Braid representations and arithmetic characters

Ivan Marin

June 7th, 2007

Preliminaries

Profinite groups
Geometric Galois actions
The Grothendieck-Teichmüller story

Using representations of braid groups

Profinite rigidity and Kummer characters Pro-unipotent rigidity and Soulé characters

The profinite completion \widehat{G} of a (topological) group G is the inverse limit of the finite quotients G/N, with $N \triangleleft G$ (open and) of finite index.

The profinite completion \widehat{G} of a (topological) group G is the inverse limit of the finite quotients G/N, with $N \triangleleft G$ (open and) of finite index.

A profinite group can be defined as :

The profinite completion \widehat{G} of a (topological) group G is the inverse limit of the finite quotients G/N, with $N \triangleleft G$ (open and) of finite index.

A profinite group can be defined as :

▶ A group structure on a Cantor set (= a totally discontinuous compact topological group).

The profinite completion \widehat{G} of a (topological) group G is the inverse limit of the finite quotients G/N, with $N \triangleleft G$ (open and) of finite index.

A profinite group can be defined as :

- ▶ A group structure on a Cantor set (= a totally discontinuous compact topological group).
- A topological group such that $G = \widehat{G}$.

The profinite completion \widehat{G} of a (topological) group G is the inverse limit of the finite quotients G/N, with $N \triangleleft G$ (open and) of finite index.

A profinite group can be defined as :

- A group structure on a Cantor set (= a totally discontinuous compact topological group).
- ▶ A topological group such that $G = \widehat{G}$.

Example : for $G = \mathbb{Z}$, we have $\widehat{\mathbb{Z}} = \prod_{p} \mathbb{Z}_{p}$.

$$\varphi : \mathbb{Z} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow \widehat{G}$$

$$\lambda \longmapsto_{X}^{\lambda}$$

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

If G is profinite, $x \in G$ and $\lambda \in \widehat{\mathbb{Z}}$, then x^{λ} is defined by the profinite completion functor :

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

If $F = \langle a, b \rangle$ is free, then $x, y \in G$ defines a morphism

If G is profinite, $x \in G$ and $\lambda \in \widehat{\mathbb{Z}}$, then x^{λ} is defined by the profinite completion functor :

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

If $F = \langle a, b \rangle$ is free, then $x, y \in G$ defines a morphism

$$\varphi : F \longrightarrow G$$

$$f \longmapsto f(x,y)$$

If G is profinite, $x \in G$ and $\lambda \in \widehat{\mathbb{Z}}$, then x^{λ} is defined by the profinite completion functor :

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

If $F = \langle a, b \rangle$ is free, then $x, y \in G$ defines a morphism

$$\widehat{\varphi}: \widehat{F} \longrightarrow G$$

$$f \longmapsto f(x,y)$$

If G is profinite, $x \in G$ and $\lambda \in \widehat{\mathbb{Z}}$, then x^{λ} is defined by the profinite completion functor :

$$\widehat{\varphi}: \widehat{\mathbb{Z}} \longrightarrow G$$

$$\lambda \longmapsto_{X}^{\lambda}$$

If $F = \langle a, b \rangle$ is free, then $x, y \in G$ defines a morphism

$$\widehat{\varphi}: \widehat{F} \longrightarrow G$$

$$f \longmapsto f(x,y)$$

hence f(x,y) is well-defined in G for a pro-word $f \in \widehat{F}$

▶ Let X be a smooth algebraic variety over \mathbb{Q} .

- \blacktriangleright Let X be a smooth algebraic variety over \mathbb{Q} .
- ▶ By base change, it defines an algebraic variety $X_{\overline{\mathbb{Q}}}$ over $\overline{\mathbb{Q}}$,

- ▶ Let X be a smooth algebraic variety over \mathbb{Q} .
- ▶ By base change, it defines an algebraic variety $X_{\overline{\mathbb{Q}}}$ over $\overline{\mathbb{Q}}$,
- ▶ and its set $X(\mathbb{C})$ of complex points is a complex manifold.

- Let X be a smooth algebraic variety over \mathbb{Q} .
- ▶ By base change, it defines an algebraic variety $X_{\overline{\mathbb{Q}}}$ over $\overline{\mathbb{Q}}$,
- ightharpoonup and its set $X(\mathbb{C})$ of complex points is a complex manifold.

Fundamental groups

The algebraic fundamental group of $X_{\overline{\mathbb{Q}}}$ is the profinite completion of the topological fundamental group $\pi_1(X(\mathbb{C}))$.

The mysterious group $\pi_1^{alg}(X)$ fits into the following short exact sequence

$$1 o \pi_1^{alg}(X_{\overline{\mathbb{Q}}}) o \pi_1^{alg}(X) o \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) o 1$$

The mysterious group $\pi_1^{\mathit{alg}}(X)$ fits into the following short exact sequence

$$1 \to \pi_1\widehat{(X(\mathbb{C}))} \to \pi_1^{\textit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

The mysterious group $\pi_1^{\mathit{alg}}(X)$ fits into the following short exact sequence

$$1 \to \widehat{\pi_1(Y)} \to \pi_1^{\mathit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

where
$$Y = X(\mathbb{C})$$
,

The mysterious group $\pi_1^{\mathit{alg}}(X)$ fits into the following short exact sequence

$$1 \to \widehat{\pi_1(Y,\underline{y})} \to \pi_1^{\textit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

where
$$Y = X(\mathbb{C})$$
, and $y \in X(\mathbb{Q})$

The mysterious group $\pi_1^{\mathit{alg}}(X)$ fits into the following short exact sequence

$$1 \to \widehat{\pi_1(Y,\underline{y})} \to \pi_1^{\textit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

where $Y=X(\mathbb{C})$, and $\underline{y}\in X(\mathbb{Q})$

This short-exact sequence is split, thus inducing actions

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut}\left(\widehat{\pi_1(Y,\underline{y})}\right)$$

The mysterious group $\pi_1^{alg}(X)$ fits into the following short exact sequence

$$1 \to \widehat{\pi_1(Y,\underline{y})} \to \pi_1^{\mathit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

where $Y = X(\mathbb{C})$, and $\underline{y} \in X(\mathbb{Q})$

This short-exact sequence is split, thus inducing actions

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut}\left(\widehat{\pi_1(Y,\underline{y})}\right) \, \to \operatorname{Out}\left(\widehat{\pi_1(Y)}\right)$$

The mysterious group $\pi_1^{\mathit{alg}}(X)$ fits into the following short exact sequence

$$1 \to \widehat{\pi_1(Y,\underline{y})} \to \pi_1^{\textit{alg}}(X) \to \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to 1$$

where $Y=X(\mathbb{C})$, and $\underline{y}\in X(\mathbb{Q})$

This short-exact sequence is split, thus inducing actions

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut}\left(\widehat{\pi_1(Y,\underline{y})}\right) \, \to \operatorname{Out}\left(\widehat{\pi_1(Y)}\right)$$

which have no reasons to be injective in general!

$$\blacktriangleright \ \text{Let} \ X = \mathbb{P}^1 \setminus \{0,\infty\} = \mathbb{A}_1 \setminus \{0\}.$$

- Let $X = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}_1 \setminus \{0\}.$
- ▶ We have $\pi_1(X(\mathbb{C})) \simeq \mathbb{Z}$,

- Let $X = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}_1 \setminus \{0\}.$
- We have $\pi_1(X(\mathbb{C})) \simeq \mathbb{Z}$,
- ▶ hence a morphism

$$\chi:\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut}\widehat{\mathbb{Z}}$$

- ▶ Let $X = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}_1 \setminus \{0\}$.
- We have $\pi_1(X(\mathbb{C})) \simeq \mathbb{Z}$,
- ▶ hence a morphism

$$\chi: \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut}\widehat{\mathbb{Z}} = \operatorname{Out}\widehat{\mathbb{Z}} = \widehat{\mathbb{Z}}^{\times}$$

- ▶ Let $X = \mathbb{P}^1 \setminus \{0, \infty\} = \mathbb{A}_1 \setminus \{0\}$.
- We have $\pi_1(X(\mathbb{C})) \simeq \mathbb{Z}$,
- hence a morphism

$$\chi: \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Aut} \widehat{\mathbb{Z}} = \operatorname{Out} \widehat{\mathbb{Z}} = \widehat{\mathbb{Z}}^{\times}$$

It is the cyclotomic character

$$\sigma(\zeta) = \zeta^{\chi(\sigma)}$$

for all $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$ and $\zeta \in \mu_{\infty}$.

(Kronecker-Weber theorem)

The kernel of χ is the commutator subgroup of $\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$, and can be identified with $\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\infty}))$.

▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.

- ▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.
- ▶ It defines a hyperplane arrangement \mathcal{A} in \mathbb{C}^n ,

- ▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.
- ▶ It defines a hyperplane arrangement A in \mathbb{C}^n ,
- ▶ and $Y = (\mathbb{C}^n \setminus \bigcup A)/W$ is a smooth algebraic variety

- ▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.
- ▶ It defines a hyperplane arrangement A in \mathbb{C}^n ,
- ▶ and $Y = (\mathbb{C}^n \setminus \bigcup A)/W$ is a smooth algebraic variety
- ▶ that can be shown to be defined over ℚ.

- ▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.
- ▶ It defines a hyperplane arrangement \mathcal{A} in \mathbb{C}^n ,
- ▶ and $Y = (\mathbb{C}^n \setminus \bigcup A)/W$ is a smooth algebraic variety
- ▶ that can be shown to be defined over Q.

hence a morphism

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Out}(\widehat{B})$$

where
$$B = \pi_1(Y)$$
.

Richer examples

- ▶ Let $W \subset GL_n(\mathbb{C})$ be a finite group generated by reflections.
- ▶ It defines a hyperplane arrangement A in \mathbb{C}^n ,
- ▶ and $Y = (\mathbb{C}^n \setminus \bigcup A)/W$ is a smooth algebraic variety
- ▶ that can be shown to be defined over Q.

hence a morphism

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Out}(\widehat{B})$$

where $B = \pi_1(Y)$.

In particular, if W is a Coxeter group, then B is an Artin-Tits group.

Belyi theorem and $\mathbb{P}^1\setminus\{0,1,\infty\}$

Belyi theorem

A smooth algebraic curve is defined over $\overline{\mathbb{Q}}$ if and only if it admits a covering over $\mathbb{P}^1\setminus\{0,1,\infty\}$.

Belyi theorem and $\mathbb{P}^1\setminus\{0,1,\infty\}$

Belyi theorem

A smooth algebraic curve is defined over $\overline{\mathbb{Q}}$ if and only if it admits a covering over $\mathbb{P}^1 \setminus \{0,1,\infty\}$.

Corollary

The map

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \to \operatorname{Out}\left(\pi_1(\widehat{\mathbb{C}\setminus\{0,1\}})\right)$$

is injective.

Grothendieck, Ihara, Drinfeld

The fundamental group of $\mathbb{C} \setminus \{0,1\}$ is the free group F on two generators x,y.

The Galois group $\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$ acts on \widehat{F} by

$$\sigma.x = x^{\chi(\sigma)}, \quad \sigma.y = f_{\sigma}y^{\chi(\sigma)}f_{\sigma}^{-1}$$

hence every $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q})$ is determined by a couple

$$(\chi(\sigma), f_{\sigma}) \in \widehat{\mathbb{Z}}^{\times} \times \widehat{F}$$

Geometric Galois actions have to be compatible with rational morphisms.

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .
- ▶ A collection of rational morphisms arise between moduli spaces of genus 0 : removal of strands.

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .
- A collection of rational morphisms arise between moduli spaces of genus 0 : removal of strands.
- ▶ This gives conditions on the couple $(\chi(\sigma), f_{\sigma})$

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .
- A collection of rational morphisms arise between moduli spaces of genus 0 : removal of strands.
- ▶ This gives conditions on the couple $(\chi(\sigma), f_{\sigma})$

The Grothendieck-Teichmüller group \widehat{GT} is the set of all couples $(\lambda, f) \in \widehat{\mathbb{Z}}^{\times} \times \widehat{F}$ satisfying these conditions.

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .
- A collection of rational morphisms arise between moduli spaces of genus 0 : removal of strands.
- ▶ This gives conditions on the couple $(\chi(\sigma), f_{\sigma})$

The Grothendieck-Teichmüller group \widehat{GT} is the set of all couples $(\lambda, f) \in \widehat{\mathbb{Z}}^{\times} \times \widehat{F}$ satisfying these conditions. In particular

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \hookrightarrow \widehat{\mathit{GT}} \hookrightarrow \operatorname{Out}(\widehat{B_n})$$

for $n \geq 3$.

- Geometric Galois actions have to be compatible with rational morphisms.
- ▶ $\mathcal{M}_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$ and mapping class groups in genus 0 are closely related to the braid groups \mathcal{B}_n .
- A collection of rational morphisms arise between moduli spaces of genus 0 : removal of strands.
- ▶ This gives conditions on the couple $(\chi(\sigma), f_{\sigma})$

The Grothendieck-Teichmüller group \widehat{GT} is the set of all couples $(\lambda, f) \in \widehat{\mathbb{Z}}^{\times} \times \widehat{F}$ satisfying these conditions. In particular

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \hookrightarrow \widehat{GT} \hookrightarrow \operatorname{Out}(\widehat{B_n})$$

for $n \ge 3$.

 $Theorem \ (Harbater-Schneps+Boggi-Lochak+Lochak)$

$$\widehat{GT} \simeq \operatorname{Out}^*(\widehat{B_n})$$
 for $n \geq 5$.

Some questions

Wishful thinking?

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \simeq \widehat{\mathit{GT}}$$

Some questions

Wishful thinking?

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \simeq \widehat{\mathit{GT}}$$

Still hopeless?

Can the image of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$ in \widehat{GT} be described by finitely many new relations?

Some questions

Wishful thinking?

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}) \simeq \widehat{\mathit{GT}}$$

Still hopeless?

Can the image of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$ in \widehat{GT} be described by finitely many new relations?

Sissy question

Do usual representations of $Gal(\overline{\mathbb{Q}}|\mathbb{Q})$ extend to \widehat{GT} , beyond the cyclotomic character?

Let $B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The couple $(\lambda, f) \in \widehat{GT}$ acts on $\widehat{B_3}$:

$$(\lambda, f).\sigma_1 = \sigma_1^{\lambda}, \qquad (\lambda, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2^{\lambda}f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let $B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The couple $(\lambda, f) \in \widehat{GT}$ acts on $\widehat{B_3}$:

$$(\lambda, f).\sigma_1 = \sigma_1^{\lambda}, \qquad (\lambda, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2^{\lambda}f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let

$$\widehat{\mathsf{GT}}_1 \ = \ \mathrm{Ker}\left(\widehat{\mathsf{GT}} \to \widehat{\mathbb{Z}}^{\times}\right)$$

Let $B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The couple $(\lambda, f) \in \widehat{GT}$ acts on $\widehat{B_3}$:

$$(\lambda, f).\sigma_1 = \sigma_1^{\lambda}, \qquad (\lambda, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2^{\lambda}f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let

$$\widehat{GT}_1 = \operatorname{Ker}\left(\widehat{GT} \to \widehat{\mathbb{Z}}^{\times}\right)$$

= $\{(1, f) \in \widehat{GT}\}$

Let $B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The couple $(\lambda, f) \in \widehat{GT}$ acts on $\widehat{B_3}$:

$$(\lambda, f).\sigma_1 = \sigma_1^{\lambda}, \qquad (\lambda, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2^{\lambda}f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let

$$\widehat{GT}_1 = \operatorname{Ker}\left(\widehat{GT} \to \widehat{\mathbb{Z}}^{\times}\right)$$

= $\{(1, f) \in \widehat{GT}\}$

The action becomes

$$(1, f).\sigma_1 = \sigma_1, \qquad (1, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2 f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let $B_3 = \langle \sigma_1, \sigma_2 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$. The couple $(\lambda, f) \in \widehat{GT}$ acts on $\widehat{B_3}$:

$$(\lambda, f).\sigma_1 = \sigma_1^{\lambda}, \qquad (\lambda, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2^{\lambda}f(\sigma_1^2, \sigma_2^2)^{-1}$$

Let

$$\widehat{GT}_1 = \operatorname{Ker}\left(\widehat{GT} \to \widehat{\mathbb{Z}}^{\times}\right)$$

= $\{(1, f) \in \widehat{GT}\}$

The action becomes

$$(1, f).\sigma_1 = \sigma_1, \qquad (1, f).\sigma_2 = f(\sigma_1^2, \sigma_2^2)\sigma_2 f(\sigma_1^2, \sigma_2^2)^{-1}$$

On the arithmetic side,

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\infty})) \hookrightarrow \widehat{GT}_1 \hookrightarrow \operatorname{Aut}(\widehat{B}_3)$$

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

 $ightharpoonup \mathbb{Z}_{\ell}$ is compact and totally discontinuous

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is a profinite group.

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3, \operatorname{SL}_2(\mathbb{Z}_\ell)) = \operatorname{Hom}(\widehat{B_3}, \operatorname{SL}_2(\mathbb{Z}_\ell)),$

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $lackbox \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

$$R: B_3 \longrightarrow \mathrm{SL}_2(\mathbb{Z}_\ell)$$

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_{\ell})$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

R: $B_3 \longrightarrow \operatorname{SL}_2(\mathbb{Z}_\ell)$

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_{\ell})$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

R: $B_3 \longrightarrow \operatorname{SL}_2(\mathbb{Z}_\ell)$ $\widehat{B_3}$

For ℓ prime, \mathbb{Z}_{ℓ} is a profinite group,

- $ightharpoonup \mathbb{Z}_\ell$ is compact and totally discontinuous
- ▶ $\mathrm{SL}_2(\mathbb{Z}_\ell)$ is compact and totally discontinuous
- ▶ $SL_2(\mathbb{Z}_\ell)$ is a profinite group.

Hence $\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))=\operatorname{Hom}(\widehat{B_3},\operatorname{SL}_2(\mathbb{Z}_\ell))$, and $g\in\widehat{\mathit{GT}}$ sends $R\in\operatorname{Hom}(B_3,\operatorname{SL}_2(\mathbb{Z}_\ell))$ to $R\circ g$:

R: $B_3 \longrightarrow \operatorname{SL}_2(\mathbb{Z}_\ell)$ $\widehat{B_3}$

The natural map $B_3 \to \mathrm{SL}_2(\mathbb{Z})$

We have a well-known map

$$B_3 \to \mathrm{SL}_2(\mathbb{Z}) \subset \mathrm{SL}_2(\mathbb{Z}_\ell)$$

given by

$$\sigma_1 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

and

$$\sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

Let
$$R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$$
.

Let
$$R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$$
.

Lemma

lf

$$R(\sigma_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then

Let
$$R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$$
.

Lemma

lf

$$R(\sigma_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then
$$R(\sigma_2) = R(\sigma_1)$$
 or

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$.

Lemma

lf

$$R(\sigma_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then $R(\sigma_2) = R(\sigma_1)$ or

$$R(\sigma_2) = \begin{pmatrix} 1 - u & u^2 \\ -1 & 1 + u \end{pmatrix}$$

for some $u \in \mathbb{Z}_{\ell}$.

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$.

Lemma

lf

$$R(\sigma_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

then $R(\sigma_2) = R(\sigma_1)$ or

$$R(\sigma_2) = \begin{pmatrix} 1 - u & u^2 \\ -1 & 1 + u \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}^{-1}$$

for some $u \in \mathbb{Z}_{\ell}$.

B_3 and $\mathrm{SL}_2(\mathbb{Z}_\ell)$

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$.

Lemma

If

$$R(\sigma_1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}^{-1}$$

then $R(\sigma_2) = R(\sigma_1)$ or

$$R(\sigma_2) = \begin{pmatrix} 1 - u & u^2 \\ -1 & 1 + u \end{pmatrix} = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}^{-1}$$

for some $u \in \mathbb{Z}_{\ell}$.

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$ with $R(\sigma_1) \neq R(\sigma_2)$,

Profinite rigidity and Kummer characters

Pro-unipotent rigidity and Soulé characters

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$ with $R(\sigma_1) \neq R(\sigma_2)$, and $g \in \widehat{GT}_1$.

Let
$$R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$$
 with $R(\sigma_1) \neq R(\sigma_2)$, and $g \in \widehat{GT}_1$. Then $R \circ g(\sigma_1) = R(\sigma_1)$

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$ with $R(\sigma_1) \neq R(\sigma_2)$, and $g \in \widehat{GT}_1$. Then $R \circ g(\sigma_1) = R(\sigma_1)$ hence

$$R \circ g(x) = \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix} R(x) \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix}^{-1}$$

Profinite rigidity and Kummer characters

Pro-unipotent rigidity and Soulé characters

Pro-unipotent rigidity and Soulé characters

Some mysterious character

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$ with $R(\sigma_1) \neq R(\sigma_2)$, and $g \in \widehat{GT}_1$. Then $R \circ g(\sigma_1) = R(\sigma_1)$ hence

$$R \circ g(x) = \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix} R(x) \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix}^{-1}$$

for a well-defined

$$\rho:\widehat{\mathsf{GT}}_1\to\mathbb{Z}_\ell$$

Profinite rigidity and Kummer characters

Let $R: B_3 \to \mathrm{SL}_2(\mathbb{Z}_\ell)$ with $R(\sigma_1) \neq R(\sigma_2)$, and $g \in \widehat{GT}_1$. Then $R \circ g(\sigma_1) = R(\sigma_1)$ hence

$$R \circ g(x) = \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix} R(x) \begin{pmatrix} 1 & \rho(g) \\ 0 & 1 \end{pmatrix}^{-1}$$

for a well-defined

$$\rho: \widehat{\mathsf{GT}}_1 \to \mathbb{Z}_\ell$$

Question: what is the corresponding character

$$\operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\infty})) \to \mathbb{Z}_{\ell}$$
?

Up to some scalar, it is the ℓ -part of the Kummer character ρ_2 , defined as follows.

Up to some scalar, it is the ℓ -part of the Kummer character ρ_2 , defined as follows.

Assume $\overline{\mathbb{Q}} \subset \mathbb{C}$, and let $\zeta_n = \exp(2i\pi/n)$.

Up to some scalar, it is the ℓ -part of the Kummer character ρ_2 , defined as follows.

Assume $\overline{\mathbb{Q}} \subset \mathbb{C}$, and let $\zeta_n = \exp(2i\pi/n)$.

Let $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\infty}))$.

Then

$$\gamma(\sqrt[n]{2}) =$$

Up to some scalar, it is the ℓ -part of the Kummer character ρ_2 , defined as follows.

Assume $\overline{\mathbb{Q}} \subset \mathbb{C}$, and let $\zeta_n = \exp(2i\pi/n)$.

Let $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\infty}))$.

Then

$$\gamma(\sqrt[n]{2}) = \zeta_n^{\rho_2(\sigma)} \sqrt[n]{2}$$

From $B_3 \to \operatorname{SL}_2$ to the Burau

The morphism

$$\sigma_1 \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$

is a degeneration at q=-1 of the (reduced) Burau representation

$$\sigma_1 \mapsto \begin{pmatrix} -q & 1 \\ 0 & 1 \end{pmatrix} \sigma_2 \mapsto \begin{pmatrix} 1 & 0 \\ q & -q \end{pmatrix}$$

What can we get from this?

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

$$\lambda \in \widehat{\mathbb{Z}}^{\times} \quad \to \quad \mathbb{Z}_{\ell}^{\times} \quad \to \quad \mathbb{Q}_{\ell}^{\times}$$

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

$$\lambda \in \widehat{\mathbb{Z}}^{\times} \to \mathbb{Z}_{\ell}^{\times} \to \mathbb{Q}_{\ell}^{\times}$$

$$f \in \widehat{F}^{\times} \to F_{\ell}$$

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

$$\lambda \in \widehat{\mathbb{Z}}^{\times} \to \mathbb{Z}_{\ell}^{\times} \to \mathbb{Q}_{\ell}^{\times}$$

$$f \in \widehat{F}^{\times} \to F_{\ell} \to F(\mathbb{Q}_{\ell}) \subset \mathbb{Q}_{\ell} \ll A, B \gg$$

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

$$\lambda \in \widehat{\mathbb{Z}}^{\times} \to \mathbb{Z}_{\ell}^{\times} \to \mathbb{Q}_{\ell}^{\times}$$

$$f \in \widehat{F}^{\times} \to F_{\ell} \to F(\mathbb{Q}_{\ell}) \subset \mathbb{Q}_{\ell} \ll A, B \gg$$

$$\begin{array}{ccc} x & \mapsto & e^{A} \\ y & \mapsto & e^{B} \end{array}$$

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

$$\widehat{GT} \longrightarrow GT^{(\ell)} \longrightarrow GT(\mathbb{Q}_{\ell}) \longrightarrow \mathbb{Q}_{\ell}^{\times}$$

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

Let
$$g = (\lambda, f) \in \widehat{GT}$$
.

The pro-algebraic Braid group

Similarly,

▶ it is possible to associate a pro-algebraic group over \mathbb{Q}_{ℓ} to B_n , denoted $B_n(\mathbb{Q}_{\ell})$.

The pro-algebraic Braid group

Similarly,

- ▶ it is possible to associate a pro-algebraic group over \mathbb{Q}_{ℓ} to B_n , denoted $B_n(\mathbb{Q}_{\ell})$.
- ▶ The group $GT(\mathbb{Q}_{\ell})$ acts on $B_n(\mathbb{Q}_{\ell})$.

The pro-algebraic Braid group

Similarly,

- ▶ it is possible to associate a pro-algebraic group over \mathbb{Q}_{ℓ} to B_n , denoted $B_n(\mathbb{Q}_{\ell})$.
- ▶ The group $GT(\mathbb{Q}_{\ell})$ acts on $B_n(\mathbb{Q}_{\ell})$.
- ▶ The Burau representation extends to

$$R: B_n(\mathbb{Q}_\ell) \to \mathrm{GL}_{n-1}(K)$$

where $K = \mathbb{Q}_{\ell}((h))$, with $q = e^h \in K$.

Lemma

For all $g \in GT_1(\mathbb{Q}_\ell)$, we have $R \circ g \simeq R$ as a representation of B_n .

Lemma

For all $g \in GT_1(\mathbb{Q}_\ell)$, we have $R \circ g \simeq R$ as a representation of B_n .

Thus we get $Q_R: GT_1(\mathbb{Q}_\ell) \to \operatorname{PGL}_{n-1}(K)$.

Lemma

For all $g \in GT_1(\mathbb{Q}_\ell)$, we have $R \circ g \simeq R$ as a representation of B_n . Thus we get $Q_R : GT_1(\mathbb{Q}_\ell) \to \mathrm{PGL}_{n-1}(K)$. More precisely,

$$R \circ g(x) =$$

Lemma

For all $g \in GT_1(\mathbb{Q}_\ell)$, we have $R \circ g \simeq R$ as a representation of B_n .

Thus we get $Q_R: GT_1(\mathbb{Q}_\ell) \to \mathrm{PGL}_{n-1}(K)$. More precisely,

$$R \circ g(x) =$$

$$\begin{pmatrix} 1 & 0 & 0 & & \\ 0 & \chi_2(g) & 0 & & \\ 0 & 0 & \ddots & 0 & \\ 0 & 0 & 0 & \chi_{n-1}(g) \end{pmatrix} R(x) \begin{pmatrix} 1 & 0 & 0 & & \\ 0 & \chi_2(g) & 0 & & \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \chi_{n-1}(g) \end{pmatrix}$$

Lemma

For all $g \in GT_1(\mathbb{Q}_\ell)$, we have $R \circ g \simeq R$ as a representation of B_n .

Thus we get $Q_R: GT_1(\mathbb{Q}_\ell) \to \mathrm{PGL}_{n-1}(K)$. More precisely,

$$R \circ g(x) =$$

$$\begin{pmatrix} 1 & 0 & 0 & & \\ 0 & \chi_2(g) & 0 & & \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \chi_{n-1}(g) \end{pmatrix} R(x) \begin{pmatrix} 1 & 0 & 0 & & \\ 0 & \chi_2(g) & 0 & & \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \chi_{n-1}(g) \end{pmatrix}$$

with $\chi_d: GT_1(\mathbb{Q}_\ell) \to K^{\times}$.

For
$$\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\ell^\infty}))$$
, we have
$$\chi_d(\sigma) =$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\ell^{\infty}}))$, we have

$$\chi_d(\sigma) = 1 - 8\kappa_3^*(\sigma)dh^3 - \frac{8}{3}\kappa_5^*(\sigma)d(1+2d^2)h^5 + \dots$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\ell^{\infty}}))$, we have

$$\chi_d(\sigma) = 1 - 8\kappa_3^*(\sigma)dh^3 - \frac{8}{3}\kappa_5^*(\sigma)d(1+2d^2)h^5 + \dots$$

with

$$\kappa_m^*(\sigma) = \kappa_m(\sigma)/(\ell^{m-1}-1) \in \mathbb{Q}_\ell$$

For $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}|\mathbb{Q}(\mu_{\ell^{\infty}}))$, we have

$$\chi_d(\sigma) = 1 - 8\kappa_3^*(\sigma)dh^3 - \frac{8}{3}\kappa_5^*(\sigma)d(1+2d^2)h^5 + \dots$$

with

$$\kappa_m^*(\sigma) = \kappa_m(\sigma)/(\ell^{m-1}-1) \in \mathbb{Q}_\ell$$

and κ_m are the so-called Soulé characters.

Let ζ_n denote a primitive ℓ^n -th root of 1,

Let ζ_n denote a primitive ℓ^n -th root of 1, and introduce

$$\varepsilon_{\textit{m},\textit{n}} = \prod_{\substack{0 < \textit{a} < \ell^{\textit{n}} \\ \textit{a} \land \ell = 1}} (\zeta_{\textit{n}}^{\textit{a}} - 1)^{\left[\textit{a}^{\textit{m}-1}\right]}$$

Let ζ_n denote a primitive ℓ^n -th root of 1, and introduce

$$\varepsilon_{m,n} = \prod_{\substack{0 < a < \ell^n \\ a \wedge \ell = 1}} (\zeta_n^a - 1)^{[a^{m-1}]}$$

where $[a^{m-1}]$ denotes the (non-negative) euclidean remainder of the division of a^{m-1} by ℓ^n .

Let ζ_n denote a primitive ℓ^n -th root of 1, and introduce

$$\varepsilon_{m,n} = \prod_{\substack{0 < a < \ell^n \\ a \wedge \ell = 1}} (\zeta_n^a - 1)^{[a^{m-1}]}$$

where $[a^{m-1}]$ denotes the (non-negative) euclidean remainder of the division of a^{m-1} by ℓ^n . These elements are totally real and totally positive.

Let ζ_n denote a primitive ℓ^n -th root of 1, and introduce

$$\varepsilon_{m,n} = \prod_{\substack{0 < a < \ell^n \\ a \land \ell = 1}} (\zeta_n^a - 1)^{[a^{m-1}]}$$

where $[a^{m-1}]$ denotes the (non-negative) euclidean remainder of the division of a^{m-1} by ℓ^n . These elements are totally real and totally positive. The Soulé character κ_m is defined by

$$\sigma(\sqrt[\ell^n]{\varepsilon_{m,n}}) = \zeta_n^{\kappa_m(\sigma)} \sqrt[\ell^n]{\sigma(\varepsilon_{m,n})}.$$

► Can we get other (kind of) characters this way?

- ► Can we get other (kind of) characters this way?
- ▶ In particular, through $B_n \to \mathrm{SL}_{n-1}(\mathbb{Z}_\ell)$?

- ► Can we get other (kind of) characters this way?
- ▶ In particular, through $B_n \to \mathrm{SL}_{n-1}(\mathbb{Z}_\ell)$?
- ▶ Is there some general reason for the GT-rigidity of the irreducible representations of the braid groups?

- Can we get other (kind of) characters this way?
- ▶ In particular, through $B_n \to \mathrm{SL}_{n-1}(\mathbb{Z}_\ell)$?
- ▶ Is there some general reason for the GT-rigidity of the irreducible representations of the braid groups?

Broader perspectives:

▶ Do the geometric Galois actions on the other Artin groups factorize through \widehat{GT} ? (work in progress with P. Lochak)

- Can we get other (kind of) characters this way?
- ▶ In particular, through $B_n \to \mathrm{SL}_{n-1}(\mathbb{Z}_\ell)$?
- ▶ Is there some general reason for the GT-rigidity of the irreducible representations of the braid groups?

Broader perspectives:

- ▶ Do the geometric Galois actions on the other Artin groups factorize through \widehat{GT} ? (work in progress with P. Lochak)
- If yes, what give the corresponding generalized Burau representations?