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The Table below reports on the current status of the computations concerning
the cyclotomic algebras associated to the exceptional finite complex reflection
groups. The status as far as ranks are concerned is unsatisfactory; at least the
remaining dimension 2 cases should be doable. As far as symmetrising forms are
concerned the status is poor indeed; here it seems to be necessary to improve
the used polynomial arithmetic first, where I used the one in GAP; and secondly
one could try something more clever than the brute force attack I have tried.

Anyway, here are the results; the notation used is as follows:

The reflection groups Gi, for i ∈ {4, . . . , 37}, are denoted as in [1]. The number
n denotes the degree of the reflection representation and |Gi| denotes the order
of the reflection group Gi. In the last column we indicate which of the reflec-
tion groups are real and their corresponding types; the exclamation marks are
explained below.

Let (W,S) be finite complex reflection group given by a Coxeter-type presenta-
tion with generating set S, as given in [5]. For s ∈ S let es ∈ N denote the order
of s ∈ W . Let u := {us,j ; s ∈ S, j ∈ {0, . . . , es − 1}} be a set of independent
indeterminates over Z and let A := Z[u,u−1]. Then the cyclotomic algebra
associated to W is defined as

HA(u) := 〈Ts; s ∈ S|braid relations,
es−1∏

j=0

(Ts − us,j) = 0〉,

where the latter relations are called generalized order relations; see [4], and the
comments below for G24 and G27.

For computational purposes the cyclotomic algebras are slightly modified as
follows. Let u′ := {us,j ; s ∈ S, j ∈ {1, . . . , es − 1}} be a set of independent
indeterminates over Z, let A′ := Z[u′,u′−1] and let

HA′(u′) := 〈Ts; s ∈ S|braid relations, (Ts − 1) ·
es−1∏

j=1

(Ts − us,j) = 0〉.

This amounts to a rescaling of the generators {Ts; s ∈ S}.
Furthermore, for s ∈ S and j ∈ {1, . . . , es − 1} let vs,j ∈ A′ be the j-th elemen-
tary symmetric polynomial in {us,j ; j ∈ {1, . . . , es − 1}}, where deg(vs,j) = j.
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Let v := {vs,j ; s ∈ S, j ∈ {1, . . . , es − 1}}; this again is a set of independent
indeterminates over Z. Let A′′ := Z[v, v−1

s,es−1; s ∈ S], and K ′′ := Quot(A′′);
note that we thus only allow the inverses of {v−1

s,es−1; s ∈ S}. As HA′(u′) is
already defined over A′′, we let

HA′′(v) := 〈Ts; s ∈ S|braid relations, generalized order relations in terms of v〉.

The notation in the ‘rank’ column is a follows:
‘++’ indicates that HA′′(v) is proven to be A′′-free of rank |W |,
‘+’ indicates that HA′′(v) is only proven to have K ′′-dimension |W |.
The brackets indicate the results which are known from the theory of finite real
reflection groups anyway.

For G24 and G27 the presentations given in [5] do not work; indeed deforming
these Coxeter-type group presentations leads to a ‘collapsing’ presentation. Us-
ing braid relations of length 7 instead of 6 yields suitable presentations; this has
been found by computer search, and has later been confirmed in [3, 2].

The notation in the ‘basis’ column is a follows:
A basis of HA′′(v) is called monomial, if its elements consist of products of
the generators {Ts; s ∈ S}; the letter ‘m’ indicates the existence of a monomial
basis.
A word Ts1 · · · · ·Tsl ∈ HA′′(v), for si ∈ S, is called reduced, if the corresponding
word s1 · · · · · sl ∈ W is reduced, i. e. of minimal length among all words in
the generators S representing s1 · · · · · sl ∈ W . A monomial basis of HA′′(v) is
called reduced, if its elements are reduced; the letter ‘r’ indicates the existence
of a reduced basis.
Again the brackets indicate the results which are known from the theory of finite
real reflection groups anyway.

The notation in the ‘form’ column is a follows:
A basis T of HA′′(v) is called quasi-symmetric, if 1 ∈ T and the A′′-linear
form tT : HA′′(v) → A′′, mapping 1 &→ 1 and h &→ 0 for all h ∈ T \ {1}, is a
symmetrising form for HA′′(v). In particular this implies that the determinant
of the Gram matrix of tT up to sign is a product of powers of the {v−1

s,es−1; s ∈ S}.
‘+’ indicates the existence of a quasi-symmetric reduced basis,
‘++’ indicates that all reduced bases are quasi-symmetric, and that the A′′-
linear form tT does not depend on the choice of a reduced basis,
‘+++’ indicates that the Broué-Malle-Michel Condition [4, 2.1.1.c] on tT (π) is
fulfilled.
Again the brackets indicate the results which are known from the theory of finite
real reflection groups anyway.

Note that the A′′-linear form tT specializes to the symmetrising form for the
group ring of the underlying finite complex reflection group, see Condition [4,
2.1.1.b].
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Gi n |Gi| rank basis form
4 2 24 ++ r +++
5 2 72 ++ r +++
6 2 48 ++ r +++
7 2 144 ++ r +−+
8 2 96 ++ r +++
9 2 192 ++ r +++

10 2 288 ++ r +−+
11 2 576 ++ m
12 2 48 ++ r +++
13 2 96 ++ r +−+
14 2 144 ++ r +++
15 2 288 ++ r −
16 2 600 ++ m
17 2 1200 + m
18 2 1800
19 2 3600
20 2 360 ++ m
21 2 720 ++ m
22 2 240 ++ m
23 3 120 ++ m(r) (++) H3

24 3 336 ++ m !
25 3 648 ++ m
26 3 1296 ++ m
27 3 2160 ++ m !
28 4 1152 ++ m(r) (++) F4

29 4 7680 + m
30 4 14400 +(+) m(r) (++) H4

31 4 46080
32 4 155520
33 5 51840
34 6 39191040
35 6 51840 (++) (r) (++) E6

36 7 2903040 (++) (r) (++) E7

37 8 696729600 (++) (r) (++) E8
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