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Complex reflection groups, Braid groups, Hecke algebras

Let W be a complex reflection group, meaning :

I a finite subgroup of GLn(C)

I generated by pseudo-reflections, i.e.

elements that fix an
hyperplane

The n of the definition is called the rank of W .
Examples :
W = Sn < GLn(C) as permutation matrices. More generally, if
W is a finite Coxeter group, i.e. having presentation

〈s1, . . . , sn | s2i = 1, (si sj)
mij = 1〉

or equivalently

〈s1, . . . , sn | s2i = 1, si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

〉

then W < GLn(R) as a reflection group.
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Complex reflection groups, Braid groups, Hecke algebras

Let X be the set of points in Cn which are not fixed by a
(pseudo-)reflection of W .

Definition
The braid group of W is B = π1(X/W ).

Example : W = Sn, then X = {(z1, . . . , zn) | zi 6= zj},
X/W = {I ⊂ C | #I = n},
π1(X/W ) = Bn is the usual braid group on n strands. More
generally, if W is a finite Coxeter group, then B is an Artin group,
of presentation

〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

〉

and attached to the classical Artin monoid B+, which is Garside.
In general, we have B �W , and B admits similar presentations
(Broué-Malle-Rouquier, Bessis, Michel), in general not Garside .
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Complex reflection groups, Braid groups, Hecke algebras

Let z ∈ X a basepoint defining B = π1(X/W ).
Let s be a (pseudo)-reflection of order m, and H = Ker(s − 1).

Let z0 ∈ X be chosen close enough to H, and let U be the
orthogonal to H at z0.
Inside U, we consider the following turn, of angle 2π/m

z
0

z
0

z
0

z
0

s

s

s.

s. 0

z
0

z
0s. 0

Composing this path with

I an arbitrary path (inside X ) from z à z0

I its image under s

We get a homotopy class in π1(X/W , z) = B, called a braided
reflection.
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0s.

zs.

For Coxeter/Artin groups, z is chosen inside some Weyl chamber
C ⊂ X ∩Rn. The s1, . . . , sn ∈ B are braided reflections associated
to the s1, . . . , sn ∈W , and to (holed) line segments from z to s.z .
Fact : every braided reflection is conjugated to one of them.
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U H

z
0

z

z
0s.

zs.

For Coxeter/Artin groups, z is chosen inside some Weyl chamber
C ⊂ X ∩Rn.

The s1, . . . , sn ∈ B are braided reflections associated
to the s1, . . . , sn ∈W , and to (holed) line segments from z to s.z .
Fact : every braided reflection is conjugated to one of them.
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Complex reflection groups, Braid groups, Hecke algebras

When W is a Coxeter group, W = 〈s1, . . . , sn | . . .〉,

we have W = B/〈s21 , . . . , s2n〉 = B/N where N is the (normal)
subgroup generated by the squares of the braided reflections.
Let R be a ring, and let RW be the group algebra of W , that is
the set of (formal) linear combinations of W with coefficients in R
with obvious R-algebra structure.
We have RW = R(B/N) = RB/I where I is the (two-sided) ideal
generated by the s2i − 1 = (si − 1)(si + 1).
In the general case, RW = R(B/N), where N is the (normal)
subgroup generated by the braided reflections raised to the power
m, where m is the order of the corresponding reflections, and
RW = RB/I , where I is generated by the sd − 1 where d is the
order of the corresponding reflection.
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Complex reflection groups, Braid groups, Hecke algebras

When W is a Coxeter group, R = Z[u, v ] and the Iwahori-Hecke
algebra H of W is an R-algebra defined by the presentation

H = 〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

, (si − u)(si − v) = 0〉

or, over Z[a, b] ⊂ Z[u, v ], by

H = 〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

, s2i = asi + b〉

It is a deformation of RW , meaning that, under ϕ : a 7→ 0, b 7→ 1,
H ⊗ϕ Z = ZW .
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Complex reflection groups, Braid groups, Hecke algebras

Theorem
(J. Tits) If W is a Coxeter group, then H is a free R-module of
rank #W .

This theorem has numerous consequences, e.g. KH ' KW for
K = FracR.
Sketch of proof :
Every w ∈W can be written as some si1 . . . sir with r minimal,
called the length of w. This is called a minimal decomposition of w .

Theorem
(Matsumoto) The corresponding element si1 . . . sir ∈ B+ does not
depend on the choice of minimal decomposition for w.

As consequence, if we denote for avoiding confusion Tsi the ‘si ’ of
H, the element Tsi1

. . .Tsir depends only on w , and can be denoted
Tw .
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Complex reflection groups, Braid groups, Hecke algebras

Claim : the Tw form a R-basis for H.

I Let k ∈ {1, . . . , n}. If w admits a minimal decomposition
starting with sk , w = skw ′ with w ′ = si2 . . . sir , then
Tsk Tw = T 2

sk
T ′w = aTw + bTw ′ .

I (Coxeter theory) If w does not admit a minimal
decomposition starting with sk then, for an arbitrary minimal
decomposition si1 . . . sir of w , sksi1 . . . sir is a minimal
decomposition of w ′ = skw . It follows that Tsk Tw = Tw ′ .

This proves that the Tw ’s generate H, and this is enough (see
below).
Example : W = S3 = 〈s1, s2 | s1s2s1 = s2s1s2, s

2
i = 1〉.

Ts1 .Ts2s1 = Ts1s2s1 Ts2 .Ts2s1 = T 2
s2Ts1 = aTs2s1 + bTs1 , etc.
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Complex reflection groups, Braid groups, Hecke algebras

When W is a Coxeter group and R = Z[u, v , (uv)−1], the
Iwahori-Hecke algebra H of W can equivalently be defined as
H = RB/J,

where J is generated by the (s − u)(s − v) for all
braided reflection s ∈ B.
This yields a general definition, for a general reflection group W :
H = RB/J, R = Z[u±1s,1 , . . . , u

±1
s,m(s)] where

I s runs along (conjugacy classes of) distinguished reflections in
W ,

I m(s) is the order of s

I J is the two-sided ideal generated by the
(σ − us,1) . . . (σ − us,m(s)), where σ runs through all braided
reflections associated to s.
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Complex reflection groups, Braid groups, Hecke algebras

Conjecture

(BMR, 1998) H is a free R-module of rank |W |.

Equivalent forms :

Conjecture

H can be generated over R by |W | elements.

Let S =
∏

s Sm(s), with Sm(s) permutting u1,s , . . . , um(s),s . H is

actually defined over the ring of invariants RS ⊂ R.

Conjecture

H can be generated over RS by |W | elements.
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Part 2 : History of the problem.
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Classification of complex reflection groups

Every complex reflection groups is a direct product of so-called
irreducible ones, and we can restrict to these.

Irreducible complex reflection groups belong either to

I The infinite series G (de, e, n) of groups of n × n matrices
which are

I monomial (one non-zero coeffcient per row and per column)
and such that

I their non-zero coefficients belong to µde(C)
I and have their product inside µd(C).

I a finite set of 34 exceptions, denoted G4, . . . ,G37.

The BMR conjecture is known for the infinite series by Ariki and
Ariki-Koike (1993), so we only need to deal with the exceptional
groups.
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First results on exceptional groups : Broué-Malle

Among these 34 exceptional groups, there are 6 exceptional
Coxeter groups (H3,H4,F4,E6,E7,E8), for which the conjecture is
known to hold.

There remains 28 groups to deal with, among
which 19 have rank 2.
In 1994, Broué and Malle proved the conjecture for 5 of them, G4,
G5, G12 (rank 2) and G25 (rank 3).
G4 and G25 have for braid group an ordinary braid group. They are

also called A
(3)
2 and A

(3)
3 and their presentation is given by

BH = 〈s, t | sts = tst, s3 = as2 + bs + c〉

H = 〈s, t, u | sts = tst, tut = utu, su = us, s3 = as2 + bs + c〉
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Among these 34 exceptional groups, there are 6 exceptional
Coxeter groups (H3,H4,F4,E6,E7,E8), for which the conjecture is
known to hold. There remains 28 groups to deal with, among
which 19 have rank 2.
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First results on exceptional groups : Broué-Malle
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Computer approach 1 : Knuth-Bendix and Malle

For G12 and G5, it is already difficult to do it by hand.

BH = 〈s, t, u | stus = tust = ustu, s2 = as + b〉

BH = 〈s1, s2 | s1s2s1s2 = s2s1s2s1, s3i = as2i + bsi + c , 〉

Use of Knuth-Bendix algorithm, as follows.

I introduce the monoid M defined by the braid relations
I let R be the set of relations such that M/R = W
I choose a partial ordering on M, compatible with

multiplication, and write x → y if {x , y} ∈ R and x > y (e.g.
the length in the generators)
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Computer approach 1 : Knuth-Bendix and Malle

I Apply Knuth-Bendix in order to find a confluent set of
relations, Rcon i.e. such that w1 → w2 and w1 → w3 implies
the existence of w4 such that w2 → w4 and w3 → w4.

I For w ∈W , let Tw ∈ H be given by a minimal element of M
mapped to w .

I Check that w1 → w2 implies that, inside H,
Tw1 = Tw2 +

∑
αiUi , with αi ∈ R and Ui the image of a

term in M smaller than Tw1 .
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Computer approach 2 : Todd-Coxeter/Linton and Jürgen
Müller

If G is a group defined by a presentation, there is no algorithm
terminating in predictible time to determine whether G is finite (or
trivial).
But,if the group is finite, there is an algorithm that will, at some
point, terminates, proving the finiteness of the group.
Remark : The above assertion disregards trivial things such as
physical constants and the possible finiteness of the universe.
This algorithm is called the Todd-Coxeter algorithm. It is a
non-trivial algorithm whose running time is not bounded by any
computable function of the size of the group.
It admits generalizations to the linear world, notably the algorithm
of Vector Enumeration, due to Linton.

I Input : a presentation of the R-algebra.

I Output : its description as a matrix R-algebra, provided it is a
free module over R.
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Computer approach 2 : Todd-Coxeter/Linton and Jürgen
Müller

Needless to say, Vector Enumeration is even more uncertain as
Todd-Coxeter.

Nevertheless, it should certainly be tried on our Hecke algebras.
Around 2000-2004, J. Müller has launched programs on Hecke
algebras, using this algorithm and a combination of several
software.
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Written account in rank 2, as ’semi-private communication’
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Written account in higher rank
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Computer approach 2 : Todd-Coxeter/Linton and Jürgen
Müller

At first sight, it seems that it is not so bad.

However, there are issues :

I The program is not publicly available.

I According to J. Müller, it is unclear that it would run on
modern architectures.

As such, the ’proof’ does not meet the minimal standard of
experimental science of being reproducible. . .
Indeed,(to my knowledge),NO available mathematical software
currently provides vector enumeration over R ! (not even Magma)
It is all the more annoying that there is a lot of room for
mathematical mistakes, as illustrated before (not to mention
programming mistakes).
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Finite generation for rank 2 : Etingof-Rains

Around 2004, Etingof and Rains introduced new deformations of
the group algebra of a Coxeter group W .
Idea :

RW = 〈s1, . . . , sn | (si sj)
mij = 1, s2i = 1〉

H = 〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

, (si − u)(si − v) = 0〉

E = 〈s1, . . . , sn |
mij∏
k=1

(si sj − uij ,k) = 0, s2i = 1〉

Prop : E is a finitely generated module over Z[uij ,k , u
−1
ij ,k ].

Let W0 = Ker(W → {±1}) be the rotation subgroup. It is
generated by the gij = si sj .
Prop : E0 = 〈si sj ; i , j〉 ⊂ E is a finitely generated module over
Z[uij ,k , u

−1
ij ,k ] and a deformation of the group algebra of W0.
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Finite generation for rank 2 : Etingof-Rains

Around 2004, Etingof and Rains introduced new deformations of
the group algebra of a Coxeter group W .
Idea :

RW = 〈s1, . . . , sn | (si sj)
mij = 1, s2i = 1〉

H = 〈s1, . . . , sn | si sjsi . . .︸ ︷︷ ︸
mij

= sjsi sj . . .︸ ︷︷ ︸
mij

, (si − u)(si − v) = 0〉

E = 〈s1, . . . , sn |
mij∏
k=1

(si sj − uij ,k) = 0, s2i = 1〉

Prop : E is a finitely generated module over Z[uij ,k , u
−1
ij ,k ].

Let W0 = Ker(W → {±1}) be the rotation subgroup. It is
generated by the gij = si sj .
Prop : E0 = 〈si sj ; i , j〉 ⊂ E is a finitely generated module over
Z[uij ,k , u

−1
ij ,k ] and a deformation of the group algebra of W0.
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Finite generation for rank 2 : Etingof-Rains

Fact : if G ⊂ GL2(C) is an exceptional complex reflection group
(of rank 2), G/Z (G ) 'W0 ⊂W for W a (finite) Coxeter group of
rank 3.

The fact that E0 is a finitely generated module
implies that H is finitely generated as Z[ui , u

−1
i , z , z−1]-module,

where z is the action of a generator of Z (B) ' Z, where B the
braid group of G .
Some more work shows : the action of z on H is annihilated by
some monic polynomial over R of some (large) degree, hence H is
finitely generated over R.
(But there is no efficient control on the number of elements
needed to generate H)

Ivan Marin, Université Paris Diderot Old and New on the Broué-Malle-Rouquier conjecture
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Part 3 : Recent work.
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The cubic Hecke algebras

Let R = Z[a, b, c , c−1],

Bn the usual braid group on n strands, and
An = RBn/s3i = as2i + bsi + c .
A2 = R[s1]/s31 − as21 − bs1 − c = R ⊕ Rs1 ⊕ Rs21

A3 = H(G4),A4 = H(G25),A5 = H(G32)

An admits a Z-algebra automorphism Φ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
An admits a Z-algebra skew-automorphism Ψ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
Let us (re)prove the BMR conjecture for H(G4).
Braid relation : si si+1si = si+1si si+1, or, equivalently,

I si+1si s
−1
i+1 = s−1i si+1si

I s−1i+1si si+1 = si si+1s−1i

I si+1s−1i s−1i+1 = s−1i s−1i+1si
I s−1i+1s−1i si+1 = si s

−1
i+1s−1i
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The cubic Hecke algebras

Let R = Z[a, b, c , c−1], Bn the usual braid group on n strands, and
An = RBn/s3i = as2i + bsi + c .
A2 = R[s1]/s31 − as21 − bs1 − c = R ⊕ Rs1 ⊕ Rs21

A3 = H(G4),A4 = H(G25),A5 = H(G32)

An admits a Z-algebra automorphism Φ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
An admits a Z-algebra skew-automorphism Ψ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
Let us (re)prove the BMR conjecture for H(G4).

Braid relation : si si+1si = si+1si si+1, or, equivalently,

I si+1si s
−1
i+1 = s−1i si+1si

I s−1i+1si si+1 = si si+1s−1i

I si+1s−1i s−1i+1 = s−1i s−1i+1si
I s−1i+1s−1i si+1 = si s

−1
i+1s−1i
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The cubic Hecke algebras

Let R = Z[a, b, c , c−1], Bn the usual braid group on n strands, and
An = RBn/s3i = as2i + bsi + c .
A2 = R[s1]/s31 − as21 − bs1 − c = R ⊕ Rs1 ⊕ Rs21

A3 = H(G4),A4 = H(G25),A5 = H(G32)

An admits a Z-algebra automorphism Φ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
An admits a Z-algebra skew-automorphism Ψ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
Let us (re)prove the BMR conjecture for H(G4).
Braid relation : si si+1si = si+1si si+1, or, equivalently,

I si+1si s
−1
i+1 = s−1i si+1si

I s−1i+1si si+1 = si si+1s−1i

I si+1s−1i s−1i+1 = s−1i s−1i+1si
I s−1i+1s−1i si+1 = si s

−1
i+1s−1i
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The cubic Hecke algebras

Let R = Z[a, b, c , c−1], Bn the usual braid group on n strands, and
An = RBn/s3i = as2i + bsi + c .
A2 = R[s1]/s31 − as21 − bs1 − c = R ⊕ Rs1 ⊕ Rs21

A3 = H(G4),A4 = H(G25),A5 = H(G32)

An admits a Z-algebra automorphism Φ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
An admits a Z-algebra skew-automorphism Ψ : si 7→ s−1i ,
a 7→ . . . ,b 7→ . . . ,c 7→ . . . ,
Let us (re)prove the BMR conjecture for H(G4).
Braid relation : si si+1si = si+1si si+1, or, equivalently,

I si+1si s
−1
i+1 = s−1i si+1si

I s−1i+1si si+1 = si si+1s−1i

I si+1s−1i s−1i+1 = s−1i s−1i+1si
I s−1i+1s−1i si+1 = si s

−1
i+1s−1i
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The cubic Hecke algebras : case n = 3

We rewrite this in algebra/module terms.

Let ui = R + Rsi + Rs2i = R + Rsi + Rs−1i ⊂ A3, and study the
R-module ui+1uiui+1.
Braid relations imply :

s±1i+1s ...i s∓1i+1 ∈ uiui+1ui

and also si+1si si+1, s
−1
i+1s−1i s−1i+1 ∈ uiui+1ui

 ‘decreases the number of occurences of s±1i+1 inside a word’.

What about si+1s−1i si+1, and
s−1i+1si s

−1
i+1 = Φ(si+1s−1i si+1) = Ψ(si+1s−1i si+1) ?

Lemma
∀x ∈ ui (s−1i+1si s

−1
i+1)x ∈ x(s−1i+1si s

−1
i+1) + uiui+1ui

∀x ∈ ui (si+1s−1i si+1)x ∈ x(si+1s−1i si+1) + uiui+1ui

(commutation lemma)
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The cubic Hecke algebras : case n = 3

We rewrite this in algebra/module terms.
Let ui = R + Rsi + Rs2i = R + Rsi + Rs−1i ⊂ A3, and study the
R-module ui+1uiui+1.
Braid relations imply :

s±1i+1s ...i s∓1i+1 ∈ uiui+1ui

and also si+1si si+1, s
−1
i+1s−1i s−1i+1 ∈ uiui+1ui

 ‘decreases the number of occurences of s±1i+1 inside a word’.

What about si+1s−1i si+1, and
s−1i+1si s

−1
i+1 = Φ(si+1s−1i si+1) = Ψ(si+1s−1i si+1) ?

Lemma
∀x ∈ ui (s−1i+1si s

−1
i+1)x ∈ x(s−1i+1si s

−1
i+1) + uiui+1ui

∀x ∈ ui (si+1s−1i si+1)x ∈ x(si+1s−1i si+1) + uiui+1ui

(commutation lemma)
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The cubic Hecke algebras : case n = 3

Moreover, we have

Lemma
s−1i+1si s

−1
i+1 ∈ c−1(si+1s−1i si+1)si + uiui+1ui

(si+1s−1i si+1)si
= si+1(s−1i si+1si )

= si+1(si+1si s
−1
i+1)

= s2i+1si s
−1
i+1

= asi+1si s
−1
i+1 + bsi s

−1
i+1 + cs−1i+1si s

−1
i+1

∈ uiui+1ui + cs−1i+1si s
−1
i+1
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The cubic Hecke algebras : case n = 3

Moreover, we have

Lemma
s−1i+1si s

−1
i+1 ∈ c−1(si+1s−1i si+1)si + uiui+1ui

(si+1s−1i si+1)si
= si+1(s−1i si+1si )

= si+1(si+1si s
−1
i+1)

= s2i+1si s
−1
i+1

= asi+1si s
−1
i+1 + bsi s

−1
i+1 + cs−1i+1si s

−1
i+1

∈ uiui+1ui + cs−1i+1si s
−1
i+1
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The cubic Hecke algebras : case n = 3

Moreover, we have

Lemma
s−1i+1si s

−1
i+1 ∈ c−1(si+1s−1i si+1)si + uiui+1ui

(si+1s−1i si+1)si
= si+1(s−1i si+1si )

= si+1(si+1si s
−1
i+1)

= s2i+1si s
−1
i+1

= asi+1si s
−1
i+1 + bsi s

−1
i+1 + cs−1i+1si s

−1
i+1

∈ uiui+1ui + cs−1i+1si s
−1
i+1
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The cubic Hecke algebras : case n = 3

Proposition

A3 = u1u2u1 + u1s2s−11 s2

Let U = u1u2u1 + u1s2s−11 s2.
Previous slides imply : u2u1u2 ⊂ U, hence u1u2u1u2 ⊂ U.
Need to prove : Us1 ⊂ U and Us2 ⊂ U.
Clearly, u1u2u1s1 = u1u2u1 ⊂ U,
and u1s2(s−11 s2s1) = u1s22 s1s−12 ⊂ u1u2u1u2 ⊂ U.
Finally u1u2u1s2 ⊂ u1u2u1u2 ∈ U,
u1s2s−11 s2.s2 ⊂ u1u2u1u2 ∈ U.

Corollary

A3 is a finitely generated R-module.
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The cubic Hecke algebras : case n = 3

Proposition

A3 = u1u2u1 + u1s2s−11 s2

Let U = u1u2u1 + u1s2s−11 s2.
Previous slides imply : u2u1u2 ⊂ U,

hence u1u2u1u2 ⊂ U.
Need to prove : Us1 ⊂ U and Us2 ⊂ U.
Clearly, u1u2u1s1 = u1u2u1 ⊂ U,
and u1s2(s−11 s2s1) = u1s22 s1s−12 ⊂ u1u2u1u2 ⊂ U.
Finally u1u2u1s2 ⊂ u1u2u1u2 ∈ U,
u1s2s−11 s2.s2 ⊂ u1u2u1u2 ∈ U.

Corollary

A3 is a finitely generated R-module.

Ivan Marin, Université Paris Diderot Old and New on the Broué-Malle-Rouquier conjecture
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The cubic Hecke algebras : case n = 3

Proposition

A3 = u1u2u1 + u1s2s−11 s2

Let U = u1u2u1 + u1s2s−11 s2.
Previous slides imply : u2u1u2 ⊂ U, hence u1u2u1u2 ⊂ U.
Need to prove : Us1 ⊂ U and Us2 ⊂ U.
Clearly, u1u2u1s1 = u1u2u1 ⊂ U,

and u1s2(s−11 s2s1) = u1s22 s1s−12 ⊂ u1u2u1u2 ⊂ U.
Finally u1u2u1s2 ⊂ u1u2u1u2 ∈ U,
u1s2s−11 s2.s2 ⊂ u1u2u1u2 ∈ U.

Corollary

A3 is a finitely generated R-module.
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The cubic Hecke algebras : case n = 3

G4 = B3/s3i has order 24, its center has order 2.
Need to find 24 elements which generate A3 as a R-module.
A3 = u1u2u1 + u1s2s−11 s2.

As a u1-module, u1u2u1 is generated by 1 and the sα2 sβ1 , with
α ∈ {−1, 1} and β ∈ {−1, 0, 1}, that is 7 elements.
Hence A3 is generated as a u1-module by 8 elements, hence
spanned as a R-module by 3× 8 = 24 elements.

Proposition

The BMR conjecture holds true for G4.

Group-theoretic origin of the crucial commutation property :
s2s21 s2 commutes with the s ...1 inside the braid group, because it is
z3z−12 , where zk = (s1 . . . sk−1)k = ∆2

k generates Z (Bk).
And s2s21 s2 ≡ s2s−11 s2 mod u1u2u1.
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The cubic Hecke algebras : case n = 3

Remark
c really needs to be invertible.

If we were working over
S = Z[a, b, c] instead of R = Z[a, b, c, c−1], one can prove that

I A3 is not finitely generated over S

I A3 has S-torsion , e.g.
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The cubic Hecke algebras : case n = 3

Remark
c really needs to be invertible. If we were working over
S = Z[a, b, c] instead of R = Z[a, b, c, c−1], one can prove that

I A3 is not finitely generated over S

I A3 has S-torsion

, e.g.
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The cubic Hecke algebras : case n = 4

Theorem

I A4 = A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 +
A3s−13 s2s−11 s2s−13 A3 + A3s3s−12 s1s−12 s3A3

I A4 = A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 +
A3s−13 s2s−11 s2s−13 + A3s3s−12 s1s−12 s3

Also based on a ’commutation property’ of s3s−12 s1s−12 s3 (and its
symmetric under Φ/Ψ) with A3, whose group-theoretic origin is
unclear at first.
However, introduce w0 = s3s2s21 s2s3 = z4z−13 , and compute w0,
w−10 in this decomposition.

Ivan Marin, Université Paris Diderot Old and New on the Broué-Malle-Rouquier conjecture
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The cubic Hecke algebras : case n = 4

Doing this, we get the following variation

Theorem

I A4 =
A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 + A3w−10 A3 + A3w0A3

I A4 = A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 + A3w−10 + A3w0

Actually, Z (G25) has order 3. Computing w2
0 is already lengthy. We

get still another variation

Theorem

I A4 =
A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 + A3w2

0 A3 + A3w0A3

I A4 = A3 + A3s3A3 + A3s−13 A3 + A3s3s−12 s3A3 + A3w2
0 + A3w0
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The cubic Hecke algebras : case n = 4

Extra work leads a collection of 27 elements that generate A4 as a
A3-module, whence 24× 27 = 648 = |G25| elements generating A4

as a R-module.

Theorem
The BMR conjecture holds true for G25.

In this proof, we chose a specific maximal parabolic
subgroup/subalgebra, the one generated by 〈s1, s2〉, and we first
decomposed the algebra as a module over its subalgebra, mimicing
the (double) cosets decomposition.
What about other maximal parabolics ?
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The cubic Hecke algebras : case n = 4

Extra work leads a collection of 27 elements that generate A4 as a
A3-module, whence 24× 27 = 648 = |G25| elements generating A4

as a R-module.

Theorem
The BMR conjecture holds true for G25.

In this proof, we chose a specific maximal parabolic
subgroup/subalgebra, the one generated by 〈s1, s2〉, and we first
decomposed the algebra as a module over its subalgebra, mimicing
the (double) cosets decomposition.
What about other maximal parabolics ?
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The cubic Hecke algebras : case n = 4 revisited

A4 as a A′ = 〈s1, s3〉-module ?

Proposition

A4 = A′u2A′u2A′ + A′x+ + A′x− + A′y−

with x+ = s2(s1s3)s−12 (s1s3)s2 ,
x− = s−12 (s1s3)−1s2(s1s3)−1s−12 = Φ(x+) = Ψ(x+),
y+ = s2(s1s3)−1s2(s1s3)−1s2,
y− = s−12 (s1s3)s−12 (s1s3)s−12

In order to simplify notations, let s = s2, p = s1s3, then
x+ = sps−1ps , x− = s−1p−1sp−1s−1, y+ = sp−1sp−1s,
y− = s−1ps−1ps−1.
Relation with

∆ = (s1s2s3)(s1s2)s1 = (s1s3)(s2s1s3s2) = (s2s1s3s2)(s1s3) = spsp

In G25 it has order 6. Notice that ∆A′∆−1 = A′ ; The powers of ∆
are related to x+, x−, y+, y−.
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The cubic Hecke algebras : case n = 4 revisited

A4 as a A′ = 〈s1, s3〉-module ?

Proposition

A4 = A′u2A′u2A′ + A′x+ + A′x− + A′y−

with x+ = s2(s1s3)s−12 (s1s3)s2 ,
x− = s−12 (s1s3)−1s2(s1s3)−1s−12 = Φ(x+) = Ψ(x+),
y+ = s2(s1s3)−1s2(s1s3)−1s2,
y− = s−12 (s1s3)s−12 (s1s3)s−12

In order to simplify notations, let s = s2, p = s1s3, then
x+ = sps−1ps , x− = s−1p−1sp−1s−1, y+ = sp−1sp−1s,
y− = s−1ps−1ps−1.
Relation with

∆ = (s1s2s3)(s1s2)s1 = (s1s3)(s2s1s3s2) = (s2s1s3s2)(s1s3) = spsp

In G25 it has order 6. Notice that ∆A′∆−1 = A′ ; The powers of ∆
are related to x+, x−, y+, y−.
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The cubic Hecke algebras : case n = 5

(Much) more complicated, but uses both previous ‘parabolic’
decompositions, as well as the decompositions of the powers of ∆.
One proves

Theorem
A5 = A4 + A4s4A4 + A4s−14 A4 + A4s4s−13 s4A4

+A4s−14 s3s−12 s3s−14 A4 + A4s4s−13 s2s−13 s4A4

+A4s−14 w+s−14 A4 + A4s4w−s4A4

+A4s−14 w−s−14 A4 + A4s4w+s4A4 + A4s4w−s4w−s4(A4)

+A4s4w+s−14 w+s4(A4) + A4s−14 w−s4w−s−14 (A4)

with w+ = s3s−12 s1s−12 s3, w− = s−13 s2s−11 s2s−13 .
Once again, a decomposition of the powers of ∆ explains the
commutation properties, which are crucial in the proof of the
theorem.

Theorem
The BMR conjecture holds true for G4, G25, G32.

Ivan Marin, Université Paris Diderot Old and New on the Broué-Malle-Rouquier conjecture
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The case of G26 and the Artin group of type B3

Let H be the Hecke algebra of type G26.
A = 〈t, u〉 ⊂ H is a parabolic subalgebra of type G4.
The braid group of G26 is the Artin group of type B3. Its center is
generated by (ts2s1)3, whose image in G26 has order 6. We let C
denote its image inside the Hecke algebra.
Braid relations imply C = s1(ts2s1ts2t)s1s2. Hence
ACA = AC = Ats2s1ts2t.
Let H0 = A〈t〉A〈t〉A +

∑
α,β,γ Atsα2 sβ1 tsγ2 tA

Computing the powers of C yields

Theorem
H = H0 + AC 2 + AC−2 + AC 3

Decomposing further as a A-module proves the BMR conjecture
for G26.
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Braid relations imply C = s1(ts2s1ts2t)s1s2. Hence
ACA = AC = Ats2s1ts2t.
Let H0 = A〈t〉A〈t〉A +

∑
α,β,γ Atsα2 sβ1 tsγ2 tA

Computing the powers of C yields

Theorem
H = H0 + AC 2 + AC−2 + AC 3

Decomposing further as a A-module proves the BMR conjecture
for G26.
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Garside aspects

The properties of the Garside element ∆ are at the core of the
properties we are interested in. However, the proofs we make have
trouble staying inside monoids of positive elements.
Questions :

I Is there an easy way to stay inside a monoid of positive
elements ?

I Can we use the BKL-like ‘dual’ monoid for other
(well-generated) reflection groups ?

I Any connection between Garside normal forms, simple
elements, and nice bases for these Hecke algebras ?
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Last slide

Thank you !
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