
FIBRATION OF HYPERPLANE ARRANGEMENT

Dear Ivan, I sum up what we calculated and write down the detail on the fibration of type Dn

and F4.

1. Type Dn

Let
Y = {(y1, ..., yn) ∈ Cn : yi ± yj 6= 0 for i 6= j},

Z = {(z1, ...zn−1) ∈ Cn−1 : zi 6= 0, zi 6= zj for i 6= j}
and the map Y → Z defined by zi = y2

n − y2
i . Our goal is to show that π is a fibration with a cross

section. We can imbed Y into Pn × Z given by

(y1, y2, . . . , yn) 7→ (y1, y2, . . . , yn, y2
n − y2

1, . . . , y
2
n − y2

n−1).

In the following discussion, we always think of Y as such a subset of Pn ×Z. Then the map Y → Z
is simply the restriction of the natural projection π : Pn × Z → Z. (You pointed out that this is
just the graph of the map Y → Z.)

1.1. Cross section. Let yn =
√

|z1| + · · · |zn−1|, then the real part of y2
n − zi (1 ≤ i ≤ n − 1) is

always positive, therefore we can define yi =
√

y2
n − zi continuously for 1 ≤ i ≤ n − 1 (choose a

branch for the square root). Thus we have a cross section for Y → Z.

1.2. Transversality. Now consider the n− 1 hypersurfaces Si (1 ≤ i ≤ n − 1) in Cn × Z, defined
by

Si : y2
n − y2

i − zi = 0.

To include the points at infinity, it is better to consider the closure of the above hypersurfaces in
Pn × Z, which is defined by

Si : y2
n − y2

i − ziy0 = 0.

Fixing z = (z1, z2, . . . , zn−1), let (Si)z = Si ∩ (Pn ×{z}). We can show that these (Si)z intersect
transversally, by calculating the Jacobian:

z1 −2y1 0 ... 0 2yn

z2 0 −2y2 ... 0 2yn

... ... ... ... ... ...
zn−1 0 0 ... −2yn−1 2yn


It is easy to see this matrix has full rank for points in Cz = ∩(Si)z. Therefore, Cz is a smooth

curve in Pn.

1.3. Connectness. By Lefschetz hyperplane theorem, we know that if there is a smooth projective
manifold M and a smooth hypersurface N determined by an ample line bundle on M , then

H i(M) → H i(N)

is an isomorphism for i < dimN and an injective for i = dim N . In particular, when dimN > 0,
we always have H0(M) ∼= H0(N) ∼= Z, therefore N is connected.

Successively applying Lefschetz hyperplane theorem, we know that Cz = ∩(Si)z is connected.
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1.4. Stratification. Define the hyperplane at infinity H = Pn \ Cn, which is defined by y0 = 0.
Similar to 1.2, the hypersurfaces Si and the infinity hyperplane H × Z intersect transversally in
Pn × Z, because of the following Jacobian is of full-rank.

z1 −2y1 0 ... 0 2yn −y0 0 ... 0
z2 0 −2y2 ... 0 2yn 0 −y0 ... 0
... ... ... ...

zn−1 0 0 ... −2yn−1 2yn 0 0 ... −y0

1 0 0 ... 0 0 0 0 ... 0


Now we can stratify Pn × Z by these n hypersurfaces. In another word, define the closed strata

to be the intersections of any collection of the above hypersurfaces:

H × Z, S1, (H × Z) ∩ S1, S2, S1 ∩ S2, · · ·

Notice that the above n hypersurfaces and a fiber Pn × {z} intersect transversally. It is this
transversality which guarantees the map from any of the strata to Z is a submersion.

Now use

Theorem 1 (Thom’s First Isotopy Lemma, proved in Mather’s paper, also can be found in Goresky
and MacPherson’s Stratified Morse Theory pg 41). Let f : X → Y be a C2 mapping, let A be a
closed subset of X which admits a C2 Whitney prestratification P. Suppose f |A : A → Y is proper
nd that for each stratum U of P, f |U : U → Y is a submersion. Then f |A : A → Y is a locally
trivial fibration. Moreover, f |U : U → Y is a fibration.

(the last sentence is mentioned before(8.2) in Mather’s paper: “Note that the local trivialization
which this theorem provides preserves the strata”)

Consider the “curve” C = ∩Si, B = C ∩ (H × Z) which is the boundary of C, and their
complement Pn ×Z \C. They give another much simpler stratification of Pn ×Z, each maps to Z
as a submersion. Apply Thom’s First Isotopy Lemma to our case, the map f is just π : Pn×Z → Z,
A is the “curve” C, the prestratification is given by P = {B,C}. This prestratification satisfies
Whitney condition trivially.

So π|C : C → Z is a fibration, which is what we want to prove!

2. Type F4

Let

Y = {(y1, y2, y3, y4) ∈ C4 : yi 6= 0, yi ± yj 6= 0 for i 6= j, y1 ± y2 ± y3 ± y4 6= 0},

Z = {(z1, z2, z3) ∈ C3 : zi 6= 0, zi 6= zj , for i 6= j}.

and define Y → Z by zi = y1y2y3y4(y2
4 − y2

i ).
As we did before, we think of Y as a subset embedded in P4×Z by the “graph” map Y ↪→ P4×Z

defined as

(y1, y2, y3, y4) 7→
(
y1, y2, y3, y4, y1y2y3y4(y2

4 − y2
1), y1y2y3y4(y2

4 − y2
2), y1y2y3y4(y2

4 − y2
3)

)
The map Y → Z is then the restriction of the projection π : P4 × Z → Z.

Let Si be the hypersurface in C4 × Z defined by zi = y1y2y3y4(y2
4 − y2

i ).
Let C = S1 ∩ S2 ∩ S3. Let C◦ = C \ {y1 ± y2 ± y3 ± y4 6= 0}. Then whether the map Y → Z is a

fibration, is equivalent to whether the map C◦ → Z is a fibration.
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2.1. Cross section. This is ok, as you pointed out. Let

(1) u =
y2
4 − y2

1

z1
=

y2
4 − y2

2

z2
=

y2
4 − y2

3

z3
.

For each (z1, z2, z3), choose a continuous function u = u(z1, z2, z3) that 0 < u � 1 and |ziu| � 1.
The solution for

z1 = y1y2y3y4(y2
4 − y2

1)
or equivalently,

(2)
√

y2
4 − z1u

√
y2
4 − z2u

√
y2
4 − z3u · y4u = 1

has no multiple roots. (we can see this by square the equation, then consider the degree 8 polynomial
of y4.) So we can choose a branch of the solution y4 = y4(u) as a continuous function when
z = (z1, z2, z3) varies.

This is almost a cross section of π : Y → Z, except that we haven’t check the condition
y1 ± y2 ± y3 ± y4 6= 0. But this difficulty can be easily got rid of, since even if the cross section does
intersect the hypersurface y1 ± y2 ± y3 ± y4 = 0, by a small perturbation we can get around this
hypersurface since the hypersurface is of complex codimension 1.

So, the cross section exists.

2.2. Transversality. For any z = (z1, z2, z3), let

(Si)z := Si ∩ (C4 × {z}),

Cz := (S1)z ∩ (S2)z ∩ (S3)z = C ∩ (C4 × {z}).
We have calculated that (S1)z, (S2)z, (S3)z intersect transversally in C4. Therefore Cz is a smooth
curve.

Notice that Si do not intersect transversally at the infinity points in P4. So we have to change
our method, i.e., we define Cz as the closure of Cz in P4 rather than the intersection of Si ’s, then
prove the smoothness of Cz by looking at each infinity point.

2.3. Smoothness. Firstly, we want to find out where Cz meets infinity. Consider the equation
(2), there are five cases, totally 24 points, where the curve goes to infinity: y1, y2, y3, y4 or u → 0.

Case y1 → 0. In this case, y2, y3, y4, u → ∞, hence y1/y4 → 0. By (1),

y2
4 − y2

1

y2
4 − y2

2

=
z1

z2
⇒ 1 − (y1/y4)2

1 − (y2/y4)2
=

z1

z2
⇒ y2/y4 →

√
z1 − z2

z1

Similarly

y3/y4 →
√

z1 − z3

z1

Thus in this case Cz meets infinity at 4 points

(y0 : y1 : y2 : y3 : y4) = (0 : 0 :
√

z1 − z2

z1
:
√

z1 − z3

z1
: 1)

It is more symmetric if we add a dummy variable z4 = 0, and rewrite the above as

(0 : 0 :
√

z1 − z2 :
√

z1 − z3 :
√

z1 − z4)

Case y2 → 0, Cz meets infinity at 4 points

(0 :
√

z2 − z1 : 0 :
√

z2 − z3 :
√

z2 − z4)

Case y3 → 0, Cz meets infinity at 4 points

(0 :
√

z3 − z1 :
√

z3 − z2 : 0 :
√

z3 − z4)
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Case y4 → 0, Cz meets infinity at 4 points

(0 :
√

z4 − z1 :
√

z4 − z2 :
√

z4 − z3 : 0)

Case u → 0, in this case y1, y2, y3, y4 → ∞, and by (1) y2
i − y2

j → 0, hence yi/yj = ±1. Cz meets
infinity at 8 points:

(0 : 1 : ±1 : ±1 : ±1)
Next, we show that at each of these infinity point, Cz is smooth. This can be seen by changing

the coordinates. For example, in the first case y1 → 0, we take the coordinate xi := yi/y4, then

locally around (0 : 0 :
√

z1−z2
z1

:
√

z1−z3
z1

: 1) the curve Cz is defined by

(3) zix
6
0 = x1x2x3(1 − x2

i ), for i = 1, 2, 3

By some argument using implicit function theorem, we can see that as the solution the equations
(3), x1, x2 and x3 are holomorphic functions of x4, therefore Cz is smooth at (0 : 0 :

√
z1−z2

z1
:√

z1−z3
z1

: 1).
Other cases are similar.
It can also be shown that the intersection of the curve Cz with infinity hyperplane at each of

the above 24 points is transversal. So the curve Cz is of degree 24.

2.4. Connectness. I have a down-to-earth argument saying that Cz is connected, by proving that
each point is path-connected to one of the 8 points (0 : 1 : ±1 : ±1 : ±1), and any two of the 8
points are path-connected.

2.5. Stratification. Define B = C \ C be the intersection of C with the infinity hypersurface in
P4 × Z. Then P := {B,C} gives a prestratification of C. B restricts to each fiber P4 × {z} is just
24 points, which can be thought locally as 24 sections of the projection π : P4×Z → Z. So the map
B → Z is locally homeomorphic, therefore is a submersion. The map C → Z is also a submersion,
which can be seen by the transversality of 4 hypersurfaces S1,S2,S3 and P4 × {z} (compute the
Jacobian again!).

Then by Thom’s First Isotopy Lemma, C → Z is a fibration. Each fiber is a smooth curve with
24 puncture points. So far so good. HOWEVER, if we consider hypersurfaces y1±y2±y3±y4 = 0,
every good thing we expect fails! Now I explain this:

2.6. Non-fibration! Over a general z ∈ Z, the curve Cz intersects {y1 + y2 + y3 + y4 = 0} at 24
points, with 6 different finite points and 3 points at infinity:

(0 : 1 : 1 : −1 : −1), (0 : 1 : −1 : −1 : 1), (0 : 1 : −1 : 1 : −1),

each with multiplicity 6. (The situation is similar in other cases y1 ± y2 ± y3 ± y4 = 0. So Cz

intersects the 8 hyperplanes {y1 + y2 + y3 + y4 = 0} at totally 6 × 8 = 48 finite points)
But over some special points (e.g. z = (1, 2, 3) or z = (1,−3,−8)), the curve Cz intersects

{y1 + y2 + y3 + y4 = 0} only at infinity.
Denote by Cz = C ∩ (P4 × {z}), C◦

z = C◦ ∩ (P4 × {z}). The above argument shows that: for
a general z ∈ Z, C◦

z is the smooth curve Cz with 24 + 6 × 8 = 72 puncture points. But for some
special points (e.g. z = (1,−3,−8)), C◦

z is the smooth curve Cz with only 24 puncture points.
Therefore, each fiber might have different homotopy type, so the map Y → Z is not a fibration!

Best regards, Li Li
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