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ON QUASITRIAN GULAR QUASI-HOPF ALGEBRAS
AND A GROUP CLOSELY CONNECTED WITH Gal(Q/Q)

V. G. DRINFEL'D

ounced theorem is proved concerning the struc-
ture of quasitriangular quasi-Hopf algebras in the framework of the theory of
perturbations with respect to the Planck constant. In the process we use the pro-
unipotent version of a group defined by Grothendieck that contains Gal(Q, Q).

ABSTRACT. A previously ann

§1. Introduction

f a theorem announced in [1]

This paper is devoted primarily to the proof o :
-Hopf algebras in the frame-

concerning the structure of quasitriangular quasi
work of the theory of perturbations with respect to the Plancl§ constant 4.
As a technical tool we use the pro-unipotent version of a group introduced by
Grothendieck in [2]—a group of enormous interest because of its close connec-
tion with Gal .

Let us recal(l%/l?zoasic definitions of [1]. A quasi-Hopf algebra differs fI'.OF[l a
Hopf algebra in that the coassociativity axiom is replaced by a weaker condition.

More precisely, a quasi-Hopf algebra over a commutative ring k, as defined in

[1], is a set (4,A, &, D}, where A is an associative k-algebra with unity, A
a homomorphism 4 —» A®A4, ¢ a homomorphism 4 — k (we assume that
Ay =1, &(1) = 1), and @ an invertible element of A® A® 4, all these

satisfying

(ideA)A@) =@ (Aid)(A@) - ®,  a&d, (1.1)
(id@id 8A)®) - (A ®id ®id)(®) |

~(1e®) (idoA®id)(®)- (@s1), (1.2)

(e®id) oA =id = (id@e) o A, (1.3)

(idoe @ id)(®) =1, (1.4)

together with an axiom which in the Hopf case, i.e., for @ =1, reduces to exis-
tence and bijectivity of an antipode. In the situation of the.prese_nt pa‘ger, V\fhen
(A, A, e, ®) isa deformation of a Hopf algebra dependmg on an “infinitely
small” parameter A, this axiom is satisfied auton;atu;ally by Theorem 1.§ of
[1]. As in the Hopf case, A is called the comultiphcauon,. and ¢ thg cpunlt.
The paper [1] generalized to the quasi-Hopf case the notion of quasitriangular
Hopf algebra defined in §10 of [3] and inspired by the qugntum method 'for
the inverse problem [4]. Specifically, a quasitriangulgr quasi-Hopf algebra 1s a
set (4, A, ¢, P, R), where (A,A,e,®) isa quasi-Hopf algebra and R an
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invertible element of 4 ® 4 such that

1

Ag)=RA@R, acA, (1.5)
(A®id)(R) = ®"*R" (@ ‘32)“1223@ (1.6a)
(id®A)R) = (@) 'RP9 ™R ™! (1.6b)

Here A' =0 oA, where 0: A® 4 —» A® A interchanges the tensor factors. If
R = Ezigaf ® b, then by definition RY = 2.4,9b,®1, RV = 2.4, ®1®b,,
and R =3".1®9a,® b We also need to explain that, for example, if ® =
ijj®yj®zj,then 312 =2 Rz, @x,.

The gist of the axioms (1.1)- (1 6) is that the representations of a quasitri-
angular quasi-Hopf algebra 4 form a quasitensored category in the sense of
[5] (see also §3 of [1]}. This means that, firstly, there exists in the category
of representations of A4 a tensor-product functor: given two representations of
A4, in k-modules V, and V¥, the representation of 4 in Vi ® V, is defined

as the composite 4 2+ 4® A — End (V, ® V,}. Secondly, there exist functo-
rial isomorphisms of commutativity ¢: V, ® ¥, ~ V, ® V| and associativity
a (VyeV)eV, — V, &(V,®V,) where the ¥, are representations of 4.

Namely_, a is the operator in V| ® ¥, ® V; corresponding to @, and ¢ is the
composite of the operator in ¥, ®V, corresponding to R with the usual isomor-

phism ¢: ¥, @V, — V,®V,. Thirdly, there exists an identity representation &
and isomorphisms ¥V ® k — ¥V and k@ V¥ — ¥ for any representation V .
Finally, {1.2), {1.4), and (1.6) guarantee the commutativity of the diagrams

(Mehlel)el, — MelheeV,) = Ve#e(,el,)
L~ |~

eW,eneV,) = — Ve (hel)eV)
{1.7)

Vo,
pd N (1.8)
)

NekjeV, >V ekeV,

el ——Veleh) — (LoV)el,
ﬂl c®id (1.9a)
id a_l
Ve (heV) —2=V e el) ——— ¥ el)el,

ieheV) —— (he k) eV ——=Ve (e l)

a'| id@e (1.9b)
Mehel, 2. meV)el, VeV eh)

We note thlat in general RrRY £ R ' and consequently the commutativity iso-
morphism is not involutory (a point of difference between quasitensored cate-
gories and tensored [6]).
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If (4,A,¢,®,R) is a quasitriangular quasi-Hopf algebra, and F an in-
vertible element of A® 4 such that (id®e){F) =1 = (e®id)(F), then, putting

Aa)=F -Ala)-F', (1.10)
= F2 . ([deA)(F)-® (Agid)(F ) - (FH™, (1.11)
R=RrR" R.F', (1.12)

we obtain a new quasitriangular quasi-Hopf algebra (4, 3, e, P, R); we say
it is obtained from (A4, A, &, @, R) by twisting via F. The quasitensored cate-
gories that correspond to {4, A, &, ®, R) and (4, A, &, P, R) are equivalent.
It is therefore natural to refer to the twisting as a “gauge transformation”.

We shall study quasitriangular quasi-Hopf algebras in the framework of the
theory of perturbations with respect to %, restricting ourselves to the case of
characteristic. 0. These words are given a precise meaning by the following
definition (QUE is short for “quantized universal enveloping”).

DEFINITION. Let & be a field of characteristic 0. By a quasitriangular quasi-
Hopf QUE-algebra over k[[h]] is meant a topological quasitriangular quasi-Hopf
algebra (4, A, &, ®, R) over k[[A]] such that 4/hA4 is a universal envelop-
ing algebra.with the standard comultiplication, and A4, as a topological k[A]]-
modale, is isomorphic to V[[#]] for some vector space V' over k.

REMARK. Since A/hA is a universal enveloping algebra, it follows from (1.4)
and the invertibility of @® that ® = I mod 4. Similarly, R = I mod#, and for
a twisting of quasitriangular quasi-Hopf QUE-algebras, F = lmod#.

Inspired by [7]-[9], the following method was proposed in [1] for constructing
quasitriangular quasi-Hopf QUE-algebras. Let g be a Lie algebra over k[[A]]
which as a k[[#]]-module is isomorphic to V[{#]] for some vector space V' over
k. (This condition on g means that g is a deformation of a Lie algebra g,
over k, where g, = g/ hg; such algebras g will therefore be called deformation
algebras) Suppose given a symmetric g-invariant tensor ! € g ® g, where
® is the complete tensor product. Put 4 = Ug, where Ug means the A-adic
completion of the universal enveloping algebra. Define in the usual way & 4 —
k[[h]] and A: A — A® A (where & is the complete tensor product), and put
R=¢"? Then (1.3)=(1.5) are satisfied, and it remains to find @€ 4@ 4A® 4
satisfying (1.1}, (1.2), (1.4), and (1.6) (note that (1.1) means in this situation
the g-invariance of @). The first main result of the present paper is:

THEOREM A. Such a @ exists, and is unique up to twisting via symmetric
g-invariant elements F € A® A.

REMARKS. a) If A is the usual comultiplication in 4 = Ug and R = M

and A and R are defined by formulas (1.10) and (1.12), then the equalities A=
A and R = R are equivalent to g-invariance and symmetry of F (f commutes
with the g-invariant elements of A® 4, since 1 = (A(C)-C®1~18®C()/2,
where C € Ug is the Casimir element).

2) Together with Theorem A we prove that if the condition R = e is
replaced by the at first sight weaker conditions of symmetry and g-invariance
of R, then automatically R = " for some t € geg.

htf2

Uniqueness in Theorem A is proved simply enough (see Propositions 3.2 and
3.4). For k = C, what is proposed in [1] is an explicit but transcendental con-
struction for @ by means of the Knizhnik-Zamolodchikov system of equations
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(for short: the KZ system) that arises in conformal field theory [10]. This @,
hereafter denoted by @y, is expressed in terms of T = ht by means of a
“ C-universal formula”; i.e., if we write ®,, in the form

_ fy b dd oo
Dy = Z Bm . n,p) 7€, B, By
m.n,p
where the e; are a basis of g as a topological C[[#]]-module and the tensors
Qe . py BTC symmetric in each group of indices i, j, /, then the Ay . py BIC

expressed in terms of the structural constants cf,s of the algebra g and the
components 7 of the tensor T in accordance with the rules of acyclic tensor
calculus with coefficients in C, while (1.1}, (1.2), (1.4), and (1.6) follow, in
accordance with the rules of acyclic tensor calculus, from the fact that the cﬁs
are the structural constants of a Lie algebra and 7 is symmetric and invariant.
(Acyclicity means, for example, exclusion of the expression cfl.ci jc:!, where
i, j,! form a “cycle”.) Among the coefficients of the C-universal formula
occur (see (2.15) and (2.18)) the numbers {(2m+ 1}/(27i)"™"", m € N, which
are imaginary and probably transcendental. Thus, for k¥ 7 C the existence part
of Theorem A cannot follow from the construction of ®.,. However, it is
proved in §3, in conjunction with the following theorem.

THEOREM A'. There exists a Q-universal formula expressing the element ©
of Theorem A in terms of T = ht. It is unique up to twisting via a symmetric
Q-universal F = F(1).

The quasitriangular quasi-Hopf algebras supplied by Theorem A will be called
the siandard algebras.

THEOREM B. Any quasitriangular quasi-Hopf QUE-algebra can be made stan-
dard by a suitable twist.

The C-universal formula expressing ®,, in terms of 7 = At is of the form

®,, = exp PKZ(T12 , T ) where P, is a Lie (i.e,, commutator) formal series
with coefficients in C (see §2). Theorem A can be strengthened as follows.

THEOREM A", There exists a Lie formal series P with coefficients in Q such
that the © of Theorem A can be taken as exp P(hrlz, ht23) .

_ If ® has the form exp P(hru, ht ) where P is a Lie formal series, then the
@ defined by formula (1.11) is not, in general, of the same form. However, on
the set of Lie series P over & such that ® = exp P(hrlz, hr”) and R ="/
satisfy (1.2) and (1.6) we can define (see §4) a natural transitive action of a
certain group, which we call the Grothendieck-Teichmiller group and denote
by GT(k). This action forms the basis of the proof of Theorem A”. The
definition of GT(k) is in essence borrowed from [2], where, in particular, it
is shown how to construct a canonical homomorphism Gal(@/Q) — GT(Q,),
where Q is the algebraic closure of @ in € and / is a prime number.

The plan of the paper is as follows. §2 is devoted to P, . In §3, the
methods of [1] are used to prove Theorems A, A’, and B. In §4 we define the
Grothendieck-Teichmiller group (in several versions) and explain its connec-
tion with Gal(Q/Q). In §5 we prove Theorem A", and also reduce the study
of GT(k) to the study of an infinite-dimensional graded Lie algebra get (k).
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In §6 we gather together certain facts about this algebra. §4 is independent of
§52 and 3, and §§5 and 6 are independent of §3.

The author thanks A. A. Beilinson, G. V. Belyi, Yu. 1. Manin, and G. B.
Shabat for calling his attention to the papers [2], {11]-{15].

§2. Construction of @,

®,, is most easily defined by the formula @, =G, 1G1 where G, and G,
are the solutions of the differential equation

t12 I23

G’(x)=n(;-+x“1

)G(x), h=h/2ni, 2.1)

that are defined for 0 < x < 1 and have the asymptotic properties G,(x) ~ xmu
for x — 0 and G,(x) ~ (1 —)c)m23 for x — 1. Here f2=t®1l¢€ (Ug)®3
and P =18te (U;;)@3 , where g is a deformation Lie algebra over C[[A]]
and the tensor / € g ® g is symmetric and g-invariant. The G in equation
(2.1) must be an analytic function (0, 1) — (Ug)‘g’3 :i.e., for any »# the image
of G(x) in (Ug)®*/h"(Ug)®® must be of the form Y, a,(x) - u;, where
u, € (Ug)®*/h"(Ug)®, the g, are analytic functions (0, 1) — C, and N
depends in general on ». In the most important case, when g = gy[[2]] (ie., g

is the trivial deformation of g,), this means that G(x) = 2?:0 gi(x)hi , where
each g, is an analytic function with values in some finite-dimensional subspace

v, C (Ugu)®3. Of course, ;vcm12 should be understood as exp(Ailnx - tlz) =

12 12
| +filnx 72 + ... . The notation G {x) ~ x™" means that G (x)x "7 has

an analytic continuation into a neighborhood of the point x =0 and begomes
1 at that point. Existence and uniqueness of &, and G, are proved without
difficulty.
The KZ system has the form
ij
ﬂ:ﬁ}: ' w, i=1,2,...,n, (2.2)
dz, —t 7. — Z.
T Y

where W(z,,...,z,) € (Ug)®" and ¢” is the image of ¢ under the (i, j)th
imbedding Ug® Ug — (U g)®" . For us it is essential that, as indicated in [10],
the system (2.2) is self-consistent; i.e., the curvature of the corresponding con-
nection is 0. Since W /8z +---+dW/dz, = 0, the function W depends
only on the differences z, — z,. Furthermore, 3, z,0W/9z, = BY i W,
so that (2.2) reduces to a system of equations for a function of n — 2
variables. In particular, for n = 3 the solutions of (2.2) are of the form
(24— zl)ﬁ(’u“”Hn) -G((z,-2,)/(z5— z,)), where G satisfies (2.1). Therefore
., can be determined from the relation W, = W,-®@,, where W, and W, are
the solutions of {2.2) for n =3 inthe region {(z,, z,, z;) € R’ |z, <z, < 24}
12 13,23
with the asymptotics W, ~ (z,—z,)" (z;— 2T for zy—z < 23— 2,

12, 13
and W, ~ (z, - 2,)" (z;— ) for zy -z, 23—z
This definition of @y, in terms of the system (2.2) is convenient, in par-
ticular, for verifying {(1.2) and (1.6) (equality (1.1), equivalent to g-invariance
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of @, is obvious). To prove (1.6), we consider (2.2) for # = 4 in the region
{(z,,2;, 24, 24) € R | 7, < z, < zy < z;} and distinguish five zones:

z,—z, K z23—2, €2y~ 2y, 3 z;— 2, Kz~ 2, K2, — Iy,
2)z;-2,K 2y — 2, K 2, — 2y, 4z, - 23K 24— 2, K 2, — Zy,

These zones correspond to the “vertices” of the pentagon (1.7) in accordance
with the following rule: if ¥, and ¥, fall between any two corresponding paren-
theses and V) is ouiside these parentheses, then lz, -z € |z, — z,|; for

example, (¥, & (V, ® ¥;)) ® V, corresponds to the second zone.

LEMMA. There exist unique solutions W, ..., W, of the system (2.2) with
the following asymptotic behaviors in the corresponding zones:
B B2 Rl
Wy~ (z,—2) (23— 7)) (z,—2() )

23 12 13 14 24, 34
W2 ~ (23 _ zz)ﬁt (23 _ Zl)ﬁ(: +1 )(24 _ Zl)fz(t +HT)
R R
) (24 - Zg) ’

2

ftt23
Wy~ (23— 2,) (2,- 2

mu

B+ | IR I g
W,~ (24— 25) ) (z4—2)

(z4- 2,
ﬁtll ﬁf:M
Wi~ (23— 2)) (24— 2y)

>

(RTINS
(z4—2)) .

It is to be understood here that, e.g., for W, this means that

12 34 13, 14, 23, 24

Ws _ f(u, U)(22 _ Zl)ﬁz (24 _ 23)1‘1: (24 _ Zl)fi(! £

where u = (z, — z,)/(z, — z;), v =1(2,— z,)/(z, — 2,}, [ is analytic in a
neighborhood of (0, 0), and f(0,0)=1.

ProoF. Consider, say, the fifth zone. Make the substitution W = g(u, v)
x(z,—z)"T, where T =12 4+1 +1" 442+ w = (z,-2))/(2,- 7)),
and v = (z, — z;)/(z, — z;). Then for g we obtain a system of equations of
the form

b

g_é;:h(%-i-R(U,v)) g(u,v),

g-% =h(§+$(u,1})) - glu, v},

(2.3)

where the functions R and §, with values in (Ug)®3 , are analytic in a neigh-
borhood of (0, 0), while 4, B € (U g}®3 are independent of u# and v (note
that [4, B] =0, in view of the integrability of the connection V correspond-

ing to (2.3)). We must prove existence and uniqueness of a solution of the

system {2.3) of the form ¢(u, v)uhA'UhB , where @{u, v) is analytic in a neigh-

borhood of (0,0) and ¢{0,0) = 1. In other words, we must prove exis-
tence and uniqueness of an analytic function ¢(u, v) such that ¢(0,0) =1,
" vV, 9 = 0/0u— hAu™', and ¢ vV, @ = 08/0v - hBv~!, where
V, = 8/0u—h(4u~" + R(u,v)) and V, = 8/dv - h{(Bv™' + S(u, v)). This
can be done by the method of successive approximations. @

It is easily seen that W,, ..., W, have analytic continuations into the whole
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region z; < z, < z; < Z,. Formula (1.2) follows from the equalities W) =
W, (D@ 1), W, =W, (d Aid)(Dy,), W, =W, - (19 P,), W, =
W, - (A ®ideid)(Py,) . and W, = W, -(ideid @A) (Dy,). We show how to
prove the first two of these.
Putting V, = W, - (2, — 2,

—# !14 324 [34
yTHEHTE ang

: 14, 24 34
v, = PVZ'{CDKZ® 1) (z,— Zl)—ﬁ(.t + )
gt 4 34
_ WZ-(Z4—ZL) R+ )'(q)Kz@ 1)’
we will prove that ¥, = V,. It is easily verified that V| and V, are analyltic
for z, <z,<z,, Z, € IE\‘l]P’l\[z1 , ;] (z, can also equal o). Furthermore, V|
and ¥, both satisfy the equations

av t
W _ay Ly, i=2.3, (24
dz; < z; -z
ij 14, 24 | 34

W _wy by LD (2.5)
dz, P zZ -z zZ,— 2,

14
ov L V] (2.6)
0z, e 24— 2

From {2.4), (2.5), and the asymptotics of V| and V, it follows that V| and V,
coincide for z, = co. This and (2.6) imply ¥, =V,.

_mzs
)

Now put U, =W, (z; — 2, and

. . .
U, =W, (id® A®id)(@g,) (23— 2,)
_ 23 . .
=W, (z;-2,) " {id® A®id)(®y,);
we show that U, = U,. Itis easily verified that U, and U, are analytic in the
region z, < z, <z, Z; <Z3< 2y (z, can equal z,!). Furthermore, U, and
U, satisfy the equations

au il .
e R @
27 23
ou _, Ay LR (2.8)
622 #2’322—21. Z,— 24
3j 23
U _4 A el ) (2.9)
823 j#2’323—zj Z,—Z4

It is easily seen that U, and U, coincide for z, = z;. From this and (2.8) it

follows that U, = U, .
Thus, (1.2) is proved. Replacing x by 1-x in (2.1) shows that @, satisﬁes

the equality -
o - . (2.10)

Therefore (1.6b) follows from (1.6a): it suffices to apply to both sides of (1.6a)
the operator that interchariges the first tensor factor with the third, and to em-

ploy the equalities R¥* = R and A’ = A, The proof of (1.6a) is contained in
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§3 of [1]. It uses six solutions of the system (2.2) for » = 3 in the complex
domain that have the standard asymptotic behavior in the corresponding zones;
they correspond to the “vertices” of the hexagon (1.9a).

Now replace (2.1} by the equation
, I /4 B
G(z)=m( )G(x), (2.11)
where A4 and B are noncommuting symbols, and G is a formal series in A
and B with coefficients that are analytic functions of x. Consider, as above,
solutions G, and G, with the standard asymptotics for x =0 and x = 1. Put
Pyz(4, B) =G lG1 . The algebra C({{4, B)} of noncommutative formal serics
is a topological Hopf algebra with the comultiplication A(4A) = A® 1+ 1® 4,
A(B)=B®1+1®B. Clearly, A(py,) = ¢, ® ¢y, . Therefore In Pz (4, B)
is a Lie formal series, i.e., an element of the complete free Lie algebra over C
with generators 4, B (see [16], Chapter II, §3, Coroliary 2, Theorem 1). In the
same way as for (2.10) one proves that ¢, satisfies the equality

9(B, A)=p(d4, B)"". (2.12)
To obtain analogues of (1.2) and (1.6) for ¢, , observe that as in [7], the
integrability of the connection corresponding to (2.2) follows from the relations
/=" and (17,1 =0for i £ j £k #1,and [t +¢%, 7] =0 for
i # j# k. We now introduce, as in [17], the Lie algebra uf as the quotient
of the complete free Lie algebra over C with generators X U, 1 <7i<n,
1 <j<n,i# j, modulo the ideal topologically generated by the elements
of the following three types: 1) X4 - Xt 2) [XY, Xkl], i#j#k#£I1;
3 [)ﬂfij +Xik, ;‘fjk], i # j # k. The image of X" in af we denote by X,
Replacing now Az in (2.2)by X Y, we find that the same arguments that prove
(1.2) and {1.6) for ®© = ¥y, also prove that ¢, satisfies the relations

¢(X12, X23+X24)'¢3(X13+X23,X34)
=(D(X23,X34)-§0(X12+X13,X24+X34)'(D(Xlz,X23), (213)

x+x—1

exp((X13 + X23)/2) _ qa(X”, Xll) . exp(X13/2) . ga(XlB’ X23}—1

cexp(X7/2) - (X", X7, (2.14a)
exp(X " +X")/2) = (X, X exp(X/2) - p(x"2, X"
cexp(X'2/2) - p(x'?, X7, (2.14b)

where both sides of (2.13) belong to exp af while both sides of {2.14a) and
(2.14b) belong to exp af . Here exp uf ={e"ixe uf}, where e* is regarded
as an element of the complete universal enveloping algebra U af. In other
words, exp af is the Lie group corresponding to af.

If we assume for the moment that {4, B] = 0, then (2.11) has the solution

xY 2’”(1 - x)‘B /27 with the standard asymptotics both at x =0 andat x=1.
Therefore Ing,, € p, where p is the commutant of the complete free Lie alge-
bra with generators 4, B. Let us find the image of In Px, in p/lp, p]. Since

p 1is a topologically free Lie algebra with generators U, = (ad B)’(ad A)k{A, B]
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(see, e.g., §2.4.2 of [18]), the images of the U, in p/ip, vl _(which we dengte by
U,,;) form a topological basis in p/[p, p]. Observe that U, is also the image

of (ad A)k(ad B)’{A, B] in p/lp, p]. The coefficients of the expansion of the
image of ingy, in p /[p, p], with respect to the basis U, we denote by ¢, .
We show that :

- 7y n n
1+ e = exp22 ;%;)—(u +v" = (u+v)") (2.15)
k.l n=

Write the standard solutions G, and G, of equation (2.11) in the form G J.(x) =

fA(l - x)BI/j(x) , where 4 = A/2zi and B = B/2mi. The functions V; have
continuous extensions to [0, 1] and satisfy the equation

V'(x) = Q(x)V(x), (2.16)
e—lnx-adz_

def —In{l—x)-adB ey

Qx)=e

x-1

Furthermore, ¥,(0)=1 and V;(1)=1 Therefore ¢y, = vy = V(Y (0)”)
where V is any solution of (2.16). This means that the image of Ingy, in

p/[p, p] is equal to fol O(x)dx, where Q(x) isthe image of Q(x) in p/[p, p].

Hence, 1 >
1 1 X
Cki = 2 f (lnl—_“‘) — 1 (2.17)
i)k + 1) Jo X/ X

Assuming for the moment that #, v € C, Imv < 0, Imu < 2z, we find that
the left-hand side of (2.15) is equal to :

—1
)

. = L e
1%]01(1—x‘“)(l—x)‘”‘ldx=—wf0 x 1 -x)"" " dx
—T(1 - BT (1 -7)/T(1-7-7),

where % = u/2ni and T = v/2=i. Using the formula InI(1 — z)‘ = 9z +
Y0 ({(n)/n) - 2", which follows from the expansion of the I'-function as an

 infinite product ([19], Chapter 12), we obtain (2.15).

From (2.15)} it follows in particular that
G0 = Co = ~Llk +2)/(2mi)" (2.18)

One can also give a somewhat different proof of (2.18): ¢, o can be computed

by means of (2.17), the formula (1 -—x)_1 = 14 x4x"+--- and the substitution
x=e 7, and €y x by the formula ¢, = ¢, which is a consequence _Of (2.12).

REMARK. Accbrding to the Introduction in [11], similar computations have
previously been made by Z. Wojtkowiak; indeed, they served as a stimulus to

Deligne.
§3. Proofs of Theorems A, A', and B

In this section we examine the quasitriangular quasi-Hopf QUE—algel?rgs over
k[[A1], where k is a field of characteristic 0. Let us recall (see P.ropos1t.1on_3.5
of [1]) that a) any such algebra can be brought by an appropriate twist 1nto

symmetric form (i.e., we can make RY = R); 2) twisting via F preserves
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symmetric form if and only if F2' = F: 3)if R*' = R, then A’ = A and
(2.10) holds. We recall also (sce §2) that if R* = R, then {1.6b) follows from
(1.6a) and (2.10).

Let g be a Lie algebra over &, and { € g&g be symmetric and g-invariant.
Putting 4 = (Ug)[[#]] we define in the usual fashion At A - A ® A4 and
g A — k[[R]]. We look for g-invariant elements R€ A®4 and Pe ARA0A

such that R¥' =R, R=1+ ht/2 mod 4%, ® = 1mod/ and equations (1.2),
(1.4), (1.6a), and (2.10} are satisfied (we do not require R = ey

ProposiTION 3.1. Suchk R and ® exist.

PrOOF. Suppose we have already constructed g-invariant elements R, €
(Ug® Ug)l[h]] and ®, € (Ug® Ug ® Ug)[[A]] such that R = R, R,
1 + ht/2 modh®, ® = lmodh, and R,, ®, satisfy modulo 4" equa-
tions (1.2), (1.4), (1.6a), and (2.10) (for » = 2 we can put R, = 1 + ht/2,
®, = 1). From the proof of Proposition 3.10 of [1] it follows that there exists a
g-invariant 5,1 € (Uge Ug® Ug)[[h]] satisfying (1.2}, (1.4}, and {2.10) modulo
#"*! and such that ® = @, mod#". Since R, and ®, satisfy (1.6a) modulo
k", we have

. —312 —132, — —
ARI(R,) =T "R@ H'RS, + 1"y  mod A", (3.12)
where v € Ug® Ug® Ug is g-invariant. Applying to both sides of (3.1a) the
operator that interchanges first and third tensor factors, we obtain:

(ideA)R) = (@) 'RIGCRG + 1"y mod A™. (3.1b)

We now look for R, and @, | intheform R, =R, +h"r and @, =
@, +h"p,where re Uge Ug and ¢ € A3g CcUge Ug® Ug. The clements r
and ¢ must be g-invariant and satisfy the equations

321

21

oy, (3.2)
P = (Awid)(r) + 39 = v. (3.3)

For such » and ¢ to exist, it is necessary that
v - (Aeideid)(y) + (deAsid)(y) - ¥ =0, (3.4)
(deided)w) - v'” -y = aeideid(y™) - v - ¥™, (35
ot = -, (3.6)

where o = ¥ — wm . We claim that (3.4)—(3.6) are also sufficient for existence
of r and ¢ . Indeed, (3.4) says that y is a 2-cocycle in the complex C*(g)@Ug,
where :

C"(g) = (Ug)™",
dla, @ ®a)=18a % -®a,

i
-FZ(—I)'.::1 ®---®4a_®AMa)®a, @ @4,
i=1

1)n+1

+(-1)"a, 9 ®a,®1 (3.7)
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It follows therefore from Proposition 2.2 of {1j that o € Azg @ Ug, while
w —a/2 is a coboundary, L.,

w—af2=F +7° — (A2 id)(F). (3.8)

Here 7 can be chosen to be g-invariant; it suffices that under the usual iden-
tification of Ug with Sym”g (see [16], Chapter II, §1, Proposition 9} 7 goes
into an element of Sym®g ® Sym*g whose image in g ® Sym"g is 0. Since
a € A2 ® Ug, it follows from (3.6) that « € A’g. Put ¢ = /6. Then (3.2)
and (3.3) become the following conditions on § = r —7:

s«sﬂz?m—F, segeUg. (3.9)

For the existence of an s satisfying (3.9) it is necessary and sufficient that
7l _Fe(geUg) @ (Ug®g), ie., that

(feNF -mH=0, (3.10)

where f: Ug— Uge Ug, fla)=a®l+1®a — A{a) . If (3.10) is satisfied,
then s can be chosen to be g-invariant; it suffices that the image of s+7 in
Sym® g® Sym” g have no component in g®g. It remains to observe that (3.10)
follows from (3.5), (3.8), and the fact that o € A’g.
We now prove (3.4)-(3.6). Transforming by means of (3.1a) both sides of
the equality
173 o . . . . =123
®,  (ARideid)A® id)(R,) = (ideA®id)(A® id)(R,)- D,

and using {1.2) and {1.5), we obtain (3.4). Now express (A® A)R,) in terms
of R:f , R:f, R,Zf, Ri4 in two ways (we can apply first (3.1a) and then (3.1b),
or first (3.1b) and then (3.1a)). Comparing the two expressions for (A®A)R,)
and using (1.2) and (1.5), we obtain (3.5). In the same way as for the proof
of formula (3.12) of [1], which generalized the Yang-Baxter reiation, we can
derive from (3.1a) the congruence

13 =132, =1 p 23 no =320 23 =231 1 513213
RE@H RS, +h"a=®, R (D, ) R, D

n

312

12 n+1
R R, mod A .

(3.11)
Applying to both sides of (3.11) the operator that interchanges the first ten-
sor factor with the third, and using the relations Ril = R, and 6221 =
@ 'mod 2", we obtain (3.6). @

The proof of Proposition 3.1 determines certain completely specific elements
@ and R, expressed in terms of t = ht by means of Q-universal formulas
® = #(7) and R = #'(1). Concerning these formulas it suffices for our
purposes to know only that .#(z) = 1 + O(r) and A (1) = 1 + 1/2 4+ o1},
where o(7) (resp. O(t)) denotes terms in 7 of degree higher than 1 (resp.
higher than or equal to 1).

R’®

PrOPOSITION 3.2. Let g be a Lie algebra over k, and suppose that R €
(Ug @ Un)[[h]] and ® € (Ug® Ug ® Ug)l[A]] are inverticle, g-invariant, and
satisfy (1.2), (1.4), and (1.6). Then by twisting via some g-invariant Fe
(Ug® Ug)[[A]] the elements ® and R can be turned into H(h&) and A (h6),
where 6 is a g-invariant element of (Sym2 9)I[#]). Furthermore, 0 is uniquely
determined, while F is determined up to multiplication by an element of the form
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(u_i ® u_l}A(u), where u belongs to the center of (Ug)[[h]] and u= 1mod#,
e(u)=1.

‘ Proor. (4,A, e, ®, R) can be brought into symmetric form by twisting
via some g-invariant element of (Ug® Ug)[[A]] (see the proof of Proposition
3.5 in [1]). We can therefore assume that R*' = R (in which case @' = @~}
while F must be symmetric). Then everything reduces to the following lemma.

LEMMA. Suppose (@, R|) and (®,, R,) satisfy the conditions of the propo-
sition, with RY' = R,, R}' = R,, ® = ®,modh", and R, = R,modn".
Let ¢ and r be the reductions modh of the elements h™"(®, — ®,) and
h™"(R, — R,), respectively. Then r is a g-invariant element of Sym’ g, while

¢ can be written in the form
o =f" - (aoid)(f) + (dsa)(f) - /2, (3.12)
where f isasymmetric g-invariant element of Ug® Ug such that (e®id)(f) =
0= (id®e)(f}. Furthermore, f is uniquely determined up to replacement by
f=f+am)—vel-1gv, (3.13)
where v belongs to the center of Ug and e(v) =0.

PrOOF. Since R, and R, satisfy (1.6a), while ®, and ®, satisfy (2.10), we

have_ (A@id)(r) —rB = Alte/2. The left-hand side of this equality is sym-
metric in the first two tensor factors, and the right-hand side skew-symmetric.
Therefore both sides are 0;i.c., Altlg =0 and r e g® Ug. Since re g Ug

and r*' = r, we have r Sym?'g. Since @, and @, satisfy (1.2), (1.4), and
(2.10), we have

9P~ (A id®id)(p) + (Id®A ®id)(p)

— (id®id®A) (@) + 92 =0, (3.14)
(id®e @ id)(p) = 0, (3.15)
S — (3.16)

Applying to (3.14) the mappings ¢ ® e ® id®id and id®id®e ® ¢, and using
(3.15), we obtain:

(e ®id®id)(p) = 0 = (id @ id ®e)(9). (3.17)

(3.14) says that ¢ is a 3-cocycle in the complex (3.7). By Proposition 3.11 of
[1], if such a cocycle is g-invariant and satisfies (3.15)-(3.17) and the condition
Altg = 0, it can be represented in the form (3.12), and the representation is
unique up to the replacement (3.13). e

Let .# and 4 be as above. In the same way as for Proposition 3.2 one
proves the following.

ProrosiTioN 3.3. Let (A (1), ¥ (1)) be an arbitrary k-universal solution
of equations (1.2), (1.4), and (1.6} such thar /¥ (1) is symmetric, /(1) = 1 +
t/2 + o(t). Then by twisting via a symmetric k-universal F(1) one can turn
(A (t), V(1)) into (H(T), A(T)), where T is expressed in terms of T by a
k-universal formula of the form T = v+ O(t). Furthermore, T is determined
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by (A, A uniquely, and F(t) up to multiplication by wleu™") Aw),
where u is expressed in terms of T by a k-universal formula of the form u =
1+0(t). ®

PROPOSITION 3.4. Let (4€(1), # (1)) be as in Proposition 3.3. Then # (1) =
e’ where T is expressed in terms of T by means of a k-universal formula of
the form T =1+ 0(1).

Proor. If R = e’”, where 1 € g ® g is symmetric and g-invariant, and

F e (Ug® Ug)[lA]] is likewise symmetric and g-invariant, then in formula
(1.12) R = R, since [t, F] = 0 (it suffices to usc the formula 7 = {A(C) —
C®l-1®C)/2, where C € Ug is the Casimir element corresponding to ¢).
The k-universal version of this assertion is also true: F(z)e"*F(7)™" = */*
for any k-universal F(1). Therefore, applying Proposition 3.3 to the case that
H(1) = e"? and A7) is defined by means of the KZ system (see §2), we find
that 4 (7) = e"? for some T of the form 7+ o(t). It remains now 1o apply
Proposition 3.3 to an arbitrary pair (# (1), #(1)). e

Proor oF THEOREM A'. In the process of proving Proposition 3.1 we con-
structed Q-universal elements @ =.# (1) and R = .#'(1) satisfying (1.1)-(1.6)
and the condition R*! = R, with 4 (1) = 1+1/2+0(1) and # (1) = 1+ 0(7).
By Proposition 3.4, there exists a Q-universal 7 of the form 7+ o(1) such that
A%y =e¢"*. Then & =.#(7) and R = e*? satisfy (1.1)-(1.6). Uniqueness
in Theorem A’ follows from Proposition 3.3. @

Theorem A’ implies the existence part of Theorem A. Uniqueness is a con-
sequence of the following proposition.

PROPOSITION 3.5. Let g be a deformation algebra over k[[h]] (see §1), and
ReUgeUg and ® € Ug® Ug® Uy invertible g-invariant elements satisfying
(1.2), (1.4), and (1.6). Then by twisting via some g-invariant F € Ug® Ug

we can turn ® and R into #(h6) and "2 where 0 isa g-invariant element
of Sym2 g. Furthermore, F is uniquely determined up to multiplication by an
element of the form (u_1 ® u'l) x A(u), where u belongs to the center of Ug
and u=1modh, e(u)=1.

Proor. The proof is basically like the one given above (see Proposition
3.2) in the case g = g,[[#]], where g, is a Lie algebra over k. It differs in
the following respect. Suppose R = R, ® = #(ho n)modh", and R =
exp(hﬁn/Z)modh" for some g-invariant 6, € Syng. Let r and ¢ be the

residue classes mod# of the elements A "(R — exp(h6,/2)} and B —
A (h8)), respectively. As in the proof of Proposition 3.2, one shows that.r is

an invariant element of Sym2 g, , where g, = g/hg, while ¢ can be represented
in the form (3.12), where f is a symmetric invariant element of Ug, ® Ug,
such that (¢ ®id)(/) = (idge){f) = 0. But to construct g-invariant symmetric

elements F, € Ug® Ug and 6,,, € g@g such that o= %(kﬁnﬂ)modh”“
and R = exp(h6,,,/2)mod 4" where @ and R are obtained by twisting

@ and R via F,, we must still prove that r € Sym2 g, lifts to an invariant

element r € Sym2 g, while [ ¢ Symz(U g,) can be chosen so as to lift to an
invariant element f € Symz(Ug). For r we can take #(h "(InR — 6/2)),
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where n: Ug® Ug — g ® g is the projection defined by identification of Uy
with Sym" g (we are forced to use 7, since it has not yet been proved that
InR € g®g). We claim that f exists if f is constructed as in the proof of

Proposition 3.11 of [1]. Indeed, if we identify Ug, with Sym* g, in the usual
fashion, then Ug,®Uyg, is identified with Sym”(g,@g,) = B,, g?'"@ s, (@H®",
(U g0)®3 with €, 96" ®s (Q3)®m and the [ constructed in [1] is equal to
Ly(@), where L (Ug0)®3 — (Ug0)®2 is defined by means of certain S, -
equivariant operators &, (Q3)®m — (Q2)®m . We can therefore put /= L(g),
where ¢ = A (@ - (h0)), and L: (Ug)®> — (Ug)®* is defined by means of

the same J_
A similar problem arises in proving the uniqueness of F up to multiplication

by (u_1 ® u_l)A(u) , and it is dealt with in the same way. ®

o

, Where 8 isa
[X7e

CorOLLARY, In the situation of Proposition 3.5, R'R=¢
g-invariant element of Sym2 a. In particular, if RY =R, then R=e

REMARKS. 1) The corollary shows that if A is a universal enveloping algebra
with the usual A and ¢, then (1.1)-(1.6) imply the equality (A®id)(1n(R21R)) =
ln(R”R”) + In(R3 2RB) . The author has not been able to derive this equality
directly from (1.1)-(1.6).

2) A proof similar to that of Proposition 3.5 can be made for an analogous
proposition concerning coboundary quasi-Hopf QUE-algebras in the sense of
§3 of [11.

ProoF oF THEOREM B, Let (4, A, ¢, @, R) be a quasitriangular quasi-Hopf
QUE-algebra over k[[#]]. Put R = R. (RZlR)_l’Q. By Proposition 3.3 of
(11, (4, A, ¢, ®, R) is a2 coboundary quasi-Hopf QUE-algebra. Therefore, by
Proposition 3.13 of [1], a suitable twist turns (A4, A, ¢) into Ug with the usual
comultiplication and counit, where g is a deformation Lie algebra. Now apply
Proposition 3.5. #

REMARKS. 1) Theorem B can be proved without the use of Proposition 3.5
by arguing as in the proof of Proposition 3.13 of [1].

2) A description can easily be made of the category of quasitriangular quasi-
Hopf QUE-algebras (Proposition 3.14 of [1] and its proof remain valid in the
quasitriangular case). '

84, The Grothendieck-Teichmiiller group

Suppose given a quasitensored category (see §1), i.e., a category C, a functor
® , commutativity and associativity isomorphisms, as well as an identity object
k and isomorphisms V@ k = V and k@ V = V for all objects V in C
(with diagrams (1.7)-(1.9) commutative). We try to change the commutativ-
ity and associativity isomorphisms without changing the rest of the structure
appearing in the definition of quasitensored category. Changing the associa-
tivity isomorphism (¥, @ V,) ® ¥, = V, @ (¥, ® V;) amounts to multiplying
it by an automorphism of (V, ® V,) ® ;. Observe thaton (V@ Vi@V,
where V' is an object in C, there is an action of the braid group B,: the
generator ¢, € B, determines the isomorphism ¢ ® id, where ¢ is the com-
mutativity isomorphism ¥V ® V' 5 V' @ ¥, and the generator o, € B, deter-

mines the isomorphism a! (id®c)a, where a is the associativity isomorphism
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VeV SVre(Ve V) In the same way, every a € B, determines an iso-
morphism (V| @V;)@¥; = (V eV, )®V where (i, i,, i;) is the permutation
corresponding 10 a ~lwe have therefore on (¥, ® V,)® ¥, an action of the

colored-braid group K, = Ker(8, — 5,). Thus, a eh01ce of go € K, determines
a new associativity 1somorph1sm Slmllarly, a choice of w € K determmes a

2m
new commutativity isomorphism. Any y € K, is of the form y =¢™" , where
o is the generator of B, and m € Z. Therefore changing the commutatwny
isomorphism amounts to raising it to the power 1 =2m+ 1. Any ¢ € K, is
of the form f (c;ri , a;‘) (3102)3” where n € Z and f(X, Y) is an element of

the free group with generators X, Y (we note that (o 02) (0’20'1) gener-
ates the center of B,). For new commutativity and assoaatwﬁy 1somorphisms
the diagrams of the form (1.8) remain commutative as before, but the require-
ment of commutativity for (1.7) and (1.9) imposes conditionson f, A, and n.
Commutativity of (1.9a) imposes the condition » = 0 and the relation
-1
f(Xl : Xz)lef(X;;s Xl)X;nf(X Xz) Xén =1
for X, X,X;=1, m=(A-1)/2. (41)
Commutativity of (1.9b) imposes also the condition # = 0 and the relation
- -1
FXy, X)X A, XDAT (X, X)X =1
for X X,X;=1,
(4.1) and (4.2) are equivalent to the relations
Y X=X, 77 (4.3)

m=(A-1)/2. (42)

X)X, f(X, X)X =1

for )(1X2X3 =1, ={A-1)/2. (4.4)
Finally, commutativity of (1.7) imposes the following condition on ¢ € Kj:
85(0) - 8,(p) = 85(0) - 0,(0) - 04(0). (4.5)

Here 8,(p) (resp. d,(p)) is obtained from the braid ¢ by adding one more
string on the left (resp right) to the existent three, while 8,(p) for 1 <i<3 is
obtained from ¢ by replacing the ith string of the braid ¢ by two strings, one
just to the left of the other (note that the K, form a cosimplicial group, where
the boundary homomorphisms are the 9;: K — K, , while the degeneracy
homomorphisms K, , — K, are obtalned by deletmg one of the n+1 strings).
It is known [20] that K 1s generated by the elements x,;, 1<i<j<n,

where

fXs, X)XT (X,

-1 2 2
Xy =gy 0) 0,50y 0) = (0, 0,007 (0

and the defininig relations among the Xx,, are of the form

(@i > X5) = (@ X) = (@ X)) = 1,
: where i< j<k, a;;

caL) T, (46)

(g Xig) = G ) = 1 fori<j<k<l, (48)

(xzk’x ixlxu}_l f0r1<.1<k<l o (49)
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-1 -1
Here {u, v) means uvu v . In terms of the Xii

(4.5) says that

S Xy s X3 ) F (3055 X34)
= S (X35 X34) S (Xyp X5 XpuX3g) S (X155 Xo3). (4.10)

Thus, every pair {4, f), 4 € 1+ 2Z, satisfying (4.3), (4.4), and (4.10)
determines a “natural” way of constructing for any quasitensored category C a
new quasitensored category C’, where the only change is in the commutativity
and associativity isomorphisms (“natural” means that if F: C, — C, is a ten-
sored functor in the sense of Definition 1.8 of [6], then F is a tensored functor
from C{ to C;) . It is easily shown that the correspondence is bijective. The
interpretation of the pairs (4, f} satisfying (4.3), (4.4), and (4.10) as ways of
changing the commutativity and associativity isomorphisms allows us to define
01}11 the set of all such pairs a semigroup structure (4,, f)-(4,, f3) = (4, f),
where

A=Ak,
FX,Y) = ALK, DX LX, V)T YR f(X, Y),

Now suppose (4, A, e, @, R) satisfies (1.1}-(1.6). Then the A-modules
form a ‘qqasi@ensored category (see §1). If we change the commutativity and
associativity isomorphisms by means of a pair (4, f) satisfying (4.3), (4.4),
and (4.10), where

(4.11)

R=R-(R*"R"=(R-R"Y"-R, m=(@-1)2, (4.12a)

(i) - P _.f(RZIRl?. : (I)—[R32R23q))
= fIOR' R~ R¥R*). . (4.12b)

The formulas (4.12) define an action of the semigroup of all pairs (i, f) satis-
fying (4.3), (4.4), and (4.10) on the collection of sets (4, A, ¢, ®, R) satisfying
(1.1)-(1.6). Unfortunately, this semigroup consists only of the identity element
(A=1, f=1) and the involution (1 = -1, f = 1) taking (4, A, e, P, R)
ipto (4, Ae, @, (Rm)"l). This is a consequence of the following proposi-
tion, since by (4.10) f(X, ¥} belongs to the commutant of the free group with
generators X, Y.

ProPOSITION 4.1. Eguations (4.3) and (4.4), where f(X,Y) belongs to the
ﬁ’fe grroup with generators X and Y, are satisfied only by A =x1, f(X,Y) =
YX.

Proor. If (4, f) satisfies equations (4.3) and (4.4}, then these are also sat-
isfied by (4, f), where f(X,Y)=Y7"f(X, Y)X". From (4.3) it follows that

—~

for a suitable s either f =1 or the noncancellable representation of f(X, Y)
@s of the form Xl---Y*I, ! # 0. Since f satisfies (4.4), the second case is
impossible, and in the first case A=+1. @

Observe now that if & is a field of characteristic 0, then formulas (4.3), (4.4),
(4.10), and (4.11) are meaningful even if we suppose that A € k&, while f(X, Y)
belongs to the k-pro-unipotent completion of the free group with generators
X,Y,ie, f{X,Y) is a formal expression of the form expF(lnX,InY),
where F is a Lie formal series over k. Then both sides of (4.10) belong
to the k-pro-unipotent completion of K, , i.e., are of the form e”, where v
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belongs to the quotient algebra of Lie formal series in the variables &; T 1<
i < j < 4 modulo the ideal corresponding to the relations (4.7)-(4.9) for x;; =
exp¢; i

We denote by GT(k) the semigroup of pairs (4, f) satisfying (4.3), (4.4),
and (4.10), where A € k and f belongs to the k-pro-unipotent completion of
the free group. The group of invertible elements of GT (k) will be denoted by
GT(k); we call it the k-pro-unipotent version of the Grothendieck-Teichmiiller
group. Tt is easily seen that GT(k) = {(4, f) € GT (k) | A # 0}. It turns out
(see §§5, 6) that the group GT(k) is rather large: it is infinite-dimensional, and
the homomorphism GT(k) — k™ taking (4, f) to A is surjective.

If (4, f) € GT(k) and (4,A,&,®,R) isa quasitriangular quasi-Hopf
QUE-algebra over k[[#]], then the formulas (4.12) are meaningful. Thus,
GT(k) acts on the set of quasitriangular quasi-Hopf QUE-algebras. A twist
(see (1.10)—(1.12)) commutes with the action of GT(k). Suppose now that A
is Ug with the usual comultiplication, R = e"? and ® = exp P(hru, kr”) ,
where g is a deformation Lie algebra over k[[#]}, t€g® g is symmetric and

g-invariant, and P is a Lie formal series over k. Then the R and ® defined
by formulas (4.12) are of the form R = &2 and @ = expP(htlz, hi?y,
where P is a Lie formal series over k.

We can interpret the elements of GT(k) as endomorphisms of a certain
completion B, (k) of the group B,. Suppose 4, f satisfy (4.3), (4.4), and
(4.10), with A € 1+2Z and f(X,Y) belonging to the free group on the
generators X , Y (forget that there are only two such pairs (4, f)). Let ¥ bean
object in a quasitensored category C, e veV , e = p®igy ,ete. On
®" there is an action of B, . Changing the commutativity and associativity
isomorphisms in C by means of (4, f} gives rise to a new action of B, on
®" 1t is obtained from the old by composition with the endomorphism of
B, given by o, — Gf, o, — S, af)_laff(yi, aiz) for i > 1, where y, =
o,_ 0,00, (inthe notation of (4.6), ¥; = X;Xy; -+ X;_; ;) - Now let
K, (k) be the k-pro-unipotent completion of K, , and B, (k) the quotient of
the semidirect product of B, and K, (k) (the automorphisms Ad g: K, — K,

g € B_.extend to K, (k)) modulo the subgroup of elements of the form xx 7t
x € K, , where x is regarded as an element of B, , and x~! as an element of

K, (k). The formulas
0'1'_’01(/1) o, f;s sz)_lai(l)f(yw o_iz)’ I<is<n, (4.13)

»

where Uf’” =0, (af)(’l_l)’!?‘, V=0, 000y define a right action of
GT(k) on B, (k), which is faithful for n > 3. The endomorphisms {4.13) are
compatible with the imbeddings B, (k) — B, (k) that take o, into o;, and
they induce the identity automorphisms on the groups S, = B,(k)/K, (k). The
author does not know whether any set of automorphisms p, € AutB, (k) that
has these properties results from an element of GT(k) (perhaps the methods

of [15] can elucidate this). In any case, the endomorphisms of B;(k) that take

g, into af) and induce the identity automorphism on §, do have the form
(4.13) or, what is equivalent, the form

(A 2

3,(=1)/2 o 2
o, 0, 0,0,0, — 0,0,0, - [(0,0;) ]( / flo], 63), (4.14)
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where [ satisfies (4.3) and (4.4). Conversely, (4.3) and (4.4) imply that {4.14)
defines an endomorphism of B, (k).

We describe now, following [2], how to construct a canonical homomorphism
Gal(Q/Q) — GT(Q,), where Q is the algebraic closure of @ in C (although
this construction will not be used in the sequel). Let us denote by GT (resp.
GT,) the semigroup of all pairs (4, f) satisfying (4.3), (4.4), and (4.10), where
f belongs to the pro-finite completion (resp. pro-/-completion) of the free
group, and A € 1 +2Z (resp. 1€ 1+ 2Z;). Here 7 = Lil_r_nnZ/nZ. The

groups of invertible elements in GT and GT, we denote by GT and GT,.
There exist natural homomorphisms GT — GT, and GT,; — GT(Q,). What
remains is to construct a homomorphism Gal(Q/Q) — GT. Let us first recall
the construction, due to Belyi [21], of a homomorphism Gal(/Q) — AutT ,
where T is the quotient of B, by its center, and T is the pro-finite completion
of T'. There exists a canonical isomorphism I' = n,(M,x), where M is the
stack which is the quotient of cP' - {0, 1, co} by the group S, of projective
transformations permuting O, 1, co, and x is the image of a point in CP' that
lies on the real axis near 0. Therefore I = Gal(F/E) where E is the subfield
of S;-invariants in Q(z) (8, acts on z as indicated above), and F is the
maximal algebraic extension of Q(z) in L = |J, Q((z™) that is unramified
outside 0, 1, oo. The group Gal(Q/Q) actson L, leaving E and F invariant.
Therefore Gal(Q/Q) acts on Gal(F/E) = I'. The subgroup H c T that is
topologically generated by the image of o, € B, is invariant with respect to
Gal(Q/Q), and the action of Gal(Q/Q) on the quotient group 8, of T is the
identity. The semigroup of endomorphisms ¢: I' = T' such that p(HYC H
and the action of ¢ on .S is the identity is anti-isomorphic to the semigroup
of pairs (A, f) satisfying (4.3) and (4.4), where A € 1 + 2Z and f belongs to
the pro-finite completion of the free group: the pair (A, f) corresponds (see
(4.14)) to the endomorphism ¢: I' - [ such that ¢(7 D= E’f, 9(0,0,6,) =
G,0,0,f (E? , 6%) , where @, is the image of o, in I'. To obtain an isomorphism
between the groups of invertible elements of the two semigroups, combine the
antihomomorphism with the mapping y — y_l

It remains to show that the pairs {4, f) corresponding tc elements of
Gal(Q/Q) satisfy (4.10). This can be inferred from §2 of Grothendieck [2].
It is proposed in [2] to consider, for any g and v, the “Teichmiiller groupoid”
T, i.e., the fundamental groupoid of the module stack M, , of compact Rie-
mann surfaces X of genus g with v distinguished pomts Xys...,X,. The
fundamental groupoid differs from the fundamental group in that we choose
not one, but several distinguished points. In the present case it is convenient
to choose the distinguished points “at infinity” {see §15 of [11]) in accordance
with the methods of “maximal degeneration” of the set (X, x,, ..., x,). Since
degeneration of the set (X, x,,..., x,) results in decreasing g and v, the
groupoids T, for different g and » are connected by certain homomor-
phisms. The coilectlon of all T » and all such homomorphisms is called in
[2] the Teichmilller tower. It is observed in [2] that there exists a natural ho-
momorphism Gal(Q/Q) — G, where G is the group of automorphisms of the

i e
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pro-finite analogue of the Teichmiiller tower (in which T . is replaced by its
pro-finite completion T ,) - It is also stated in [2], as a plausible conjecture,
that T’ 0.4 and ’f" in a definite sense generate the whole tower { ,} and
that all relations between generators of the tower come from T0 4 It‘"1 e fo, 55
and T1,2- This conjecture has been proved, apparently, in Appendix B of
the physics paper [22]. In any case, it is casily seen that To, 4 generates the
subtower {To,y} , and that all relations in {To,u} come from fo, 4 and fo, 5
It can be shown that GT is the auiomorphism group of the tower {TO J1-
Indeed, an automorphlsm of this tower is uniquely determined by its action
on TO, 4> 1.&., on . This action is described by a pair (4, f) satisfying (4.3)
and {4.4), and (4.10) is necessary and sufficient for the automorphism of To, 4
to extend to one of To,s- Grothendieck’s conjecture implies that the group
of automorphisms of the tower {Tg,y} that are compatible with the natural
homomorphism fm, s — T, (to a quadruple of points on P! s assigned the
double covering of P! ramified at these points) is also equal to GT: if an
automorphism of To, 4, extends to one of Tc, 5 » then it also extends to one of
ff‘l 2 since, as noted in [2], M, 2 1s almost the same as Mo, 5

The homomorphism Gal(Q/Q) — GT is, by Belyi’s theorem [21], injective.
The study of the kernel and image of the homomorphism Gal(Q/Q) — GT, has
been dealt with by a number of papers (see [11]-[14] and the literature cited
there).

§8. Proof of Theorem A"

Let k be a field of characteristic 0, fr, (4, B) the algebra of Lie formal
series over k in the variables 4 and B (fv is short for “free”), Fr {4, B) =
expft, {4, B) and M, (k) thesetof ¢ € Fr, (4, B) satisfying (2.13) and (2.14),
where . - .

X =x", XY, X" =0 fori#j#tr#l,
X7+ X", X" =0 foris#j#r
Let u be the completion (with respect to the natural grading) of the Lie algebra
over k with generators XY, 1<i<n,1<j<n,i#j,and defining
relations (5.1). For n > 3 the algebras aﬁ are not free, but they reduce to

free ones: aﬁ is the semidirect product of ak _, and the topologically free
algebra generated by the X,,, 1 <i<n-—1 (the latter is an ideal in a ) For
n =3 there is a more convenient realization; ag‘ is the direct sum of its center,
generated by the element X 2, xP e x® , and the topologically free algebra
generated by X 12 and X?*. Therefore (2.14a) is equivalent to two equalities,
one of which is obtained by subst1tut1ng X2=4,x BB, X 3 _ _4-B and
the other by substituting x* = 0. The second equality is a tautology,
and the first is of the form

e*Po(C, 1) Pu(C, B) P4, B) =1, (5.22)

where A+ B+ C = 0. .

(5.1)
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Similarly, (2.14b) is equivalent to the equality

o(B, A e o(C, D) Po(C, BYlF
where A+ B+ C=0,
obtained by substituting X' = C, X = B, X" = 4. (5.2a) and (5.2b)
imply {2.12). On the other hand, if (2.12) holds, then (5.2a) and (5.2b) are
equivalent 1o the equality
e?(C, ) p(B, Cre"p(4, By =1,
where A+ B+ C =0.

Thus, M, (k) is the set of ¢ € Fr, (4, B) satisfying (2.12), (5.3), and (2.13).
Let M (k) be the set of ¢ € Fr, (4, B) satisfying (2.12), (2.13), and the equa-
tion obtamed from (5.3) by replacing e/, ®/2, /% by e#4/*, 812 #C12
Put M(k) = {(u,0) | 1 € k, (PEM(k)} and Mk) = {(u, 9) € M(k) |
u #0}. On M(k) there is an action of GT(k): an element (4, f) € GT(k)
takes (1, p)€M(k) into (Au, §), where P(4, B)=f(p(4, B)e’9(4,B)™", &)
x (A, B) (cf. (4.12)).

ProrosITION 5.1. The action of GT(k) on M{k) is free and transitive.

/2 _ =1
: (5.2b)

cj2 B2

(5.3)

ProoF. If (u, ) € M(k) and (z,®) € M(k), then there is exactly one
f such that #(4, B) = f(e(4, B)eAgo(A, B)"’1 , eE) (A, B). We need to
show that (4, f) € GT(k), where /1 = fi/u. We prove (4.10). Let G, be the

semidirect product of §, and expa . Consider the homomorphism B, — G,
that takes g, into

. oy . _ .. i+l . i1 ..
@(X11+"'+Xl 1,1=Xz,a+]} lo_t,t+leyX /2ga(X“+---+X‘ l,z,X:,Hl),

where ¢" € S, transposes i and j. It induces a homomorphism X, — exp a':,

and therefore a homomorphism a,: K, (k) — exp u’;, where K, (k) is the k-
pro-unipotent completion of K, . It is easily shown that the left- and right-hand

sides of (4.10) have the same images in exp ai . It remains to prove that o, isan
isomorphism. The algebra Lie K, (k) is topologically generated by the elements
rﬁjj, 1 <i < j < n, with defining relations obtained from (4.7)-(4.9) by
substituting x; ;= XD ¢; i The principal parts of these relations are the same as
in (5.1), while (,),(S;;) = uX"+ {lower terms}, where (c,),: Lie K, (k) — uﬁ
is induced by the homomorphism «, . Therefore «, is an isomorphism, i.e.,
(4.10) is proved. (4.3) is obvious. To prove (4.4), we can interpret it in terms
of K, and argue as in the proof of (4.10), or, what is equivalent, make the
substitution
A —472 B —1_A/2
X, =¢', X,=e¢ pB, )08, 4) e,
c -1
Xy =0(C, Qe 9(C, 4)

where A+ B+C=0. ®

Identifying M, (k) with the quotient of M (k) by the natural action of
k™ (¢ € k takes (u, @) into {cu, §), where @(A, B) = @{c4, cB)), we
obtain an action of GT{(k) on M, (k). Proposition 5.1 says that the subgroup
GT (k) ={(4, /) e GT(k)| A= 1} acts on M (k) freely and transitively; and

(5.4)
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if M, (k) # @, then the sequence 1 — GT, (k) — GT(k) — L k" — 1, where

v(d, f ) = 4, is exact and to every ¢ € M, (k} corresponds a homomorphlsm
6, k™ — GT(k) such that v o 6, = =id, whﬂe 4 (k ) is the stabilizer of ¢ in
GT(k).

Denote the Lie algebras of the pro-algebraic groups GT(k) and GT,(k) by
gt(k) and gt (k). Substituting f(X,Y)=expey{lnX,In Y) and A=1+es
into (4.3), (4. 4) and (4.10), and linearizing with respect to ¢, we find that gt(k)
consists of the pairs (s, y), s€k, ¥ € fr (a, B), such that

wie, B)=-w(B,a), (5.5)
wia, B+ wiB. N+ vy, @)+ 5@+ B+7)=0, 56
where e a’ee =1,
W(&ys &oy Eha) + W(Ch3 ¥ 6050 E3g)
= W&y, E3g) W %815, Soy ¢ S3g) T W (8125 S23)- (53.7)

Here uxv = In(e"e”), and the ¢, j satisfy the relations obtained from (4.7)-
(4.9) by substituting x;. = expéjj. A commutator in gt(k) has the form

[(Sl, W]) (52: Wz)] - ( ) where y = [Wl » l//z] + 52 (W1) - SLD(Wz) +
D%(wl) (wz) with D and D, derivations of fr,(c, ) such that D(a)

=a, D(f) = ﬂ D,(a) =1y, ], andD(ﬂ) 0.
If M (k)#@, then the sequence
0— gt (k) = gtlk) 3k —0, wls,¥)=s, (5.8)

is exact, and o every ¢ € M, (k) corresponds a splitting, defined by the Lie
algebra of the stabilizer of ¢ in GT(k).

PROPOSITION 5.2, The mapping M, (k) — {splittings of the sequence (5.8)} is
bijective. In particular, exactness of (5.8) implies that M (k) # &.

Proor. The mapping takes ¢ € M (k) into the splitting defined by the
element (1, y) € gt(k), where y is found from the condition
oA, B Loua, B = w4, 04, B Bola, B (59)

Given  , there exists exactly one ¢ € Fr (4, B) satisfying (5.9). In view
of (5.5), (5.9) remains valid if ¢(4, B) is replaced by ¢(B, A)_l . Therefore
p(A, B) = ¢(B, A)_1 . We prove (5.3). Denote the left-hand side of (5.3) by
({A, B). Then

: (5.10)

where

A=0(4, B) 404, B), B=g¢(4,B) Bp4,B),
T=o(4,B8) e (B, C) " Co(B, Ce" ¢4, B).
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Suppose we have already proved that Q(A4, B) = 1moddegr (ie., Q(A, B) =
1+ terms of degree # and higher). If Q(4, B)=1+¢(4, Bymoddeg(n+1),
where ¢ is homogeneous of degree n, then the left-hand side of (5.10) is con-
gruentto n-g(A, B) moddeg(n+1)-. Since e®e® = e 4204, C)e™?Q(4, B),
we find, denoting by «, f, and y the residue classes of A4, B —g(4, B),
and C - g(4, C)moddeg(n + 1), that ¢*¢®¢’ = 1. Therefore (5.6) holds,
with 5 = 1. Hence the right-hand side of (5.10) is congruent to ¢(A4, B) +
g(A, C)moddeg(n + 1). From the definition of Q it follows that ¢(4, C) =
qg(B, A)y. Thus, g(B, A) = (n—1)-4(4, B). Therefore, ¢ =0 (for n = 2,
this follows from the fact that g{4, B) is a Lie polynomial and therefore pro-
portional to [4, B]).

It remains to prove (2.13). Denote the left-hand side of (2.13) by f, and the
right by g. Suppose we have already proved that f = gmoddegn. To prove
that f = gmoddeg{n + 1), it suffices to show that

=1

xR L %f(:xlz, X,

od
=gx?, x2, .7 -Eg(z)(”, tx?,..)|,,, moddeg(n+ 1),

1.e., that
wlo, B)+w(y,d)=w(d,d) +w(u, v)+wla,d) moddegn+1), (5.11)

where

QZXIZ, ﬁ=f_l'(X23+X24)-f, ])=X13+X23,

5 = ¢(X13+X23’ X34)—E -X34§0(X13+X23, X34),

i= g0(1",12 , X23}—1X23¢(X§2 , X23) ,

o= @(Xlz, XZSJ—I(X12+X13)§0(X12,X23),

v = ¢(XE2, X23)_1§0(X12+X13, X24+X34)—1
» (X24+X34)§D(X12+X13, X24+X34)¢(X12,X23}.

Using (2.12}, (5.3), and the congruence f = gmoddegn, we construct (see
the proof of Proposition 5.1) a homomorphism A: K, (k) — exp(af /1), where
I={ac a": | @ = Omoddeg(n + 1)}. Then in (5.7) putting ¢;; = Inh(x,),
where the x,, are defined by (4.6), we obtain (5.11). e

PROPOSITION 5.3. M (k) # &.

ProOF. Since M,(C) # & (see §2), the sequence {5.8) is exact for k = C.
This implies (5.8) is exact for k = Q. Therefore M{Q) # @ (see Proposition
5.2) and, so much the more, M (k) # @&. Another version of the proof: since
the composite of the homomorphism Gal(@/Q) — GT(Q,) (see §4} and the

homomorphism v: GT(Q,) — Q] is the homomorphism f: Gal(/Q) — 7

defined by the relation a—l(C )= Cf @) where CIH:I , o € Gal(Q/Q), it follows

that the image of v~ is infinite, the sequence (5.8) is exact for k =Q,, etc. o
Thus, Theorem A" (see §1) is proved.
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PROPOSITION 5.4. The set M| (k) ={p € M, (k)| (-4, —B) = (4, B)} is
nonempty. It is acted on by the group GT* (k) = {(A, /) e GTk) { f(X71, ¥7H)
= f(X,Y)}, and the action on M (k) by the subgroup GT™(k)nGT,(k) is
free and transitive.

PrROOF. M, (k) is the set of o-invariant elements of M, (k), where o €
GT(k) is the involution corresponding to A = —1, f = 1. Since {5.8) has a
g-invariant splitting, we have M. ;L (k) # @ . The rest is obvious. @

REMARK. @y, (—A4, —B) # ¢, (4, B} (see (2.15), (2.17), or (2.18)).

The above proof of Proposition 5.3 is nonconstructive. Our next objective is
to prove Proposition 5.8, which will show that constructing elements of M (k)
by successive approximations presents no problems. For this we introduce the
following modification GRT(k) of the group GT(k). We denote by GRT, (k)
the set of all g € Fr (4, B) such that

g(B, A)=g(4,B)", (5.12)
g(C, A)g(B,C)g(4,B)=1 for A+B+C=0, (5.13)
A+ g(4, B 'Bg(4, B) + g(4, C)"'Cg(4, C) =0 (5.1

forA+B+C =0,
g(XH’ X23 +X24)g(X13 +X23, X34)
— g(X23 : X34)g(X12 + X13 ’ X24 + X34)g(X12 , X23), (5-15)
where the X satisfy (5.1). GRT,(k) is a group with the operation
-1
(glng)(A,B)=gl(g2(A,B)Ag2(A,B) 5B)g2(A=B) (516}

On GRT, (k) thereisan action of k", givenby g(A, B) = g(c"lA, c_lB), o=
k" . The semidirect product of k™ and GRT, (k) we denote by GRT(k). The
Lie algebra get, (k) of the group GRT,(k) consists of the series ¥ € fr, (4, B)
such that

l,U(B, A) = "‘W(A:B)’ (517)
W(C, A)+y(B,C)+w(d,B)=0 for A+B+C=0, (5.18)
(B, wid, B)+[C, w{d,C)]=0 for A+B+C=0,  (5.19)

W(Xlz’ X23+X24)+ I/I(Xl3-+—X23, X34)
=X, X s x P+ x7 X e e, xP), (5.20)

where the X satisfy (5.1). A commutator { , ) in get (k) is of the form
(wy, w) =y wl+ D, (v) = D, (w), {5.21)
where [y, , ,] is the commutator in fr, (4, B) and Dw is the derivation of
jr (A, B) given by DW(A) = [w, 4], D,(B) = 0. The algebra grt (k) is
graded, and the Lie algebra grt(k) of the group GRT(k) is the semidirect

sum of the 1-dimensional algebra k and grt,(k), where & acts on grt, (k) as
follows: 1 € k takes a homogeneous element ¥ € grt, (k) of degree n into

—nY .
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REMARKS. 1) gt (k) has the filtration whose nth term is {(0
W= Omod degn}. We can use it to construct a complete gxz{afdédwliig gég:gi
_grgtl(k). It will be shown (see Proposition 5.6) that gtpt, (k) = grt, (k). This
15 the reason for the notations get, GRT. It is not hard to prove thé inclusion
grgt, (k) C grt (k) : (5.19) follows from the fact that w(«, ﬂ)—e"gw(a, ﬂ)e‘g—;—
e'w(e, y)e —wla, y) =0, where (0, y) € gt (k), e®e’¢’ = 1. This in turn
follows from the analogues fact about GT (k): if (1, /) € GT,(k), then

-1 -
X, 'f(Xl s A3) Xzf(X1 s X3) ‘f(Xl ’ X3) lef(X1 ’ Xs}
= le(Xz’ Xl)Xzf(Xg,: Xz}Xg,f(X[ » X3)
= f(Xz s Xl)f(X;:,: Xg)f(Xi s X3) =1
for X X,X; = 1, where X, = X, X, X ' = x7'x it
. 5 = X,. Howe t
necessary for (5.19) to be verified (sleezPr]opositioral 5.72). ’ ver s et
_ 2) The connection petween. GT, (k) and GRT,(k) can also be explained
in the following way: if {g,} is a family of elements of Frk(A , B} such that
(1, f,) € GT (k) for ¢ £ 0, where £(X,¥Y) = gle'lnXx. ¢!
goe%}RTl(k)E_ LX,Y) = g( nX,e InY), then
3) GRT,(k), as well as GT(k), has a categorical interpretation. Let C be

a tensored category, and suppose given automorphisms T, w € Aut(V @ W)

functorial i i =
torial in V', W e C, with v wTy w =Ty yCp p and

Nty y =idg®lnt, 4 +(cy , ®id)id, @Int, ,)c, ,®id),
where ¢ is the gqmmutativity isomorphism {of course, one must first have
forml}lated con@ﬂmns on € and t sufficient for the latter equality to be
meaningful; typical example: C is the category of A-adically complete U g-
modules, and Ty w i the operatorin ¥ ® W corresponding to el g Ug
where g anq ¢ are as in §1). Suppose meaningful all expresions of the form
gllnzy, , @idy, . id, ®lnt, ), where g(4, B} € Fr,(4, B). Thenif g
_GRTl(k) ‘and we take g(lnt, , ®idy , id; ®Int, ) as a new associativity
1som_orph1sm (UeV)oW 5 U (Ve W) without changing ¢ and 7, we
obtain a structure of the same type as the original. ,

The formula §(4, B) = ¢(g(4, B)Ag(Ad, B)™', B)

s . B , ,B)-g(A4, B), where ¢ ¢
M#(k) and g€ Gl_{Tl(k) , defines a right action of GRT, (k) on M, (k). ’1?1115
gives GRT, (k) ?rlght actionon M(k)={{u,p)l¢c M#(k)}. The formulas
~ _ - -1 -~ — *
¢£A, B)=¢(c  A,c"'B) and i=c"'u, where c € k , define an action of
km on M (k).. As a result, we obtain a right action of GRT(k) on M(k). It
commutes with the left action of GT(k). o

PROIPOSITION 3.5. Theaction of GRT(k) on M(k) is free and transitive. The
same Is true for the action of GRT (k) on M (k).

Proor. It suffices to prove the second statement. If ¢, 7 € M, (k) then there
exists exactly one g €Fr (4, B) suchthat (4, B) = A, B)A -
A ) mam | )=w(g(4,B)4g(A,B)", B)

g(4, B) = x(7(4, B)4p(4, B, B) (4, B), (5.22)
where x € Fr (4, B) is inverse to ¢ with respect to the operation (5.16},
. -1 ’
1e, x(g(4,B)Ap(4,B)” ,B) -p(4,B) = 1. Arguing as in the proof of
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Proposition 5.1, we find that (0, /) € GI(k), where f(X,Y)=x(lnX,InY).
Equation (5.22) says that g is the result of the action of (0, f) on @, and
therefore g € M,(k), ie., g satisfies (5.12), (5.13), and (5.15). We now use
the equality

X, + X, (X, X,)" In X, f(X,, x)x;'”?

+ X, X)) In X, - (X, X)) =0, (5.23)
where X, X,X; =1, proved by the substitution (5.4). Finally, making a substi-
tution like {5.4) in (5.23) with ¢ replaced by @, and using (5.22), we obtain
(5.14). o

From Propositions 5.1 and 5.5 follows

PROPOSITION 5.6. Every @ € M(k) determines an isomorphism 8, GRT(k)

= GT(k), which is characterized by the fact that say y € GRT(k) actson ¢ on
the right the same way s¢(y) acts on the left. The diagram

GRT(k) 2 GT(k)

N\ Ve
K
is commutative, so that SP(GRTI{]C)) = GT, (k). The splitting of the sequence
(5.8) that corresponds to p € M (k) is defined by the homomorphism s ¢oi: k" —
GT(k), where i is the canonical imbedding k* — GRT(k). Finally, grgt, (k) =
get (k), and if 9 € M(k), then s, induces the identity mapping grt (k) —
grgt, (k).
PROPOSITION 5.7. (5.17), (5.18), and (5.20) imply (5.19).

Prook. Denote the left-hand side of (5.19) by s(B, C). Then s(B, C) =
5(C, B). Furthermore,

S(Y,, ¥,) =s(Y,, Y, + ¥;) +s(¥, + ¥y, ¥y) —s(Y,, 1;) =0, (5.24)

where the Y, are generators of the free Lie algebra. Indeed, denote the left-hand
side of (5.24) by u(Y,, Y,, 13). Then it follows from (5.17} and (5.18) that
wx™, X%, X3 = [X14+X24+X34, ﬂ1234]—[X14+X24, ey s

where #'2>* = {left-hand side of (5.20)} — {right-hand side of (5.20)}. There-
fore (5.17), (5.18), and (5.20) imply (5.24). It remains to prove that if a sym-
metric Lie polynomial s(B, C) satisfies (5.24), then s = 0. It is well known
that if s(x, y) is an ordinary (commutative) polynomial in two sets of variables
=P, ., x™) and y = o, ..., y™) such that s(y, x) =s(x, y) and
{5.24) holds, then s is of the form f(x+y)—f(x)—f(y). This can be seen (see
the proof of Proposition 2.2 of [1]) by representing the space of homogeneous
polynomials s(x, y) of degree n in the form ¥V, ®g_ W, , where ¥, is the

space of polynomials in x; = (xgi) s e xi")), O e (xﬁr:) yns x,(,f)} , lin-
earin each x;,and W is an appropriate S, -module. The same argument goes
through in the Lie case (for ¥, we must take the space of all Lie polynomials
in m variables, linear in each variable); but now f(x) is a Lie polynomial in

x,1e., fix)=cx, c€k. Therefore s=0. @

>
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Put fil’(A, B) = jr (A, B)/I, where I = {u € fr,(4,B)| u = Omoddegr}.

Let Fri’(4, B) = expfr{") (4, B),and M{"(k) be the setof all ¢ € Fri'(4, B)
satisfying (2.12), (5.3), and (2.13) mod degr.

ProrosiTiON 5.8. The mapping Ml("”)(k) — Ml(r)(k) is surjective.

Proor. Similarly to GRT, (k) we consider the group GRTY) (k) , consisting
of all elements g € Frg)(A, B) satisfying (5.12)—(5.15) moddegn. Similarly
to Proposition 5.5 we can prove that GRT(’)(k) actson M (’)(k) freely and tran-
51t1vely It remains to prove that the homoemorphism GrRT(’”rl (k) — GRT“) (k)
is surjective. Since both groups are unipotent and therefore connected, 1t suf-
fices to prove surjectivity for the homomorphism grt{+ Yiky - gtt(lr)(k) . And

in fact, from Proposition 5.7 it follows that gtt({)(k) is the sum of the homo-
geneous components of grt, (k) of degree less than r. @

REMARKS. 1) Any ¢ € Mm(k) such that ¢(-4, —-B) = ¢(4, B) can be

lifted to a @ € MUV (k) such that F(-4, —B) =9(4, B) : it suffices to put
(A, B) = (9(4, B)+ ¢(~A, —B))/2, where § is any inverse image of ¢ in

M](r+1)( k).

' _2) The proof of Proposition 5.8 uses Proposition 5.3. Without using Propo-

sition 3.3, one can show, by standard methods of deformation theory, that the

obstruction to the existence, for a given ¢ € Ml(r)(k) , of an inverse image in

M fr“)(k) belongs to the rth component of the 4th cohomology group of the
following complex L™ . Consider first a complex L*, where L” is the algebraic
direct sum of the homogeneous components of aﬁ , and the differential in L*
is such that for any Lie k-algebra g and any symmetric invariant ¢t € g@ ¢ the
hemomorphisms a’: — (Ug)®" taking X “ into 7/ define a morphism from
L™ to the complex C*( ) (see (3.7)). C*(g) contains the Harrison-Barr sub-
complex C*(g) (@3 C"(g) is the free Lie superalgebra generated by the vector
space Ug, whose elements are regarded as odd, while €, C"(g) is a free as-
sociative algebra). In [23] a projection e, € Q[S,] is constructed such that

C"(g) =e,- C"(g); namely, e = (n)! Y, e(0)c, -6, where 0 €S, ¢(o) is
the signof ¢ ,and ¢, = (—1)%al(n—1-a)!, a = Card{k | c™ ' (k) > o (k+1)}.
The desired complex L" is defined by the formula L" = e_ - L". The author

does not know whether its 4th cohomology group H s equal to 0. It is easily
seen that H" = L" =0 for n < 2, dimH’ = dimL’ = 1, and H’ is the
algebraic direct sum of the homogeneous components of grt, (k).

ProrosiTiON 5.9, (5.12), (5.13), and {5.15) imply (5.14). In other words,
GRT, (k) = My(k).

Proor. It suffices to show that if ¢ € M,(k), ¢ = Imoddegn, then the
result of acting on ¢ by some g € GRT,(k), where g = 1moddegn, is
congruent to 1moddeg(n + 1). Indeed, let y be the component of degree n
of the series Ing € fr, (4, B). Then y satisfies (5.17), (5.18), and (5.20), and
therefore also (5.19), i.e., y € grt,(k). We can therefore put g = Exp(—y),
where Exp is the exponential mapping grt, (k) — GRT, (k) corresponding to
the operation (3.16). e
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REMARKS. 1) With the aid of Proposition 5.9 or its method of proof, it is
easy to obtain a proof of Proposition 3.5 simpler than the one above, but using

Proposmon 5.7.
2) Here is an outline of another proof of Proposition 5.2. Denote by Spl(k)

the set of homomorphisms & — gt(k) that split (5 8). Put GTy(k) ={(4, f) €
GT(k) | A =0} and ﬂﬂ(k} = {(0, ) € GT (k) | f sansﬁes (5.23)}. In the
process of proving Proposition 5.5 we constructed a mapping M, (k) — GT, olk).
It is easﬂy shown to be bijective. On the other hand, an element of Spl(k)
or, what is the same, an element of gt(k) of the form (1, w), determines a
|-parameter subgroup y: k= — GT(k). A priori, y is a formal mappmg (i.e.,
y(A) is expressed in terms of formal series in 1—1), butin fact is regu}ar and,
furthermore, extends to a regular (i.e., polynomial) mapping y: k' - GT(k).
This follows from the fact that p{4) = (4, f;), where

A%j}(X, Y)=w@f(X, ) InX - f (X, V)", AlnY) £, (X, Y).

Put f = f,. Then (0, f) € GTy(k). Indeed, since (4, f) € GT(k) and
(-1,1) € GT(k), we have (-4, fﬂ) (-1, 1) (4, f;) € GI(k), and to
prove (5.23) it suffices to subtract from equahty (4.4) for {4, f,) equality (4 4)
for (-4, f,), divide by A and let A approach 0. The composite mapping
Spl{k) — GT, o(k) — M (k) is inverse to the mapping M, (k) — Spl(k) in-
volved in Proposmon 5. 2

3) In fact, GTy(k) = GT; o(k). Indeed, choose ¢ € M{k), and let g be
the result of actmg by (0, f ) € GTy(k) on ¢. Then g € M, o(k). Therefore
g € GRT, (k) (see Proposition 5. 9) If ¢ is the result of the right action of
g” on ¢, then the result of the left action of (0, f) on ¢ is 1, ie, (0, N
is the image of @ under the canonical mapping M, (k) — GT, olk) .

4) Here is another proof of Theorem B. Take a fixed ¢ e M, (k), and let
(0, ) be the corresponding element in GTO(k) Let (4,A,&,®P,R) bea
qua51tr1angu1ar quasi-Hopf QUE-algebra over k[[A]]. Operating by the element
(0, f) e GT, olk) on (4,A,¢,P, R) (see (4.12)), we obtain a triangular quasi-
Hopf QUE-aIgebra (A A, e, ®, R) (triangularity is quasitriangularity plus the
equality ' =% ). By Propositions 3.6 and 3.7 of [1], a suitably chosen
twist makes R =1 and @ = 1, and then (A, A, g) is the universal envelope
of some deformation Lie algebra g over k[[A]]. In this situation we put ¢ =
257! . InR and show that ¢ is a symmetric g-invariant element of g ® g,
while @& = qa(hr12, ht”). Since R = 1, we have R¥ = R, ie, P2l g,
From (1.5) we have that 7 is g-invariant. Substituting X, = (A@id}(Rle}_1

= (RN 213)“3“}2%21312” and X, = @*‘R”R”cb into (5.23), and
usmg the fact that X, ' R¥M R commutes with X | » X35 X3, we find that

(A®id)(In(R¥R) =T In(R¥R™) . ®
+ (RIZ)—l((D?_H)fl -ln(RMRU) -6213ﬁ12
ie, (A®id)() = 1 + 1. Therefore, ¢ € §® g. Finally, we have
9(x(4, b)Ax(4,B)”", B) - 4(4,B) = 1, where KA, B) = fie®, ) (see
the proof of Proposition 5.5). Putting 4 = % - @@ and B = ht”
obtain p(h-Bt2F ", h¥)- B0 =1, Le, ©=p(hi"?, h?).
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§6. On the algebra grt, (k)

We recall that by ft, (4, B) is meant the set of Lie formal series w(A4, B)
with coefficients in &, and by get; (k) the set of all y € fr, (A4, B) that satisfy
(5.17)-(5.20). By Proposition 5.7, equalities (5.17), (5.18), and (5.20) imply
{3.19). Furthermore, (5.17) and (5.19) imply {5.18): indeed, from (5.17) and
(5.19) one easily derives that the left-hand side of (5.18) commutes with A4
and B. Now, grt,(k) is a Lie algebra with commutator (5.21). The set of
all v € jr, (4, B) that satisfy (5.17), (5.19), and therefore (5.18) also forms
a Lie algebra with commutator (5.21). This algebra we name Ih(k), in honor

of Thara. Both algebras gt (k) and Ih(k) are graded: grt,(k) = @ngtt’f(k)

and Ih(k) = @n Th"(k), where & means complete direct sum. Since Th'(k)
is generated by the central element A — B, the study of Ih(k) reduces to the

study of the subalgebra Ih(k) = @ o1 Ih”(k) . We note that get, (k) C Ih(k) (it

suffices to substitute X'> =4 and X7 = ¥" = x» = x* = 0 into (5.20)).
In [13] and [14], Ihara uses the following realization of Ih(k). He calls a
continuous derivation 9: fr, (A4, B) — fr, (4, B) special if 9(4) = [R,, 4],
d(B) = [R,, B], and 3(C) = [R,, C] for some R, R,, R, € fr, (4, B),
where C = —4—B . The special derivations form a Lie algebra S Derfr, (4, B).
Consider on fr, (4, B) the action of the group §, that permutes 4, B, C. It
induces an action of §; on SDerfr, (4, B) and on the set of inner deriva-
tions Intfr, (4, B). It can be shown that the subalgebra of S;-invariants of the
algebra S Derft, (4, B)/Intfr, (4, B) is canonically isomorphic to Ih(k): a
element y € Ih(k) corresponds to the class of the derivation 8, fe, (4, B) —
fr,(4, B) given by BW(A} =0 and a, (B) = [w, B]. Indeed, we can identify
S Derfv, (4, B)/Intfr, (4, B) with the algebra of derivations a: fr, (4, B) —
fe, (4, B) such that 8(4) = 0, 8(B) = [y, B], and 4(C) = [y, C] for
- some ¥, x € jr, (4, B) and 8(B} = Omoddeg3. Such a @ is determined
by specifying v, x € fr, (4, B) such that [w(4, B}, B]+ [x(4, B), C] =0,
v = 0moddeg2, ¥ = Omoddeg2. Invariance of & with respect to permuta-
tion of B and C means that y{A4, B) = w(4, C). Invariance of § modulo
Intft, (4, B) with respect to permutation of 4 and B means that y (B, 4) =
~y (A4, B). Finally, Oy ) = le ) 6%]: indeed, in (5.21) D, =ady -9,
and therefore (v, , ¥,} = 8wl(w2) - a%(wl) =y, w,l.

REMARK. If from the right action (4.13) of the group GT,(k) on the com-
plete free group with generators af and 022 we construct in the usual fashion a
left action, and then pass from groups to Lie algebras and from filtered algebras
to graded we obtain the action of grt (k) on fr (4, B) given by the formula
w0,

We pass now to a “hamiltonian” interpretation of Ih(k). For any Lie algebra

« we denote by .F{a) the quotient of a ® a by the subspace generated by

elements of the form x®y—-y®x and [x, yl®z—x&[y, zI, where x, y, z € a.
The image of x ® y in 5 (a) we denote by (x, y). The equalities (x, y) =
(v, x) and ([x, v}, z) =(x, [¥, 2]} allow us to regard (x, ¥) as an invariant
scalar product with values in % (a) (any k-valued invariant scalar product in a
is obtained from this by composition with some linear functional % {a) — k).
If a is a free Lie algebra with generators Y|, ..., Y, , then instead of % (a)
we shall write #(Y,,...,Y ). Anelement f € (4, B) can be regarded as a
formula defining for every metrized Lic algebra g (i.e., finite-dimensional Lie
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algebra with a nondegenerate invariant scalar product) a function fg: gxg— k.
For example, f = ([4, B], [4, B]) € ¥ (4, B) defines the function f (x,y) =
([x,¥], [x, ¥]). Itis easily shown that if f # O, then fg # 0 for some metrized
Lie algebra g (for g we can take gi(n), where n is sufﬁciently large). If g is
a metrized Lie algebra, then g ® g identifies with g* x g, and consequently
the space of functions on g x g has a natural Poisson bracket (the “Kirillov
bracket™). If f, 9 € 5 (4, B), then {f_, ¢, } =y, for some ¥ € F(A, B)
independent of g, which we denote by {f, ¢}. Thus, (4, B) is a Lie
algebra with respect to this Poisson bracket. The action described above of S,
on fr, {4, B) induces an action of S; on # (4, B).

ProPOSITION 6.1. 1) The action of S; on F (4, B) preserves the Poisson
bracket.

2) The subalgebra of Sy-invariants of the algebra F (4, B) is isomorphic to
@, Ih"(k), where @ is the algebraic direct sum.

ProoF. 1) It suffices to show that for any Lie algebra g the action of 55 on
the Poisson algebra of g-invanant functions on g* xg" obtained by identifying
g xg* with {(4,.4,,4;) € g" x g" x g'|4; + 4, + 4; = 0} via the projection
(4 s Ag) (Al , A ) preserves the Poisson bracket This follows from the
fact that Po1sson algebra in question can be represented as the quotient of the
Poisson algebra of g-invariant functions on g* xg° xg™ by the ideal of functions
that equal 0 when 4, + 4, +A; = 0 (that this ideal is Poisson is known from
hamiltonian reduction theory).

HIf feFY,,...,Y,), we denote by 9 f/2Y, the Lie polynomial in
Y,....Y, suchthatthepartoff s Yoy Y+Z Yii1s---» Y,) linear

in Z isequalto (8f/0Y,, Z). From the g-invamance of f, for any ‘metrized

Lie algcbra g it follows that 3.7 [Y;, 8 //0Y]1=0

Lemma. If Y1 [Y,, P,] =0, where the P, are Lie polynomials in Y, ...
Y, , then there exists exactly one feF(Y,,...,Y,) such that 6f/8Y,; = P
Jorall i.

ProoF. The usual connection between polynomials and symmetric multilin-
ear functions allows us to restrict ourselves to the case that P, does not con-
tain Y, while P,,..., P, and f are linear in Y, . In this case, if f exists,
then [ = (¥ ) Conversely, if f={(Y,P), then df/oY, = P, for all

. Indeed, put Q =P - 3f/0Y;. Then Q1 =0 and ) [Y, Q} = (. For

[ > 1 write @, in the form R, [(adY,, ..., adY, )Y, where R ‘is an associative
polynomial. Then Y7, ”fRf{”y ey um) = O and therefore Ry=-=R_
— 0 [ ]

Suppose y € €, Ih"{k) . It follows from the lemma that there exists a unique
fe&F (A, B) such that 8f/0A=wy(A,—-A—B) and 8f/0B = w(B, —A-B).
Clearly, f(B, A) = f(A, B). Furthermore, f(A, B) = f(—4 - B, B) (both
sides of this equality have the same partial derivatives). This implies that f
is §;-invariant. Conversely, if f € F (A, B) is invariant with respect to S5,

' then defining w(A, B) from the relation y(4, -4 — B) = 8f/8A4, we find

that y € Ih{k).
To prove that the Poisson bracket in % (4, B) corresponds to the commu-
tator in Ih(k), we use the imbedding Th(k) — Derfr, (4, B) taking y into
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EW = aawa . where BW € Derft, (4, B) is as before and ¢ is the automorphism
of fr (4, B) given by o(4) = ~A— B and ¢(B) = B. We have (SW(A) =
[w(—A ~ B, A}, A] and JW(B) ={w(-4 - B, B}, B]. If ¢y corresponds to
fe&(4, B), then 5W(A) =[4,8f/8A4] and 6W(B) = [B,8f/0B]. These
formulas can be regarded as the Hamilton equation corresponding to f. It re-
mains to use the connection between the Poisson bracket of Hamiltonians and
the commutator of the corresponding vector fields, @

REMARKs. 1) The element f € # (4, B) that corresponds to € get (k) C
Th{k) (see the proof of Proposition 6.1) can be given the following interpreta-
tion. Suppose ¢ € M, (k), and ¢ is obtained from ¢ by the action of Exp(y),
where Exp is the exponential mapping grt, (k) - GRT, (k). If g is a metrized
Lie algebra over k, and ¢ € g ® g corresponds to the scalar product in g, then
® = p(ht'?, h*®y and @ = F(hs'?, 1) are connected by the transforma-
tion (1.11) for some F € (Ug® Ug)[[#]] (see Theorem A). It is easily shown
that F can be chosen so that 1) F = Imod#”, 2) A™"(F — l)modh € L,
where L, is the set of elements of Ug® Ug that are polynomials of degree
no higher than » + 1 in elements of g® | and 1® g, and 3) the image of
h"(F—1)modh in L /L, = Sym™ ! {g@g) = Sym™ ' (¢ & g*), regarded as
a function on g x g, is equal to — fg .

2) Deligne has noted that, arguing as in the proof of Proposition 6.1, one can
obtain for any » an S, -equivariant isomorphism between the quotient of the al-
gebra of special derivations of fr,(4,, ..., 4,) by the ideal of inner derivations
and the quotient of & (4,, ..., 4,) by the subspace generated by the elements
(A, 4,), 1 £i<n+1, where A, =—~A4, - —A4,. Namely, the ele-
ment f € fr,(4,,..., 4,) corresponds to the derivation A4, — [4,,8f/04,],
1<i<n.

PRrOPOSITION 6.2 (Deligne-lhara [13]). dimIh"(k) = o

o = (Gn)! { (1 - a(d/3)u(d)2™ - en} ,

dln

n ﬁn+l , where

B, =(6n)”" { > (1+3a(d/2) + 2a(d/3))u(D)2"° + an} :
dln
W is the Mébius function, a(x)=1 for x€Z, a(x)=0 for x ¢ Z, &, = —1
if nisofthe form 3", e, =2 if n=2-3", and ¢_=0 otherwise.

ProoF. Let V' be a 2-dimensional vector space with basis 4, B. On V
there is an action of S,, permuting 4, B, and C = -4 - B. Let L (V)
be the homogeneous component of degree # of the free Lie algebra generated
by V,ie., L,(V) = fr,(4,B). The formula ¥ ~ 4® w(—4 - B, 4)+
B ® w(—4— B, B) defines an isomorphism Ih"(k) = (V ®LR(V))S3 N Ker f,
where [ is the commutator mapping V @ L, (V) ~ L, (V). Since f is
surjective, we have dimIh"(k) = dim(V @ Ln(V})S3 - dim(LMl(V))S3 . Now
use the formula for the character of the representation of GT(V) in L.(V)
([16], Chapter 11, §3, formula (16)). @

Here are the values of the numbers g, = dimIh"(k) for n < 13 : a, =
ay=a,=a, =0, y=a;,=a,=1,a,=0a,=2,a =4, a,=29,
a, =7, a,=21.Abasisin B, ,1h"(k) is formed by the elements of Ih(k)
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corresponding (see Proposition 6.1) to the elements S b 5 f € F (4, B),
where

f]=([A!B]:[A=B]}: (61)

f=x, x)+(x,y)+(y,y), wherex=[4,[d,B]],
y=1[8,[4, Bll, (6.2)

fi={z,z), where z=[4,[4,[4, Blll+[4, [B. |4, Bll]
+[B,1B,[4, Bl (6.3)
fi=([[4, 4], [B, ull, ), whereu=[4,B] (6.4)

In the process of proving Proposition 1 of {14], Thara obtained the following
result.

PROPOSITION 6.3. For any odd n > 3 there exists a ¥ € get, (k) such that

n—1 .
vt B)= Y (1) (@A) a B 14, B modloy byl

m=1

where p, is the commutant of fe.(4, B).

Thara’s proof uses Gal(Q/Q). Here is another proof. We can assume _that
k=C. Put Py (4, B) = pg,(—4, —B). By Propositioil 5.5, Py is obtained
from g, by the action of some g € GRT,(C). Let ¥ be tl}e ho'mogenequs
component of degree n of the image of g under the logarlltlr}mw mapping
GRT,(C) — get,(C) . From (2.15) it is easily found that (n{2=i)"/2{(n}) ¥ is
the element desired. ® : .

It is not hard to show that if ¥, ¥, € p; , then the r.ight—hand side of (5.21)
belongs to [p, , p,]. It follows therefore from Proposition 6.3 that grt (k) has
at least one generator of degree n for every odd n > 3.

QueEsTIONS. Is it true that grt, (k) has exactly one generator of degree n for
every odd n > 3 and no generators of other degrees? Is the algebra @, grt'l’(k)

free? .
ReEMARKS. 1) An affirmative answer to the first question is equivalent to the

conjunction of Deligne’s conjecture in the Introduction of [14] and the density
conjecture for the Zariski image of Gal(Q/Q) in GT(Q)).

2)For n=1,2,4,6 we have get](k) = Ih(k) = 0. Since dimIh*(k) =
dimIn’(k) = 1, it follows from Proposition 6.3 that grt|(k) = Ih'(k) for
n=3.5. Since dimIh*(k) =1, and [Ih’(k), [h’(K)] #0 (see [14]), we have
getS(k) = Th¥(k) = [get](k), grt;(k)]. Tt can be shown that dim grt (k) = 1 <
dim IhT(k) and grtz (k) is generated by the element corresponding to 8-/, €
F (A, B), where f; and f, are determined by formulas {6.3) and (6.4).
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A PLANE WAVE IN A SYSTEM OF THREE PARTICLES
WITH ZERO TOTAL ORBITAL MOMENTUM

A. A, KVITSINSKII AND S. P. MERKUR'EV

ABSTRACT. We study a plane wave & for a quantum system of th.rce partigles
with fixed total orbital momentum equal to zero. We show that & isa J:’unctlon
of two variables that are solutions of the corresponding eikonal qquatlon. ‘We
obtain explicit representations of % as well as complete asymptotic £xpansions
at small and large hyperradii. We prove an addition theoren} for hyp‘ersphencal
functions and three new addition theorems for certain special functions.

In scattering theory a plane wave denotes a solution of the freq Schr?’;dlnger
equation. More precisely, a plane wave is the kernel of the unitary integral
transformation that diagonalizes the kinetic energy operator (11} the case of
Euclidean space R” this turns out to be the same as the Fourier transform
on LZ(R”)). The present article is devoted. to study of the plane wave for a
system of three particles with fixed total orblta.:l momentum f:qual tc_> zero.

The kinetic energy operator of such a system isgiven by a dlfferf:ntl'al (_)perator
H, ona three-dimensional Riemannian n}anifold, a so-called intrinsic space
M . The operator H, can be reduced to diagonal form by‘ means of a unitary
integral transformation % in L,(M}. The kqmel of F s th‘e plane wave in
.the problem considered. It satisfies the Schr_t')dmger' equauo_n with .Hamlltoman
H, , which describes a system of three noninteracting particles Wlth ZEro t_otgl
or%ital momentum {/ = 0}. From the point of view of scattering theory it is
a wave function with initial condition corresponding to scattering processes of

33 with /=0. .
typlilf(ormati)on about the structure of the plane wave & pla.ys a role in con-
structing a scattering theory for a system of three pax:ticles w1t1‘1 fixed total or-
bital momentum. In our case the plane wave is a fairly complicated funcupn
expressed in the form of a finite combination of elementary or knpr special
functions. In fact .F is represented in terms of a new specllal function. The
study of its properties is related to the solution of regular dlS:k pro‘plems aris-
ing in the theory of special functions. Tt'lere are also connections with finding
integral representations and series expansions, asympt_otic analj,fms, etc. The so-
lution of these problems is the aim of the present al:tlcle. We list the contents.

In §1 we provide necessary information concerning the structure of the in-
trinsic space and the kinetic energy operator H, . These results are well knowg.
A more detailed presentation of associated issues can be found, for example, in

he article [1].
t eIr‘r;l §2 we[ czmsider the eigenfunctions of the angular part o'f thf: operator H. .,
the so-called hyperspherical harmonics. The latter are studied in the series of
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