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General goal :

extend what is known for the usual braid groups to
their natural generalizations. For instance :

I Braid groups are linear (Krammer, Bigelow)

I Braid groups admit Garside structures (Garside).

I Pure braid groups are residually torsion-free nilpotent
(Falk-Randell).

I Braid groups are residually finite (folklore).

I Braid groups have cyclic center (Chow).

I Normal subgroups of braid groups usually intersect
non-trivially (Long)

I . . . (torsion-free, Frattini subgroups, . . .)
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Generalization 1 : mapping class groups

Same questions for mapping class groups of surfaces ?

I are linear

I have Garside

I groups are residually torsion-free nilpotent.

I are residually finite.

I have center.

I Normal subgroups of usually intersect non-trivially (Long)

I . . .
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Same questions for Artin groups of finite Coxeter type ?

I are linear

I have Garside structures .
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Complex braid groups

Complex reflection groups

s ∈ GLn(C) is called a reflection if

I Ker(s − 1) is an hyperplane.

I s2 = 1.

Relaxing the second condition to s of finite order defines the
notion of pseudo-reflection.

W < GLn(C) is called a reflection group if it is finite and
generated by a set R of reflections.

Remark : if W < GLn(R) < GLn(C) is a reflection group, then it
is a Coxeter group.

Fact : every reflection group is a direct product of irreducible ones.
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Two generalizations of braid groups
Complex braid groups

Irreducible reflection groups

Shephard-Todd classification : first series.

For e, n ≥ 1, G (e, e, n) is the group of n × n matrices such that

I they are monomial (one nonzero coefficient in each line and
column)

I they have their nonzero coefficients in µe(C)

I the product of their nonzero coefficients is 1.

Coxeter cases : n = 2 (dihedral groups), e = 1 (symmetric groups),
e = 2 (type Dn).

In general 1 class of reflections.
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For e, n ≥ 1, G (2e, e, n) is the group of n × n matrices such that

I they are monomial (one nonzero coefficient in each line and
column)

I they have their nonzero coefficients in µ2e(C)
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Complex braid groups

Monodromy representations
Krammer representations for CRG

Two generalizations of braid groups
Complex braid groups

Complex braid groups

Let W < GLn(C) a complex reflection group, and R the set of
reflections of W .

There is a corresponding hyperplane arrangement and hyperplane
complement

A = {Ker(s − 1) | s ∈ R}

X = Cn \
⋃
A

I P = π1(X ) pure (complex) braid group

I B = π1(X/W ) braid group

1→ P → B →W → 1

I B is torsion-free

I (W irreducible.) Z (B) ' Z, Z (P) ' Z
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Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections and parabolic subgroups

W preserves some hermitian scalar product on Cn.

To any vector space U ⊂ Cn, is associated a parabolic subgroup

W0 = {w ∈W |∀u ∈ U w .u = u}

Let V = U⊥.
(Steinberg) W0 < GL(V ) is a complex reflection group, R0 ⊂ R

(Broué-Malle-Rouquier) B0 embeds in B

(uniquely up to P-conjugation)
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(Broué-Malle-Rouquier) B0 embeds in B

(uniquely up to P-conjugation)

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections and parabolic subgroups

W preserves some hermitian scalar product on Cn.
To any vector space U ⊂ Cn, is associated a parabolic subgroup

W0 = {w ∈W |∀u ∈ U w .u = u}

Let V = U⊥.
(Steinberg) W0 < GL(V ) is a complex reflection group, R0 ⊂ R
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Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections

Special case :

Let s ∈ R, U = Ker(s − 1).
Then V = U⊥ ' C and B0 ' Z is the braid groups on two strands.
The image in B of the positive generator of B0 are the braided
reflections associated to s.
(Broué-Malle-Rouquier) Complex braid groups are generated by
braided reflections.

Compare with : MCG are generated by Dehn twists,
and have special subgroups fixing curve systems.

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections

Special case :
Let s ∈ R, U = Ker(s − 1).

Then V = U⊥ ' C and B0 ' Z is the braid groups on two strands.
The image in B of the positive generator of B0 are the braided
reflections associated to s.
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(Broué-Malle-Rouquier) Complex braid groups are generated by
braided reflections.

Compare with : MCG are generated by Dehn twists,
and have special subgroups fixing curve systems.

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections

Special case :
Let s ∈ R, U = Ker(s − 1).
Then V = U⊥ ' C and B0 ' Z is the braid groups on two strands.
The image in B of the positive generator of B0 are the braided
reflections associated to s.
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(Broué-Malle-Rouquier) Complex braid groups are generated by
braided reflections.

Compare with : MCG are generated by Dehn twists,
and have special subgroups fixing curve systems.

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Braided reflections

Special case :
Let s ∈ R, U = Ker(s − 1).
Then V = U⊥ ' C and B0 ' Z is the braid groups on two strands.
The image in B of the positive generator of B0 are the braided
reflections associated to s.
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Representations

Classical representations

The Hecke algebra HW (q) is the quotient of the group algebra
C(q)B

by the relations (σ − q)(σ + q−1),
for σ braided reflections.

Conjecture

HW (q) is isomorphic to the group algebra C(q)W

(Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR),
exceptional groups of low rank

When it holds : Rep(W )  Rep HW (q)  Rep(B)
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(Broué-Malle-Rouquier 1998)

Known for : Coxeter groups (Tits), general series (BMR),
exceptional groups of low rank

When it holds :

Rep(W )  Rep HW (q)  Rep(B)

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

Structure
Representations

Classical representations

The Hecke algebra HW (q) is the quotient of the group algebra
C(q)B by the relations (σ − q)(σ + q−1),
for σ braided reflections.

Conjecture

HW (q) is isomorphic to the group algebra C(q)W
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Complex braid groups

Monodromy representations
Krammer representations for CRG

General construction
Hecke algebra representations
A new integrable 1-form

Holonomy Lie algebras

The Holonomy Lie algebra is

T =< tH ,H ∈ A | [tH0 , tZ ] = 0 >

for codim Z = 2, Z ⊂ H0, H0 ∈ A and

tZ =
∑
Z⊂H

tH

W acts on T by w .tH = tw(H), or w .ts = twsw−1 by R ↔ A.

Remark. When W = Sn, T is the Lie algebra of (horizontal) chord
diagrams.
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General construction
Hecke algebra representations
A new integrable 1-form

Monodromy representations

Let ρ̌ : W → GLN(C).

If ρ : T → glN(C) is equivariant, then

ωρ =
1

iπ
h
∑
H∈A

ρ(tH)ωH ∈ Ω1(X )⊗ glN(C)

with ωH = dαH/αH , H = KerαH , is integrable and equivariant
(Kohno). It yields

R : B → GLN(A) ⊂ GLN(K )

such that R(σ) is conjugated to ρ̌(s) exp(hρ(ts)) if σ is a braided
reflection associated to s ∈ R.
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Cherednik systems

For ρ̌ : W → GLN(C),

let ρ(ts) = ρ̌(s) ∈ GLN(C).

Easily checked : ρ is a representation of T .
Proof :

s0tZ s−1
0 =

hence [tH0 , tZ ] = [s0, tZ ] = 0.

R(σ) has eigenvalues q = exp(h) and −q−1 = −e−h, hence factors
through HW (q).

This was the only contruction known so far which worked for
arbitrary complex reflection groups.
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A new integrable 1-form

Let N = #R, and ρ̌ : W → GLN(C) the natural permutation
representation on R.
Basis of V = CN : vs , s ∈ R, with w .vs = vwsw−1 .
Let m ∈ C.

Theorem
The formulas {

ts .vs = mvs

ts .vu = vsus − α(s, u)vs if s 6= u

define an equivariant representation of T , where

α(s, u) = #{y ∈ R | yuy = s}
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Irreducible components

Theorem
The formulas ts .vs = mvs , ts .vu = vsus − α(s, u)vs define an
equivariant representation of T , where
α(s, u) = #{y ∈ R | yuy = s}

For c ∈ R/W , define Vc =< vs , s ∈ c >
and (vs |vs) = 1−m, (vs |vu) = α(s, u) on each Vc .
Then :

I ρ is the direct sum of ρc , c ∈ R/W .

I ρc is irreducible iff ( | ) is nondegenerate on Vc

I For generic values of m, ρc(T ) = gl(Vc)
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Irreducibility and decompositions

Let R : B → GLN(K ) be the corresponding representation.

We
have

R =
⊕

c∈R/W

Rc

Theorem
For generic values of m,

I Rc is irreducible and Rc(P) = GL(Vc ⊗ K )

I If W0 ⊂W parabolic, then

ResB0R ' R0 ⊕ Hecke(R \R0)

I Sp R(σ) = {q,−q−1, qm}
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The monodromy representation
Main conjecture
Implications of the conjecture
From a conjecture to another

Faithfulness

If W is a Coxeter group of type ADE , then W has a single class of
reflections.

Theorem
If W is a Coxeter group of type ADE , then R is isomorphic to the
Krammer representation, hence is faithful.

We do not know if R can be unfaithful when #R/W > 1.
At least, the following seems plausible.

Conjecture

If W has a single class of reflections, then R is faithful.
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The monodromy representation
Main conjecture
Implications of the conjecture
From a conjecture to another

Group-theoretic properties

Let W be an irreducible pseudo-reflection group.

Theorem
If the conjecture is true, then

I B is linear, residually finite, etc.

I P is residually torsion-free nilpotent (hence biorderable,
residually p, etc.)

I Normal subgroups of B “usually” intersect

I The Fitting subgroup of B equals its center

I The Frattini subgroup of B is trivial.
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Sketch of proof

The statements concerning B are consequences of the following

Theorem
If the conjecture holds and W is irreducible, then B embeds in
some GLr as a Zariski-dense subgroup.

I By considering pseudo-reflection groups, no new B arise, so
we can assume that W is a reflection group.

I All groups of type G (2e, e, n) can be embedded in the usual
braid group as finite-index subgroups.

I This theorem is true when W is Coxeter (I.M.).

I Among exceptional groups, only G13 has #R/W > 1, and its
braid group is isomorphic to the one of Coxeter type I2(6).
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Sketch of proof

In order to prove that P is residually torsion-free nilpotent, we need
to consider pseudo-reflection groups : infinite series G (de, e, n)
plus 34 exceptions.

Fortunately, the following phenomena occur :

I All P arising in the infinite series are either of type G (e, e, n)
or Coxeter.

I All P arising in the exceptional types are either fiber-type or
correspond to reflection groups with #R/W = 1, except
G25,G26,G32

So it is sufficient to prove it for reflection groups with #R/W = 1,
provided that :

Proposition

(I.M.) If W is a Coxeter group, or of type G25,G26,G32, then P is
residually torsion-free nilpotent.
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Residual nilpotence and representations

How do we prove residual torsion-free nilpotence ?
Idea : use faithful representations, embed P in some residually
torsion-free linear group
For A = C[[h]], GLN(A) contains a residually torsion-free nilpotent
group, namely

GL0
N(A) = {M ∈ GLN(A) | M ≡ Id mod h} = exp (hMatN(A))

If R : B → GLN(A) is faithful, check if R(P) ⊂ GL0
N(A).

It works for monodromy representations,
so under the conjecture this settles the case of #R/W = 1 for W
a reflection group.
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First miracle

For the other ones ?

For type G25, W is generated by < s1, s2, s3 > with relations

s1s3 = s3s1, s1s2s1 = s2s1s2, s2s3s2 = s3s2s3, s
3
1 = s3

2 = s3
3 = 1

and B is the usual braid group on 4 strands.

But P = Ker(sr 7→ j) where j = e
2iπ
3 is not the pure braid group

on 4 strands.
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First miracle

Consider the Lawrence-Krammer formulas :

σkxk,k+1 = tq2xk,k+1

σkxi ,k = (1− q)xi ,k + qxi ,k+1 i < k
σkxi ,k+1 = xi ,k + tqk−i+1(q − 1)xk,k+1 i < k
σkxk,j = tq(q − 1)xk,k+1 + qxk+1,j k + 1 < j
σkxk+1,j = xk,j + (1− q)xk+1,j k + 1 < j
σkxi ,j = xi ,j i < j < k or k + 1 < i < j
σkxi ,j = xi ,j + tqk−i (q − 1)2xk,k+1 i < k < k + 1 < j

where t and q denote algebraically independent parameters.

Embed Q(q, t) into K = C((h)) by q 7→ eh and t 7→ e
√

2h.
Then R(P4) ⊂ GL0

N(A) : no surprise.
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First miracle

The same miracle happens for G32, whose P is a subgroup of the
usual braid group on 5 strands.

Hence P is residually torsion-free nilpotent for G25 and G32.
But for G26 ?

< s, t, u | stst = tsts, su = us, tut = utu, s2 = t3 = u3 = 1 >
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Second miracle

For W = G26, B is isomorphic to the Artin group of type B3.

Recall P = π1(X ).
The hyperplane complement of G26 is included in the hyperplane
complement of G25.
But : the corresponding morphisms P26 → P25 is not into.
However, there exists morphisms

B25

����

B26
? _oo

����
W25 W26

oooo

hence P26 embeds in P25 in a strange way.
These two morphisms are defined by (s, t, u) 7→ ((tu)3, s, t).
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Implications of the conjecture
From a conjecture to another

Are they related to something ?

Surprisingly, yes.
Recall that

I B25 = B4, braid group on 4 strands,

I B26 is the Artin group C3 of type B3 = C3,

I C3 ' B3 n F3 through Artin action.

Then B3 n F3 embeds in B4 in several ways.

I Artin way : use F3 ' Ker(P4 → P3).
Not the right one.

I In Magnus way : through B4 → Aut(F4) restricted to
F4/x1x2x3x4 ' F3, one gets B4 → Aut(F3), of kernel Z (B4)
and image containing Inn(F3) ' F3. It also contains a copy of
B3, whence another subgroup of B4 isomorphic to B3 n F3.

This is the right one !
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This is the right one !
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Group-theoretic conjecture

These miracles maybe give additional support to the following
conjecture, independantly of the ‘main’ one.

Conjecture

If A is a pseudo-reflection arrangement, then π1(X ) is residually
torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable
and residually p for all p.)

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

The monodromy representation
Main conjecture
Implications of the conjecture
From a conjecture to another

Group-theoretic conjecture

These miracles maybe give additional support to the following
conjecture, independantly of the ‘main’ one.

Conjecture

If A is a pseudo-reflection arrangement, then π1(X ) is residually
torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable
and residually p for all p.)

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

The monodromy representation
Main conjecture
Implications of the conjecture
From a conjecture to another

Group-theoretic conjecture

These miracles maybe give additional support to the following
conjecture, independantly of the ‘main’ one.

Conjecture

If A is a pseudo-reflection arrangement, then π1(X ) is residually
torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable
and residually p for all p.)

Ivan Marin Krammer representations for complex braid groups



Introduction
Complex braid groups

Monodromy representations
Krammer representations for CRG

The monodromy representation
Main conjecture
Implications of the conjecture
From a conjecture to another

Group-theoretic conjecture

These miracles maybe give additional support to the following
conjecture, independantly of the ‘main’ one.

Conjecture

If A is a pseudo-reflection arrangement, then π1(X ) is residually
torsion-free nilpotent.

(Recall that residual torsion-free nilpotent groups are bi-orderable
and residually p for all p.)

Ivan Marin Krammer representations for complex braid groups


	Introduction
	Two generalizations of braid groups
	Complex braid groups

	Complex braid groups
	Structure
	Representations

	Monodromy representations
	General construction
	Hecke algebra representations
	A new integrable 1-form

	Krammer representations for CRG
	The monodromy representation
	Main conjecture
	Implications of the conjecture
	From a conjecture to another


