RANDOMIZED SIMPLICIAL SETS

IVAN MARIN

ABSTRACT. We construct new geometric realizations of simplicial and pre-simplicial sets where the standard
n-simplex, viewed as the space of probability measures on n 4+ 1 elements, is replaced by the space of (n + 1)-
valued random variables, with the topology of probability convergence. We prove that the map which associates
to a random variable its probability law is an homotopy equivalence from these new geometric realizations to
the classical ones. Finally, we prove that this realization provides a new Quillen equivalence between simplicial
sets and topological spaces.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Context. We continue the exploration of Simplicial Random Variables, as initiated in [16]. The ob-
servation at the starting point of [16] was that the usual geometric realization |X| of a simplicial complex
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K is given by the collection of all the probability measures on a vertex set .S whose support provides a face
of the simplicial complex. Of course the usual topology of this geometric realization is the weak topology,
which is not that natural in the realm of measure theory, but Dowker’s theorem tells us that the choice of
topology is not that relevant in terms of homotopy theory, and that one can choose a metric topology instead.
Then, from the viewpoint of probability theory, a natural object living above this geometric realization is
the (metric) space L(K) C LY(Q, S) of random variables with values in the vertex set .S whose essential
image is a face of XC. Here (Q, A) is an atomless (complete) probability space, the chosen metric on L'(Q, S
isd(f,g) = f d(f (1), g())dA(t), where S is endowed with the discrete metric d(x,y) = 1 -6, ,. When
S is finite, the underlying topology of L!(Q, S) corresponds to the concept of convergence in probability
of a sequence of random variables. We proved in [16] that this space has the same homotopy type as the
ordinary realization, and that the natural ‘probability law” map L(X) — |K| is a Serre fibration and a ho-
motopy equivalence. Therefore these spaces of random variables provide alternative constructions for the
geometric realization of the simplicial complex K.

These alternative constructions have the following merit. Given a vertex set .S, and K a simplicial
complex with vertices inside .S, then a free action of group G on .S does not in general induce a free action
on | K|, but it does provide a free action on L(K).

As a consequence, if G is an arbitrary group, then one can consider with new eyes the obvious candidate
for a universal simplicial complex being acting upon by G, the full collection K = P{(G) of non-empty
finite subsets of G. The induced action of G on |Kg;| is not free, thus preventing the construction of a
classifying space for G as |K;|/G. But the induced action of G on L(K;) is free, providing an easy
construction of a classifying space for G, as L(K)/G = L' (Q, G)/G. The properties of this construction
have been studied separately in detail in [15].

1.2. Constructions and results. Here we consider the other standard concept of simpliciality, namely sim-
plicial sets. Replacing in each case the n-simplex A,,, again considered as a space of probability measures,
by the space of v,, of random variables with values in {0, ..., n} yields new realizations of these simplicial
sets as spaces of simplicial random variables.

In order to be more precise, we first recall the basic concepts in the realm of simplicial sets. We let Top
be a convenient category of topological spaces containing the metrizable ones, for instance the category
of weakly Hausdorff and compactly generated topological spaces, and Set the category of sets. In our
conventions, compact (and paracompact) spaces are Hausdorff. We denote A the category with objects the
[n] = {0, ...,n},n € Z; and (weakly) increasing maps as morphisms. A simplicial set is a contravariant
functor F € Fun(A, Set), or equivalently a graded set F = | |, F, with F, = F([n]), equiped with an
action on the right of the category A. The elements of F, are called the n-simplices of F.

The usual geometric realization has been defined by Milnor [22] as follows. Let A, = {(xg,....X,) €
[0, 1]7; Ei x; = 1} endowed with the product topology of [0, 1]". It defines a (covariant) functor A : A —
Top via A([n]) = A, and, for 6 € Homy ([n], [m]),

A©) : (xgrosx) | DL x;
jeol() i=0,...,m

From this functor, the geometric realization | F| is classically defined as the quotient space of E = | |, (F W X An)
with F, = F([n]) considered as a discrete topological space, by the equivalence relation ~ generated by
the relations (@o, a) ~ (a, A(c)(a)), for o € A. Itis a functor |.| : sSet — Top admitting for right adjoint
the singular functor X — Sing(X) with Sing(X),, equal to the set of maps A, — X. It can be seen as the
colimit of the functor AoDy : Cr — A, where Cp is the category of simplices of F (see [8] §4.2) and
Dg : Cp — A the forgetful functor.

Now set v, = L!(Q, [n]) considered as a (paracompact) topological space, with topology defined by
convergence in probability, or equivalently as the underlying topology of the L' metric. We introduce the
probability-law map p, : v, — A,, mapping f € v, to (A(f _1(i)))[:0,._.,n € A,. The first statement
suggesting that these concepts of probability theory are well adapted to the topological simplicial context
is the following one.
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Proposition 1.1. The map n — v, extends to a functor A — Top, and the (p,),>( define a natural trans-
formation v w A.

Proof. Foro : [n] — [m], the map v(c) maps f € v, = L1(Q, [n])tocof € L'(Q,[m]) = v,,. Moreover,
for f,g € v,,, we have

d(V(G)(f),V(G)(g))=/d(GOf(t),Gog(l))</d(f(t),g(t))=d(f,g)

which proves that v(c) is 1-Lipschitz and in particular continuous. The property v(co7) = v(c)ov(7) is
clear, hence v defines a functor A — Top.

In order to prove that n — p,, is a natural transformation, we need to compare the elements p,,ov(c)(f)
and A(o)op,(f) of A,, for 6 € Homy ([n], [m]) and f € v,,. Fori € [m], we have

Pnov(©@(N); = Moo N D) = AT @ = Y, A7)

j€s 1)
while
(A0)op, () = A AT GDjmo, i = D, AST'G)
Jjteo=1)
and this proves the claim. O

From this, the realization L(F) of F as a random variable space functorially associates to F' the quotient
of | |, (Fn X v,,) by the equivalence relation ~ generated by the relations (ao, a) ~ (a, v(c)(a)), for o € A.
Although v, is not locally compact, the topology of L(F) has the same degree of tameness as | F| : it
is paracompact, compactly generated and perfectly normal (see Proposition 3.7). As in the classical case,
L(F) canbe seen as the colimit of the functor voD : Cr — Top. By the general machinery (seee.g. [18],
[13]) this functor L : sSet — Top obviously admits a right adjoint X ~ Singg; (X) with Singp) (X),
equal to the set of maps v,, — X.

Moreover, the natural transformation p : v ~ A immediately provides a map pp : L(F) — |F| and
commutative diagrams

Hom,, (| F|, X) <— Homgge (F, Sing X)

| |

HomTop(L(F)a X) <~ HomsSet (F, SingRVX)
Our first main result is the following one.

Theorem 1.2. (see Theorem 3.1 and Section 5.1) For F a simplicial set, the probability-law map pr :
L(F) — |F| is an homotopy equivalence. In particular, L(F) has the homotopy type of a CW-complex.
For X a topological space, Singgy, X is a Kan complex.

Let M denote the subcategory of A such that Homy([#], [m]) is the set of injective applications inside
Homy ([#], [m]). The elements of Homy,([n], [m]) are called face maps.

The elements of psSet = Fun(M°”, Set) are called pre-simplicial sets (other common terminologies:
semi-simplicial sets, A-sets). In particular, to each pre-simplicial set F' can be associated a geometric
realization || F|| defined as the quotient of | |, (Fn X An) by the equivalence relation ~ generated by the
relations (ao, a) ~ (a, A(c)(a)), for c € M.

As before, we can construct the quotient IL(F) of | |, (F,, X vn) by the equivalence relation generated
by (@o, a) ~ (a, v(o)(a)), for 0 € M. Again, the natural transformation p : v ~ A immediately provides
a probability-law map py : IL(F) — || F||. Our second main result is the following one.

Theorem 1.3. (see Theorem 4.1) For F a pre-simplicial set, the probability-law map L(F) — || F|| is an
homotopy equivalence. In particular, IL(F) has the homotopy type of a CW-complex.

In this case, we are able to construct an explicit homotopy, which we will use in exploring the homotopic
properties of the construction on simplicial sets (for instance in the proof of Theorem 1.7 below).

Finally, recall that if K is a simplicial complex over a fotally ordered set S of vertices, then one can
associate to it a simplicial set SK and a pre-simplicial set M K (see Section 5.2). The next result says that
the constructions of this paper are compatible with the constructions of [16] in this case.
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Theorem 1.4. (see Section 5.2) Let K be an ordered simplicial complex. Then L(SK) and L(MK) are
homeomorphic, and L(SK), L(K) and |K| are homotopically equivalent.

Comparing the above results with the results of [16] for simplicial complexes, this suggests the following
conjecture.

Conjecture 1.5. The maps L(F) — |F| and IL(F) — || F|| Hurewicz fibrations.

We then prove that this new adjunction L : sSet < Top : Singg, is well-behaved with respect to
homotopy. Our first result in this direction compares the homotopy types of SingX and Singp; X.

Theorem 1.6. (see Theorem 6.4) For X a topological space, the natural map |SingX | — |Singgy, X| is an
homotopy equivalence. In particular, |Sing gy, X | and X have the same weak homotopy type.

Thus the natural map SingX — Singg, X is a weak homotopy equivalence inside sSet. If SingX is
viewed as the oo-groupoid 7., X of X, then Singp,, X provides another construction for it. More con-
cretely, this Theorem implies in particular that the induced morphism ZSingX — ZSing ry X of simplicial
abelian groups is also a weak equivalence (see [11] Proposition III 2.16), so that the obvious ‘randomized
singular chain complex’ of X, constructed in the same way as the classical singular chain complex by re-
placing the collection of all maps A, — X with the collection of all maps v,, = X, has for homology the
classical singular homology of X.

Then, we endow Top with M. Cole’s more flexible version of the standard (Quillen) model category
structure. The homotopy equivalences for this structure are the usual weak homotopy equivalences. The
classical functors || and Sing together provide a Quillen equivalence between this structure and the standard
model structure on sSet. We get the following ‘randomization’ of this classical result.

Theorem 1.7. (see Theorem 7.1) The functors L : sSet — Top and Singg,, : Top — sSet provide a
Quillen equivalence between sSet and Top. In particular they induce an equivalence of categories between
the corresponding homotopy categories.

Acknowledgements. I thank S. Douteau and D. Chataur for useful discussions. I thank especially D.
Chataur for his help in the proof of Theorem 1.6.

2. PRELIMINARIES ON MEASURE ALGEBRAS

In the paper, Q is a atomless (complete) probability space. It admits a measure algebra I, defined (see
[7]), as the collection of all measurable sets modulo neglectable ones, with the operations of intersection
N and symmetric difference A, together with the measure map 4 : MM — [0, 1]. It is naturally endowed
with a metric d(X,Y) = A(XAY), so that as a metric space it is naturally isomorphic to v,. The atomless
condition implies, thanks to Sierpinsky’s theorem ([24]), that there exists an exhaustion map t — €;, which
is a continuous map [0, 1] — M such that 1} < 1, = Q, C Q and A(Q) =1 = 1A(Q). We fix this
exhaustion map once and for all. When Q is a standard probability space, one can identify Q with [0, 1]
endowed with the Lebesgue measure and set Q, = [0, 7].

The following useful technical results were proven in [16], under the unnecessary assumption that € is
standard. More generally, all the results of [16] are true without this assumption, with essentially the same
proofs (with the exhaustion map replacing the choices of intervals). The suspicious reader may however
impose this additional assumption that Q is standard on the current paper as well. Hopefully the detailed
proofs for the statements of [16] in this more general setting will appear in [17].

The first useful map constructed in [16] is the following one. It is a continuous map g : M x [0, 1] - IMN
such that

(1) forevery A € M, u € [0,1], g(A,0) = A, A(g(A,u)) = A(A)(1 —u)

(2) forevery A€ MM, 0<u<v<1,8(A,u) DglA,v)

(3) setting g(A, u) = g(A, 1 —u), so that A((A, u)) = ui(A), we have g(A, uv) = g(g(A, u), v) for every
AeMandu,v € [0,1].

(4) forevery u,v € [0, 1], g(Q,,u) =Q, \ Q,,

(5) forall E,F € M and u,v € [0, 1],

A(@(E,u)Ag(F,v)) < 4AMEAF) + |0 — u] max(A(E), A(F)) < 4AEAF) + |v — ul
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This map is constructed in [16], Lemma 6. The additional statements we provide here are proven in the
course of the proof of the Lemma given there.
From this map, we can immediately build two other useful ones.

(1) Setting h(A,u) = “g(€A, u), one gets a continuous companion map h : I x [0, 1] — IMN such that
h(A4,0) = A, h(A, 1) = Q, A(h(A,u)) =u+ (1 —u)A(A) and h(A,u) C h(A,v) forall Aandu < v.
Moreover it satisfies h(€;, u) = €, _,), and

A(h(E,u)Ah(F, v)) < 4A(EAF) + |0 — u]

forall E,F € M and u, v € [0, 1].
(2) The map (¢, A) = tA = g(A, 1) provides a topological ‘retracting” action of the monoid [0, 1] (for
the multiplication law) on I, that is ¢, (1, A) = (¢,¢,) A, with the property that A(tA) = tA(A).

A third, more elaborate map is constructed in [16] from g. For X a topological space, let us denote P(X)
the path space made of continuous maps [0, 1] — X endowed with the compact-open topology. Then, there
is a continuous map

@ : P([0, 1]) X P(I) X M — P(IMN)
mapping (¢, E,, A) to B,, so that
« if A C Eyand q(0)A(E,) = A(A), then By = A
o forallu € [0,1], B, C E, and A(B,) = q)A(E,)
« if g and E, are constant maps, then so is B,

Informally this says that, when E, € P(I) is a path inside I with A C E,, then we can find another
path B, € P(IN) such that B, C E, for every u, and the ratio A(B,)/A(E,) follows any previously specified
variation starting at A(A)/A(E,) — and, moreover, that this can be done continuously.

The map is constructed as follows. We extend by constants the map g : M X [0, 1] — IN so that to define
a continuous map I X R — M. We have g(A,t) = g(A,1) = Aforeveryt > 1, and §(A,1) = §(A4,0) =0
for every t < 0. Then, setting a(u) = q(u)A(E,), the image of (¢, E,, A) is defined by the formula

. a(u) . a(u) — a(u)
”Hg<AnE“’ /I(Ar\Eu)> Ug<E“\A’ AE,\ A) )

A detailed elementary proof that this map is indeed continuous can be found in [16] (see Proposition 5
there).

Finally, we notice that the topological space v,, depends only on the measure algebra I, as it can be
defined as

n
V= {A=(Akmg, €M™ i = ANA=0& Y AA)=1)
k=0
the correspondance with the description of f € v, asamap f : Q — [n] being given by A, = f~(k).
Therefore, our construction L(F) depends only on I, and not on the probability space Q itself. As a
consequence, from Maharam’s theorem (see e.g. [7] ch. 33), we could assume w.l.0.g. that Q is a countable
union of (renormalized) probability spaces of the form {0, 1}* with the a infinite cardinals. We shall not
need this fact, though, in the course of our proofs.

Another remark is that all the constructions made here make sense if )t is replaced by any subalgebra of
90t containing the subsets ,,¢ € [0, 1] : typically, from the construction in [16], we get immediately that
the set g(A, u) belongs to the subalgebra generated by the 2, and A. As an example of such a subalgebra, in
the case where I = ([0, 1]) is the measure algebra of the unit interval and the exhaustion map is the map
t — [0,1], the algebra 9N could be replaced by any subalgebra containing the unions of any finite number
of open (or closed) intervals of [0, 1]. Therefore, all the results of the present paper remain valid if, in the
above definition of v,, the algebra I is replaced by any of these subalgebras.

3. SIMPLICIAL RANDOM VARIABLES
The purpose of this section is to prove the following theorem.

Theorem 3.1. The probability-law map L(F) — |F| is a homotopy equivalence.
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In order to prove it, we first need to prove that L(F) has similar structural properties as | F|, so we need
to browse the proofs describing the structure of | F'| as they appear in standard textbooks and prove that they
can be adapted to L(F) (without, in particular, using the theory of CW-complexes). We use [8] for this
purpose throughout.

We fix some F € sSet, and let Ff C F,, the collection of non degenerate simplices, that is the ones not
inside F,_;.c for some ¢ € A. Recall that | F| is a quotient of the subspace | | F}f X A, ([8] cor. 4.3.2)
and that it is a CW-complex ([8], Theorem 4.3.5), the n-cells being given by the {x} X A, ~ A, ~ B" for
x € F:f with attaching maps ¢, : A, — |F| mapping u € A,, to the class of (x, u).

For technical purposes, we need to introduce standard subcategories of A. We let M (resp. E) denote the
subcategory of A such that Homy([#], [m]) (resp. Homg([#], [m])) is the set of injective (resp. surjective)
applications inside Homy ([#], [m]). The elements of Homy;([n], [m]) are called the face maps and the
elements of Homg ([#], [m]) are called the degeneracy maps.

We first notice that the composition of the functor v : A — Top with the forgetful functor Top — Set
provides a cosimplicial set, which is immediately checked to have the Eilenberg-Zilber property. Recall
from e.g. [8] Proposition 4.2.6 that this property means Vx € v v(6g)(x) # v(6;(x)) with {8y,6;} =
Homy, ([0], [1]), and has for consequence that every element of L(F) admits a unique representative of the
form (a, a) with a € Ff and a an interior point of v, (that is, a point not inside the image of V(o) for
o : [m] = [n], m < n). This representative is called the minimal representative.

3.1. The boundary and interior of v,. Recall from [16] that to every simplicial complex K one associates
the metric space L(K), defined as a subspace of LY(Q,S) for S = (J K the union of all the elements of K,
that is its vertex set. This subspace is made of the (up to neglectability, measurable) maps f : Q — |J K
such that f(Q) € K, where
f@={s€S| s (s)>0)

is what is called the essential image of f. In this context, A, = |Pf* ([nD| and v, = L(P;k ([n])), where
Pf*(S) denotes the collection of all nonempty finite subsets of the set .S

For any simplicial complex K, let us consider the set K, of its maximal elements. Then it is easily
checked that 0K = K \ K, is a simplicial complex as well. We set dv,, = L(dPlz"([n])) = L(Plz"([n]) \
{[n]}) and

ve=v,\ov,={f€ LYQ, [n]); f(Q) < [n]}.

It is easily checked that v; is equal to the interior of v, in the sense of the cosimplicial set v as defined
above.

We can now notice the following properties of v, whose easy proofs are left to the reader. Part (3) can
be proved either directly or, applying p : v ~ A, immediately deduced from the classical case.

Lemma 3.2.

(1) Forevery S € E, the map v(.S) maps interior points to interior points.
(2) Forevery D € M, the map v(D) is a closed map.
(3) If o € Homy([m], [n]) and a € v;,, then v(c).a determines o.

Together with the Eilenberg-Zilber property, part (1) of the lemma has the following easy consequence.
Let (8,b) € | | F, X v,, having (a, @) for minimal representative. We have b = v(D).a’ for some D € M
and some interior point a’ by the Eilenberg-Zilber property, hence (f, b) ~ (8.D, a’); now, f.D = ’.S for
some S € E and o’ € F* sothat (8.D,d") = (o'.S,d") ~ (a’,v(S).a’). But since a’ is an interior point
s0 is v(.5).a’ and (&', v(S).a’) is the unique minimal representative, which proves a’ = a, a = v(5).d’. In
particular we have D € M and S € E such that §.D = a.S.

By [16] we know that the probability-law map provides a Hurewicz fibration 0v,, = L(()Pti"([n])) -
|a73f*([n])| = 0A,, with homotopically trivial fiber (consider the preimage of a vertex of dA,,), which is an
homotopy equivalence. Since A, is homeomorphic to a n-sphere, we get that dv,, has the (strong) homotopy
type of a n-sphere. Moreover, 0v,, is equal to the preimage of dA, under the probability-law map.

3.2. The cofibration dv, — v,. The purpose of this section is to prove the following.

Proposition 3.3. The inclusion map 0v, — v, is a closed cofibration.
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FIGURE 1. The cofibration A, < A,

As 0v,, is a closed subset of v,, in order to prove the proposition we need (see e.g. [8], Proposition
A.4.1 p.250) to construct a retract v, X I — (v, X {0}) U ((dv,,) X I) of the reverse natural inclusion, with
I1=10,1].

We first follow the classical geometric receipe ([8], p. 7-8) for proving that the inclusion of the n-sphere
inside the (n + 1)-ball is a closed fibration, except that we do it on the n-simplex (see Figure 1). For this we
construct a retract A, X I = (A, X {0}) U ((0v,,) X I) of the natural inclusion in the other direction. The
elements of A, x I are the (u;a) € A, X I for u = (uy, ..., u,) withu; > 0 and ) u; = 1. The line from
(v;2) to (u; @) with v = (v;);—¢_, and v; = Fll crosses (A, X {0}) U ((0A,,) X I) at exactly one point. The
corresponding (continuous) map from A, X I is explicitely given by the following formulas

w;a) (ﬁ(Zui — —)icg,..30) if a < 2(n + Dm(u)
u;—m(u) . a=2(n+1)m(u) .
((m)i:(),...,nv W) if a > 2(n+ Dm(w)
where m(u) = min(ugy, uy, ..., u,).
We now want to lift the map A, X1 — (A, xX{0}HU((0A,)xI)toamap v,XI = (v,x{0HU((dv,)XI).
For this we use the following result from [16] (Proposition 4.4 and Remark 4.5).

Proposition 3.4. Let X be a topological space. Then the probability-law map p, . v, = A, has the
homotopy lifting property w.r.t. X, that is, for any (continuous) maps H : X X[0,1] = A,, h : X = v,
such that p,oh = H (s,0), there exists a map H:Xxx[01] - v, such that pnoFI = H and H(s,0) = h.
Moreover, for any x € X such that H(x, ) is constant, then so is H (x,0).

We then start from the map f : A,X[0,1] = (A, x{0})U(0A,XI) C A, X I constructed above and we
consider the projection map p; : A, X I — A, as well as the composed map p,of = fliA,xI = A,
Let us consider the probability-law map p, : v, = A, and set H = flo(p, x1d) : v, x I - A,. We
have H(x,t) = p;(f(p,(x),1)), and H(x,0) = p;(f(p,(x),0)) = p,(x) = p,(h(x)) for h = Idv,,- Applying
Proposition 3.4 with X = v, we get H : v, x [0,1] — v, such that p,oH = H and H(+,0) = h = Idg .
Moreover, for any x € dv,, since f 1(pn(x)) = p,(x) we get that H(x,e) = f 1(p,,(x), *) is constant, since
fi(y,t) = yforall y € 0A,,. This yields H(x,t) = H(x,0) = h(x) = x for all x € dv,,, t € I. Let us now
consider ¢ = myof : A, %[0, 1] = I where x, is the second projection and set P(x, ) = (H(x, 1), p(x,1)).
This defines a continuous map ¥ : v, X1 — v, X1 such that p, xIdo¥ coincides with f. As a consequence
it takes values inside

(v, X {0H U ((0v,) X I) = (p, x 1D)™" (A, x {0}) U ((94,) X D))
and it makes the following diagram commute, where the vertical maps are restrictions of p, x Id.

V, X1 —— (v, X {0phuav,) xI)

|

A, X T —= (A, X {0})U((0A,) X I)
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It remains to prove that ¥ is the identity both on v, {0}, which is clear because ¥(x, 0) = (H(x,0), p(x,0) =
(h(x),0) = (x,0), and on (0v,,) X I, which holds true because ¢(x, t) = f and H(x,t) = H(x,0) = x when-
ever x € 0v,,. This concludes the proof of Proposition 3.3.

3.3. Preliminaries on attachments. In the remaining part of this section we adopt the point of view of a
simplicial set G as a graded set | |, G, endowed with a right action of the category A. A simplicial subset
of G is a simplicial set D = | |, D, with D, C G,, such that the inclusion D C F is a simplicial map.

We briefly recall the definition of a simplicial attachment (see [8] p. 144). Let A and G be two simplicial
sets, and D a simplicial subset of G. That is, D is a simplicial set | |, D, with D, C G, and the inclusion
maps D, — G, commute with the face and degeneracy maps. Moreover, let f : D — A be a simplicial
map. In order to avoid confusions, we temporarily denote x x p the action of p € A on x € G,,. From this
the simplicial attachement F is such that F, = A, U(G,, \ D,,) and, for any p € Homy ([n], [m]) and x € F,,
we define p.x from the action of A on A if x € A,,, from the action x on Gif x € G,\ D, and x.p & D,,,
and finally as f,,(x x p) if x.p € G, \ D, and x % p € D,,. Checking that this construction is well-defined
is straightforward.

Now, we recall from e.g. [8] Corollary 4.2.4 that the n-skeleton F" of a simplicial set F is obtained from
its (n — 1)-skeleton by attaching the simplicial set | |, F# A, where A, is a copy of the simplicial set A,

via the simplicial map | | cp# @, with @, : A, — F "1 given by ¢, (a) = xa where the simplicial set
0A,, is by definition the (n — 1)-skeleton of A,,.

3.4. Properties of the functor L : sSet — Top. Let F, G two simplicial sets, and f : F — G asimplicial
map. This means that f is a collection of maps f, : F, — G, commuting with the right action of the
category A, in the sense that, for every 0 € Homy([#], [m]) and @ € F,,, we have f,(a.0) = f,(a).0. It
induces continuous maps £, = fuXldg 0 F,Xv, — G,xv,. Foro € Homy([n], [m]) and (a, a) € F, XV,
we have

fnl@.0.a) = (f(a.0),a) = (f,(@).0,0) ~ (f,(@), V(6)(@) = [,(a, V(c)(a))

hence |_|n fn induces a continuous map L(f) : L(F) - L(G),andclearly L(fog) = L(f)oL(g), L(dy) =
Id; (). Therefore L defines a functor L : sSet — Top.

The composite of v with the forgetful functor ' : Top — Set is a cosimplicial set, and clearly
VoL(F) = F @ Vov with the notations of e.g. [8]. Moreover, it is immediately checked that V ov has the
Eilenberg-Zilber property, and therefore V' o L preserves and reflects monomorphisms ([8], corollary 4.2.9).
In particular, if D is a simplicial subset of G, then the induced map L(D) — L(G) is injective.

As in the classical case, we have the following property.

Lemma 3.5. If G is a simplicial subset of the simplicial set F, then the natural map L(G) — L(F) embeds
L(G) as a closed subset of L(F).

Proof. Let y € L(G) and X its image in L(F). There exists unique minimal representatives of X and y
inside | |, F, x v, and ||, G, X v,,, respectively. Since G* C F* they are the same, and this implies that %
determines y, whence L(G) C L(F).

Let now C be a closed subset of L(G), g : | | F, X v,, = L(F) the natural projection map, and C, =
g (C)n {a} x v, for each a € F,. We need to prove that each C, is closed. This is clear when a € G, so
we assume otherwise, and consider (a, y) € C,. Then y = v(D).y, for some interior point y, and D € M,
and a.D = f.S for some .S € E and # € F*. Then

(@,y) = (., v(D).y) ~ (2.D, yy) = (5.5, yp) ~ (B, v(5).y0)

and f is non-degenerate, v(.5).y, is interior (Lemma 3.2 (1)) , hence (f, v(.S).y,) is the minimal represen-
tative in the class, which implies § € G. Then a.D = .5 € G and y = A(D).y, with (a.D, yy) € C, p.
This implies

C.= |J vxe,p).

DeM
a.DEG

Now, each C, , is closed, each v(D) is a closed map (Lemma 3.2 (2)) and the collection of all A € M that
can be applied to « is finite, whence C, is closed. O
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We show that, when F is a simplicial set, then L(F) can be constructed as a limit of successive attach-
ments. Notice that, because of Proposition 3.3, the natural maps F:f X 0v, — Flf X v, implied in the
attachment are closed cofibrations.

Proposition 3.6. Let F be a simplicial set, then (L(F (")))V,ZO is a filtration of L(F) which determines the
topology of F. Moreover, for every n,

LF®)y = LF" )y up, | | ] ve|-

#
XEF;

where @ @ | | cps 0A, — F=D s the simplicial attaching map, and the natural map LI, Ff xXv, = L(F)
is a quotient map.

Proof. This statement is adapted from the classical analogous statement for the geometric realization func-
tor, so we need to check that the classical proof uses only properties of the cosimplicial space [n] = A,
(that we still denote A) that are also satisfied by the cosimplicial space [n] — v,, (that we still denote L).
For this we follow the steps described in [8], §4.3. First of all, since the cosimplicial set L also has the
Eilenberg-Zilber property, then any element of the tensor product F @ L = L(F) can be represented by
a unique so-called minimal pair ([8], Proposition 4.2.7). At the set-theoretical level this implies (see [8],
Proposition 4.3.3) that every element of L(F) has a unique representative of the form (@, a) with @ a non-
degenerate simplex of F of some dimension n, and @ € v, \ dv,, and also that, for f a simplicial map,
f is injective iff L(f) is injective. Moreover, the topology of L(F) is the final topology w.r.t. the family
of maps ¢, : v, - L(F), induced by a — (x,a) € F, X v, — L(F) (compare with [8] p. 153). Asa
consequence (see [8], Proposition 4.3.1) we get that, if some subset E C | |, F, generates the simplicial set
F, then L(F) is a quotient space of the subspace | |,(E N F,) X v, of | |, F, X v, ; in particular, L(F) is a
quotient space of | |, F¥ x v,,.

From this and Lemma 3.5 we can adapt the proof of [8], Theorem 4.3.5. First of all, we get from the
previous point that the L(F®) are closed subspaces of L(F) and form a filtration of it. The fact that the
topology of the space L(F) is determined by the family (L(F (”))),,eN has the same proof as for | F| : if a
map f : L(F) — Z is such that all its restrictions to L(F () are continuous, then so are the composites
foc, since any c, factorizes through L(F M) - L(F) for some n ; since L(F) has the final topology with
respect to the ¢, this fact follows. Therefore, we can fix n, and consider F ™M a5 a simplicial attachment.
Then the proof of Theorem 4.3.5 of [8] can be applied verbatim to our case, and L(F™) can be described
as a topological attachment as in the statement. (]

From this we get the following result.

Proposition 3.7. For F a simplicial set, L(F) is paracompact and perfectly normal. It is also compactly
generated.

Proof. Recall that a space X is called perfectly normal if every closed subset is the vanishing locus of some
map X — R_. Since discrete spaces and the metrizable spaces Ff X v, are perfectly normal, by induction
on n we get from Proposition 3.6 that all the L(F Y are perfectly normal (see [8] Proposition A.4.8 (iv)).
Moreover, the embeddings L(F™) < L(F"*D) are closed cofibrations (see [8] Proposition A.4.8 (ii)) and
we checked in the proof of Proposition 3.6 that the topology of L(F) is the topology of the union of the
L(F™). From this it follows ([8] Proposition A.5.1 (iv)) that L(F) is perfectly normal. In particular it is
Hausdorff. In order to prove that it is paracompact, it is by the same arguments enough to check that each of
the L(F™) is paracompact ([8] Proposition A.5.1 (v)). By Michael’s theorem ([20], pages 791-792; [21])
this follows by induction on n from Proposition 3.6 and the fact that each of the Ff X v, is metrizable hence
paracompact.

We now prove that L(F) is compactly generated. The fact that each L(F™) is compactly generated
follows from the proposition by induction on n (see e.g. [19] ch. 5.2), as Ff X v, 1s (metrizable hence) first
countable hence compactly generated. Since the filtration L(F®) determines the topology of L(F) this
implies that L(F) is compactly generated.

O
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Remark 3.8. Recall that every subset of a space which is both paracompact and perfectly normal is also
paracompact and perfectly normal ([14] Appendice I Theorem 6), so this property of CW-complexes is also
shared by L(F).

3.5. Proof of Theorem 3.1. We follow the scheme of the proof of the comparison theorem of [8] Theorem
4.3.20, and adapt it to our case. Let F be a simplicial set. The natural map pgg) : L(FO) > |FO) is the
identity map on a disjoint union of points, therefore it is a homotopy equivalence. Let us assume that we
know that the probability-law maps p(Fk) : L(F®) = |F®W| for k < n — 1 are homotopy equivalences and
commute with the natural inclusion maps |[F*—V| ¢ |[F®| and L(F*~D) ¢ L(F®). By Proposition 3.6
we have a commutative diagram

leeFf v, <~— l_lxeFj v, —= L(F(”—l))

| ]

I_lxeij A, ~— leeFf 0A, —— |F(n—1)|

where the vertical maps are homotopy equivalences and the horizontal maps going left are closed cofi-
brations by Proposition 3.3. By the gluing theorem ([8] Theorem A.4.12 and [1] 7.5.7) this implies that

pg') : L(F™) — |F™| is a homotopy equivalence. By induction this proves that p(;) is a homotopy

equivalence for every n. This provides a commutative ladder of homotopy equivalences (pg') )us0- thus the
induced map pp : L(F) — |F| between the union spaces is a homotopy equivalence ([8], Proposition
A.5.11). This concludes the proof of the theorem.

4. PRE-SIMPLICIAL RANDOM VARIABLES

We use [8] and [5] for reference, and recall the notations of the introduction. Recall from Section 3 that
M and E denotes the subcategories of A made of the face and degeneracy maps, respectively. The objects
of psSet = Fun(M??, Set) are called pre-simplicial sets (or semi-simplicial sets, or A-sets).

The categories M and E are generated by the elementary face and degeneracy maps, respectively. These
are defined as

Dl.c o [m=11 - [n] Sl.c o [m+1] - [n]
k - k ifk<i k - k ifk<i
k+1 ifk>i k—1 ifk>i

In particular, the geometric realization || F'|| defined in the introduction can also be defined as the quotient
of | ], (F, x A,) by the equivalence relation generated by the (D;a,a) ~ (a, D'a) where D; = F(Df) :
F,— F,_jand D' = A(DY). Similarly, IL(F) is the quotient of | |, (F,, X V,,) by the equivalence relation
generated by the (D;a, a) = (a, D, a) where DY, = v(D5).

In this section we will prove the following

Theorem 4.1. For every pre-simplicial set F, the probability-law map IL(F) — || F|| is an homotopy
equivalence.

Recall from [16] (Proposition 4.1 and its proof) that the probability-law map p, : v, — A, hasa
(continuous) section 6,, : A, — v, characterized by
o,(0)(x)=a if x€ QZuSa ) \QZK” )
for @ : [n] — [0, 1] with ZZ:O a(k) = 1. The main theorem will readily follow from the following

proposition, which provides an explicit homotopy equivalence. This will be also used in Section 7.

Proposition 4.2. The composition 6,0p, . v, — v, is homotopic to the identity map, by an homotopy
H, :[0,1] X v, = v, which commutes with the face maps D"RV, that is

VnVf €v,Vi€[0.n+1]1Vu € [0, 11 H, (u, D, f) = Dy, H,(u, f)
and such that

e p,(H,(u, f))=p,()forall f €v,uecl0,1]
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f

0,°P,(f)

FIGURE 2. Homotopy between o,,0p, and Id;,

e H (u,0,(a)) =0,(a)foralla € A,,u €[0,1].

The proof of the Theorem then goes as follows. The maps o, p,, and H, for n > 0 together define maps
6p:A—> B, pp:B— Aand Hp : IXB - BwithA=|], F,xA,and B =|], F, Xv,. Because
of the compatibility with the face maps, they induce maps o : ||F| — L(F), pr : L(F) — || F|| and
Hp : I XIL(F) — |F|. Itis readily checked that pro6 = Id, hence prooy = Id. By the proposition, H
is an homotopy between the identity and o opf, and this proves the claim.

In the remaining part of this section, we prove Proposition 4.2.

4.1. Homotopy equivalence : definition in the case n = 1.
We use the retracting action (¢, A) — tA of the topological monoid [0, 1] on 9N = v, defined in Section
2.
We first consider the case n = 1 and set, foru € [0, 1] and f € vy,
AW f) = 0 over ——mh(f~'({0}),u)
= 1 overits complement.

and set H (u, f) = ﬁl(:—l,f) foru < ay, Hi(u, f) = ojop;(f) = FII(I,f) for u > a;, where a;, =

/l(f_l({k})). Then H, : [0,1] X v{ — v, provides an homotopy between f — H (0, f) = ﬁl(O, H=Ff
and f = H (1, f) = fIl(l,f) = o,0p,(f). Moreover, p;(H;(u, f)) = p;(f) since

A(Lw—l({on,u)) =0

u+ (1 —way u+ (1 -uway

Finally, since h(Q,,u) = Q,,_,), we have ﬂl(u, oi(a)) = o;(a) hence H;(u,0(a@)) = oy(a) for all
a € Ajandu < aj.

(u+ 1 =wa(f~'({0})) = a

4.2. Homotopy equivalence : definition in the case of higher n. We then construct an homotopy H,, :
[0,11 X v, — v, between Id;, and 6,,0p, by induction on n. We use the map @ of Section 2.

Let f € v, witha = p,(f) € A,. We denote X = (X C X; C ...) defined as X = £71qo, ..., k})
and x = (xy < x; <) defined as x;, = ap + -~ + ;. We set

x
E'=—""1 hX,_,u, Q=0Q\E"
“out (1 - wx, K150, £, \E,
and, by descending induction, for 2 < k and u € [0, 1],
_ Xi—2 _ _
EF'=o (E,E.",Xk_z> W, ' =ES\E!
and Q¥ = E!.
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From the defining properties of the maps ® and h we immediately get
o Forall u, A(E})) = x,_; and A(2]) = a,
» By induction on k, for all k > 1, /I(E.k) = X;_|
« hence, for all k > 0, A(QF) = a,, with Qg = - I{k)).
e Forall r < k, QZ C E;‘H C - C Eblf hence QZ N Q’; = ¢ and, when u is fixed, the Q’u‘ form a
partition of Q, as Y, /I(Q’Lj) =1.
¢ QF =]x,_;, 1] =]l —a,, 1]
hence we can define Fln(u, H) = kift € Q"j, and H,(u, ) = FIn(a—':,f) for0 < u < a,, and, for
a, <u<sl,

H,(u, (1)

H, (=2, Hy(1, g 1=, )(=) for0<1<1-a,
= n forl —a,<t<1

where H,(1, F0,1-a,] € V-1 is defined by
u H (1L f) ((1-a,u).
In the case n = 2, this homotopy is depicted in Figure 2.

We check that H,(0, f) = fln(O, f) = f since Qg = f~1({k}), and, using the induction assumption,
that, for t < 1 — a,,, we have

Hy(L O = Hy (L Hy (L Do 1) G7=) = 001081 (L Do 1o )77

)

n
and, since A(QF) = a,, we know that, for k < n, p,_;(H,(1, Drog—a, Dk = lf—’; hence

t
1 -a,

Moreover, if t > 1 — a,,, then H,(1, f)(¥) = n = 0,0p,(f)(), whence H,(1, f) = ¢,0p,(f).

619Dt (Hu (1, F)io, 1,1 ) = 6,,0p,(/)®).

4.3. Proof of Proposition 4.2 : generalities. We check by induction on » that the maps H,, satisfy the
properties of Proposition 4.2, and first of all that it indeed provides an homotopy from Id;, to o,,0p,,.

For f € v,, we have H,(0, f) = FI,,(O, f) = f,since Qg = f~1({k}). Moreover, using the induction
assumption, we have that, fort <1 - a,,

Hy(L )0 = Hy (L Hy (L Do 1) G7=) = 001081 (L Do 1) (77—

)

n

and, since A(QF) = a;, we know that, for k < n, p,_;(H,(1, Dog-a, Dk = —%_ hence

I-a,
t
l-a,
Finally, if t > 1 — e,,, then H,(1, f)(t) = n = 0,,0p,(f)(t), whence H,(1, f) = 0,0p,(f) and H,, is indeed
an homotopy from Id; to 6,0p,.

Gp19Pn—1 (Hu (1, F)io, 1,1 ) = 6,0p,(/)®).

We now prove that p,(H,(u, f)) = p,(f) for allu € [0,1]. Foru < a,, this is clear as p,(H,(u, f)) =
pn(l-vln(ai,f)) = p,(f) since A(Qf‘) = q; forall k > 1. Foru > a, we have p,(H,(u, f)), = a, = p,(f),

and, for k < n,

pn(Hn(u, f))k = (1 - an)pn—l(Hn—l(

u

—-a
l-«a

=, ﬁn(l, f)[(),l—an]))k =(1- an)Pn_1(Iv{n(1, f)[o,l—a,,])k =0

n

hence p,(H,(u, f)) = p,(f) and this proves the claim.

Let us now consider the case f = o,(), and prove H,(u, f) = f for every u € [0, 1]. From the property
h(Qg, u) = Q1 We get EY = Q, . From the explicit construction of ® in Section 2 we get that, for
0<a<b<l,
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q><9,9, ) Q,nQ, —2 =V<Q,g>=9
b b (W) = < b A(Qa ﬂQb) g @, a
It follows by descending induction on k that Ek = ka_l whence PVI,,(u, o,(a)) = o,(a). Clearly then

H,(u,0,(a)) = o,(a) foru < a,. Letting f;, = a,/(1 — a,) for k < n, we have 0(@0,1-a,] = On-1(P)
hence, foru > a,,

u-—a,
H,(u,c,(0)(®) = H,,_l(m, cr,,_l(ﬁ))(1

fort <1-a, and H,(u,0,(2))) =n = o,(a)®) fort > 1 — a,, and we get H,,(u, o,(a)) = o,(a) for all
u,a.
It remains to prove that H, commutes with the face maps.

t)=nwx ) =@
—a

n

4.4. Proof of Proposition 4.2 : face maps. We consider D;W 1V, = V,y for 0 <i <n+ 1 and denote
EF, QF the sets EX, QF for DI (f). We set B, = f~'([k]), B = (DL, f)"'([k]D). o = A(f 7 ({k})).
ty, = A(Dioy, /)T UKD, Ay = ABY), Ay = A(By). Wehave Ay = ag + - + oy, Ay = &g + -+ + &

We have @, = a; fork <i—-1,a; =0, and & = a; for k > i. Also, By = By, ..., Bi_; = B,_4
and B, = B,_, = B, s Bi+1 = B,, ..., B,,; = B,. As aconsequence, Ay = A, ..., A;_; = A;,_; and
A=A =A_, A=A AL = A,

We want to prove that

VnVi € [0,n+ 1]Vu € [0, 1] H,,1(u, D’ ry )= Dy, Hy(u, )

We prove this by induction on n.

For a given n we then prove this by descending induction on i. Therefore we start assuming i = n + 1.
Then D', is the inclusion v, C v, ;, and we have &,,; =0, hence I — &,,; = 1 and

H, (u, D% ) = H,(u, D f) = Ho(u, f) = D5 H,(u, f)

by definition.
We then assume that i < n+ 1. Then

~

An h(B,,u) An-t h(B )=
-~ U= ,u
utr(d—-wi, " u+d-wA,, !

fn+l _
=

hence E"f“ = FE" and Qf‘“ = Q. Then, by descending induction on k, we have that, provided k > i,

. At e 4 A
Ef=o <—’f“ JEST, Bk_o) =® ( "‘Z,E.k,Bk_2> = £
A, A1

Therefore, E¥*! = E*(f) when k > i.

Then,
N A . A, . A .
E=o <%1,E’+1,Bi_l) = <L‘,El,Bi_1> =®(1,E,B_)=E!
. l . Al_l . . .
since one always has ®(1, E,, A) =

Then, for k < i, we prove that

E"k=q)<A JERH, Bk—) (D<£’Ek+l’3k_]>=Ek
. Ak Ak . .

again by descending induction on k. Summarizing, one gets E.k“ = EFfor k > i, Ek =EFfork <i Tt
follows that @ = EX \ EF-1 = Q1 for k > i, Q! = @, QX = Q for k < i. Thus, from the definition we
get H,, (., D', f) = DX H,(u, f) for all u € [0, 1] hence and
. . v u i
n+1(u D Vf) n+1( Vf) n+1(v ) lRVf):DlRVHn(&_,f)ZDRVHn(umf)
n

n+1
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forO0 <u < d&,, =a, Then, for &, ; =a, <u <1, wehaveover [0,1 — &, ] that

i _ u_én+1 7 i !
H, (u, DRVf)(I) =H,| ——. Hn+l(1’(DRVf)|[0,l—d,,+|]) 1T—a

1- (L] — Upy

u—a, ; t
= H,, <] " ,H,,+1(1,DRV(f|[o,1_an]))> <—>

n 1- LS|

=H, (=2 Dl fL f, ) (——
- *n 1_an’ Ry n 1 J[0,1-a,] 1_5‘n+1

=D\, H, | <—L1£ : Z:,Hn(l,fuo,l_an]))) <1 _ta ) = D', H,(u, f)(1)

n
and forr > 1— én+_1 =1- a, we have H, (u, D;{Vf)(t) =n+ 1 while D;WHn(u, @ =Di(n)=n+1
whence H,,, ((u, D%, f) = D'\, H,(u, f) and this proves the claim.

Remark 4.3. It can be checked by explicit computations that the above construction is not compatible with
the degeneracy maps, already for f € v, being f([0,1/3)) = 2,£([1/3,2/3]) = L and f(12/3,1]) = O,
with Q, = [0,1] and [0, 1] is endowed with the Lebesgue measure.

5. ADDITIONAL PROPERTIES

5.1. Kan condition for Sing g, X. Here we prove that, for X a topological space, the simplicial set Sing p}, X
satisfies the Kan condition. For this, consider some n > 1, k € [n], z; € (Singgy, X),_1 = (Singgy, X)([n —
1]) for i € [n] with i # k, such that z,».Dj? = zJ-.Dic_1 forO0 <j<i<mnandk ¢ {i,j}. In order to prove
that Sing g, X satisfies the Kan condition, we need (see e.g. [8] §4.5) to find z € (Singg; X), such that
z; = z.D{ fori # k.

For a = (ay, ..., a,) € A,, denote my(a) = min,, a,, and define q(a) € A, by q(a); = a; — my(a) for
i # k, g(a);, = a; + nmy(a). This defines a continuous map which is actually a retraction from A, onto
its k-th horn Aﬁ = {(ag,...,a,) | i # k a; = 0}. We want to define z, : v, — X. Let us represent
elements of v, by (n + 1)-tuples A = (A, ..., A,) providing a partition of € into measurable sets, with A;
the preimage of i € [n] by the corresponding random variable Q — [#] and introduce

VE=pl(Ah = (A= (A, ....A,) € v, | 3i # kAA) = 0}

The z; € (Singgpy X),_; for i # k can immediately be glued together into a map Z : Vnk - X.

Then, consider the map v,, — v, defined by mapping A = (4, ..., A,) to B = (B, ..., B,) with B;,
equal to the complement in € of Ur#k B, and, fori # k, B; = A;if A(A;) = 0,and B; = g(A;, min,,; A(A,)/A(A;))
otherwise, where g is as in Section 4.1. We have B; C A; for i # k, hence the B;’s still form a partition of
Q, and it is easily checked that A(B;) = g(a); for a = p,(A) € A,,. In particular B € Vn" and this defines
a continuous retraction v, — Vnk . Composing it with zZ : Vnk — X provides z € Singg; X such that
z; = z.Dl.C for i # k, and this proves the claim.

Although it is not needed for the proof, as in the classical case one can prove that Vn" is a deformation
retract of v, see Proposition 7.4 below.

5.2. Ordered simplicial complexes. Let K be a simplicial complex over a totally ordered set S of vertices.
Then a simplicial set SK can be obtained in a standard way by repeating vertices, namely

SK, = {(50,-..,5,) € S50 <5) < oor <5, & {50,005 5,) EK)

and, for f € Homy ([m], [n]), SK(f) maps (s, ..., s,) to (sf(o), ,sf(m)). A non-degenerate n-simplex is
characterized by the property sy < -+ < s,,.

In [16] we defined a (metric) space of simplicial random variables L(K) associated to the simplicial
complex K. Letting |K|,, and |K|,, be the geometric realizations of K equipped with the weak and strong
(or metric) topology, respectively, the proof of Theorem 1.4 consists in the following chain of homotopy
equivalences

L(SK) ~ |SK| ~ |K|,, ~ K], ~ L(K)
where the first one is given by Theorem 3.1, the second one is standard (see e.g. [10] 1.2.13), the third one
is Dowker’s theorem ([3]; see also [23]), and the fourth one is our Theorem 1 of [16].



RANDOMIZED SIMPLICIAL SETS 15

Let us consider M K the associated pre-simplicial set, namely the restriction of SK to the category M.
As expected, the topological spaces L(M K) and L(SK) are actually the same.

Proposition 5.1. The spaces L(M K) and L(SK) are homeomorphic.

Proof. Letus denote F = SK. Then | F| is a quotient space of | | F* X A,,, equal to the image of | | F,, XA,
modulo the equivalence relations (af,a) ~ (a, A(f)(a)) for f € A. Now let us assume that (af,a) ~
(o, A(f)(a)) for some a € Ff, af € Flﬁ and f € Homy([m], [n]). We have @ = (s¢,...,s,) and af =
(sf(o), A sf(m)). Butaf € F:: means Sy < -+ < Sp(y) and this implies that f is injective. Therefore
ISK|=|IMK| =] Fj X A,)/ ~ with ~ generated by (af, a) ~ (a, A(f)(a)) for f € M.

The same argument shows that L(M K) and L(SK) are homeomorphic.

The (weak) geometric realization of K is the topological union of the || where K is the n-skeleton
of K, defined as the collection of elements of K of cardinality at most n + 1. From the cellular structure of
K and since M is generated by the face maps we get immediately that the identity map of | | w<n Fie X Ay
induces an homeomorphism between || and ||(M K)™||. From this we get a commutative ladder of

homeomorphisms which induces an homeomorphism between | K| and || M K||.
O

5.3. Finite products and equalizers. Let F, G be two simplicial sets, and F X G their product in the
category sSet. It is defined (see e.g. [8]) by (F X G),, = F, X G,, and (a, f).c = (a.0,f.0) forc € A.
From the product property we have natural maps |F X G| — |F| X |G| and L(F X G) — L(F) X L(G).
The former is known to be an homeomorphism ([8] Proposition 4.3.15), and more generally the geometric
realization functor preserves finite limits. Here we show that the latter map L(F X G) - L(F) X L(G) is
not an homeomorphism in general.

Our example is the following one. We consider the simplicial complex Pf*([l]) on the vertex set S =
[1] = {0, 1} given by the collection of all non-empty subsets of .S. The simplicial set F associated to it is
the 1-simplex, considered as a simplicial set, and |F| = A, =1, L(F) =v; = M.

The simplicial set F' X F can be described as Fy. for K the 2-dimensional simplicial complex on the set
(Fx F)y =S5 x.S whose maximal simplices are {(0, 0), (0, 1), (1, 1)} and {(0,0), (1, 1), (1,0)}. An element
of L(F X F) can thus be described as an element of L'(Q, S x .5), or equivalently by a partition of Q (up
to neglectability) into 4 parts A = (Agyg, Ag1> Ajg> A11)- The condition that it belongs to L(F X F) reads
Ajg=0or Ay =0.

We now consider its image under the projection map L(F X F) — v X v| = I X M, where elements
of v, are identified with (classes of measurable) subsets of Q. It is easily checked that A is mapped to
(Ajp U Ay, Ag; U Aj)), which is equal either to (A, Ag; U A;p) if Ajg = @, orto (A;g U Ay, Ayy) if
Ay, = @. From this one gets that the image of L(F X F) inside L(F) X L(F) is the collection of pairs
(U,V) € M x M such that either U C V or V' C U. Therefore the map is not surjective, and this proves
that L : sSet — Top does not preserve finite products.

A positive property however is that L preserves equalizers.

Proposition 5.2. Let F,G be two simplicial sets, ,w . F — G two simplicial maps, and H C F their
equalizer in sSet. Then L(H) is the equalizer of the maps L(@), L(y) : L(F) — L(G).

Proof. Clearly L(H) is included inside this equalizer. Conversely, let us consider one of its elements, and
a representative (@, a) of it with a an interior point. By definition (f(«), a) and (g(a), a) are equivalent
inside L(F). Let 8, p’ € F* and S, S’ € E such that f(a) = §.S, and g(a) = f'.S’. We have (fa),qa) =
(8.S,a) ~ (B, v(S).a) and similarly (g(a), a) ~ (f',v(S").a). Now by definition (f(«), a) and (g(a), a) are
equivalent inside L(F), so their minimal representatives are the same, thatis § = ' and v(S).a = v(S').a.
Since a is interior one gets .S = S’ by Lemma 3.2 (3) and this proves f(a) = 8.5 = f'.S’ = g(a), which
proves the claim. O

Actually L also reflects equalizers, as is immediate by application of the natural transformation p : L w
| » | and the similar result in the classical case (see e.g. [8] Proposition 4.3.13).

5.4. Standard variation. There is a well-known standard variation on the definition of a n-simplex, which
is better behaved for some purposes, as N\, = {(xy,...,x,) € [0,1];x; < -+ < x,}. More precisely, it
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defines a functor \ : A — Top, mapping ¢ € A to \ (o) defined by

N(o)(xp, .0 s x,) = (x1+sup0'_1({0 i—1})),-_] o

----- =

with the conventions sup@ = —oo and x_,, = 0.
There is a (bicontinuous) bijection between [\ ,, and A, = {(ay,....a,) € [0,1]";ay + - + a, = 1},
given by xog = ag, x; = ay +ay, ..., x, = ag + -+ + a,_; and conversely a, = x(, a; = x; — x;_; for

0<i<mn a,=1-x,. Itisimmediately checked that this bijection defines an isomorphism between the
functors A and |\ .
There is a similar variation for simplicial random variables. There is a cosimplicial space [” : A — Top
corresponding to
Vn = {é= (Ay, ... 7An);A] CA,C-C An Cc Q}

where the subsets of Q are always understood up to subsets of measure 0, and the topology is for instance
given by the metric d(A', A%) = max; A(A! AA?) where UAV = (U \ V) U (V' \ U). Foro € A,

7 (©)Af, s Ay) = (Al rsupo-iqo...io1))

This functor is isomorphic to v. To see this, recall that v, = LY(Q, [n]) can be identified with {(By,....B,); Q=
By U -+ U B,} (where set-theoretic equalities are always understood up to neglectable subsets) through

B, = f~'({i}) for i € [n] and f € v,,. Then, the correspondence is given via A, = By U -+- U B,_,, and

it is easily checked to be simplicial. Finally, the probability-law maps p/ : [7, = N\,. (4},...,4,) =
(A(A}), ..., A(A,))} are continuous, fit together, and define a natural transformation [7 «~ . It is easily
checked that all this fits into a commutative diagram of functors as follows.

i=1,....m

V<>

|

A<=—>N

6. HOMOTOPY INVARIANCE

In this section we investigate the relation between the functors Sing and Singp; . Recall that p, : v, —
A, denotes the probability-law map. For Z a topological space, Singg;- Z is defined as the simplicial set
with n-vertices the (continuous) maps v, = Z,and ¢ € A actson f € (Singgy Z), as f.c = fov(o). If
(Z, z) is a pointed space, Singg;, Z is a pointed simplicial set, with distinguished vertex the map vy — Z
mapping (the single element of) v, to z,, and Sing - clearly defines a functor Top, — sSet,, right adjoint
to L : sSet, — Top,. Also recall that the monomorphisms of sSet are the injective simplicial maps
between the underlying graded sets, so we call them injective morphisms.

Proposition 6.1. For every (pointed) topological space Z, the maps f — fop,, (SingZ), — (Singgy Z),
induce an injective morphism of (pointed) simplicial sets R, . SingZ — Singgy, Z. The collection (Rz) ,
defines a natural transformation Sing ~ Singpy,.

Proof. Let f € (SingZ), and 0 € Homy([m], [n]) = Homyoy([#], [m]). We want to prove R,(f.0) =
R;(f).c. We have R;(f.0) = Rz(foA(c)) = foA(o)op,, and R,(f).c = R;(f)ov(c) = fop,ov(o).
In the proof of Proposition 1.1 we have got that p,ov(c) = A(c)op,, hence R,(f.0) = Rz(f).c and we
have a morphism of simplicial sets. Its injectivity is an immediate consequence of the surjectivity of the
maps p, : v, » A,. Finally, if Z is pointed, it clearly maps base point to base point.

Let ¢ : Z — T acontinuous map. We now want to prove that RyoSing(¢) = Singgpy (@)oR,. Let
f € (SingZ),. We have Sing(@)(f) = pof and Ry(Sing(@)(f)) = (¢of)op, and Singgy (9)(Rz(f)) =
Sing gy (@)(fop,) = @o(fop,) and this proves the claim. O

For K and L two ordered simplicial complexes, we have Fy. X Fp = Fy, where K X L is the simplicial
complex with vertices (x, y) for x € |JK and y € |J L and simplices the {(xg, ¥o), (X1, ¥1)s -o-» (X ¥}
such that xy < x; < -+ < x,, 9 < y; < -+ £ y,. The total ordering chosen on the vertices is for instance
the lexicographic ordering — or any other total ordering refining the diagonal partial ordering (a, b) < (@', ")
iffa<bandd <V
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In particular, let I = Pf([1]) the simplicial complex whose geometric realization is A;. Let S be the
(ordered) vertex set of K. For x € S we set x~ = (x,0), x* = (x, 1). The simplices of K x T are the

- - - + o+ +
{xo,xl,...,xr_l,xr,xr+l,...,xm}

such that xy < --- < x,,, and {x, ..., x,,} € K.

We have natural maps L(K) X {0,1} - L(K X I)and L(K X I) — L(K) providing a factorization
of the first projection map L(K) X {0,1} — L(K). In the forthcoming sections we are going to prove the
following property.

Proposition 6.2. Let K be a finite simplicial complex. Then L(K X T) is a cylinder object for L(K) inside
Strom’s (closed) model category structure.

Recall from [25] and e.g. [11] that this means that

(1) The natural projection map = : L(K X IT) — L(K) is an homotopy equivalence.
(2) The natural inclusion map L(K) X {0,1} — L(XC X I) is a closed cofibration.

Thus, this is a good cylinder in the terminology of [4].

Assume that S is well-ordered, denote x,, the minimal vertex of K. We considered K (or Fy.) as based at
Xo. Consider {0} as a base vertex for Z. The coproduct Fy. V Fi of F). with itself inside sSet,, has the form
Fieye with £ v K a simplicial complex on the vertex set obtained by dividing .S X {0, 1} by the relation

+ ..,xi_r}andthe {x;:),xx,...,x;';}for

Xg = X;- On this vertex set, X V K has for simplices the {x;), xl._l, .
Xjp £ <x; and {x; ,..,x; } €K

Recall that the smash product X AY is in Top, the quotient of X X Y by the image of X v Y. Itis also
the push-out

XVY —XXY

|

]l ——XAY

and this definition also applies in sSet,. Denote I% the simplicial complex I together with an isolated
vertex, taken as basepoint (for instance I+ = {{0}, {1}, {0, 1}, {=1}}).

We have a similar statement for pointed sets (recall from [25] that a map between pointed spaces is
a cofibration, fibration, or homotopy equivalence if and only if the underlying map between non-pointed
spaces is one).

Proposition 6.3. Let K be a finite simplicial complex with minimal vertex x,. Then L(Fyx A Fr+) is a good
cylinder object for L(K) inside Strgm’s (closed) model category structure on Top,.

From these propositions, which are together equivalent to the the propositions 6.7 and 6.8 proven below,
we deduce the following Theorem. Recall (see e.g. [11] p. 73) that homotopy equivalence is a well-defined
concept between objects of a (closed) model category which are both fibrant and cofibrant. The strategy
used in its proof has been suggested to me by D. Chataur.

Theorem 6.4. Let Z be a topological space. Then the natural morphism Sing(Z) — Singgy, (Z) is an
homotopy equivalence. In particular the induced map |Sing(Z)| — |Singgy, (Z)| is an homotopy equiva-
lence.

Proof. Since Sing(Z) and Singg;(Z) are both Kan complexes (see Section 5.1), they are both fibrant and
cofibrant in the standard model structure on sSet. It is then it is enough (see e.g. [11] Theorem 1.10) to
prove that the induced maps 7 (Sing(Z)) — 7y(Singgy(Z)) and x,(Sing(Z), zy) = #,(Singgy (Z2), zg)
are bijections for every n > 1 and vertex z, € Sing(Z), = Singgy,(Z)y = Z. This is what we are going to
prove.

We first claim that, for X = Fj. the simplicial set associated to a finite simplicial complex K, then the
natural map from Hom(X, Sing(Z)) ~ Hom(| X |, Z) to Hom(X, Singg (Z)) ~ Hom(L(X), Z) becomes a
bijection up to a homotopy, where up to homotopy means the genuine homotopy relation on Hom(| X |, Z)
inside the topology category, and on Hom(L(X), Z) means the image under L of the homotopy relation of
sSet. In other terms, this latter equivalence relation corresponds to the cylinder L(K X I).
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We prove this claim now. Since by Proposition 6.2 L(K X I) is a good cylinder for Strgm’s stucture,
it induces (see e.g. [11] ch. II.1 Corollary 1.9) the same homotopy equivalence as the standard cylinder
L(K) % [0, 1], which is the genuine homotopy relation. Therefore the map we want to prove it is a bijection
is nothing else than the natural map [| K|, Z] — [L(K), Z] inside the naive homotopy category. Since this
map is induced by the probability-law map L(K) — |K| which is an homotopy equivalence, it is a bijection,
and this proves the claim.

An immediate consequence of this claim, taking for K a point, is that the induced map zy(Sing(Z)) —
7o(Sing gy (Z)) is a bijection.

Now assume that the vertex set of K is linearly ordered with a minimal element X, and that some
basepoint z, € Z is chosen. We then make the similar claim that, for X = F. and K finite, the natural
map from Homgg, (X, Sing(Z)) ~ Homy,, (X, Z) to Homgg, (X, Singgy (Z)) =~ Homy,, (L(X), Z)
becomes a bijection up to a homotopy, where up to homotopy means the genuine pointed homotopy relation
on Homy,, (|X|, Z) inside the pointed topology category, and on Homrp,, (L(X), Z) means the image
under L of the homotopy relation of sSet,. In other terms, this equivalence relation corresponds to the
cylinder L(Fy A F7). This claim results from Proposition 6.3 and the same argument as before, because
two pointed spaces are homotopically equivalent if and only if they are freely equivalent (see [25] and the
references there).

We apply this result to K = 6Pf*([n]) and X = Fj equal to the boundary of the n-simplex, for n > 1,
with base point 0. Recall that 7,,(F,0) = Homygege (X, F) whenever F is a Kan complex (see e.g. [9]
§9). Then the natural map

7,(Sing(2), zg) =~ HomHosSet*(X’ Sing(Z)) — HomHosSet*(X’ Singgy (£)) = 7,(Singgy (2), z¢)

is identified with Homygrep (IX|, Z) — Homygr,, (L(X), Z). Again because the probability-law map
induces an homotopy equivalence, this map is an isomorphism and we get that the natural map

7,(Sing(Z), z9) = 7, (Singry (£), zy)

is an isomorphism for all n > 1. This proves the theorem.
O

6.1. Preliminary tools. Notice that the topology on L(K) is induced by the metric topology on L'(Q, 5)
when K is finite, and £ C P;‘(S). We shall need the following lemma only when .S is finite, however the
extra cost for the full statement is minimal, so we state it in full generality.

Lemma 6.5. Let X be a space, S a set. For s € S we define p, : LY(Q,S) — v, given by f = f~1(s).
Then F : X — LY(Q, S) is continuous iff Vs € S poF © X — v, is continuous.

Proof. Recall that the topology on LY(Q,S) is given by the metric d(f,g) = /Q d(f(t), g(t))dt, and the
one on v; = M by the metric d(U, V) = AUAV). Since A(f~1(s)Ag7(s)) < [, d(f (1), g(1))dr we get
that each of the p,,s € S is 1-Lipschitz hence continuous. This implies that, if F : X — LY(Q,S) is
continuous, then so are the p,oF, s € S.

Conversely, let us choose x; € X and set f; = F(x;). We want to prove that F is continuous at x,. Let
€ > 0. We want to prove that there exists an open neighborhood U of x( suchthatx € U = d(F(x), f;) < e.

Since Y A(f~1(s)) = 1, there exists Sy C S finite such that A(f_l(SO)) > 1—¢€/2. Wesetm = #5S,.
By continuity of p;oF, for every s € .S there exists an open neighborhood U, of x, such that x € U
implies that f, = F(x) satisfies A(fx‘l(s)AfO_l(s)) < €/2m. Setting U := [ U, we get an open
neighborhood U of x, such that, for every x € U,

SESO

d(for £ = XM O\ O <SS+ Y A ON ) S S rmx - =e
SES SES) m
and this proves the claim. (]

Recall that 7, = {X = (X;,....,.X,) | X; € X, C - C X, C Q}. For X € [7,, we set by
convention X, = @ and X,,; = Q. Also recall from Section 2 the map g : v; X I — v, such that
g(A,0) = A, A(g(A,u)) = A(A)(1 —u) and g(A,u) D g(A,v) whenever u < v. It moreover satisfies that
Mg(E, u)Ag(E,v)) K 4MEAF) + |v—ul.
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Lemma 6.6. There exists a continuous interpolationmap J : [7,XI — [/ suchthat, for X = (X,,...,X,) €
V¢ €1, and k such that A(X;) < ¢ < A(Xy41), we have X, C J(X,¢) C X and A(J(X,c)) =c.

Proof. We define such a map J by letting J(X,c) =Y with Y = X; U g(X;,; \ X}, a) with k as in the
statement, and with a € I such that A(Y) = A(X )+ (A( X4 ) —AX ) —a) = A X ) —ai(X \ X)) =
c,thatis a = (A(X;41) — ) /A X \ X)-
It remains to prove that J is a continuous map. Let X O e[, and ¢y € I. Let k be such that A(X 20) <
¢y < /1(Xk +1
First assume A(Xgo) < ¢g. Then, for (X, c) close enough to (X, 0,xo) we can assume that A(X ko) <

). We separate two cases.

¢ < A(Xy,4+1)- and the continuity of J at (X 0, ¢o) is an easy consequence of the continuity of g and of the
elementary set-theoretic operations.

We now assume /I(XO ) = ¢y. Then we have some r with 1 < ry < k such that A(XO ) < /I(XO ) =
A(X?OH) = .. = A(XO ) = ¢y. Of course this implies X0 = X?+1 = . = XOO Then for (X, ¢c) close
enough to (X xo) we can assume that A(X,O D<c< A(Xk +1)> and we have A(X;) < A(Y) < A(Xy4q)

for some k € [ro 1, k.
Therefore Y C X]':O for some Xl:ro > X, with either X;ro = Xy, or A(X]:ro) — A(Xy,) = ¢ = A(X,). But
then
HXE) = AX ) < le = HX ] < le = gl +leg = Al < e = ¢l + AXD AXy,)

Similarly, Y D Xr_0 with Xr_0 c X, satisfying
AXp) = AX) < |AX,) = el e =l + Mx?° )AX,)

Assuming |c — ¢y| < £/6 and /I(XkAX,?) < /6 for every k, and setting J(X,c) =7, J(KO, cp) =
we get from X CY C X’:o that

A(Y,AY) AYoAX ) + A(YOAX,jO)
AXDAX )+ AXY AXE)
(A(X?OAX,O) +AX, AX)) + (A(XgoAxko) + /I(XkOAX;O))
2le —col +2A(X° AX, ) +24(X0 AX, )
o 0 ko 0
E

IANIA TN TN TA

and this proves the continuity of J at any given (X 0, o)
O

6.2. Proof of item (1) : homotopy equivalence. We first prove that L(XC X ) — L(K) is an homotopy
equivalence, and the analogous statement for pointed complexes.

Proposition 6.7. Let K be a simplicial complex over the vertex set [n]. The natural projection map L(K X
1) —» L(K) is an homotopy equivalence, and L(K) X {0} is a deformation retract of L(K X I). If K is
considered with 0 as basepoint, the natural projection map L(Fy A F7) — L(Fy) = L(K) is an homotopy
equivalence.

Proof. Letus denote # : L(K X I) — L(K) the projection map. It is induced by the map [n] X [1] — [#n],
i* + i. This map admits an inverse on the right i — i~, which induces a map LY, [n]) = LY(Q, [n]x[1])
mapping L(K) into L(XC X I). We claim that this map o : L(K) - L(K X T) is an homotopy inverse for
7. Since woo = Id s this amounts to proving that 6oz ~ Id; 7). and this will prove at the same time
that L(K) x {0} is a deformation retract of L(XC X I).

We now justify the claim by constructing an explicit homotopy H : LIK X I)X I — L(K X I). Let
A= (Af)je[n] andt € I. Write t = ﬁ(i + u) for some i € [n] and u € [0,1], and set H(A,7) = B
with B;—’ = A;—' for j > i, By = A;r U A7 and B;.r = @ for j < i and finally B] = A7 U g(Ai+,1 —u),
BI.Jr = Ai+ \ B.

Itis well-defined, as for r = i /(n+1) = ﬁ(z’m) = ﬁ((i—l)+l) we have B- = A-ug(At,1-0) =
and B_ | = A~ U A:’_l =AU g(Al?L_l,O). More concisely, we have for every j and ¢ the formulas
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By = A7 U g(A;r,n(j +1—(n+ 1), B;.r = Aj+ \ B; where 77 : R — Ris defined by (x) = 0 for x <0,
n(x) =1 for x > 1 and n(x) = x otherwise.

Clearly H(A,0) = A, H(A, 1) = 6(n(A)) and we have H(A, ) € L(K X I) for all A, t. Therefore there
only remains to prove that H is continuous. By Lemma 6.5 this is then a consequence of the continuity of
g and 7, and of the elementary set-theoretic operations.

We now consider the pointed case, with 0 € [n] chosen for basepoint of K. By construction the smash
product Fy. A F7 is a push-out hence a colimit. Since L is a left adjoint it commutes with colimits, and from
this we get that L(Fy A F7+) is the push-out of

LICVIY) —= LIKXTI")

| |

* )

that is the quotient of L(XCX I ) by the subspace L(XVI™). Now notice that the projection map L(XXT) —
L(K) factorizes through the maps L(X X I) = L(Fy A Fr+) and L(Fy A F7+) = L(K). We want to prove
that the latter is an homotopy equivalence. Since we just proved that the composite L(X X I) — L(K) is
an homotopy equivalence, it is equivalent to prove that the former map L(K X I) — L(Fy A Fz+) is an
homotopy equivalence. Since KX It = (KX IT)U (K X {*})and K X {*} C £V It we get that this map
is the same as the quotient map 7z, : L(K X I) - L(K X I)/L, with Ly = LY(Q, {0~,0%)).

We consider the map L(K x T) — L(K x I) mapping A* to B* with B = A¥ fori > 0,

By = Aj ug| A, Z MAE) [ = A5 ug (AF.1- A(45 U AD)
ory
and B+ A+ \ B;. If AT € L, thatisifi >0 => A = {J, then By = A UAJr Q, B+ @. It follows
that the map factorlzes through L(KX X I)/L, and 1nduces a map o-o : L(IC X I)/L0 - L(IC x I).
Consider the map H : L(K X I) X I — L(K x I) mapping (A*,7) to B* with B = AT for i > 0 and

By = Ay ug(AS,1(1 - A(A; UAD) + (1 —1))
It provides an homotopy between oyon and the identity map. Now notice that the image of Ly X I is equal

to L, so that it induces amap L(KXXT)/LyXx I — L(KXXTI)/L,. This map defines an homotopy between

oo and the identity map. This proves that 7 is an homotopy equivalence.
0

6.3. Proof of item (2) : cofibration property. We assume that K is a subcomplex of P;‘([n]), so that
L(KXT) (resp. L(K AT))is aclosed subset of L(Pf*([n]) x I) ¢ LY(Q, [n] x[1]) (resp. L(Pf*([n]) AT) C
LY(Q, [n] x [1])). Precisely, it is made of the f € L(Pf*([n]) X I) (resp. f € L(Pf*([n]) A 1)) such that
z(f)e LK), formr : LIKXTI)— LK) (resp. # : L(KAT)— L(K)) the natural projection map, that is
such that z(f)(Q2) € K. We now prove the following.

Proposition 6.8. Let K be a simplicial complex with vertex set [n]. Then the inclusion map L(K)x{0,1} —
L(K X 1) is a closed cofibration. For K considered as a pointed simplicial complex, the inclusion map
L(KV K) = L(Fy A Fg+) is also a closed cofibration.

Proof. The space L(K) X {0, 1} is equal to L(K X {0,1}), where we denote £ X {0,1} = K U K the
disjoint union of two copies of K, with vertex sets {x,x € [n]} and {x~,x € [n]}. Since L(X x {0,1})
is a closed subset of L(K X T), it is enough to construct a retract of the cylinder L(X X I) X I onto
(LK) x{0,1} x U L(K x I)x {0}. We do this now.

We endow the space [/, = {X = (X},....X,);0 C X; C X, C -+ C X, C Q} with the metric
d(X', X?) = max; A(X! Axf), and L(Pf*([n]) x T) with the L' metric.

Let F, = P*({O‘ 1-,. =T, (r+ 1T, ...,nt} for 0 < r < n. These are the maximal simplices of
P*([n]) XTI, and L(P*([n ) X I) U, L(F)).

We define a map D L(P*([n]) X I) = |/, as follows. To f € L(F,) we associate X € |/, such
that X; = f~1([0~,(i — )] ifi <r+1,and X; = f~1([07,( — 2)*])if i > r + 1. We check that these
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X X
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[ ® ® =2y

0,0 (1,0) (0,0) (1,0)
FIGURE 3. The geometric retract ¢ : [0,1]> = {(y,u);u=0o0ry € {0,1}}

definitions agree on L(F,) N L(F,) for r < s as follows. If i < r+1ori > s+ 1 the two possible definitions
of X; clearly agree, so we can assume r + 1 < i < s + 1. According to the definition on L(F,) we have

X; = N[0, (i — 2)*]), whereas according to the definition on L(F;) we have X; = F7Y0-, G = D).
But since f € L(Pf([n]) X I) we have #£(€) n {(i — 2)*,(i — 1)7} < 1 hence f71([07,( —2)*]) =
£71([07, (i = 1)7]) and this proves that these maps can be glued together. Finally it is easily checked that
the map D is 2-Lipschitz on each L(F,), as we have, for X = D(f) and KO = D(fy),
AXGAXD) = AX;\ X))+ AX)\ X)) = / d(f (@), fo))dt + / LA @), fo)dt < 2d(f fo)
X; X!

and this proves that it is continuous on its whole domain. Moreover it is easily checked that every restriction
D\ #, + L(F,) = I/ 41 is a bijection.
Let 7, : [n] X [1] — [n] defined by i* +~ it and similarly 7_ : i* — i~. We then define two maps
G, : L(PF([n]) XID)xI — L(Pf*([n]) X TI) as follows. Let (f,c) € L(P;‘([n]) X I) X I. We use the map
For x € J(D(f),u) we set G (f,u)(x) = f(x), and for x & J(D(f),u), we set G_(f,u)(x) = 7, (f(x)).

J of Lemma 6.6.
For x & J(D(f),u) we set G_(f,u)(x) = f(x), and for x € J(D(f), u), we set G_(f,u)(x) = _(f(x)).
Let (fy,co) € L(Plf([n]) X 1) x 1. We prove that G is continuous at (f, ¢y). Let us consider (f,c) €

L(P;‘([n]) X 1) x I and set Jy = J(D(fy),cg), J = J(D(f),c). Let e > 0, and assume d(f, f,) < /3. By
continuity of D and J we know that, for (f, ¢) close enough to (f,, cg), we have A(JAJy) < /3. Then, by
d(z (f (@), 7, (fo(1)))dt

d(f(0). fo®)dt + /
Q\(JUuJy)

definition

d(G(f,0), G (fp, ) < AJAJy) +/
JﬁJO

Since d(z,.(x), 7,.(¥)) < d(x, y) for every x, y, this implies d(G(f,c), G (fy. o)) < /3 +2d(f, fy) < e

and this proves the continuity of G at (f, cy). The proof of continuity for G_ is similar and left to the

reader.
We extend the maps 7, to LY, [n] x [1]D by setting 7, (f) = x = 7,.(f(x)). It is clear from the

definitions that
e« G (f,1)=fand G,.(f,0) = 7,.(f).
e G_(f,D)=7_(f)and G_(f,0) = f.
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We now construct a continuous map L(Pf*([n]) XI)XI —> L(Pf*([n]) X I) x I as follows. To (f,u) €
L(Pi([n) X I)x I we associate (p(f),u) = (x, y,u) € (\,, X\ )X Ay, and then q(y, u) = (', u"), where ¢
is the projection map of Figure 3. Notice that, if y = 1/2, then y’ = 1/2 and there exists a component X,
of D(f) of measure 1/2, which implies J(D(f), 1/2) = X, and finally G,(f,1/2) = f. Therefore, setting
H(f,u) = (G (f,y)u)fory < 1/2and H(f,u) = (G_(f,y),u') for y > 1/2, we get a well-defined
continuous map with the properties that :

« either ' = 0, in which case H(f,u) € L(Pf*([n]) X I)x {0},

« oru’ > 0inwhich case either y’ = Oand H(f,u) = (G .(f,0),u) = (z,.(f).v') € L(P([n]x{1}),
ory = land H(f,u) = (G_(f, ),u) = (z_(f),u') € L(P([n] X {0}).

o ifu =0, then ' = 0and y' = y, in which case J(D(f),y) = X, for some component X, of
measure Yy = y, and this yields H(f,u) = f.

« if y =0, then f = 7,(f), y =yand H(f,u)=1,(f)=f

eify=1,then f=7_(f),yY =yand H(f,u)=7_(f) = f

This proves that H provides a suitable retract, for K = P{([n]). In the general case, starting from the map
H : L(Pf*([n])xl)xl - L(P;‘([n])xl)xl we constructed, we consider its restriction Hy to L(XXI)X 1.
Starting from (f,u) € L(X X I)x I, thatis with z(f)(€2) € K, we need to check that #(G .(f, YN e K
so that Hy- provides a suitable retract. Since by construction oG ,(f,y’) = f, this is obvious.

We now consider the pointed case. From the decomposition X X It = (K x I) U (K X {*}) observed
in the previous section, we can again identify L(Fy A F+) with the quotient space L(K X I)/L, where
Ly = L(Q.{07,0*}) = L(P{({07,0*})).

Then L(K Vv K) can be identified with a closed subset of L(X X I)/L via 0¥ = 07, i* — i* fori > 0,
and it is precisely the image of L(X X {0, 1}) under the composite of the natural maps L(K X {0,1}) —
LK x I)and L(K X I) - L(K x 1)/L,. Now notice that, for every f,u,x we have G_(f,u)(x) €
{f(x), 7 (f(x)), 7_(f(x))} and this proves that G, (Ly X I) C L. This implies that Hj. induces a map
Hi @ (LICXTI)/Ly) x I —» (L(K X I)/Ly) X I. It is easily checked that this map is a retract onto
(LIKVK)xIT)U(L(KxTI)/Ly) x {0}, and this proves the claim in the pointed case.

O

7. QUILLEN EQUIVALENCES BETWEEN sSet AND Top

In this section we want to prove that the functors L and | « | from sSet to Top induce the same functor
HosSet — HoTop, where HosSet and HoTop denotes the homotopy categories obtained from sSet and
Top by formally inverting the weak homotopy equivalences.

In order to this, we use the classical (closed) model category structure on sSet, and endow Top with a
model category structure more flexible than Quillen’s classical one, which nevertheless defines the same
homotopy category. Such a model category has been introduced by M. Cole in [2]. Actually, Cole presents
his construction as an intermediate between Quillen’s and Strgm’s model category structures on Top. Our
point of view here is more that is provides a ‘flexibilization’ of Quillen’s model category structure on Top,
relevant to the same homotopy category. Notice for instance that the subcategory of cofibrant objects is Mil-
nor’s category W of spaces which are homotopically equivalent to CW-complexes, instead of the category
of genuine CW-complexes.

We recall the main characteristics of this model category structure below. With sSet and Top endowed
with these structures of model categories, the main theorem of this section is the following one.

Theorem 7.1. The functors L : sSet — Top and Singg,, : Top — sSet together provide a Quillen
equivalence. In particular they provide an equivalence of categories between their homotopy categories.

We shall make clear in Section 7.1 that the classical functors |.| and Sing also provide a Quillen equiva-
lence for the same model category structures. The situation is thus summarized by the following diagram,
where p ©: L — |.| and R : Sing — Singp, are the obvious natural transformations induced by the
probability-law maps, so that the probability-law map somewhat provides a natural transformation between
the two Quillen equivalences.
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7.1. Cole’s model category structure on Top. From [2] Theorem 2.1 one gets that one can mix Quillen’s
classical model category structure on Top, which has for fibrations and weak equivalences the Serre fibra-
tions and weak homotopy equivalences, respectively, with Strgm’s structure, which has for fibrations and
weak equivalences the Hurewicz fibrations and (strong) homotopy equivalences, respectively. The result-
ing model category, which we call Cole’s model category, has for fibrations the Hurewicz fibrations and for
weak equivalences the weak homotopy equivalences. In particular, it has the same homotopy category as
Quillen’s original one, and moreover a Quillen adjunction (resp. equivalence) between sSet and Top for
Quillen’s original model category structure is a Quillen adjunction (resp. equivalence) between sSet and
Top for Cole’s model category structure : indeed, every (trivial) cofibration for Quillen’s model category
structure is in particular a (trivial) cofibration for Cole’s model category — where we use the terminology
that a (co)fibration is said to be a trivial one if it is in addition a weak homotopy equivalence.

More precisely, recall that the cofibrations of Quillen’s classical model category structure on Top are
(retracts of) CW-attachments (also called relative CW complexes). We call them Quillen-cofibrations. The
cofibrations in Cole’s model category structure are the closed cofibrations (in the classical sense) f which
can be written as £o f/ where f’ is a Quillen-cofibration and & is an homotopy equivalence (see [2] Propo-
sition 3.6 and Example 3.8). We call them Cole cofibrations.

The first application of this is for the classical adjunction | « | : sSet < Top : Sing, which provides
a Quillen equivalence for Quillen’s model category structure on Top, and therefore also for Cole’s model
category structure.

7.2. Proof of Theorem 7.1. We shall prove the following strengthening of Proposition 3.3.
Proposition 7.2. For every n > 0 the inclusion map 0v, — v, is a Cole cofibration.
Then recall that the r-th hook of the n-dimensional simplex has for geometric realization
A, ={(ag,....a,) €A, |Ji#r a;=0} CIA, CA,.
Its image under the functor L is
V. ={(Ag,....A) €V, |Ji#r A, =0} Cov,CV,.

In this subsection we are going to prove the following. Recall that, in any given model category, a (co)fibration
is said to be a trivial one if it is in addition a weak homotopy equivalence.

Proposition 7.3. For n > 0 the inclusion V) C v, is a trivial cofibration for Cole’s model category
structure on Top.

From these two propositions and our previous results we finally can prove Theorem 7.1.

Proof. Recall (see e.g. [12] Theorem 3.6.5) that the category of simplicial sets is a finitely generated closed
model category with generating cofibrations the inclusions of simplicial complexes aP;([n]) C P;‘([n]) for
n > 0 and generating trivial cofibrations the inclusion of simplicial complexes A C Pf*([n]) forn > O et
r € [n]. By the above propositions we know that their image under L are cofibrations and trivial cofibrations,
respectively. Therefore ([12] Lemma 2.1.20) L : sSet — Top and Singg,, : Top — sSet together provide
a Quillen adjunction. In order to prove that they provide a Quillen equivalence, we need to prove that L
maps cofibrations to cofibrations and trivial cofibrations to trivial cofibrations for Cole’s model category
structure hence provides a Quillen adjunction. Since every object of sSet is cofibrant and every object of
Top is fibrant for Cole’s model category (the constant maps are Hurewicz fibrations), it remains to prove
([12] Corollary 1.3.16) that L reflects weak equivalences and that L(Singgp, X) — X is always a weak
equivalence.
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Let f : F — G be such a weak equivalence in sSet. By definition this is equivalent to asking for the
induced map | f| : |F| — |G| to be one. Applying the natural transformation p : L ~ |« |, we get the
commutative square

1l —2L 6

TPF TPG
L(f)

L(F)——= L(G)

and we know by Theorem 3.1 that pr and p; are homotopy equivalences. Therefore L(f) is a weak equiv-
alence iff | f| is a weak equivalence.

We finally need to prove that L(Singg, X) — X is a weak equivalence for every X € Top. We con-
sider the following diagram, where the horizontal maps are induced from the weak equivalence SingX —
Sing gy X of Theorem 6.4, the vertical maps by the natural transformation p, and the diagonal ones are the
obvious co-unit maps.

L(SingX) —— L(Singgy, X)

| |

|SingX | —— |Singpy X|

X

Since |SingX'| — X is aclassical weak equivalence and since L(SingX) — |SingX| is also one by Theorem
3.1, we get that L(SingX) — X is one. Therefore the composite of the maps L(SingX) — L(Singg; X) and
L(Singg, X) — X is a weak-equivalence. Since SingX — Singg;, X is a weak equivalence by Theorem
6.4s0is L(SingX) — L(Singg; X) as we just showed, and this has for consequence that L(Sing ),y X) — X
is a weak-equivalence, which concludes the proof.

(]

7.3. Proof of Proposition 7.2. Since dv,, = J the statement is trivial for n = 0 and we can assume n > 1.
We already know from Proposition 3.3 that the inclusion map dv,, — v, is a cofibration. We prove here
that it can be written as the composition of a cellular attachement with an homotopy equivalence.

We consider the section 6, : A, — v, of the probability-law map p, : v,, = A, used in Section 4. We
recall from there that ¢,,0p,, is homotopic to the identity map, by an homotopy H,, which commutes to the
face maps for various n’s (see Proposition 4.2). Clearly, o, p,, H, preserve the boundaries of v,, and A,,.
In particular we get an attaching map do,, : dA, — 0v,, enabling us to build a relative cellular complex
0v, C (0v,) Uy, A,. Moreover, our map 0v, — v, is the composition of this Quillen cofibration with
the map f/ : (0v,) Ugs, A, — v, Obtained by gluing together the inclusion map 0v, — v,, with the map
6, : A, = v,. It remains to prove that f” is an homotopy equivalence.

Consider the map p, 0 f” : (0V,)Up5, A, = A, Itis equal to the identity map on A,,, and to p, on 9v,,. It
admis a section given by o,, on A, and to the identity on A,. Moreover, since the homotopy H,, preserves
the boundary, we get that p,o f’ is an homotopy equivalence. Since p,, is also an homotopy equivalence,
from the 2-out-of-3 property of homotopy equivalences we get that f is an homotopy equivalence, which
concludes the proof.

7.4. Proof of Proposition 7.3. We prove it in several steps.

Proposition 7.4. For every n > 1 the inclusion V,| C v, is a strong deformation retract. In particular, it
is an homotopy equivalence.

Proof. We define H : v, X1 — v, by H(A,t) = B with

min;y; . A(A;)
B =g (A,», ,L)
A(A;)
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for i # r with the convention 0/0 = 1, and B, = Q '\ Ui#r B;. From the continuity of g and of the
elementary set-theoretic operations one gets immediately that H is continuous. Since B; C A, fori # r, we
have H(V,| x I) C V. Moreover, for t = 0 we have B; = A, for all i thatis H(A,0) = Aforevery A € v,.

Consider A € V. By definition there exists iy # r with A; = @. From A; = @ one gets B; = 0,
and also min;; . A(A;) = 0 hence B; = g(A;,0) = A; for every j # r. It follows that B, = A, hence
H(A,t) = Aforevery A€V, andr € I.

Now assume ¢ = 1. Notice that there exists i # r such that A(4;) = min iy A(A j). Then, fort = 1,
B; = g(A;, 1) = @, and this proves H(A,1) € V.

Therefore H indeed provides a strong deformation retract.

O

Proposition 7.5. For n > 1 the inclusion V' C v, is a closed cofibration.

Proof. We already know that V" is a closed subset of v,,. We need to exhibit a retract of v, X I onto (v, X
{0HuV,xI). Wedefine H : v, XI — (v, x{0HU(V,"XI) as follows. First of all, define a continuous map
m : v, = [0,1] by m(A) = min,, A(A,), and then define H(A,u) = ((H(A,u),);cp» max (u—m(A),0))
by setting

m(A) + min(u — m(A
H(A,u); =g <A[, Sk 2 ( & 0)>
(A)
fori #r, HA,u), = Q\ Ui# H(A,u);. This formula is made so that H(A,u); for i # r has measure
A(A;) — m(A) for u > m(A) and A(A;) — u for u < m(A). In particular, H(A,u) € V] X I for u > m(A) and
H(A,u) € v,x{0} foru < m(A). Moreover, for A € V,” we have m(A) = Ohence H(A,u); = g(4;,0) = 4;
for every i # r, whence H(A,u) = (A,u). Similarly, for u = 0, we have max (u - m(é),O) = 0 and
H(A,u);, = g(A;,0) = A, forevery i # r, H(A,0) = (A4,0). Since H is continuous as a composite of
continuous maps, this provides a suitable retract. O

In order to prove that these inclusions V. — v, are Cole cofibrations, it remains to prove that they can
be obtained as the composition of a Quillen cofibration with an homotopy equivalence. We consider the
® . A,y - v,ofc, : A, = v, to the r-th face of its boundary, and then its restriction

n—1
aofjjl to the boundary of the r-th face. This provides an attachment map 60'::_)1

a€ A, 00" (@) = o,(AD)a)).
LetY =V U, » A,_;. Since V" and the r-th face v,_; of dv,, are closed inside dv,, the set-theoretic
n—1

restriction o

1 0A,_y — V], mapping

decomposition dv,, = ¥/ U v,_; is a topological union. Therefore there is a map f” : ¥ — 0v,, obtained
by mapping an element of V| to itself, and a € A, _; to 6,(A(D{)(a)).

We then consider a map d'c,, : 0A, — Y given by mapping the r-th face identically to the copy of
A,,_q just added, and by applying o, to the other faces. In formulae, a = (ay, ..., a,) € dA,, is mapped to
(ag, ..., G,_1,8p41,...,a,) €A,y ifa, =0, and to 5,(A) € V" otherwise. Welet Z =Y Uy, A,. Again
because dv,, is closed inside v,,, we can write v,, as a topological union (V] Uv,_;) U v, and there is a
map f" : Z & v, obtained by gluing f’ : Y - v, witho, : A, — v,. Clearly, the restriction of f”' to
V. is the inclusion map V" — v,,.

The inclusion map V,” & Z being a relative CW-complex, proving that the inclusion V" — v, is a Cole
cofibration amounts to proving that f”’ is an homotopy equivalence.

We post-compose it with p, : v, = A, and get a map

pl
Z=WUA,_DUA, = (AJUA,_DUA, =4,

equal to p, on V" and to the identity map on the rest This map p’ admits a section ¢’ defined by o, on AL
and to the identity map on the rest. In order to prove that ¢’op’ is homotopic to the identity map, we build
Hy; : I X Z — Z via the decomposition

IXZ=(IXV)UxA,_)U XA,
gluing the map H, of Proposition 4.2 on I X V| with the identity map on the two other parts. This is
possible because Va € A, H,(t,0,(a)) = o,(a) by Proposition 4.2. This provides an homotopy proving

that p’ = p,of" is an homotopy equivalence. Since p,, is an homotopic equivalence so is f” by the 2-out-
of-3 principle and this proves the claim.
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