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Abstract. In the context of Hecke algebras of complex reflection groups, we prove that the
generalized Hecke algebras of normalizers of parabolic subgroups are semidirect products,
under suitable conditions on the parameters involved in their definition.
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1. Introduction

Let W be a complex reflection group, that is, a finite subgroup of GLn�C� generated by
complex (pseudo-)reflections. Let W0 be a parabolic subgroup of W , that is, the pointwise
stabilizer of a subset of C

n
, which is also a complex reflection group. In [20], the second

author defined a generalized Hecke algebra yH0 attached to the normalizer N0 � NW �W0�,
which is a natural extension of the Hecke algebra H0 of W0 by the group algebra of N0 �

N0©W0 � NW �W0�©W0. This algebra turns out to be particularly useful for understanding
(up to Morita equivalence) the ‘braid subalgebra’ of the Yokonuma-Hecke algebras introduced
in [19].

It was proved in [20] that yH0 is a free module over its ring of definition, with a direct sum

decomposition yH0 �,g"N0
�gH0� as a free H0-module of rank ¶N0¶. Since it has been proven

by Muraleedaran and Taylor in [23] that the extension

1�W0 � N0 � N0 � 1(1.1)

is always split, it is expected that yH0 is isomorphic to a semidirect product N0 )H0.
In [13], Henderson and the authors positively answered this question when W is a real

reflection group (and actually in this case the reflection subgroup W0 does not even need to

be parabolic), regardless of the ring of definition K and the defining parameters of yH0. In
the present paper, we explore the general case, for which conditions need to be added. We
assume that K is a domain and denote by K

�
its group of invertible elements.

Our first main result is the following Theorem (see Theorem 2.7 below for a more precise
statement):

Theorem 1.1. Let W0 be a parabolic subgroup of W . If the defining parameters of H0 are
generic, and K is a sufficiently large field of characteristic 0, then yH0 � N0 )H0.

However, this does not apply in general to the non-generic case. In this paper we find
explicit, sufficient algebraic conditions to ensure such a semidirect product decomposition,
using the classification of irreducible complex reflection groups. Indeed, it is not difficult to
see that for this problem we can assume that W is irreducible.

In the case of the general series G�de, e, n� of complex reflection groups, we will prove that
these problems can be reduced to the case of a parabolic subgroup of the form

W0 � G�de, e, n0� � n

5
k�1

G�1, 1, k�bk
(see Section 4 for precise definitions). The Hecke algebra of the group G�1, 1, k� is the Hecke
algebra of type Ak�1 associated to the symmetric group Sk (considered as a Coxeter group).
Let ∆�k� denote the element of its standard basis associated to the element of maximal length
of Sk – which is the image of Garside’s fundamental element of the usual braid group on k
strands. Our main result for the general series is the following one, proved in Sections 3 and
4:

Theorem 1.2. Let W � G�de, e, n� and W0 � G�de, e, n0� �4n
k�1G�1, 1, k�bk . Then yH0 �

N0 )H0 as soon as, whenever bk j 0,

a there exists Tk " K�X� such that Tk�∆�k���de � ∆�k�2, where the equality holds
inside the Iwahori-Hecke algebra of type Ak�1, and
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a if moreover e j 1 and n0 ' 1, there exists T0,k " K�X� such that T0,k�σ�de � σ
kd

whenever σ is a braided reflection associated to the hyperplane z1 � 0.

In particular the second condition is void when d � 1, as z1 � 0 is not a reflecting hyperplane
in that case.

In most cases, the above conditions on the existence of polynomials have a natural transla-
tion in terms of the parameters of the Hecke algebra of W0 (see Lemmas 2.8 and 2.9 below).

In exceptional types, we determine semidirect product decompositions for all parabolic
subgroups of maximal rank, as well as for some parabolic subgroups of rank 1. In rank 3, we
do this for all the groups except G27. Since, in rank 3, proper parabolic subgroups either have
rank 1 or are maximal, this solves our problem for these groups (that is, for G24, G25 and
G26). We also solve it for the rank 4 group G32, for which we also have to consider parabolic
subgroups of rank 2. In particular, we get the following general result (see Theorem 5.1 for
more details), where B0 is the braid group of W0 and the element zB0

is defined in Section 2.

Theorem 1.3. Let W be an irreducible complex reflection group of exceptional type, and W0

a parabolic subgroup of maximal rank. Let zB0
be the canonical positive central element of B0.

Except for two exceptions for ranks 3 and 5, if there exists T " K�X� such that the equality

T �zB0
�¶Z�W �¶

� z
�¶Z�W0�¶
B0

holds inside H0, then yH0 � N0 )H0.

In the last Section 6, we explore the remaining exceptional cases. There, we explain
in particular why a systematic exploration failed for the largest cases, and we nevertheless
manage to solve the problem for some of them, including all the (Shephard) groups whose
braid group is an Artin group.

Acknowledgments. The first author thanks Vincent Beck and Anthony Henderson for
useful discussions. He was funded by Australian Research Council grant DP170101579 at
early stages of this work.

2. General results

2.1. The Hecke algebra of a normalizer. Let W0 be a reflection subgroup of the finite
complex reflection group W $ GLn�C�. We let A0,A be the collection of reflecting hy-
perplanes of W0 and W , respectively, and H0, H the corresponding Hecke algebras. The
hyperplane complement X � C

n ¯ �A is acted upon by W , and the braid group of W is
defined by B � π1�X©W �. We denote π � B�W the natural projection.

The group B contains an important central element, which we denote zB. When W
is irreducible, its center Z�W � is cyclic of some order m, generated by ζmId for ζm �

exp�2πi©m� " C
�

. In this setting, zB is the homotopy class inside X©W of the path
t ( exp�2πit©m�.�, where � " X is the chosen base-point. In the general case, the am-
bient space C

n
admits a canonical direct sum decomposition C

n
� C

n1
h � � � hC

nr yielding
a decomposition W � W1 � � � � � Wr, where Wi $ GLni�C� is an irreducible reflection
group. Letting mi � ¶Z�Wi�¶, then zB is the homotopy class inside X©W of the path
t( �exp�2πit©m1�.�1, . . . , exp�2πit©mr�.�r�, where � � ��1, . . . ,�r� " X L C

n1
h� � �hC

nr

is the chosen base-point.
We recall from [9] the construction of the Hecke algebra of W over some ring K. It is

defined using parameters ui,s " K
�

for s running among the distinguished reflections of W ,
where 0 & i $ o�s� and ui,s � ui,t when s, t belong to the same conjugacy class. Then H is
the quotient of KB by the relations4i�σ�ui,s� � 0 for every braided reflection σ associated
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to s – so that its most general definition ring is the ring of Laurent polynomials Z�u�1i,s�. Its
basic structural property is the now proven BMR freeness conjecture, as a combination of
[1, 2, 7, 16, 17, 21, 10, 18, 24].

Theorem 2.1. The algebra H is a free K-module of rank ¶W ¶.
We consider the normalizer NW �W0� � N0 of W0 inside W . By definition, the Hecke

algebra yH0 of N0 as defined in [20] is a quotient of the group algebra KB̂0 of B̂0 � π
�1�N0� �

π1�X©N0�, by two types of relations:

a The relations σ
mL � 1, for every braided reflection σ associated to a hyperplane

L " A ¯A0. Here mL is the order of the pointwise stabilizer of L,
a The defining relations of the Hecke algebra H0 on the braided reflections with respect

to hyperplanes in A0.

We have the following generalization of Theorem 2.1, proven in [20].

Theorem 2.2. The algebra yH0 is a free H0-module of rank ¶N0¶ � ¶N0©W0¶, with a natural
direct sum decomposition

yH0 �-
g"N0

�gH0�
with �gH0� a free right H0-module of rank 1. As a consequence it is a free K-module of rank¶N0¶.

An equivalent definition of yH0 can be given as follows. We introduce the normal subgroup
Q0 of B̂0 generated by all the σ

mL , for σ a braided reflection associated as above to some
hyperplane L " A ¯ A0. Let yB0 � B̂0©Q0. We define yH0 as the quotient of KyB0 by the
Hecke relations of W0, which makes sense as all the braided reflections of B with respect to
a hyperplane in A0 belong to B̂0. These elements of the form σ

mL are exactly the meridians
around L, in the terminology of [3] (also called generators-of-the-monodromy in [9]). We set
X0 � C

n ¯�A0. Letting B0 � π1�X0©W0� denote the braid group of W0, we have a short
exact sequence of groups (see [20, Section 2.2])

1� B0 � yB0 � N0 � 1(2.1)

and the direct sum decomposition of Theorem 2.2 is such that �gH0� L yH0 is equal to

bH0 � H0b for b " yB0 having g " N0 for image. We have bH0b
�1
� H0 for b " yB0.

Lemma 2.3. Assume that there exists a group homomorphism ψ � N0 � yH�
0 such that, for

every g " N0, there exists b " yB0 with the following property

a b maps to g under yB0� N0

a ψ�g� belongs to the image bH0 L yH0 of b�KB0� under KyB0 � yH0.

Then yH0 � N0 ) H0. In particular, if the short exact sequence (2.1) splits, then yH0 is a

semidirect product N0 )H0.

Proof. Because of ψ�g� " yH�
0 and these conditions, we have ψ�g�H0 � bH0 � �gH0�. Writing

ψ�g� � bm for m " H0, since b and ψ�g� are invertible we get that m is also invertible, and

ψ�g�H0ψ�g��1 � bmH0m
�1
b
�1
� bH0b

�1
� H0. It follows that there is an algebra morphism

N0 )H0 � yH0 mapping g i x for g " N0, x " H0, to ψ�g�x. Since it maps each g iH0 to�gH0� isomorphically, this is an isomorphism N0 )H0 � yH0. �
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The following has been proven in [13, Theorems 3.15 and 3.19]:

Theorem 2.4. If W is a finite real reflection group and W0 is an arbitrary reflection subgroup
of W , then the short exact sequence (2.1) splits and yH0 � N0 )H0.

In [13, Proposition 5.1], it is moreover shown that the short exact sequence (2.1) also splits
in the case where W is the complex reflection group G�r, 1, n� and W0 is a standard parabolic
subgroup of type G�d, 1, k�, k & n. However, this conclusion cannot be expected for arbitrary
finite complex reflection groups. Indeed, the splitting of the short exact sequence (2.1) implies
the splitting of the short exact sequence (1.1), but there are pairs �W,W0� where W is
a reflection group and W0 a reflection subgroup of W such that the short exact sequence
above does not split (see [13, Section 6]). Nevertheless, we will show in Subsection 2.2 below
that, generically in characteristic 0, this is the only obstruction for a semidirect product
decomposition of the Hecke algebra yH0 of N0.

For later use, we prove the following result:

Lemma 2.5. Let W1,W2 be two reflection subgroups of W which are conjugate, let Gi �
NW �Wi�, and B̂i, yBi, Bi, yHi be the groups and algebras B̂0, yB0, B0, yH0 attached to W0 � Wi

as above, i � 1, 2.
Then there is a group isomorphism yB1 � yB2 mapping B1 to B2 and an algebra isomorphism
yH1 � yH2 mapping H1 to H2.

Proof. Let w " W such that W2 � wW1w
�1

and b " π
�1�rwx� " B. Setting Gi � NW �Wi�,

we have Gi � wG1w
�1

, hence B̂2 � π
�1�G2� � π

�1�wG2w
�1� � bπ

�1�G1�b�1 � bB̂1b
�1

.

Let Qi � Ker�B̂i � Bi�. By definition, Qi is generated as a group by the set of all the
meridians around the reflecting hyperplanes of W which are not reflecting hyperplanes for

Wi. Now, x ( bxb
�1

realizes a bijection between the meridians, mapping the generating

ones for Q1 to the generating ones for Q2, hence bQ1b
�1

� Q2. It follows that x ( bxb
�1

restricts to an isomorphism B̂1 � B̂2 which maps Q1 to Q2, therefore induces an isomorphism
yB1 � yB2. Since Q1, Q2 are subgroups of the pure braid group P , this isomorphism fits into
a commutative diagram of the form

yB1
//

π

��

yB2

π

��
G1

// G2

where G1 � G2 is x ( wxw
�1

. Since W2 � wW1w
�1

this implies that it maps B1 �

Ker�yB1 � NW �W1�©W1� to B2. Finally, since x ( bxb
�1

maps braided reflections around
reflecting hyperplanes of W1 to braided reflections around reflecting hyperplanes of W2, the
defining ideal of yH1 inside KyB1 is mapped to the defining ideal of yH2 inside KyB2, and this
induces an isomorphism yH1 � yH2, which maps the image of KB1 inside yH2 to the image of
KB2 inside yH2, namely H1 to H2, and this proves the claim.

�

2.2. The generic Hecke algebra of the normalizer. Let W $ GLn�C� be a complex
reflection group, and let R�

L R be the collection of its distinguished (pseudo-)reflections.
Let W0 $ W be a full reflection subgroup of W , and R0 L R, R�

0 L R�
its collection of

(distinguished) reflections. Let k be the ring of Laurent polynomials Z�u�1s,i�, where s " R�
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and i " r0, . . . , o�s� � 1x, with the convention that us,i � uwsw�1,i for all w " N0. This is the

most general ring over which yH0 is defined. In this section we consider the generic case, that
is, the case where K is a field containing k. In particular K has characteristic 0.

2.2.1. An isomorphism à la Cherednik. There is a natural bijection R�
� A given by s (

Ker�s � 1�. We denote L ( sL its inverse. For any choice of elements ϕL " CWL with

WL � �sL�, L " A, with the condition that ϕw�L� � wϕLw
�1

for every w " W , it is well-

known (see for instance [9]) that the 1-form <L"A hϕLωL " Ω
1�X�iC��h��W , with ωL the

logarithmic 1-form over X associated to L (that is, dαL©αL for αL any linear form defining
L), is integrable and W -equivariant and provides an algebra isomorphism H � KW , as
a consequence of Theorem 2.1, where K � C��h�� is the field of Laurent series, and the
usL,k " K

�
depend on ϕL.

More precisely, we have C�sL� � 4mH�1
k�0 Ker�sL � ζ

k
L� � C

mL , where we identified sL
with its image under the multiplication operator map C�sL� 0 End�C�sL��, and ζL �

exp�2iπ©mL�. We denote εL,k the primitive idempotent associated with Ker�sL � ζkL�. Then

letting ϕL � <mH�1
k�0 � λL,kεL,k " C�sH� with scalars such that ϕw�L� � ϕL for all L "

A, w " W , we get a morphism H � KW with usL,k � exp�2iπλL,kh©mL�, which we call the
parameters of L associated to the collection of ϕL, L " A. This morphism is an isomorphism
as soon as the usL,k (L " A, 0 & k & mH � 1) are algebraically independent over C, which
holds as soon as the λL,k are linearly independent over Q. We call such a choice of parameters
a generic choice for ϕL.

We denote yH ¬
0 and H

¬
0 the Hecke algebras of N0 and W0 defined over C��h�� L C��h�� � K.

We prove the following.

Proposition 2.6. For any choice of elements ϕL " CWL, L " A0, such that ϕg�L� � ϕL for
all g " N0, the 1-form

ω0 � =
L"A0

ϕLωL " Ω
1�X�iCW0

is integrable over X, and N0-equivariant. The monodromy of hω0 over X©N0 provides an

algebra homomorphism C��h��yB0 � C��h��N0 mapping C��h��B0 to C��h��W0. The latter

morphism factorizes through yH ¬
0 and induces a C��h��-algebra morphism yH0 � C��h��N0

mapping H0 to KW0 for the parameters of H0 associated to the chosen values of ϕL, L " A0.

If this choice is generic in the above sense, then this algebra morphism factorizes through yH ¬
0

and induces isomorphisms yH0 � KN0 and H0 � KW0.

Proof. The 1-form ω0 is the restriction to X of the usual 1-form on C
n ¯�A0 attached to

W0, therefore it is integrable as well. The N0-equivariance is clear. Thus, by e.g. Chen’s
iterated integrals, one gets that the monodromy of hω0 provides a morphism C��h��sB0 �

C��h��π1�X©N0�� C��h��N0 which restricts to the usual monodromy morphismC��h��B0 �

C��h��W0 L C��h��N0. Since the map CsB0 � CN0 induced by π � sB0 � N0 is sur-

jective and coincides with reduction modulo h of C��h��sB0 � C��h��N0, by Nakayama’s
lemma one gets that the latter algebra homomorphism is surjective. Since the monodromy
of ω0 along meridians around L ©" A0 is trivial, this morphism induces an algebra morphism
Φ � C��h��yB0 � C��h��N0 which is still surjective, and still extends C��h��B0 � C��h��W0.

The latter is known to factorize through H
¬
0, hence we get that Φ induces an algebra

morphism C��h��yB0 � C��h��N0 which is still surjective, and still extends C��h��B0 to
C��h��W0.
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Since the latter is known to factorize through yH ¬
0, we get that Φ induces a surjective algebra

morphism yH0 � KN0. As a consequence of Theorem 2.1, we have equality of dimensions,
therefore this provides an isomorphism yH0 � KN0 mapping H0 to KW0.

�

2.2.2. Consequences in the generic case. We now assume that W0 admits a complement inside
N0, that is, we assume that G � U0 )W0 for some U0 $ N0. We also also assume that the
parameters of H0 are generic in characteristic 0, that is, that K is a field containing the

generic ring k � Z�u�s,i�.
For K M k large enough, by Proposition 2.6 we know that there exists an algebra isomor-

phism Φ � yH0 � KG mapping H0 to KW0. As a consequence, setting M �� Φ
�1�U0�, we get

yH0 �,g"M gH0 and yH0 �M )H0 � N0 )H0. When W0 is a parabolic subgroup of W , the

existence of such a complement U0 is proven in all cases in [23], therefore a consequence of
the above argument is the following:

Theorem 2.7. Let W0 be a parabolic subgroup of W . Then, for K a sufficiently large field

containing k � Z�u�s,i�, we have yH0 � N0 )H0.

2.3. Genericity conditions. Thanks to Theorem 2.7, the question is therefore to determine
algebraic criteria on the domain K and on the parameters us,i " K so that the extension yH0

is a semidirect product.
To this end, we will often need the following result of commutative algebra.

Lemma 2.8. Let K be an arbitrary domain, let a, b " Z ¯ r0x, and let χ�X� " K�X� be a
monic and split polynomial with roots v1, . . . , vr " K

�
such that i j j � vi � vj " K

�
.

We call such a split polynomial square-free. Then the following are equivalent:

a There exists T " K�X� such that T �X�a � Xb
mod χ�X� inside K�X,X�1�,

a The domain K contains a a-th root of each v
b
i , 1 & i & r.

Proof. By assumption, we can write χ�X� � �X � v1� . . . �X � vr�. Because of the conditions
vi " K

�
and vi � vj " K

�
, applying the Chinese Remainder Theorem we have

K�X,X�1�©�χ� � K�X�©�χ� �5
i

K�X�©�X � vi� � Kr
.

Then the equation is equivalent to the equations T �vi�a � vbi . There is no solution to such

an equation if v
b
i has no a-th root in K. If it has such an a-th root v

b©a
i , we are looking for

a polynomial T " K�X� such that T �vi� � vb©ai for 1 & i & r. This is then a linear equation
in the coefficients of T , whose determinant is the Vandermonde determinant attached to the
vi’s. This determinant is invertible in K because of our assumptions, and this proves the
claim.

�

One specific element whose minimal polynomial will play a major role is the following one.

Lemma 2.9. The image of Garside’s fundamental element in the braid group on n�1 strands
inside the Hecke algebra of type An is annihilated by the polynomial

(2.2) 5
i,j'0

i�j�n�n�1�

�X2
� ��1�iui0uj1�
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n � 1 i

2 r2, 0x
3 r6, 3, 0x
4 r12, 8, 6, 4, 0x
5 r20, 15, 12, 10, 8, 5, 0x
6 r30, 24, 20, 18, 15, 12, 10, 6, 0x

Table 1. Eigenvalues of Garside’s element in type A

Proof. The image in the statement is equal to the element Tw0
of the standard basis of the

Hecke algebra, associated to the longest element w0 of the symmetric group, which has length

n�n � 1�©2. Setting q � �u1u
�1
0 and renormalizing each braided reflection σ as �u

�1
0 σ,

we get the equivalent formulation that, inside the Hecke algebra defined over Z�q�1� by
the equation �σ � q��σ � 1� as in [14], the element Tw0

is annihilated by the polynomial

40&i&n�n�1��X2
� q

i�. This Hecke algebra is semisimple over the algebraic closure Q�q� of

the field of fractions of Z�q�1�, and the central element T
2
w0

acts by the scalar zλ " Q�q� on
the irreducible representation attached to a partition λ à n � 1.

Therefore Tw0
is annihilated by the polynomial4a"A�X2

� a�, where A denotes the set of

all values vλ, λ à n� 1, inside the Hecke algebra over Q�q�. This happens already inside the

original Hecke algebra defined over Z�q�1�, because it is a free module over it. We thus only

need to prove that each of the zλ is of the form q
i
, 0 & i & n�n � 1�.

By a result of Springer (see [14] 9.2.2), we have zλ � q
vλ

n�n�1�

2 with vλ
n�n�1�

2
" Z, where

vλ � γ�λ�©dim�λ�, with dim�λ� of the irreducible representation of the symmetric group Sn

attached to λ, and γ�λ� is the trace of 1� �1 2�. We need to prove that vλ always belongs to
the real interval �0, 2�.

Notice that v�1n�1� � 0 and v�n�1� � 2, and in particular the statement on the z
¬
λs is true

for n � 1 � 2. We proceed to prove it by induction on n. For µ à n, let us denote �λ � µ�
the multiplicity of (the representation of Sn attached to) µ in the restriction of λ. Then
dim�λ� � <�λ � µ�dim�µ� and γ�λ� � <�λ � µ�γ�µ�. As a consequence,

vλ � γ�λ�©dim�λ� � 1

dim�λ�=�λ � µ�γ�µ� � <�λ � µ�dim�µ�vµ
<�λ � µ�dim�µ�

hence vλ belongs to the minimal interval containing all the vµ, µ à n. By the induction
assumption this interval is included in (and even equal to) �0, 2�, and this concludes the
induction step and the proof.

�

Actually, for any given n, the proof provides a more specific polynomial, as every zλ is
explicitely computable. For the small values of n, the index i in the formula (2.2) belongs to
the sets given in Table 1.

In particular, determining whether the polynomial (2.2) splits or not highly depends on n,
as it is related to the appearance of odd integers among the possible values of i.
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3. Groups of type G�r, 1, n�
In this section, we prove Theorem 1.2 in the case where W is the complex reflection group

G�r, 1, n�, that is, we find explicit conditions on K to ensure that we have an isomorphism
yH0 � N0 )H0 in this case.

In [13, Proposition 5.1], Henderson and the authors showed that if W0 is a parabolic
subgroup of type G�r, 1, k� of W (k & n), then the group-theoretic short exact sequence (2.1)

splits, and we even have a direct product decomposition yB0 � B0 �N0 in that case, yielding
a direct tensor product decomposition yH0 � H0 iKN0 (as a K-algebra).

In particular, yH0 � N0 )H0 without any condition on the parameters. However, this does
not hold in general, as shown in [13, Example 6.6].

We begin by a few observations on normalizers of parabolic subgroups and the existence
of complements (proven in [23]).

3.1. Special elements and parabolic subgroups. Let n ' 1, r ' 2. Recall that W �

G�r, 1, n� has a Coxeter-like presentation with n generators s0, s1, . . . , sn�1, with relations
given by the type Bn braid relations (with s0s1s0s1 � s1s0s1s0), together with the relations

s
r
0 � 1, s

2
i � 1 for all 1 & i & n�1. This is exactly the Coxeter presentation of the Weyl group

of type Bn, except that s0 has order r (for r � 2 we recover the Weyl group of type Bn).
It is shown in [22, Theorem 3.9] that every parabolic subgroup of W is conjugate to a

parabolic subgroup (which we will call standard) generated by a subset S0 of the set S ��rs0, s1, . . . , sn�1x of Coxeter-like generators of W . By Lemma 2.5, it is enough to deal with

the standard parabolic subgroups in order to prove yH0 � N0 )H0 – which, in certain cases,
may be achieved thanks to Lemma 2.3 by showing the existence of a splitting of the short
exact sequence (2.1).

Recall that W is the group of �n � n�-monomial matrices whose entries are r-th roots of
unity. In this description, s0 is the diagonal matrix having ζ � exp�2πi©r� as first entry and
1 everywhere else, with s1, s2, . . . , sn�1 acting on the basis vectors by permuting them in the
obvious way. The action of W on C

n
is irreducible.

Let S
¬
� rs1, s2, . . . , sn�1x, Sn � �S ¬�. We have G�r, 1, n� � �Z©rZ�n 'Sn,

where the generator ti in the i-th factor of �Z©rZ�n is given by the diagonal matrix having
ζ � det�s0� as i-th entry and 1 everywhere else. It is a reflection, and can be expressed as a
product of elements of S as s0 if i � 1 and si�1�s1s0s1�si�1 if i ' 2. Note that �Z©rZ�n
can also be defined as the subgroup generated by the Sn-conjugates of those elements which

lie in S ¯S ¬ � rs0x, generalizing in this specific case the semi-direct product decomposition of
Coxeter groups given in [5].

The braid group B � B�r, 1, n� of G�r, 1, n� is isomorphic to the Artin group of type Bn.
We denote its standard Artin generators by σ0, σ1, . . . , σn�1.

In [6], it is shown that every element w "W can be written uniquely in the form

t0,k0t1,k1�tn�1,kn�1p�w�,
where p�w� " Sn and 0 & ki & r � 1. Here ti,k is defined as sisi�1�s

k
0 if k j 0, and as 1 if

k � 0.
Let W �r� denote the set that consists of those w "W such that in the above normal form,

we have ki " r0, 1x for all i � 0, . . . , n�1. Note that it is exactly the set of monomial matrices
in r1, ζx.
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Replacing every ti,k by sisi�1�s
k
0 if k j 0 and by 1 if k � 0 in the above normal form and

p�w� by a reduced expression of it in Sn, by [6, Lemma 1.5] one obtains a reduced expression
in the generating set S of W . Moreover, the same lemma shows that, if we restrict to W �r�,
then taking any reduced expression of w " W �r� in S and replacing every si by σi yields a
well-defined element w of B. Indeed, here B is an Artin group of type Bn, and [6, Lemma
1.5] restricted to W �r� shows that any two reduced expressions of w " W �r� can be related
by the defining relations of B. Let D �� rw ¶ w "W �r�x. Note that D is independent of r.

In fact, the set D is the set of (left or right) divisors of the Garside element �σ0σ1 . . . σn�1�n
of the braid monoid B

�
N B, which is a Garside monoid. In other words, the morphism of

monoids B
�
ºW induces by restriction an injective set-theoretic map D �W , with image

equal to W �r�. Note that for r � 2 we have W �W �r� and D is just the set of positive lifts
of elements of W , which is a Coxeter group of type Bn in that case; for r j 2 the subset W �r�
is not a subgroup of W .

Denoting by ` the length function on W with respect to S, what we just recalled implies
the following important property, which will be used repeatedly below:

Lemma 3.1. Let u, v "W �r� such that w �� uv lies in W �r� and `�u�� `�v� � `�w�. Then
uv � w.

3.2. Description of the complements. Howlett [15] found a description of complements
of parabolic subgroups of Coxeter groups inside their normalizers; it is not hard to see that
his construction does not generalize to the G�r, 1, n� case, even though these groups are
close to being Coxeter groups. In this section, we therefore recall a different way of finding
complements of parabolic subgroups of W inside their normalizers; this construction is due
to Taylor and Muraleedaran [23] and, up to slight variations, will be relevant to construct

suitable lifts of these complements inside yH0.
By the above remarks, we can assume that S0 N S has at least one irreducible component

which generates a Coxeter group of type A, since we have already a group-theoretic splitting
otherwise, according to [13, Proposition 5.1].

We first explain how to define a subgroup U0 which is complementary to W0 � �S0�
inside N0 by recalling results from [23]. We introduce some technical notation, illustrated in
Example 1 below. As in [23], we associate a partition of n to W0 by writing W0 as a direct
product of irreducible standard factors, also counting the trivial group, i.e., we write

W0 � G�d, 1, n0� � n

5
k�1

G�1, 1, k�bk
in such a way that 1

b12
b2
�n

bn is a partition of n � n0. Let bi1 , bi2 ,�, bi` be the sequence of

those bk such that bk j 0, where i1 $ i2 $ � � � $ i`. If bk j 0, we write Rk �� G�1, 1, k�bk 	 S
bk
k .

Let di1 � n0 � 1, dij�1 � dij � bij ij for 1 & j & ` � 1. Up to replacing W0 by a Sn-conjugate,
if k � ij , then we can assume that the bk irreducible factors of Coxeter type Ak�1 have
generating sets given by

J
1
k �� rsdk , sdk�1, . . . , sdk�k�2x,
J
2
k �� rsdk�k, . . . , sdk�2k�2x,

. . . ,

J
bk
k �� rsdk��bk�1�k, . . . , sdk�bkk

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
�dij�1

�2x.
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We set Jk � J
1
k <J

2
k <�<J

bk
k and we have Rk � �Jk� (note that J

m
1 � o for all 1 & m & b1, as

J1 is the trivial group). With this choice of labeling, we get that dk indexes the leftmost node
of Jk in the Dynkin-like diagram associated to W (see Example 1 below), and the irreducible
factors of type A of W0 are arranged from the left to the right, always separated by a single
node, with their size increasing from left to right.

Example 1. Let W � G�r, 1, 14� and W0 � G�1, 1, 1�3 � G�1, 1, 3�2 � G�1, 1, 5�. We have
n0 � 0 and b1 � 3, b3 � 2, b5 � 1; i1 � 1, i2 � 3, i3 � 5, and d1 � 1, d3 � 4, d5 � 10. The

nodes that are elements of S0 are the red ones in the picture below. We have J
1
3 � rs4, s5x,

J
2
3 � rs7, s8x, J

1
5 � J5 � rs10, s11, s12, s13x.

0 1

� d1

2 3 4

� d3

5 6 7 8 9 10

� d5

11 12 13

We now assume that the conditions given in Theorem 1.2 is satisfied, providing suitable
polynomials Tk, T0,k " K�X�. As shown in [23], for every k such that bk j 0, there is a
subgroup Nk N N0, which normalizes Rk (and centralizes every Rj with j j k) and acts as
the reflection group G�r, 1, bk� on a suitable subspace of the natural module V � C

n
(see [23,

Theorem 3.12 and its proof]). Moreover, U0 �4k,bkj0
Nk is a complement to W0 inside N0.

We give explicit generators of the subgroups Nk, corresponding to the Coxeter-like generators
of G�r, 1, bk�.

Let e1, e2, . . . , en be the standard basis of C
n
, where W $ GLn�C�. The direct product

decomposition of W0 corresponds to a tensor product decomposition C
n
� C

n0
h,n

k�1C
k
i

C
bk of the space, where the element ap i bq of the canonical basis of C

k
iC

bk is mapped to

edk��q�1�k�p�1, when bk j 0. Then G�r, 1, bk� acts on each C
k
iC

bk as fk � 1i ρ, where ρ is

the natural representation of G�r, 1, bk� on C
bk and 1 is the trivial representation on C

k
. In

particular, s
�0�
k �� fk�s0� acts by multiplication by ζ on each ap i b1 and by the identity on

the other basis vectors, while s
�i�
k �� fk�si� acts through ar i bp ( ar i bsi�p�.

In fact, we have s
�1�
k , . . . , s

�bk�1�
k " �S ¬� N Sn, while s

�0�
k � tdktdk�1�tdk�k�1 " �Z©rZ�n.

Hence the semidirect product decomposition of Nk (obtained by viewing it as the reflection
group G�r, 1, bk�) is compatible with the semidirect product decomposition �Z©rZ�n 'Sn of
W , in the sense that it is the same as the intersection of the semidirect product decomposition

of W with Nk. In fact, as s
�1�
k , . . . , s

�bk�1�
k " Sn = NW �Rk�, we have s

�1�
k , . . . , s

�bk�1�
k "

NSn�Rk�, and they turn out to be among the generators of the complement to Rk inside Sn

as described by Howlett [15]: more precisely, for all i � 1, . . . , bk � 1, we have

(3.1) s
�i�
k � w0�Ki�w0�J i�1k < J

i
k�,

where Ki � J
i�1
k < J

i
k < rsdk�1�ikx is the connected closure of J

i
k and J

i�1
k (obtained by just

adding the unique simple reflection between them in the Dynkin diagram) and w0�X� denotes

the longest element in the Coxeter group of type A generated by X N S
¬
.

Also note that s
�0�
k , s

�1�
k , . . . , s

�bk�1�
k all lie in W �r�.

Example 2. Let W � G�r, 1, 4�, S0 � rs1, s3x. Then W0 � G�1, 1, 2�2, hence 2 is the only
integer k such that bk j 0 and we have S0 � J2, b2 � 2. Hence U0 � N2 	 G�r, 1, 2�,
E

1
2 � re1, e2x, E

2
2 � re3, e4x, and the Coxeter-like generators s

�0�
2 , s

�1�
2 of N2 are given by the
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matrices

s
�0�
2 �

�������
ζ 0
0 ζ

0

0
1 0
0 1


������ , s
�1�
2 �

�������
0

1 0
0 1

1 0
0 1

0


������ .
3.3. Lifting the complement. Let τ1 � σ0 " B and for all 2 & i & n, let

τi �� σi�1σi�2�σ1σ0σ1�σi�1 " B.

Note that τi lies in D, and is the simple attached to ti. We now construct lifts of the generators

of Nk in yB0. As s
�i�
k " W �r� for all i � 0, . . . , bk � 1 we can take their lifts in D N B

�
N B

(obtained by lifting any reduced expression of them in B), which we denote by σ
�i�
k . As

s
�i�
k � π�σ�i�

k � " U0 N N0, we have σ
�i�
k " B̂0 for all i � 0, . . . , bk � 1, and we can take their

image in yB0, which we still denote by σ
�i�
k .

Note that s
�0�
k � tdktdk�1�tdk�k�1 and we have `�s�0�k � � <k�1

i�0 `�tdk�i�, hence by Lemma 3.1

we have σ
�0�
k � τdkτdk�1�τdk�k�1.

Lemma 3.2. Let W � G�r, 1, n� and W0 a standard parabolic subgroup as above. Let k such

that bk j 0. In yB0, we have

�σ�0�
k �r � ∆

2
J1
k
,

where ∆J1
k

is the image in yB0 of the simple attached to the longest element w0�J1
k� in the type

A parabolic subgroup of W generated by J
1
k . In particular, if k � 1, then �σ�0�

k �r � 1.

Proof. We claim that in yB0, for all dk & i & dk � k � 1, we have τ
d
dk � 1 and

�τi�d � σi�1σi�2�σdk�1σ
2
dkσdk�1�σi�1

for i % dk. Note that

τi � σi�1�σ1σ0σ
�1
1 �σ

�1
i�1�σi�1�σ2σ

2
1σ

�1
2 �σ

�1
i�1��σi�1�σ3σ

2
2σ

�1
3 �σ

�1
i�1��σ

2
i�1.

For all j & dk�1, we have σi�1�σj�1σ
2
jσ

�1
j�1�σ

�1
i�1 " Q0 (since the reflection si�1�sj�si�1 is

not inW0 in that case, as the reflection sdk�1 appears in the reduced expression si�1�sj�si�1).
Hence deleting these factors, we get that

τi � σi�1�σ1σ0σ
�1
1 �σ

�1
i�1�σi�1�σ2σ

2
dkσ

�1
2 �σ

�1
i�1��σi�1�σ3σ

2
dk�1σ

�1
3 �σ

�1
i�1��σ

2
i�1

� σi�1�σ1σ0σ
�1
1 �σ

�1
dk�1σdk�σi�1.

Raising to the power d we obtain

�τi�d � σi�1�σ1σ0�σ�11 �σ
�1
dk�1σdk�σ

2
i�1σi�2�σ1Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

��β

σ0�d�1σ�11 �σ
�1
dk�1σdk�σi�1.

We claim that β " Q0. Indeed, we have

β � σ
�1
1 �σ

�1
dk�1σdk�σ

2
i�1σi�2�σ1

� �σ�11 �σ
�1
dk�1σdk�σ

2
i�1σ

�1
i�2�σ

�1
dk�1σdk�σ1���σ�11 σ

�1
2 �σ

�1
dk�1σ

2
dkσdk�1�σ1�,
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and all the factors are in Q0 (since sdk�1 �W0). Hence this gives

�τi�d � σi�1�σ1 σ
d
0ÍÑÏ

"Q0

σ
�1
1 �σ

�1
dk�1σdk�σi�1

which lies in Q0 if i � dk and is equal to σi�1�σ
2
dkσdk�1�σi�1 otherwise. This shows the

claim. Now using the fact that the τi’s commute with each other, we get that

�σ�0�
k �d � σ2dk�σdk�1σ2dkσdk�1���σdk�k�2σdk�k�3�σ

2
dkσdk�1�σdk�k�2� � ∆

2
J1
k
,

where the last equality follows from the fact that in a type Am braid group with standard
generators σ1, σ2, . . . , σm (and corresponding Coxeter generators s1, s2, . . . , sm), we have

∆
2
m�1σmσm�1�σ

2
1σ2�σm � ∆m�1�∆m�1σmσm�1�σ1�σ1σ2�σm

� ∆m�1∆mσ1σ2�σm � �∆m�1σmσm�1�σ1�∆m � ∆
2
m,

where ∆m is the lift of the longest element in �s1, s2, . . . , sm� and ∆m�1 is the lift of the
longest element of the parabolic subgroup �s1, s2, . . . , sm�1�.

�

We would like to show that our lifts σ
�i�
k satisfy the defining relations of the Coxeter-like

presentation of U0. Unfortunately, this is not true, as it would give a splitting of the short
exact sequence (2.1). But we shall prove that the braid relations between these generators

are satisfied already in B; the problem will come from the fact that the generators σ
�0�
k fail

to be of order d inside yB0, as we have just shown in Lemma 3.2. We will need to twist our
lift by a suitable element of H0 to get the order relation in that case.

3.3.1. Braid relations. The fact that the lifts σ
�i�
k satisfy the same braid relations as their

images in W , that is, that

a σ
�0�
k σ

�1�
k σ

�0�
k σ

�1�
k � σ

�1�
k σ

�0�
k σ

�1�
k σ

�0�
k for all k such that 1 $ bk,

a σ
�i�
k σ

�i�1�
k σ

�i�
k � σ

�i�1�
k σ

�i�
k σ

�i�1�
k for all 1 & i $ bk � 1,

a σ
�i�
k σ

�j�
k � σ

�j�
k σ

�i�
k for all 0 & i $ j � 1 & bk � 2,

a σ
�i�
k σ

�j�
` � σ

�j�
` σ

�i�
k for all k j `,

follows from the fact that if we consider these relations inside U0 (that is, if we replace

every σ
�i�
k by s

�i�
k ), then each side of each relation is an element of W �r�, and moreover, it is

readily checked using [6, Lemma 1.5] that the length of each side in terms of the generating
set S is the sum of the lengths of the various factors. For instance, we have

`�s�0�k s
�1�
k s

�0�
k s

�1�
k � � `�s�0�k � � `�s�1�k � � `�s�0�k � � `�s�1�k �.

Hence the fact that the relations above are satisfied in B is a consequence of Lemma 3.1.

Remark 3.3. In fact, as U0 is isomorphic to a complex reflection group which is a direct
product of groups of type G�r, 1, bk�, we can consider its braid group B�U0�, which is a direct
product of Artin groups of type Bbk . What we did above is nothing but constructing a group

morphism ψ � B�U0�� yB0.
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3.3.2. Order relations. Consider s
�i�
k with 1 & i & bk � 1. As i ' 1 we have that s

�i�
k "

Sn = NW �G0�, where G0 � W0 = Sn. Hence we have s
�i�
k " NSn�G0�. The group G0

is a (standard) parabolic subgroup of the type A Coxeter group Sn and s
�i�
k is equal to

w0�Ki�w0�J i�1k < J
i
k� (see (3.1)), which is a generator of the Howlett complement U

G
0 to G0

inside NSn�G0�.
In [13], the definition of the Howlett complement U

G
0 was generalized to any reflection

subgroup G0 of a (possibly infinite) Coxeter group G. Let π denote the quotient map B�G��
G. In the case where G is finite, it was shown by Henderson and the authors (see [13, Corollary

3.12]) that the set-theoretic map U
G
0 � π

�1�NG�G0�� given by taking positive lifts of elements

in U
G
0 N G in the Artin group B�G� of G becomes an injective group homomorphism U

G
0 �

π
�1�NG�G0��©QG0 when passing to the quotient on the right side, where Q

G
0 is the subgroup

of the pure braid group of G generated by the squares of the braided reflections around
hyperplanes attached to reflections which are not in G0.

Applied to our case with G � Sn, where B�G� is the usual braid group Bn on n strands, this

result implies that the squares of the σ
�i�
k ’s inside Bn belong to Q

G
0 . Indeed, they are images

of 1 � �s�i�k �2 under the above injective morphism. Now, the morphism Bn � B mapping
the j-th Artin generator σj for 1 & i & n � 1 to σj " B is injective – for instance because

its composition with B � Bn�1, σ0 ( σ
2
1, σj ( σj�1 for j ' 1 is the injective morphism

Bn � Bn�1, σi ( σi�1 of adding one strand on the left. Moreover, it maps any meridian
around some reflecting hyperplane in Sn (that is, a conjugate of some squared generator of

Bn) to a meridian around the same reflecting hyperplane for W , hence embeds Q
G
0 inside Q0.

Therefore �σ�i�
k �2 " Q0 and, inside yB0, we have �σ�i�

k �2 � 1.

It remains to treat the case of the generators s
�0�
k , for all k such that bk j 0. We claim that

for every such k, σ
�0�
k Tk�∆J1

k
� is a lift of s

�0�
k inside yH0, where Tk " K�X� is a polynomials

satisfying the assumptions of Theorem 1.2. Here, we abuse notation and write ∆J1
k

for the

image of the Garside element (i.e., the lift of the longest element of �J1
k�) of the type A Artin

group B��J1
k�� N B attached to �J1

k� inside the Hecke algebra H0 of W0. As yH0 is a quotient

of the group algebra of yB0 which contains the Hecke algebra H0 of the parabolic subgroup

W0 (which contains �J1
k�), this gives a well-defined element of yH0.

Note that σ
�0�
k commutes with every Artin generator σi of B��J1

k��, hence σ
�0�
k ∆J1

k
�

∆J1
k
σ

�0�
k . Let Tk be a polynomial as in the assumptions of Theorem 1.2. By Lemma 3.2,

we have

�σ�0�
k Tk�∆J1

k
��d � �σ�0�

k �dTk�∆J1
k
�d � �∆2

J1
k
�Tk�∆J1

k
�d � 1

Note that σ
�i�
k commutes with ∆J1

k
whenever 2 ' i, hence the commutation relation between

T �∆J1
k
�σ�0�
k and σ

�i�
k is satisfied insideH0 N yH0 in that case. Also note that σ

�1�
k ∆J

j
k
� ∆J`k

σ
�1�
k ,rj, `x � r1, 2x (as the images in Sn of the various factors satisfy the same relation, with

the length of the various factors adding). As ∆J1
k

and ∆J2
k

commute with each other and
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σ
�0�
k σ

�1�
k σ

�0�
k σ

�1�
k � σ

�1�
k σ

�0�
k σ

�1�
k σ

�0�
k as seen in Subsection 3.3.1, we deduce that

σ
�0�
k T �∆J1

k
�σ�1�
k σ

�0�
k T �∆J1

k
�σ�1�
k � T �∆J1

k
�T �∆J2

k
�σ�0�
k σ

�1�
k σ

�0�
k σ

�1�
k

� T �∆J1
k
�T �∆J2

k
�σ�1�
k σ

�0�
k σ

�1�
k σ

�0�
k

� T �∆J2
k
�T �∆J1

k
�σ�1�
k σ

�0�
k σ

�1�
k σ

�0�
k

� σ
�1�
k σ

�0�
k T �∆J1

k
�σ�1�
k σ

�0�
k T �∆J1

k
�,

hence the braid relation between σ
�0�
k T �∆J1

k
� and σ

�1�
k is still satisfied. This shows that one

can lift Nk, for all k such that bk j 0.
To conclude this case, note that the defined lifts of two generators belonging to different

factors Nk and N` of U0 have to commute with each other. Indeed, on one hand we have that
∆J1

k
and ∆J1

`
commute with each other for all k, `. On the other hand, ∆J1

k
(resp. ∆J1

`
) also

commutes with all σ
�i�
` (resp. σ

�i�
k ), and s

�i�
k , s

�j�
` are elements in W �r� with product also in

W �r� and such that s
�i�
k � s

�j�
` � s

�j�
` � s

�i�
k and `�s�i�k � s

�j�
` � � `�s�i�k � � `�s�j�` � for all i, j and

k j `, hence these observations together with Lemma 3.1 allow us to conclude that generators
from distinct components Nk, N` commute with each other.

Hence, we just showed that, modifying the group morphim ψ from Remark 3.3 by twisting

σ
�0�
k by σ

�0�
k Tk�∆J1

k
� for all k such that bk j 0, we get a group morphism ψ

¬
from U0 	 N0 to

yH�
0 , which satisfies the assumptions of Lemma 2.3. This concludes the proof of Theorem 1.2

in this case.

4. Groups of type G�de, e, n�
In this section, we complete the proof of Theorem 1.2, using the results of the preceeding

section for G�r, 1, n� by setting r � de.

4.1. General considerations. Let W � G�de, e, n�, and W
!
� G�r, 1, n� with r � de. We

denote by A, A!
the corresponding hyperplane arrangements and, for L0 L C

n
, we denote by

W0 and W
!
0 the parabolic subgroups defined as the pointwise stabilizers of L0 in W and W

!
,

respectively. We have W0 �W =W
!
0.

Let E (resp. E !
) denote the collection of all hyperplanes in A (resp. A!

) containing L0. We
can and will assume that L0 is the intersection of some collection of hyperplanes of A, which
implies that L0 is equal to the intersection � E of the hyperplanes inside E (and hence also

that L0 � � E ¬).
Since W0 (resp. W

!
0) is generated by its reflections, we have

g " N0 �� NW �W0�� g�E� � E� g�L0� � L0

and

g " N
!
0 �� NW !�W !

0�� g�E !� � E !
.

Hence, as g�L0� � L0 implies that g�E !� � E !
, we get N0 L N

!
0 = W . Conversely, if

g " N
!
0 =W we get g�E !� � E !

hence g�� E !� � � E !
. But � E � L0 � � E !

hence � E !
� L0

and g�L0� � L0, whence g " N0. This proves the following:

Lemma 4.1. We have N0 � N
!
0 =W .
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At the level of braid groups, we denote by B the braid group of W , B
!

the braid group

of W
!
. Let π � B � W and π

!
� B

!
� W

!
be the natural projections, with kernels P, P

!
,

respectively. Recall that W is a normal subgroup of W
!

with cyclic quotient C.

We set M�A� � Cn¯�A, M�A!� � Cn¯�A!
. The inclusion map M�A!� LM�A� induces

a surjective homomorphism π1�M�A!�� � π1�M�A��. Recall that B̂
!
0 � π1�M�A!�©N !

0�,
B̂0 � π1�M�A�©N0�.

We introduce B
Æ
� π1�M�A!�©W �. It is a normal subgroup of B

!
� π1�M�A!�©W !�, and

there is a natural projection map B
Æ
� B with kernel Ker�M�A!��M�A��.

In particular we have B
Æ
� B when A!

� A, that is, as soon as d % 1. We denote by

π
Æ
� B

Æ
�W the natural projection map.

We denote by pW � W
!
� C � W

!©W the canonical projection and set pB � pW ` π
!
. We

have B
Æ
� KerpB (see [9]). This yields the following commutative diagram:

1

��

1

��

P
!

��

P
!

��

1 // B
Æ

π
Æ

��

// B
!

π
!

��

pB // C // 1

1 // W

��

// W
!

��

pW // C // 1

1 1

(4.1)

The usefulness of introducing this ’fake braid group’ B
Æ

is that it can be used in general,

regardless of the value of d, to define yB0 as a quotient of B̂
Æ
0 �� �πÆ��1�N0�. Recall that

yB0 � B̂0©Q0 where Q0 is the kernel of the natural map P � π1�M�A�� � π1�M�E��. Let

us denote q � P
!
� P the projection map orginating from the inclusion M�A!� LM�A�, and

set Q
Æ
0 � q

�1�Q0�. It is the kernel of the projection map P
!
� π1�M�A!��� π1�M�E��. We

have the following commutative diagram of short exact sequences

1 // P
! //

q

����

B̂
Æ
0

��

// N0
// 1

1 // P // B̂0
// N0

// 1

which implies that the middle map is also surjective, and that its composite with the canonical

projection B̂0� yB0 has kernel q
�1�Q0� � QÆ

0. This identifies yB0 with B̂
Æ
0©QÆ

0.
From this new description we easily get the following slight generalization of Lemma 2.5 in

the specific case of reflection subgroups of W � G�de, e, n�:
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Lemma 4.2. Let W1,W2 be two reflection subgroups of W � G�de, e, n�, which are conjugate

in W
!
� G�de, 1, n�, let Gi � NW �Wi�, and B̂i, yBi, Bi, yHi as in Lemma . Then there exists

a group isomorphism yB1 � yB2 mapping B1 to B2 and an algebra isomorphism yH1 � yH2

mapping H1 to H2.

Proof. We set B
Æ
i , B̂

Æ
i for i � 1, 2 the groups B

Æ
, B̂

Æ
defined above for W0 � Wi. We claim

that B̂
Æ
1 and B̂

Æ
2 are conjugate in B

!
.

This can be seen as follows: let w " W
!

such that wW1w
�1
� W2. As W > W

!
we have

wG1w
�1

� G2. Let b " �π!��1�rwx�. Note that using the diagram (4.1), we can see each

B̂
Æ
i inside B

!
. We claim that bB̂

Æ
1b

�1
� B̂

Æ
2 . Indeed, for x " B̂

Æ
1 , we have that π

!�bxb�1� "
wG1w

�1
� G2. By (4.1), it implies that there is b

¬
" B̂

Æ
2 such that π

!�b¬� � π!�bxb�1�. Since

both maps π
Æ

and π
!

have the same kernel we have Kerπ
!
� P

!
N B̂

Æ
2 and since b

¬
" B̂

Æ
2 , we

get that bxb
�1
" B̂

Æ
2 . Hence bB̂

Æ
1b

�1
N B̂

Æ
2 and conversely we show that b

�1
B̂
Æ
2b N B̂

Æ
1 .

The rest of the proof is then the same as in the proof of Lemma 2.5, only replacing Qi with

Q
Æ
i � Ker�B̂Æ

i �
yBi�, and noticing that it is the subgroup of P

!
generated by the meridians

around the hyperplanes in A!
which are not reflecting hyperplanes for Wi. �

4.2. Lifting complements. From the commutativity of the diagram (4.1) we readily get

that B̂
Æ
0 � �πÆ��1�N0� � B̂

!
0 = B

Æ
. Let us now consider the subgroup Q

Æ
0 of P

!
, which is

generated by the meridians around the hyperplanes which are not in E . We have yB0 � B̂
Æ
0©QÆ

0

and yB!
0 � B̂

!
0©Q!

0. Let us denote p̂B the restriction of pB to B̂
!
0. Since Q

!
0 L Kerp̂B, it induces

a morphism xpB � yB!
0 � C whose kernel is exactly yBÆ

0 �� B̂
Æ
0©Q!

0, which projects onto yB0 with

kernel Q
Æ
0©Q!

0.

Let U
!
0 be a complement of W

!
0 inside N

!
0. We make the following assumption

U0 �� U
!
0 =W is complementary to W0 inside N0.(4.2)

This assumption does not hold in general, but one can always choose U
!
0 so that it works, as

we will see below.
Denote by xπ! � yB!

0 �W
!
, xπÆ � yBÆ

0 �W , xπ � yB0 �W the morphisms induced by π
!
, π

Æ
and

π, respectively. Note that xpB � pW ` xπ!. If we have a morphism ψ
!
� U

!
0 � yB!

0 satisfying the
following assumption

xπ! ` ψ!
� IdU !

0
,(4.3)

then we also have xpB ` ψ!
� �pW �U !

0
. This implies that, under assumptions (4.2) and (4.3),

the map ψ
!

restricts to a morphism ψ � U0 � yB
Æ
0 L yB

!
0. Indeed, for g " U

!
0, we have

ψ
!�g� " yBÆ

0 � xpB�ψ!�g�� � 1 � pW �g� � 1,

and the last condition is always fulfilled if g " U0 � U
!
0=W . Finally, xπ!`ψ!

� IdU !
0

immediately

implies xπÆ ` ψ � IdU0
, so that ψ indeed provides a convenient lift into yBÆ

0 .

The complement U
!
0 that we chose is itself a complex reflection group, with irreducible

components belonging to the general series. Its braid group Γ
!

is an Artin group with irre-

ducible components of type B, with a projection map γ
!
� Γ

!
� U

!
0 (see Remark 3.3). Let
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Γ � rg " Γ
!

; γ
!�g� " Wx and γ the restriction of γ

!
to Γ. Under assumption (4.2), γ is a

map Γ� U0 and Ker�Γ!
� U

!
0� � Ker�Γ� U0�.

While it is not possible, in general, to obtain a lifting morphism U
!
0 � yB!

0 as above, we

were able in the cases satisfying this assumption to construct morphisms ψ
!
� Γ

!
� yB!

0 such

that xπ! ` ψ!
� γ

!
.

The restriction of ψ
!

to Γ then provides a morphism ψ � Γ� yBÆ
0 such that xπÆ ` ψ � γ.

4.3. Case where W0 � W
!
0. In some cases we can directly relate the algebras yH !

0 and yH0

for arbitrary parameters. Recall that both N
!
0 and N0 act on E . In order to get comparable

parameters on both sides we need the following assumption

The orbits of E under N0 and N
!
0 are the same.(4.4)

This condition will be satisfied in the cases in which we are interested. Under this condition,

one has a natural morphism from yH0 to some specialization of yH !
0. Indeed, recall that yH0

and yH !
0 are both defined using parameters us,i, s " R�

0 , 0 & i $ o�s�, but with the additional

condition that us,i � uwsw�1,i for all w " N0 � NW �W0� in the case of yH0, for all w " NW !�W0�
in the case of yH !

0. Since the conjugation action of the normalizers on R�
0 is the same as their

action on E , assumption (4.4) says that the conditions on the parameters are the same and
thus the algebras are defined over the same ring.

Then, the composition of KyBÆ
0 � KyB!

0 and KyB!
0 � yH !

0 factorizes through KyBÆ
0 �

yH0,

as the Hecke relations are obviously mapped to 0 inside yH0, and the possibly additional

meridians around A! ¯A are mapped to 1. From this we get an algebra morphism yH0 � yH !
0.

The following lemma will be useful in the special case where W0 �W
!
0.

Lemma 4.3. When W0 �W
!
0, the algebra morphism yH0 � yH !

0 is injective.

Proof. We first notice that the projection maps yB!
0 � N

!
0 and yBÆ

0 � N0 induce isomorphisms

yB!
0©B0 � N

!
0©W !

0 � N
!
0©W0 and a clearly surjective morphism yBÆ

0©B0 � N0©W0. This
morphism is actually an isomorphism, as its kernel coincides with the kernel of the natural

morphism yBÆ
0©B0 � yB!

0©B0, which is injective as it is induced by the inclusion map B̂
Æ
0 L B̂

!
0.

We choose sets of representatives E
Æ
L yBÆ

0 and E
!
L yB!

0 such that E
Æ
L E

!
. Then we have

morphisms of KB0-modules

-
b"EÆ

�KB0�b � KyBÆ
0 � KyB!

0 �-
b"E!

�KB0�b
where KyBÆ

0 � KyB!
0 is the inclusion map, and the composition is the identity on E

Æ
L E

!
.

Dividing out by the defining ideals of yH0 and yH !
0 then yields a sequence of morphisms

-
b"EÆ

H0b� yH0 � yH !
0 �-

b"E!

H0b

whose composite is injective. Now, the morphisms ,b"EÆ H0b � yH0 and ,b"E! H0b � yH !
0

are isomorphisms (see [20] section 2.3.1), whence the natural morphism yH0 � yH !
0 is also

injective.
�
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Notice that in this case, the natural morphism yBÆ
0 �

yB0 is actually an isomorphism.

4.4. Lifting complements for standard parabolic subgroups. Since the reflecting hy-

perplanes for W are reflecting hyperplanes for W
!
, every parabolic subgroup W0 of W is a

subgroup of a uniquely defined parabolic subgroup W
!
0 of W

!
of the same rank. Now, by [22,

Theorem 3.9], every parabolic subgroup W
!
0 of W

!
is a conjugate inside W

!
of a standard

one. Hence by Lemma 4.2, we can assume that W
!
0 itself is standard. In this case W0 is also

standard.
Recall from Section 3 that such a standard parabolic subgroup is determined by a pair�n0, λ�, where 0 & n0 & n, and λ is a partition of n � n0. We will keep the notation

introduced in Section 3, except that all the groups related to W
!

will have the symbol ! as
exponent. The pair �n0, λ� will be referred to as the type of W0. If W0 has type �n0, λ�, then

W0 � G�de, e, n0� � n

5
k�1

G�1, 1, k�bk , W
!
0 � G�de, 1, n0� � n

5
k�1

G�1, 1, k�bk .

4.4.1. Case where n0 � 0. In this case, we have W0 �W
!
0, and U0 �W =U

!
0 is a complement

to W0 inside N0. The complement U
!
0 is a complex reflection group of type4k,bkj0

G�de, 1, bk�
with braid group an Artin group Γ

!
of type 4k,bkj0

Bbk (with the convention that B1 � A1

among Coxeter types). The explicit description of U0 is less straightforward than in the other
cases (see [23, Theorem 3.12]), however assumption (4.2) is satisfied and we constructed in

Section 3 a morphism ψ
!
� Γ

!
� yB!

0 satisfying assumption (4.3). Therefore we can apply the

results of Section 4.2 and by restriction we get a morphism ψ � Γ� yBÆ
0 such that xπÆ `ψ � γ.

Since assumption (4.4) is also satisfied, the natural compositions towards the Hecke algebras
fit into the following commutative diagram (see the paragraph before Lemma 4.3):

Γ //

��

KyBÆ
0

��

// yH0

��

Γ
! // KyB!

0
// yH !

0

Now by twisting ψ
!
, we obtained in Section 3 (see the end of Subsection 3.3.2) a group

morphism �ψ¬�! � N !
0 � �yH !

0�� satisfying the assumptions of Lemma 2.3. We claim that the

restriction ψ
¬

of this map to U0 provides a group morphism U0 	 N0 � yH�
0 also satisfying

the assumptions of Lemma 2.3.

Given g " N !
0, an element b " yB!

0 as in the statement of Lemma 2.3 is (by the construction

made in Section 3) an element of the form ψ
!�x� for some preimage x of g under γ

!
� Γ

!
� U

!
0.

In particular, if g " N0, then x lies in Γ and b � ψ
!�x� � ψ�x� " yBÆ

0 . By the above

commutative diagram and the fact that the map yH0 � yH !
0 is injective, this implies that

bH0 N yH !
0 lies in fact inside yH�

0 , and thanks to the isomorphism yBÆ
0 �

yB0 the element b can

be seen inside yB0. This shows that the restriction of ψ
¬

to N0 satisfies the assumptions of
Lemma 2.3.
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4.4.2. Case where n0 j 0. In this case, a complement U0 to W0 is obtained as the direct

product of the subgroups Nk, where Nk has the same generators as N
!
k except for the first

one, which is replaced by s
�k
0 s

�0�
k " G�r, r, n� N W , r � de (see the proof of Theorem 3.12

of [23]). Note that each Nk is isomorphic to N
!
k – and to the complex reflection group

G�r, 1, bk� – so that U0 is isomorphic to U
!
0, and we can also consider it as a quotient of Γ

!
by

the order relations corresponding to the generators of Nk.
These generators all have order 2 except the first one which has order r. In Section 3, we

described a lifting ψ
!
� Γ

!
� yB!

0 such that xπ! ` ψ!
� γ

!
. The images under ψ

!
of the standard

generators of Γ
!

were denoted σ
�i�
k .

The computations done in Section 3.3.2 prove that, by replacing each σ
�0�
k by σ

�k
0 ckσ

�0�
k

where ck � T0,k�σe0�Tk�∆Jk,1� " KyB!
0 for some polynomials T0,k, Tk " K�X�, we get another

group morphism ψ
¬
� Γ

!
� KyB!

0.

Moreover, notice that the image of each ck under the projection map KyB!
0 � KN

!
0 lies

inside KN0. It follows that the generators of Γ
!

have their image under ψ
¬

inside KyBÆ
0 and

that ψ
¬

is actually a morphism Γ
!
� KyBÆ

0 .
It remains to prove that we can choose the polynomials T0,k and Tk (for all k) so that the

composition of the above morphism with KyBÆ
0 �

yH0 factorizes through some ψ � U0 � yH0,
making the following diagram commute

Γ
! //

��

KyBÆ
0

��

U0
// yH0

Indeed, the other conditions for applying Lemma 2.3 are obviously satisfied by such a U0 �

yH0, as each ck belongs to H0 and we have a factorization KyBÆ
0 � KyB0 � yH0.

To this end, as the braid relations are still satisfied by the modified generators, as well as

the order relations except possibly for the σ
�k
0 ckσ

�0�
k , the only missing condition is the order

relation 1 � �σ�k0 ckσ
�0�
k �de. In other words, we need to have the equality

1 � �σ�k0 ckσ
�0�
k �de � σ�kde0 c

de
k �σ�0�

k �de
inside yH0. By Lemma 3.2, this is equal to σ

�kde
0 c

de
k ∆

2
J1
k
. Hence we need to have c

de
k � σ

kde
0 ∆

�2
J1
k

inside H0 N yH0. Therefore, it is sufficient to have polynomials T0,k, Tk " K�X� such that

T0,k�σe0�de � σkde0 � �σe0�kd and Tk�∆Jk,1�de � ∆
�2
J1
k

inside yH0, and this provides the conditions

of the statement.

Remark 4.4. In the particular case where n0 j 0 and λ � 1
n�n0, we have that yB!

0 is the

semidirect product of B
!
0 with U

!
0, as shown in [13, Proposition 5.1] (the product is even direct

in that case). In this case, the only k for which bk j 0 is 1, and in this case ∆J1
k
� 1 as it is

the Garside element in a braid group on one strand (note that Lemma 3.2 still holds in this

case, and provides the order relation on σ
�0�
1 which allows the splitting of the sequence (2.1)).
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Hence in this case, we only need to find one polynomial T0,1 such that T0,1�σe0�de � �σe0�d, as

the constant polynomial T1 � 1 satisfies T1�∆J1
1
�de � ∆

�2
J1
1

.

5. Parabolic subgroups of maximal rank in exceptional types

We assume here that the parabolic subgroup W0 of the exceptional (irreducible) reflection
group W has rank rkW � 1. We prove the following.

Theorem 5.1. Let W be an irreducible complex reflection group of exceptional type, and W0

a parabolic subgroup of maximal rank. Let zB0
be the canonical positive central element of

B0. Assume that the pair �W,W0� is not of type �G33, D4� or �G25, �Z©3Z�2�. If there exists

T " K�X� such that T �zB0
�¶Z�W �¶

� z
�¶Z�W0�¶
B0

inside H0, then yH0 � N0 ) H0. In the two

exceptional cases, the same conclusion holds with the condition replaced by T �zB0
�3 � z�1B0

.

In the case of rank 2, all maximal parabolic subgroups have rank 1, and zB0
is the braided

reflection associated to the unique distinguished reflection inside W0. By Lemma 2.8 an
immediate consequence of the theorem is the following.

Corollary 5.2. Assume that W is an irreducible exceptional complex reflection group of
rank 2, and W0 a parabolic subgroup of rank 1 and order m. Then H0 has parameters
u0, . . . , um�1 " K

�
. Assume that i j j � ui � uj " K

�
and that each ui admits a r-th

root inside K, for r � ¶Z�W �¶. Then yH0 � N0 )H0.

According to [23] Theorem 5.5, we have N0 �W0�Z�W � in almost all cases. In these cases,

we have zB, zB0
" B̂0 and z

¶Z�W �¶
B z

�¶Z�W0�¶
B0

" Q0. Therefore, it is sufficient to find T " K�X�
such that T �zB0

�¶Z�W �¶
� z

�¶Z�W0�¶
B0

inside H0, so that zBT �zB0
� has order ¶Z�W �¶.

We now consider the exceptions. There are two exceptions in rank 2, for W " rG13, G15x,
and the ones in higher rank are for W � G35 � E6, which is already known by [13] since W
is a Coxeter group in this case, and W " rG25, G33x. We deal with these cases now.

5.1. W � G13. When W has type G13, a presentation of W (see [9]) is given by generators

s, t, u and relations tust � ustu, stust � ustus, s
2
� t

2
� u

2
� 1. The only case when

N0 j Z�W �.W0 is when W0 is a conjugate of �s�. In this case Z�W �.W0 has index 2 inside

N0, and N0 is cyclic. Moreover Z�W � is cyclic of order 4 generated by z � �stu�3. A
presentation of B is given by generators σ, τ, υ and relations τυστ � υστυ, στυστ � υστυσ

and a generator of the center is zB � �στυ�3. The group B � B13 is isomorphic to the Artin
group of type I2�6� � G2 with presentation �a, b ¶ ababab � bababa�, an isomorphism being

given by b ( υ, a ( �υστυ��1 with inverse υ ( b, τ ( a
�1
ba, σ ( ∆

�1
a
2

with ∆ � ababab.

Since ∆ is central, we have a " B̂0. One checks that π�a� has order 6 inside N0 and generates

N0. Moreover, ∆ � z
�1
B . In order to lift π�a�, we look for polynomials T " K�X� such that�aT �σ��8 � 1 inside H0. We have

�aT �σ��8 � �a2�4T �σ�8 � σ4∆�4
T �σ�8 � σ4z4BT �σ�8 � σ4σ2T �σ�8 � σ6T �σ�8

since z
4
Bσ

�2
" Q0, and we need to find a polynomial T satisfying T �σ�8 � σ�6 inside H0. For

this it is enough to get one such that T �σ�4 � σ
�3

. Since r � ¶Z�W �¶ � 4 this follows from
Lemma 2.8.
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5.2. W � G15. When W has type G15, a presentation of W is given by generators s1, s2, s3
and relations s1s2s3 � s3s1s2, s2s3s1s2s1 � s3s1s2s1s2, s

2
1 � s

3
2 � s

2
3 � 1. The only case when

N0 j Z�W �.W0 is when W0 is a conjugate of �s3�. In this case Z�W �.W0 has index 2 inside

N0, and N0 is cyclic. The braid group has a presentation with generators braided reflections
σ1, σ2, σ3 and relations σ1σ2σ3 � σ3σ1σ2, σ2σ3σ1σ2σ1 � σ3σ1σ2σ1σ2 and π maps σi to si. It

embeds inside the Artin group A � �σ, τ ¶ στστ � τστσ� of type B2 under σ3 ( τ
4
, σ1 ( σ,

σ2 ( τστ
�1

, and can be identified in this way with the kernel of A� Z©4Z given by τ ( 1,
σ ( 0. Under this identification, The positive generator of Z�B� is zB � σ2σ3σ1σ2σ1 �

σ3σ1σ2σ1σ2 and maps to �στστ�2. We notice that α � σ1σ2σ3 � σ3σ1σ2 maps to τ
2�τστσ�,

which centralizes τ
4
� σ3. The order of π�α� is 24 inside N0 and in the quotient group N0 as

well. Therefore N0 �W0 ' �π�α��. Notice that α
2
� zBτ

4
� zBσ3.

We then look for polynomials T " K�X� such that �αT �σ3��24 � 1 inside H0. We have

�αT �σ3��24 � α24
T �σ3�24 � z12B σ123 T �σ3�24 � σ143 T �σ3�24

since ¶Z�W �¶ � 12 hence z
12
B σ

�2
3 " Q0 and we need a polynomial T satisfying T �σ�24 � σ�143 .

For this it is enough to have T " K�X� with T �σ�12 � σ�73 , and this is again a consequence
of Lemma 2.8 under our assumptions since r � 12.

5.3. W � G25, W0 � �Z©3Z�2. We have that B25 is isomorphic to the Artin group of type
A3. We denote its standard Artin generators by σ1, σ2, σ3. The Hecke algebra relation is�σi � u0��σi � u1��σi � u2� � 0. We have B0 � �σ1, σ3�.

We have thatN0 is cyclic of order 6, generated by the image of �σ1σ2σ3�2. Now, �σ1σ2σ3�4 �
zB, and zB0

� σ1σ3 is centralized by �σ1σ2σ3�2. Moreover, conjugation by �σ1σ2σ3�2 ex-
changes σ1 with σ3 (and in particular does not centralize B0). This has for consequence that,
although W0 is not irreducible, we have only 3 parameters and the Hecke algebra relation is�σi � u0��σi � u1��σi � u2� � 0 for i " r1, 3x. Since ¶Z�W �¶ � 3, we have that z

3
B and z

3
B0

are the full loops for W and W0, respectively, so that z
3
B � z

3
B0

inside yB0. For T " K�X� we
have ��σ1σ2σ3�2T �zB0

��6 � z3B0
T �zB0

�6.
It is therefore enough to find T " K�X� with T �zB0

�2 � z�1B0
inside H0. Now, one checks that

zB0
is annihilated inside H0 by the polynomial 40&i,j&2�X � uiuj�. By Lemma 2.8 such a T

exists as soon as this polynomial is square-free and K contains a square root of each of the
uiuj , 0 & i, j & 2, and this is the case as soon as K contains the

Ó
ui.

5.4. W � G33, W0 � D4. A presentation of B33 is with generators s, t, u, v, w, Artin relations
symbolized by the diagram

s t v w

u

and the additional relations �vtu�2 � �uvt�2 � �tuv�2 obtained in [4, 3] and implemented in
CHEVIE. A presentation of B34 is deduced from it by adding another generator commuting
with all the other ones except w, and satisfying an Artin relation of length 3 with it.

The center of B33 is generated by zB � �stuvw�5. We let x � stut
�1
s
�1

. Then, t, v, w, x
satisfy the Artin relations of type D4 – as in easily checked using CHEVIE – and provide
generators for the braid group of a parabolic subgroup W0 of type D4.
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t v

w

x

The group N0 is cyclic of order 6, and contains the center of W , which has order 2. Let

c1 � t�stvwuvtu��1. One checks that a ( a
c1 permutes the generators of the D4 diagram

clockwise. Moreover, its image inside N0 has order 6. Now, explicit computations show

that z
2
Bc

6
1 � b

12
where b � txvw. Then, considering the generator zB0

of the Artin group

B0 of type D4, since W0 has Coxeter number 6 and center of order 2 we have b
6
� z

2
B0

,

whence c
6
1 � z

4
B0
z
�2
B � �zB0

©zB�4z2B. Since both Z�W � and Z�W0� have order 2, z
2
B0

and

z
2
B are the full loops in their respective hyperplane complements, and therefore �zB0

©zB�2 is

mapped to 1 in yH0, and z
2
B is mapped to z

2
B0

. We thus need to find T " K�X� such that�c1T �zB0
��6 � z2B0

T �zB0
�6 � 1 inside H0, so it is enough to have T �zB0

�3 � z�1B0
.

Using CHEVIE we check that, inside H0, zB0
is annihilated by the polynomial

�X � u
8
0u

4
1��X � u

9
0u

3
1��X � u

12
0 ��X � u

6
0u

6
1��X � u

6
0u

6
1��X � u

4
0u

8
1��X � u

3
0u

9
1��X � u

12
1 �

where u0, u1 are the eigenvalues of the Artin generators. Notice that the condition that this

polynomial is square-free implies that u
6
0u

6
1� ��u60u61� � 2u

6
0u

6
1 " K

�
, hence the characteristic

of K cannot be 2.

6. On the remaining exceptional types

Assume that W is of exceptional type, and W0 is not maximal. In particular W has rank
at least 3. Since the case where W is a real reflection group is known by Theorem 2.4, it only
remains 9 exceptional types to consider.

The problem of determining possible liftings using a systematic computer search fails in
general for a couple of reasons, one of them being the following one. The only known ways
so far to solve the word problem for the complex braid groups are, either to embed them
into some Artin group of finite Coxeter type when this is possible, or to use methods from
Garside theory, which involve the monoids (or categories) introduced by Bessis in [3]. One of
the problems with these monoids is that there is no known method yet to write an element
of the pure braid group as a product of natural generators in 1-1 correspondence with the
(distinguished) reflections – even worse, it seems that no such collection of generators has ever
been determined, and the minimal number of generators of the pure braid group is greater
than the number of atoms of the monoid. Therefore, one cannot hope to mimic the methods
of Digne and Gomi in [12] for the real case. Finally, the more direct approach given by
applying a generic Reidemeister-Schreier method from the morphism B�W also fails most
of the time, because the groups W are quite big.

In this section we are nevertheless able to deal with all the rank 3 groups except G27, and
with G32 (rank 4). This leaves five open cases (G27,G29,G31,G33,G34). Notice that, when W0

has rank 1 (which is the only case to consider when W has rank 3) then the centralizer of W0

is equal to its normalizer (see [23, Lemma 5.1]).

6.1. W � G25. The braid group B of W is the Artin group of type A3, with generators
σ1, σ2, σ3 and the (ordinary) braid relations between them. Then W is its quotient by the
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relations σ
3
i � 1, and its Hecke algebra is defined by the relations �σi�u0��σi�u1��σi�u2� � 0.

There is a single class of (distinguished) reflections.
We let W0 � �s1�. A complement of W0 inside N0 is given by U0 � �s3, ζ1� � G�3, 1, 2�

with ζ1 � �s1s2�3. The defining relations are s
3
3 � ζ

2
1 � 1 and s3ζ1s3ζ1 � ζ1s3ζ1s3.

We have σ
3
3 " Q0. We set z1 � �σ1σ2�3. We check that z1 and σ3 satisfy a braid relation

of type B2. Then, z
2
1 is the full loop inside �σ1, σ2�, hence z

2
1 � σ

3
1 mod Q0. If there

exists T " K�X� such that T �σ1�2 � σ
�3
1 , which is the case by Lemma 2.8 as soon as the

i j j � ui � uj " K
�

and K contains
Ó
ui, since σ1 commutes with z1 we get a lift z1T �σ1�

of order 2 which still satisfies the B2 relation with σ3. Since the image of σ3 has order 3 this
provides a convenient lift U0 � N0.

6.2. W � G26.

6.2.1. W � G26, W0 � Z©3Z. The braid group of W is the Artin group of type B3, with
generators indexed as follows

σ1 σ2 σ3

and the Hecke relations are �σ1�v0��σ1�v1� � 0, �σi�u0��σi�u1��σi�u2� � 0 for i " r2, 3x.

Then W is the quotient of B by the relations σ
2
1 � σ

3
2 � σ

3
3 � 1, and si denotes the image of

σi inside W . We first look at W0 � �s3� � Z©3Z. Then N0 has order 36, and a complement

of W0 inside N0 is obtained via U0 � �z1, zW , s1�, where z1 � �s2s3�3, zW � �s1s2s3�3. The
orders of s1, z1, zW are 2, 2, 6 and the subgroup generated by s1, z1 is a dihedral group of order

12, which contains z
3
W � �s1z1�3. It is easily checked that U0 has for presentation

�s1, z1, zW ¶ s21 � z21 � 1, �s1z1�3 � �z1s1�3 � z3W , s1zW � zW s1, z1zW � zW z1�
If we manage to find s̃1 " s1H0, z̃1 " z1H0, z̃W " zWH0 L yH0 with the same orders and

satisfying these relations, we are done.

We choose s̃1 � σ1, z̃W � zBT1�σ3�, z̃1 � �σ2σ3�3T2�σ3� for some T1, T2 " K�X� and with

zB � �σ1σ2σ3�3 " Z�B�. Then the commutation relations of z̃W are satisfied, and σ
2
1 " Q0

hence s̃1 has order 2 inside yH0. Moreover, z
6
B is the central full loop hence is equal to σ

3
3

modulo Q0, and ��σ2σ3�3�2 is the central full loop for the parabolic subgroup �s2, s3� of type

G4, hence is also equal to σ
3
3 modulo Q0. It follows that, if T1, T2 can be chosen so that

T1�σ3�6 � σ
�3
3 and T2�σ3�2 � σ

�3
3 then these lifts have the convenient orders. For T1 it is

enough to have T
¬
1 " K�X� such that T

¬
1�σ3�2 � σ�13 . By Lemma 2.8 a sufficient condition for

these polynomials to exist is that 4i�X � ui� is square-free and K contains a square root of
each ui.

Therefore the only thing remaining to be checked is that �s̃1z̃1�3�z̃1s̃1��3 is 1 " H0 L yH0.
Since T1�σ3� and T2�σ3� commute with the other terms involved, it is enough to check that

x � �σ1�σ2σ3�3�3��σ2σ3�3σ1��3 " B̂0 actually belongs to Q0.
For this we do computations in GAP4, using a Reidemeister-Schreier type method to get

a generating set for P � Ker�B � W � and express x (as a lengthy expression) in terms of
these generators. The generators obtained by this method are 21 elements which turn out to
be conjugates to powers of the generators. These are the following ones.
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σ
�2
1 ,

σ2 �σ�21 �, σ32, �σ�21 �σ2 , σ33,σ1 �σ32�,σ2 �σ33�, �σ33�σ2 ,σ3σ2 �σ�21 �, �σ�21 �σ2σ�13 , �σ�21 �σ2σ3 ,σ1σ2 �σ33�,�σ33�σ2σ�11 ,
σ2σ1σ2 �σ33�,σ�12 σ1σ2 �σ33�,σ2

1σ
�1
3 σ2 �σ�21 �,σ2σ2

1σ
�1
3 σ2 �σ�21 �,σ�11 σ

2
2�σ2σ1�

2
σ
�1
2 �σ33�,�σ�21 �σ�12 σ3�σ

�1
2 σ

�1
1 �

2
σ
�1
1 σ2σ1σ

2
2�σ2σ1�

2
σ
�1
2 σ

3
3σ2�σ

�1
1 σ

�1
2 �

2
σ
�2
2 σ1 , �σ33�σ2σ�11 σ

3
3σ2 , �σ33�σ2σ�11 �σ2σ

2
3�

2
σ3σ

�1
2 σ

�3
3

Being conjugates of powers of the generators, they belong to Q0 � Ker�P � P0 � Z�
exactly when the corresponding hyperplane is not Ker�s3�1�. This is the case for all of them

except for σ
3
3, which is mapped to 1 under P � P0 � Z. Using GAP4 we get that the image

of x under this map is 0, and this defines a morphism U0 � yH�
0 satisfying the assumption of

Lemma 2.3.

6.2.2. W � G26, W0 � Z©2Z. We use the notations of section 6.2.1 and let W0 � �s1� � Z©2Z.

In this case N0 has order 72, and a complement U0 of W0 inside N0 is easily checked to be
generated by s3 and z3 � s1s2s1s2. These elements both have order 3, and satisfy the relations�s3z3�2 � �z3s3�2. These relations are known to be defining relations of the complex reflection
group G5, which has order 72, therefore they indeed provide a presentation of U0.

It is thus sufficient to find elements s̃3 " s3H0,z̃3 " z3H0 satisfying these relations. We set

s̃3 � σ3 and z̃3 � �σ1σ2�2T �σ1� for T " K�X� such that z̃3 has order 3. This is possible when�σ1σ2�6T �σ1�3 is 1 inside H0. Now, since �σ1σ2�2 is the positive generator of the center of the
parabolic braid group associated to the parabolic subgroup �s1, s2� of type G�3, 1, 2�, whose

center has order 3, we know that �σ1σ2�6 is the corresponding full central loop. Therefore,

its image inside P0 is the full loop associated to the parabolic subgroup W0, that is σ
2
1.

It follows that, inside yH0, we have �σ1σ2�6T �σ1�3 � σ
2
1T �σ1�3, and we want T to satisfy

T �σ1�3 � σ
�2
1 inside H0. By Lemma 2.8 this is possible as soon as �X � v0��X � v1� is

square-free and K
�

contains 3-roots of the parameters vi. Then, it is sufficient to check that

x � �σ3�σ1σ2�2�2��σ1σ2�2σ3��2 " Q0 to get a convenient morphism U0 � yH�
0 , and this is

checked by the same computational method as in section 6.2.1.

6.3. W � G24.

6.3.1. A new presentation for G24. The presentation given in CHEVIE, originating from [4], is
by generators s, t, u, and relations stst � tsts, sus � usu, tut � utu and stustustu � tstustust.
We propose an alternative presentation such that the centralizer of a reflection is easily

described. We introduce additional generators x � s
t
� t

�1
st, y �

s
t � sts

�1
. Using CHEVIE

it is easily checked that the relations symbolized by the following diagram hold.

s t

xy

u

In this ‘steering wheel’ diagram, all edges represent Artin relations, that is sus � usu,
tut � utu, xuxu � uxux, uyuy � yuyu, and the oriented circle has the same meaning as for
the Corran-Picantin presentations of the groups G�e, e, n� (see [11]), namely it symbolizes
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the relation st � tx � xy � ys, originating from the dual braid monoid of dihedral type
I2�4� � B2.

In order to prove that this indeed provides a presentation of B, it is sufficient to check
that the relation stustustu � tstustust is a consequence of these relations. This is done as
follows :

stustustu � stu�st�sustu � stuyusutu � stuyustut
� stuyu�st�sut � stuyuysut � styuyusut

� styuysust � txyuysust � tstustust

A collection of 21 generators for P � Ker�B�W � is obtained as follows

s
�2
, t
�2
, u

�2
, x

�2
, y

�2
,
s �u�2�,t �u�2�,u �x�2�,u �y�2�,x �u�2�,y �u�2�,st �u�2�,su �x�2�,

su�y�2�,sx �u�2�,sy �u�2�,tu �x�2�,tu �y�2�,xu �y�2�,yu �x�2�,usx �u�2�
6.3.2. The centralizer of a reflection. Let W0 � �π�u��. Then N0 has order 8, and it is
easily checked that W0 admits a complement U0 inside N0 generated by π�xux� and π�yuy�.
Actually, both elements have order 2 and satisfy a Coxeter relation of length 4. In order to
lift this complement it is thus enough to find elements ã, b̃ " B mapping to π�xux�, π�yuy�,
such that ã

2
, b̃

2
, �ãb̃�2�b̃ã��2 " Q0.

By simply setting ã � xux, yB � yuy, it is checked computationally that, when written
in terms of the generators of P given above, these elements map to 0 under the morphism

P � P0 � Z where all the generators map to 0 but u
�2

. In the case of the order relation, it
is even possible to check this ‘by hand’, as

u
�2
.ux

2
u
�1
.u

2
.x

2
.x
�1
u
2
x � u

�1
x
2
uxu

2
x � u

�1
x�xuxu�ux � �xuxu�u�1xux � �xux�2

and similarly with x replaced with y. This provides a group-theoretic splitting in this case.

6.4. W � G32. In this case, B is the Artin group of type A4, with generators σ1, . . . , σ4.

6.4.1. W � G32, W0 � Z©3Z. Let W0 � �s1�. We have ¶N0¶ � 1296 � ½G26½. We set

z1 � �σ1σ2�3. Then, the images of z1, σ3, σ4 inside W centralize W0, have order 2, 3, 3, and
generate together a subgroup U0 of order 1296 which does not intersect W0. Therefore it is a
complement to W0 inside N0.

Moreover, inside B one checks that z1, σ3, σ4 satisfy the relations of the braid group of G26,
which also has order 1296. Since the order of the generators for G26 are also 2, 3, 3 this proves

in particular that U0 is isomorphic to G26. Finally, we have σ
3
3 " Q0, σ

3
4 " Q0, and z

2
1 � σ

3
1

mod Q0. Letting x � z1T �σ1�, y � σ3, z � σ4 with T �σ1�2 � σ
�3
1 , we get x

2
� y

3
� z

3
� 1

and that x, y, z satisfy inside yH0 the braid relations of the braid group of type G26 as soon
as 4i�X � ui� is square-free and K contains the

Ó
ui, by Lemma 2.8.

6.4.2. W � G32, W0 � Z©3Z�Z©3Z. We first consider the case where W0 � �s1, s3�. Then N0

has order 72 and permutes non-trivially the two distinguished reflections in W0. Therefore we

still have only 3 parameters u0, u1, u2 " K
�

for the Hecke algebra of W0. We set a � �s1s2s3�2,
c � �s3s4�3. Then �a, c� does not intersect W0, normalizes it, and has order 72, like G�6, 1, 2�.
Moreover, a and c have order 6 and 2, respectively. We let ã � �σ1σ2σ3�2 and c̃ � �σ3σ4�3.
These are preimages of a, c, and one checks that �ãc̃�2 � �c̃ã�2 inside the braid group B. In

particular, we have that N0 	 G�6, 1, 2�. Now, ã
6

is the full central twist of the parabolic
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subgroup �s1, s2, s3�, and thus its image inside yH0 is equal to the image of z1 � �σ1σ3�3.
Similarly, the image of c̃

2
is equal to the image of z2 � σ

3
3.

We check that z1, z2, z
ã
2 ,and c̃ commute to each other, that ã

2
commutes with z1, z2, and

that ã commutes with z1. Letting x � ãTx�z1�, y � c̃Ty�z2� for some Tx, Ty " K�X�, we have

xyxy � ãTx�z1�c̃Ty�z2�ãTx�z1�c̃Ty�z2�
� ãc̃ãc̃Tx�z1��Ty�z2�ã�Tx�z1�Ty�z2�
� c̃ãc̃ã�Ty�z2�ã2�Tx�z1��Ty�z2�ã�Tx�z1�
� c̃ã�Ty�z2�ã�Tx�z1�c̃ã�Ty�z2�ã�Tx�z1�
� c̃Ty�z2�ãTx�z1�c̃Ty�z2�ãTx�z1�
� yxyx

Moreover, we have x
6
� ã

6
Tx�z1�6 � z1Tx�z1�6, while y

2
� c̃

2
Ty�z2�2 � z2Ty�z2�2, so

we need to have Tx�z1�6 � z
�1
1 , Ty�z2�2 � z

�1
2 , and z1 and z2 are obviously annihilated by

40&i,j&2�X � u
3
iu

3
j� and 4i�X � u

3
i �. In order to apply Lemma 2.8 we thus need that these

polynomials are square-free and that
Ó
ui " K, 0 & i & 2.

6.4.3. W � G32, W0 � G4. We now consider the case where W0 � �s1, s2� � G4. Then N0

still has order 72, but is not isomorphic to G�6, 1, 2�. Note that G�6, 1, 2� and G5 are two
complex reflection groups of the same rank and the same order which are not isomorphic as
abstract groups.

We set a � �s1s2s3�4, c � s4. They both centralize W0, have order 3, satisfy �ac�2 � �ca�2,
and �a, c� has order 72 and has trivial intersection with W0. Therefore it is a convenient

complement, isomorphic to the complex reflection group G5. Let ã � �σ1σ2σ3�4, c̃ � σ4.

One checks that �ãc̃�2 � �c̃ã�2 inside B, and moreover c̃
3
" Q0, ã

3
� z

2
B0

mod Q0 where

zB0
� �σ1σ2�3. If there exists T " K�X� with z

2
B0
T �zB0

�3 � 1, letting x � ãT �zB0
�, and y � c̃

provides a morphism N0 � yH�
0 to which we can apply Lemma 2.3.

Now, the eigenvalues of zB0
can be computed on the irreducible representations of the Hecke

algebra of G4. One gets that zB0
acts on the irreducible representations of the generic Hecke

algebra of type G4 with the values ru3i ,�u3iu3j , �u0u1u2�2; 0 & i, j & 2, i j jx, and therefore it
is annihilated inside H0 by the polynomial

(6.1) �5
0&i&2

�X � u
3
i ��

������50&i,j&2
ijj

�X � u
3
iu

3
j�

����� �X � �u0u1u2�2�

Therefore, Lemma 2.6 can be applied when this polynomial is square-free and �u0u1u2�2
admits a 3-root, which is in particular the case when u0u1u2 admits one such root.

6.5. Conditions for G24, G25, G26, G32.

Proposition 6.1. Let W � G24, and u0, u1 " K
�

the defining parameters. Let W0 be a
parabolic subgroup of W . Then yH0 � N0 )H0 in the following cases:

(1) If W0 has rank 1; in this case, there is a group-theoretic splitting and the complement
is a Coxeter group of type B2.
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(2) If W0 has rank 2 and type A2, when the polynomial �X � u
6
0��X � u

6
1��X � u

3
0u

3
1�

is square-free and �u
3
0u

3
1 admits a square root in K. In this case the complement is

Z�W � � Z©2Z.
(3) If W0 has rank 2 and type B2; in this case, there is a group-theoretic splitting and the

complement is Z�W � � Z©2Z.

Proof. In the case where W0 has rank 1, this has been proved in Section 6.3. When W0 has
rank 2 it is maximal and the complement is Z�W � � Z©2Z. Therefore, when W0 has type

B2, since Z�W0� � Z©2Z, we get a group-theoretic splitting via �zBz�1B0
�. And, when W0 has

type A2, since Z�W0� � 1, we get an isomorphism yH0 � N0 ) H0 by Lemma 2.8 under the
condition of the statement, by Table 1 (see the proof of Lemma 2.9 and the comment after it
on how to determine the polynomial out of the table).

�

Proposition 6.2. Let W � G25, and u0, u1, u2 " K
�

the defining parameters. Let W0 be a
parabolic subgroup of W . Then yH0 � N0 )H0 in the following cases:

(1) If W0 has rank 1, when the polynomial4i�X�ui� is square-free and
Ó
ui " K. In this

case the complement is isomorphic to a complex reflection group of type G�3, 1, 2�.
(2) If W0 has rank 2 and type G4, when the polynomial (6.1) is square-free and 3

Ó
u0u1u2 "

K. In this case the complement is Z�W � � Z©3Z.
(3) If W0 has rank 2 and type Z©3Z � Z©3Z, when the polynomial 40&i,j&2�X � uiuj� is

square-free and
Ó
ui " K. In this case the complement is a cyclic group of order 6.

Proof. In the case where W0 has rank 1, this has been proved in Section 6.1. When W0 has
rank 2 and type Z©3Z�Z©3Z, this has been proved in Section 5.3. We now assume that W0 is
maximal of type G4. Then ¶Z�W �¶ � 3 and ¶Z�W0�¶ � 2 and the polynomial (6.1) annihilates
zB0

as in Section 6.4.3, and we get similarly the additional condition 3
Ó
u0u1u2 " K. This

concludes the proof. �

Proposition 6.3. Let W � G26 and v0, v1, u0, u1, u2 " K
�

the defining parameters. The
Hecke relations are �σ1 � v0��σ1 � v1� � 0, �σi � u0��σi � u1��σi � u2� � 0 for i � 2, 3. Let

W0 be a parabolic subgroup of W . Then yH0 � N0 )H0 in the following cases:

(1) If W0 has rank 1 and type Z©2Z, when v1 � v0 " K
�

and 3
Ó
vi " K. In this case the

complement is isomorphic to a complex reflection group of type G�3, 1, 2�.
(2) If W0 has rank 1 and type Z©3Z, when4i�X�ui� is square-free and

Ó
ui " K. In this

case the complement is isomorphic to a complex reflection group of type G�6, 2, 2�.
(3) If W0 has rank 2 and type Z©2Z � Z©3Z; in this case, we have a group-theoretic

splitting, and the complement is Z�W � which is cyclic of order 6.
(4) If W0 has rank 2 and type G4, when the polynomial (6.1) is square-free and 3

Ó
u0u1u2 "

K. In this case the complement is Z�W � which is cyclic of order 6.
(5) If W0 has rank 2 and type G�3, 1, 2�, when the polynomial

��� 5
�i,j�"r0,1x�r0,1,2x

�X � v
2
i u

2
j�
��

���5ijj �X � v0v1uiuj�
��
is square-free and

Ô
�v0v1uiuj " K for i j j. In this case the complement is Z�W �

which is cyclic of order 6.
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Proof. The proof of (1) is given in Section 6.2.2. The proof of (2) is given in Section 6.2.1, and
the identification of the complement with the group G�6, 2, 2� is done using GAP4 algorithms
for identifying the isomorphism type of small groups. We now consider the case of maximal
parabolic subgroups. We have ¶ZW ¶ � 6, ¶ZG�3, 1, 2�¶ � 3, ¶ZG4¶ � 2. When W0 �

Z©2Z � Z©3Z, since ¶ZW ¶ � ¶ZW0¶, we get a group-theoretic splitting. In case W0 has type

G4, we have zB0
� �σ2σ3�3, and we know by Section 6.4.3 that it is annihilated by polynomial

(6.1), and for applying Lemma 2.8 we need to be able to take 3-roots of its roots, that is, we
need to have 3

Ó
u0u1u2 " K.

When W0 has type G�3, 1, 2�, we have zB0
� σ1σ2σ1σ2. By computing its value on the

irreducible representations of the generic Hecke algebra of G�3, 1, 2�, we get that it is anni-
hilated by the polynomial of the statement. In order to apply Lemma 2.8 we thus need this
polynomial to be square-free, and also to have square roots of its roots, that is, we need to
have

Ô
�v0v1uiuj " K. �

Proposition 6.4. Let W � G32, and u0, u1, u2 " K
�

the defining parameters. Let W0 be a
parabolic subgroup of W . Then yH0 � N0 )H0 in the following cases:

(1) If W0 has rank 1, when 4i�X � ui� is square-free and
Ó
ui " K. In this case the

complement is isomorphic to a complex reflection group of type G26.
(2) If W0 has rank 2 and type G4, when the polynomial (6.1) is square-free and 3

Ó
u0u1u2 "

K. In this case the complement is isomorphic to a complex reflection group of type
G5.

(3) If W0 has rank 2 and type Z©3Z � Z©3Z, when 40&i,j&2�X � u
3
iu

3
j� and 4i�X � u

3
i �

are square-free and
Ó
ui " K, 0 & i & 2. In this case the complement is a complex

reflection group of type G�6, 1, 2�.
(4) If W0 has rank 3 and type G4�Z©3Z, then there is a group-theoretic splitting and the

complement is Z�W � which is cyclic of order 6.
(5) If W0 has rank 3 and type G25, when the polynomial

��� 5
ri,j,kx�r0,1,2x

�X � u
2
iu

4
ju

6
k��X � u

3
iu

3
ju

6
k��X � u

4
iu

4
ju

4
k�
��

�

���5ijj �X � u
4
iu

8
j��X � u

6
iu

6
j�
�� �5

i

�X � u
12
i �� �X3

� �u0u1u2�12�
is split and square-free (which implies that µ3�C� L K), and we have

Ó
ui " K,

0 & i & 2. In this case the complement is Z�W � which is cyclic of order 6.

Proof. The cases where W0 has rank 1 or 2 have been dealt with in Section 6.4; we can
thus assume that W0 is a maximal parabolic subgroup of rank 3. In this case, we need to

find a polynomial P such that P �zB0
�¶Z�W �¶

� z
¶Z�W0�¶
B0

. We first consider the case where

W0 � G4 � Z©3Z.

Then ¶ZW0¶ � 6 � ¶ZW ¶, and we get a group-theoretic splitting Z�W0� � yB0 via ζ6 (

zBz
�1
B0

with zB0
� �σ1σ2�3σ4.

We then consider the case where W0 has type G25. Then ¶ZW0¶ � 3, ¶ZW ¶ � 6, and
from the computation of the values of zB0

on the irreducible representations of the generic
Hecke algebra of type G25, we get that zB0

is annihilated by the polynomial of the statement.
Therefore the condition of Lemma 2.8 is that this polynomial is split and square-free in K,
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and K must contain the square roots of all its roots. This translates into the conditions of
the statement.

�
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Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, Uni-
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