, embed P in some residually torsion-free linear group

How do we prove residual torsion-free nilpotence? Idea: use faithful representations, embed P in some residually torsion-free linear group

For $A = \mathbb{C}[[h]]$, $GL_N(A)$ contains a residually torsion-free nilpotent group,

How do we prove residual torsion-free nilpotence?

Idea : use faithful representations, embed ${\cal P}$ in some residually torsion-free linear group

For $A = \mathbb{C}[[h]]$, $\mathrm{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}_N^0(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \ \mathsf{mod} \ h \} = \exp \left(h \operatorname{Mat}_N(A) \right)$$

How do we prove residual torsion-free nilpotence?

Idea : use faithful representations, embed ${\cal P}$ in some residually torsion-free linear group

For $A = \mathbb{C}[[h]]$, $GL_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}_N^0(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \text{ mod } h \} = \exp \left(h \operatorname{Mat}_N(A) \right)$$

If
$$R: B \to GL_N(A)$$
 is faithful, check if $R(P) \subset GL_N^0(A)$.

Residual nilpotence and representations

How do we prove residual torsion-free nilpotence?

Idea : use faithful representations, embed ${\cal P}$ in some residually torsion-free linear group

For $A = \mathbb{C}[[h]]$, $GL_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}_N^0(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \operatorname{\mathsf{mod}} h \} = \exp\left(h \operatorname{Mat}_N(A) \right)$$

If $R: B \to \operatorname{GL}_N(A)$ is faithful, check if $R(P) \subset \operatorname{GL}_N^0(A)$. It works for monodromy representations,

Residual nilpotence and representations

How do we prove residual torsion-free nilpotence?

Idea : use faithful representations, embed ${\cal P}$ in some residually torsion-free linear group

For $A = \mathbb{C}[[h]]$, $\mathrm{GL}_N(A)$ contains a residually torsion-free nilpotent group, namely

$$\operatorname{GL}_N^0(A) = \{ M \in \operatorname{GL}_N(A) \mid M \equiv \operatorname{Id} \ \mathsf{mod} \ h \} = \exp \left(h \operatorname{Mat}_N(A) \right)$$

If $R: B \to GL_N(A)$ is faithful, check if $R(P) \subset GL_N^0(A)$.

It works for monodromy representations,

so under the conjecture this settles the case of $\#\mathcal{R}/W=1$ for W a reflection group.

First miracle

For the other ones?

For the other ones?

$$G_{26}$$
 $\underset{s}{\textcircled{2}}$ $\underset{t}{\textcircled{3}}$ $\underset{t}{\textcircled{3}}$

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{-3}_{t}$ $\underbrace{-3}_{u}$ $\underbrace{-3}_{v}$

For the other ones?

$$G_{26}$$
 $\underset{s}{\textcircled{2}}$ $\underset{t}{\textcircled{3}}$ $\underset{u}{\textcircled{3}}$

$$G_{32}$$
 $3 - 3 - 3 - 3$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

For the other ones?

$$G_{26}$$
 $\underset{s}{\textcircled{2}} = \underset{t}{\textcircled{3}} - \underset{u}{\textcircled{3}}$

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

For the other ones?

$$G_{26}$$
 $\underset{s}{\textcircled{2}}$ $\underset{t}{\textcircled{3}}$ $\underset{u}{\textcircled{3}}$

$$G_{32}$$
 $3 - 3 - 3 - 3$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

and B is the usual braid group on 4 strands.

For the other ones?

$$G_{25}$$
 3 3 3

$$G_{26}$$
 $\underset{s}{\textcircled{2}} = \underset{t}{\textcircled{3}} - \underset{u}{\textcircled{3}}$

$$G_{32}$$
 $3 - 3 - 3 - 3$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

and B is the usual braid group on 4 strands.

But

For the other ones?

$$G_{26}$$
 $\underset{s}{\textcircled{2}}$ $\underset{t}{\textcircled{3}}$ $\underset{u}{\textcircled{3}}$

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

and B is the usual braid group on 4 strands.

But
$$P = \operatorname{Ker}(s_r \mapsto j)$$
 where $j = e^{\frac{2i\pi}{3}}$ is

For the other ones?

$$G_{25}$$
 3 $\overline{}$

$$G_{26}$$
 $\underset{s}{\textcircled{2}}$ $\underset{t}{\textcircled{3}}$ $\underset{u}{\textcircled{3}}$

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

For type G_{25} , W is generated by $\langle s_1, s_2, s_3 \rangle$ with relations

$$s_1s_3 = s_3s_1, s_1s_2s_1 = s_2s_1s_2, s_2s_3s_2 = s_3s_2s_3, s_1^3 = s_2^3 = s_3^3 = 1$$

and B is the usual braid group on 4 strands.

But $P = \operatorname{Ker}(s_r \mapsto j)$ where $j = e^{\frac{2i\pi}{3}}$ is not the pure braid group on 4 strands.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_{k}x_{k,k+1} = tq^{2}x_{k,k+1} \\ \sigma_{k}x_{i,k} = (1-q)x_{i,k} + qx_{i,k+1} & i < k \\ \sigma_{k}x_{i,k+1} = x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & i < k \\ \sigma_{k}x_{k,j} = tq(q-1)x_{k,k+1} + qx_{k+1,j} & k+1 < j \\ \sigma_{k}x_{k+1,j} = x_{k,j} + (1-q)x_{k+1,j} & k+1 < j \\ \sigma_{k}x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_{k}x_{i,j} = x_{i,j} + tq^{k-i}(q-1)^{2}x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto e^h$ and $t\mapsto e^{\sqrt{2}h}$.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto e^h$ and $t\mapsto e^{\sqrt{2}h}$. Then $R(\mathcal{P}_4)\subset \mathrm{GL}_N^0(A)$:

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_{k}x_{k,k+1} = tq^{2}x_{k,k+1} \\ \sigma_{k}x_{i,k} = (1-q)x_{i,k} + qx_{i,k+1} & i < k \\ \sigma_{k}x_{i,k+1} = x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & i < k \\ \sigma_{k}x_{k,j} = tq(q-1)x_{k,k+1} + qx_{k+1,j} & k+1 < j \\ \sigma_{k}x_{k+1,j} = x_{k,j} + (1-q)x_{k+1,j} & k+1 < j \\ \sigma_{k}x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_{k}x_{i,j} = x_{i,j} + tq^{k-i}(q-1)^{2}x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto e^h$ and $t\mapsto e^{\sqrt{2}h}$. Then $R(\mathcal{P}_4)\subset \mathrm{GL}_N^0(A)$: no surprise.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_{k}x_{k,k+1} = tq^{2}x_{k,k+1} \\ \sigma_{k}x_{i,k} = (1-q)x_{i,k} + qx_{i,k+1} & i < k \\ \sigma_{k}x_{i,k+1} = x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & i < k \\ \sigma_{k}x_{k,j} = tq(q-1)x_{k,k+1} + qx_{k+1,j} & k+1 < j \\ \sigma_{k}x_{k+1,j} = x_{k,j} + (1-q)x_{k+1,j} & k+1 < j \\ \sigma_{k}x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_{k}x_{i,j} = x_{i,j} + tq^{k-i}(q-1)^{2}x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_{k}x_{k,k+1} = tq^{2}x_{k,k+1} \\ \sigma_{k}x_{i,k} = (1-q)x_{i,k} + qx_{i,k+1} & i < k \\ \sigma_{k}x_{i,k+1} = x_{i,k} + tq^{k-i+1}(q-1)x_{k,k+1} & i < k \\ \sigma_{k}x_{k,j} = tq(q-1)x_{k,k+1} + qx_{k+1,j} & k+1 < j \\ \sigma_{k}x_{k+1,j} = x_{k,j} + (1-q)x_{k+1,j} & k+1 < j \\ \sigma_{k}x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_{k}x_{i,j} = x_{i,j} + tq^{k-i}(q-1)^{2}x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto -je^h$ and $t\mapsto e^{\sqrt{2}h}$

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto -je^h$ and $t\mapsto e^{\sqrt{2}h}$ Then (Miracle!) $R(P)\subset \mathrm{GL}_N^0(A)$.

Consider the Lawrence-Krammer formulas :

$$\begin{cases} \sigma_k x_{k,k+1} = tq^2 x_{k,k+1} \\ \sigma_k x_{i,k} = (1-q) x_{i,k} + q x_{i,k+1} & i < k \\ \sigma_k x_{i,k+1} = x_{i,k} + tq^{k-i+1} (q-1) x_{k,k+1} & i < k \\ \sigma_k x_{k,j} = tq(q-1) x_{k,k+1} + q x_{k+1,j} & k+1 < j \\ \sigma_k x_{k+1,j} = x_{k,j} + (1-q) x_{k+1,j} & k+1 < j \\ \sigma_k x_{i,j} = x_{i,j} & i < j < k \text{ or } k+1 < i < j \\ \sigma_k x_{i,j} = x_{i,j} + tq^{k-i} (q-1)^2 x_{k,k+1} & i < k < k+1 < j \end{cases}$$

where t and q denote algebraically independent parameters. Embed $\mathbb{Q}(q,t)$ into $K=\mathbb{C}((h))$ by $q\mapsto -je^h$ and $t\mapsto e^{\sqrt{2}h}$ Then (Miracle!) $R(P)\subset \mathrm{GL}_N^0(A)$. Hence P is residually torsion-free nilpotent.

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

Hence P is residually torsion-free nilpotent for G_{25} and G_{32} .

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

Hence P is residually torsion-free nilpotent for G_{25} and G_{32} . But for G_{26} ?

$$G_{26}$$
 $\underbrace{2}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$

The same miracle happens for G_{32} , whose P is a subgroup of the usual braid group on 5 strands.

$$G_{32}$$
 $\underbrace{3}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$ $\underbrace{3}_{v}$

Hence P is residually torsion-free nilpotent for G_{25} and G_{32} . But for G_{26} ?

$$G_{26}$$
 $\underbrace{2}_{s}$ $\underbrace{3}_{t}$ $\underbrace{3}_{u}$

$$< s, t, u \mid stst = tsts, su = us, tut = utu, s^2 = t^3 = u^3 = 1 > t^3 = t^3$$

Second miracle

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 .

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But:

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into.

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} \rightarrow P_{25}$ is not into. However,

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26}
ightarrow P_{25}$ is not into.

However, there exists morphisms

$$B_{25} \longleftrightarrow B_{26}$$

$$\downarrow \qquad \qquad \downarrow$$

$$W_{25} \longleftrightarrow W_{26}$$

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} o P_{25}$ is not into.

However, there exists morphisms

$$B_{25} \longleftrightarrow B_{26}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$W_{25} \longleftrightarrow W_{26}$$

hence P_{26} embeds in P_{25} in a strange way.

For $W = G_{26}$, B is isomorphic to the Artin group of type B_3 . Recall $P = \pi_1(X)$.

The hyperplane complement of G_{26} is included in the hyperplane complement of G_{25} .

But : the corresponding morphisms $P_{26} o P_{25}$ is not into.

However, there exists morphisms

$$B_{25} \longleftrightarrow B_{26}$$

$$\downarrow \qquad \qquad \downarrow$$

$$W_{25} \longleftrightarrow W_{26}$$

hence P_{26} embeds in P_{25} in a strange way.

These two morphisms are defined by $(s, t, u) \mapsto ((tu)^3, s, t)$.

Are they related to something?

Are they related to something?

Surprisingly, yes.

Are they related to something?

Surprisingly, yes. Recall that

Are they related to something?

Surprisingly, yes.

Recall that

▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ► In Magnus way :

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$,

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$,

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 ,

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 , whence another subgroup of \mathcal{B}_4 isomorphic to $\mathcal{B}_3 \ltimes F_3$.

Surprisingly, yes.

Recall that

- ▶ $B_{25} = \mathcal{B}_4$, braid group on 4 strands,
- ▶ B_{26} is the Artin group C_3 of type $B_3 = C_3$,
- ▶ $C_3 \simeq B_3 \ltimes F_3$ through Artin action.

Then $\mathcal{B}_3 \ltimes F_3$ embeds in \mathcal{B}_4 in several ways.

- ▶ Artin way : use $F_3 \simeq Ker(\mathcal{P}_4 \to \mathcal{P}_3)$. Not the right one.
- ▶ In Magnus way : through $\mathcal{B}_4 \to \operatorname{Aut}(F_4)$ restricted to $F_4/x_1x_2x_3x_4 \simeq F_3$, one gets $\mathcal{B}_4 \to \operatorname{Aut}(F_3)$, of kernel $Z(\mathcal{B}_4)$ and image containing $\operatorname{Inn}(F_3) \simeq F_3$. It also contains a copy of \mathcal{B}_3 , whence another subgroup of \mathcal{B}_4 isomorphic to $\mathcal{B}_3 \ltimes F_3$.

This is the right one!

The monodromy representation Main conjecture Implications of the conjecture From a conjecture to another

Group-theoretic conjecture

The monodromy representation Main conjecture Implications of the conjecture From a conjecture to another

Group-theoretic conjecture

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

Group-theoretic conjecture

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

Conjecture

If A is a pseudo-reflection arrangement, then $\pi_1(X)$ is residually torsion-free nilpotent.

Group-theoretic conjecture

These miracles maybe give additional support to the following conjecture, independantly of the 'main' one.

Conjecture

If A is a pseudo-reflection arrangement, then $\pi_1(X)$ is residually torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable and residually p for all p.)