FIBRATION OF HYPERPLANE ARRANGEMENT

Dear Ivan, I sum up what we calculated and write down the detail on the fibration of type D_n and F_4 .

1. Type
$$D_n$$

Let

$$Y = \{(y_1, ..., y_n) \in \mathbb{C}^n : y_i \pm y_j \neq 0 \text{ for } i \neq j\},\$$
$$Z = \{(z_1, ... z_{n-1}) \in \mathbb{C}^{n-1} : z_i \neq 0, z_i \neq z_j \text{ for } i \neq j\}$$

and the map $Y \to Z$ defined by $z_i = y_n^2 - y_i^2$. Our goal is to show that π is a fibration with a cross section. We can imbed Y into $\mathbb{P}^n \times Z$ given by

$$(y_1, y_2, \dots, y_n) \mapsto (y_1, y_2, \dots, y_n, y_n^2 - y_1^2, \dots, y_n^2 - y_{n-1}^2).$$

In the following discussion, we always think of Y as such a subset of $\mathbb{P}^n \times Z$. Then the map $Y \to Z$ is simply the restriction of the natural projection $\pi : \mathbb{P}^n \times Z \to Z$. (You pointed out that this is just the graph of the map $Y \to Z$.)

- 1.1. Cross section. Let $y_n = \sqrt{|z_1| + \cdots + |z_{n-1}|}$, then the real part of $y_n^2 z_i$ $(1 \le i \le n-1)$ is always positive, therefore we can define $y_i = \sqrt{y_n^2 z_i}$ continuously for $1 \le i \le n-1$ (choose a branch for the square root). Thus we have a cross section for $Y \to Z$.
- 1.2. **Transversality.** Now consider the n-1 hypersurfaces S_i $(1 \le i \le n-1)$ in $\mathbb{C}^n \times \mathbb{Z}$, defined by

$$S_i: y_n^2 - y_i^2 - z_i = 0.$$

To include the points at infinity, it is better to consider the closure of the above hypersurfaces in $\mathbb{P}^n \times \mathbb{Z}$, which is defined by

$$\overline{S}_i: y_n^2 - y_i^2 - z_i y_0 = 0.$$

Fixing $z=(z_1,z_2,\ldots,z_{n-1})$, let $(\overline{S}_i)_z=\overline{S}_i\cap(\mathbb{P}^n\times\{z\})$. We can show that these $(\overline{S}_i)_z$ intersect transversally, by calculating the Jacobian:

$$\begin{pmatrix} z_1 & -2y_1 & 0 & \dots & 0 & 2y_n \\ z_2 & 0 & -2y_2 & \dots & 0 & 2y_n \\ \dots & \dots & \dots & \dots & \dots \\ z_{n-1} & 0 & 0 & \dots & -2y_{n-1} & 2y_n \end{pmatrix}$$

It is easy to see this matrix has full rank for points in $\overline{C}_z = \cap (\overline{S}_i)_z$. Therefore, \overline{C}_z is a smooth curve in \mathbb{P}^n .

1.3. Connectness. By Lefschetz hyperplane theorem, we know that if there is a smooth projective manifold M and a smooth hypersurface N determined by an ample line bundle on M, then

$$H^i(M) \to H^i(N)$$

is an isomorphism for $i < \dim N$ and an injective for $i = \dim N$. In particular, when $\dim N > 0$, we always have $H^0(M) \cong H^0(N) \cong \mathbb{Z}$, therefore N is connected.

Successively applying Lefschetz hyperplane theorem, we know that $\overline{C}_z = \cap (\overline{S}_i)_z$ is connected.

1.4. **Stratification.** Define the hyperplane at infinity $H = \mathbb{P}^n \setminus \mathbb{C}^n$, which is defined by $y_0 = 0$. Similar to 1.2, the hypersurfaces \overline{S}_i and the infinity hyperplane $H \times Z$ intersect transversally in $\mathbb{P}^n \times \mathbb{Z}$, because of the following Jacobian is of full-rank.

$$\begin{pmatrix} z_1 & -2y_1 & 0 & \dots & 0 & 2y_n & -y_0 & 0 & \dots & 0 \\ z_2 & 0 & -2y_2 & \dots & 0 & 2y_n & 0 & -y_0 & \dots & 0 \\ \dots & & & \dots & & \dots & & \dots \\ z_{n-1} & 0 & 0 & \dots & -2y_{n-1} & 2y_n & 0 & 0 & \dots & -y_0 \\ 1 & 0 & 0 & \dots & 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Now we can stratify $\mathbb{P}^n \times Z$ by these n hypersurfaces. In another word, define the closed strata to be the intersections of any collection of the above hypersurfaces:

$$H \times Z, \overline{S}_1, (H \times Z) \cap \overline{S}_1, \overline{S}_2, \overline{S}_1 \cap \overline{S}_2, \cdots$$

Notice that the above n hypersurfaces and a fiber $\mathbb{P}^n \times \{z\}$ intersect transversally. It is this transversality which guarantees the map from any of the strata to Z is a submersion.

Now use

THEOREM 1 (Thom's First Isotopy Lemma, proved in Mather's paper, also can be found in Goresky and MacPherson's Stratified Morse Theory pg 41). Let $f: X \to Y$ be a C^2 mapping, let A be a closed subset of X which admits a C^2 Whitney prestratification \mathcal{P} . Suppose $f|_A: A \to Y$ is proper nd that for each stratum U of \mathcal{P} , $f|_U:U\to Y$ is a submersion. Then $f|_A:A\to Y$ is a locally trivial fibration. Moreover, $f|U:U\to Y$ is a fibration.

(the last sentence is mentioned before (8.2) in Mather's paper: "Note that the local trivialization which this theorem provides preserves the strata")

Consider the "curve" $C = \cap S_i$, $B = \overline{C} \cap (H \times Z)$ which is the boundary of C, and their complement $\mathbb{P}^n \times Z \setminus \overline{C}$. They give another much simpler stratification of $\mathbb{P}^n \times Z$, each maps to Z as a submersion. Apply Thom's First Isotopy Lemma to our case, the map f is just $\pi: \mathbb{P}^n \times Z \to Z$, A is the "curve" \overline{C} , the prestratification is given by $\mathcal{P} = \{B, C\}$. This prestratification satisfies Whitney condition trivially.

So $\pi|_C:C\to Z$ is a fibration, which is what we want to prove!

2. Type F_4

Let

$$Y = \{(y_1, y_2, y_3, y_4) \in \mathbb{C}^4 : y_i \neq 0, y_i \pm y_j \neq 0 \text{ for } i \neq j, y_1 \pm y_2 \pm y_3 \pm y_4 \neq 0\},\$$

$$Z = \{(z_1, z_2, z_3) \in \mathbb{C}^3 : z_i \neq 0, z_i \neq z_j, \text{ for } i \neq j\}.$$

and define $Y \to Z$ by $z_i = y_1 y_2 y_3 y_4 (y_4^2 - y_i^2)$. As we did before, we think of Y as a subset embedded in $\mathbb{P}^4 \times Z$ by the "graph" map $Y \hookrightarrow \mathbb{P}^4 \times Z$ defined as

$$(y_1, y_2, y_3, y_4) \mapsto (y_1, y_2, y_3, y_4, y_1y_2y_3y_4(y_4^2 - y_1^2), y_1y_2y_3y_4(y_4^2 - y_2^2), y_1y_2y_3y_4(y_4^2 - y_3^2))$$

The map $Y \to Z$ is then the restriction of the projection $\pi : \mathbb{P}^4 \times Z \to Z$.

Let S_i be the hypersurface in $\mathbb{C}^4 \times Z$ defined by $z_i = y_1 y_2 y_3 y_4 (y_4^2 - y_i^2)$.

Let $C = S_1 \cap S_2 \cap S_3$. Let $C^{\circ} = C \setminus \{y_1 \pm y_2 \pm y_3 \pm y_4 \neq 0\}$. Then whether the map $Y \to Z$ is a fibration, is equivalent to whether the map $C^{\circ} \to Z$ is a fibration.

2.1. Cross section. This is ok, as you pointed out. Let

(1)
$$u = \frac{y_4^2 - y_1^2}{z_1} = \frac{y_4^2 - y_2^2}{z_2} = \frac{y_4^2 - y_3^2}{z_3}.$$

For each (z_1, z_2, z_3) , choose a continuous function $u = u(z_1, z_2, z_3)$ that $0 < u \ll 1$ and $|z_i u| \ll 1$. The solution for

$$z_1 = y_1 y_2 y_3 y_4 (y_4^2 - y_1^2)$$

or equivalently,

(2)
$$\sqrt{y_4^2 - z_1 u} \sqrt{y_4^2 - z_2 u} \sqrt{y_4^2 - z_3 u} \cdot y_4 u = 1$$

has no multiple roots. (we can see this by square the equation, then consider the degree 8 polynomial of y_4 .) So we can choose a branch of the solution $y_4 = y_4(u)$ as a continuous function when $z = (z_1, z_2, z_3)$ varies.

This is **almost** a cross section of $\pi: Y \to Z$, except that we haven't check the condition $y_1 \pm y_2 \pm y_3 \pm y_4 \neq 0$. But this difficulty can be easily got rid of, since even if the cross section does intersect the hypersurface $y_1 \pm y_2 \pm y_3 \pm y_4 = 0$, by a small perturbation we can get around this hypersurface since the hypersurface is of complex codimension 1.

So, the cross section exists.

2.2. **Transversality.** For any $z = (z_1, z_2, z_3)$, let

$$(S_i)_z := S_i \cap (\mathbb{C}^4 \times \{z\}),$$

$$C_z := (S_1)_z \cap (S_2)_z \cap (S_3)_z = C \cap (\mathbb{C}^4 \times \{z\}).$$

We have calculated that $(S_1)_z$, $(S_2)_z$, $(S_3)_z$ intersect transversally in \mathbb{C}^4 . Therefore C_z is a smooth curve.

Notice that \overline{S}_i do not intersect transversally at the infinity points in \mathbb{P}^4 . So we have to change our method, i.e., we define \overline{C}_z as the closure of C_z in \mathbb{P}^4 rather than the intersection of \overline{S}_i 's, then prove the smoothness of \overline{C}_z by looking at each infinity point.

2.3. **Smoothness.** Firstly, we want to find out where \overline{C}_z meets infinity. Consider the equation (2), there are five cases, totally 24 points, where the curve goes to infinity: y_1, y_2, y_3, y_4 or $u \to 0$. Case $y_1 \to 0$. In this case, $y_2, y_3, y_4, u \to \infty$, hence $y_1/y_4 \to 0$. By (1),

$$\frac{y_4^2 - y_1^2}{y_4^2 - y_2^2} = \frac{z_1}{z_2} \quad \Rightarrow \quad \frac{1 - (y_1/y_4)^2}{1 - (y_2/y_4)^2} = \frac{z_1}{z_2} \quad \Rightarrow \quad y_2/y_4 \to \sqrt{\frac{z_1 - z_2}{z_1}}$$

Similarly

$$y_3/y_4 \to \sqrt{\frac{z_1 - z_3}{z_1}}$$

Thus in this case \overline{C}_z meets infinity at 4 points

$$(y_0: y_1: y_2: y_3: y_4) = (0: 0: \sqrt{\frac{z_1 - z_2}{z_1}}: \sqrt{\frac{z_1 - z_3}{z_1}}: 1)$$

It is more symmetric if we add a dummy variable $z_4 = 0$, and rewrite the above as

$$(0:0:\sqrt{z_1-z_2}:\sqrt{z_1-z_3}:\sqrt{z_1-z_4})$$

Case $y_2 \to 0$, \overline{C}_z meets infinity at 4 points

$$(0:\sqrt{z_2-z_1}:0:\sqrt{z_2-z_3}:\sqrt{z_2-z_4})$$

Case $y_3 \to 0$, \overline{C}_z meets infinity at 4 points

$$(0:\sqrt{z_3-z_1}:\sqrt{z_3-z_2}:0:\sqrt{z_3-z_4})$$

Case $y_4 \to 0$, \overline{C}_z meets infinity at 4 points

$$(0:\sqrt{z_4-z_1}:\sqrt{z_4-z_2}:\sqrt{z_4-z_3}:0)$$

Case $u \to 0$, in this case $y_1, y_2, y_3, y_4 \to \infty$, and by (1) $y_i^2 - y_j^2 \to 0$, hence $y_i/y_j = \pm 1$. \overline{C}_z meets infinity at 8 points:

$$(0:1:\pm 1:\pm 1:\pm 1)$$

Next, we show that at each of these infinity point, \overline{C}_z is smooth. This can be seen by changing the coordinates. For example, in the first case $y_1 \to 0$, we take the coordinate $x_i := y_i/y_4$, then locally around $(0:0:\sqrt{\frac{z_1-z_2}{z_1}}:\sqrt{\frac{z_1-z_3}{z_1}}:1)$ the curve \overline{C}_z is defined by

(3)
$$z_i x_0^6 = x_1 x_2 x_3 (1 - x_i^2), \text{ for } i = 1, 2, 3$$

By some argument using implicit function theorem, we can see that as the solution the equations (3), x_1 , x_2 and x_3 are holomorphic functions of x_4 , therefore \overline{C}_z is smooth at $(0:0:\sqrt{\frac{z_1-z_2}{z_1}}:\sqrt{\frac{z_1-z_3}{z_1}}:1)$.

Other cases are similar.

It can also be shown that the intersection of the curve \overline{C}_z with infinity hyperplane at each of the above 24 points is transversal. So the curve \overline{C}_z is of degree 24.

- 2.4. Connectness. I have a down-to-earth argument saying that \overline{C}_z is connected, by proving that each point is path-connected to one of the 8 points $(0:1:\pm 1:\pm 1:\pm 1)$, and any two of the 8 points are path-connected.
- 2.5. **Stratification.** Define $B = \overline{C} \setminus C$ be the intersection of C with the infinity hypersurface in $\mathbb{P}^4 \times Z$. Then $\mathcal{P} := \{B, C\}$ gives a prestratification of \overline{C} . B restricts to each fiber $\mathbb{P}^4 \times \{z\}$ is just 24 points, which can be thought locally as 24 sections of the projection $\pi : \mathbb{P}^4 \times Z \to Z$. So the map $B \to Z$ is locally homeomorphic, therefore is a submersion. The map $C \to Z$ is also a submersion, which can be seen by the transversality of 4 hypersurfaces S_1, S_2, S_3 and $\mathbb{P}^4 \times \{z\}$ (compute the Jacobian again!).

Then by Thom's First Isotopy Lemma, $C \to Z$ is a fibration. Each fiber is a smooth curve with 24 puncture points. So far so good. HOWEVER, if we consider hypersurfaces $y_1 \pm y_2 \pm y_3 \pm y_4 = 0$, every good thing we expect fails! Now I explain this:

2.6. Non-fibration! Over a general $z \in Z$, the curve \overline{C}_z intersects $\{y_1 + y_2 + y_3 + y_4 = 0\}$ at 24 points, with 6 different finite points and 3 points at infinity:

$$(0:1:1:-1:-1), (0:1:-1:-1:1), (0:1:-1:1:-1),$$

each with multiplicity 6. (The situation is similar in other cases $y_1 \pm y_2 \pm y_3 \pm y_4 = 0$. So \overline{C}_z intersects the 8 hyperplanes $\{y_1 + y_2 + y_3 + y_4 = 0\}$ at totally $6 \times 8 = 48$ finite points)

But over some special points (e.g. z=(1,2,3) or z=(1,-3,-8)), the curve \overline{C}_z intersects $\{y_1+y_2+y_3+y_4=0\}$ only at infinity.

Denote by $C_z = C \cap (\mathbb{P}^4 \times \{z\})$, $C_z^{\circ} = C^{\circ} \cap (\mathbb{P}^4 \times \{z\})$. The above argument shows that: for a general $z \in Z$, C_z° is the smooth curve \overline{C}_z with $24 + 6 \times 8 = 72$ puncture points. But for some special points (e.g. z = (1, -3, -8)), C_z° is the smooth curve \overline{C}_z with only 24 puncture points.

Therefore, each fiber might have different homotopy type, so the map $Y \to Z$ is not a fibration!

Best regards, Li Li