
CABLING BURAU REPRESENTATION

CHRISTIAN BLANCHET AND IVAN MARIN

Abstract. The Burau representation enables to define many other representations of the
braid group Bn by the topological operation of “cabling braids”. We show here that these
representations split into copies of the Burau representation itself and of a representation
of Bn/(Pn, Pn). In particular, we show that there is no gain in terms of faithfulness by
cabling the Burau representation.

Introduction

The Burau representation is the oldest and most natural non-trivial representation of the
braid group Bn. Debates over its faithfulness were a central concern in the past decades,
until it has been shown to be non faithful for n ≥ 5, the case n = 4 remaining open.

A natural question, brought to us by T. Fiedler and S. Orevkov, is whether it is possible
to reduce the size of the kernel of the Burau representation by the operation of “cabling
braids”. Here we answer this question for the most natural cabling, sometimes called
parallel cabling.

The answer is negative. More precisely, letting ∆n,r : Bn → Bnr denote the morphism
of cabling where each strand is replaced by r parallel strands, as in the diagram below,

and letting Rbur : Bnr → GL(V ) denote the Burau representation of Bnr, we decompose
the representation Rbur ◦∆nr of Bn. Our main theorem states that this representation is
semisimple and splits into a variant of the Burau representation of Bnr and copies of an
irreducible representation of Bn/(Pn, Pn), where Pn denotes the pure braid group. As a
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consequence, we show that the kernel of Rbur ◦∆nr coincides with the kernel of the Burau
representation of Bn.

Our proof has two ingredients, both based on the use of Drinfeld associators. These
associators define morphisms from the (group algebra of) the braid group Bn to some
“infinitesimal braids algebra” Bn. In the first part we recall the classical extension of this
construction, originally due to Kontsevich, in terms of monoidal categories. In particular,
we insist on the compatibility with cabling, for which we give a self-contained proof.

The second part is based on a correspondance between representations of Bn and rep-
resentations of its infinitesimal couterpart Bn, for which one can find a detailed account
in [Ma2]. We use the fact that the Burau representation corresponds to a very simple
representation of Bn, and that cabling on the infinitesimal braids is also an easy (additive)
operation, to get the decomposition that we are interested in.

1. Drinfeld-Kontsevich functor for parenthesized braids

1.1. Braids and chord diagrams. The n strands braid group Bn is the fundamental
group of the configuration space Yn of n points in the complex plane. It may be convenient
to vary the base point, and to consider the fundamental groupoid; parenthesized braids
amount to consider limit configurations in a convenient compactification of Yn.

A parenthesized braid [BN2] is a braid whose ends are points on the real line, together
with a parenthesization of its bottom end (the domain) and its top end (the range). We
obtain a groupoid PaB which is a subcategory in the parenthesized tangle category also
called the q-tangle category [LM1, LM2].

Let An = An(k) be the algebra of chords diagrams for n-strands pure braids, over the
scalar field k of characteristic 0. As a unital k-algebra An is generated by the tij = tji,
0 ≤ i < j ≤ n, represented by a chord between strands numbered i and j, with relations
(infinitesimal braid relations):

[tij, tkl] = 0 if the 4 indices i, j, k, l are distinct,

[tjk, tij + tik] = 0 if the 3 indices i, j, k, are distinct.

The number of chords provides a grading on the algebra An, and we denote by Ân the
completion with respect to this grading.

We use the notation (σ,D) 7→ σD for the natural left action of the symmetric group Sn

on An (resp. Ân); for a generator tij, we have σ(tij) = tσ(i)σ(j). The algebra Bn (resp.

B̂n) is defined as the crossed product of An (resp. Ân) with the symmetric group Sn.

As a module, Bn (resp. B̂n) is a free An-module (resp. Ân)-module), with basis Sn. In
Vassiliev finite type invariants theory, Bn is the algebra of chords diagram for braids. Its

completion B̂n is the natural target for the Drinfeld-Kontsevich functor which we want to
consider now. We will need extra structures on our categories, namely cabling operations
and strand removal operations [BN2].

Cabling braids: For a parenthesized braid B, di(B) is the parenthesized braid obtained
from B by doubling the ith strand (counting at the bottom).
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Figure 1.

Figure 2.

Cabling chord diagram: For a chord diagram D, di(D) is the chord diagram obtained form
D by doubling the ith strand (counting at the bottom). Each chord incident to the ith
strand is expanded as depicted in figure 1. Note that di ◦ di = di+1 ◦ di.

Strand removal on braids: For a parenthesized braid B, si(B) is obtained by removing the
ith strand (counting at the bottom).

Strand removal on chord diagrams: For a chord diagram D, si(B) is obtained by removing
the ith strand (counting at the bottom) if no chord is incident to this ith strand, and is
zero otherwise. The following lemma [BN1], which is an immediate consequence of the
infinitesimal braid relations, will play a key role.

Lemma 1 (Naturality of cabling). For any positive integers a, b, c, and any x ∈ Âb,

y ∈ Âa+1+c, one has the equality in figure 2.

We will also need the coproduct map

� : Ân → Ân⊗̂Ân

defined so that it is continuous and each generator tij is primitive. An element Ψ ∈ Ân

is group-like if and only if �Ψ = Ψ ⊗ Ψ ; this implies invertibility. We denote by Tn the

Lie algebra of primitive elements in An, and by T̂n its closure in Ân. The Lie algebra Tn is
known as the Lie algebra of infinitesimal braids.

Definition. An associator is a group-like element Φ ∈ Â3 satisfying
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• the pentagon identity

( ⊗Φ).d2Φ.(Φ⊗ ) = d3Φ.d1Φ

• the hexagon identities

d1 exp

(
±1

2
t12

)
= 312Φ exp

(
±1

2
t13

)
132

(
Φ−1

)
exp

(
±1

2
t23

)
Φ

(The notation ijk is used for the permutation (1, 2, 3) 7→ (i, j, k).)
• Φ is non-degenerate: s1Φ = s2Φ = s3Φ = 1(••);

Remarks. 1. The group-like element Φ can be written Φ = exp(φ) , with φ ∈ T̂3 . From

the non degeneracy condition, we get that φ belongs to [T̂3, T̂3].
2. The hexagon identity with negative sign could be replaced by 321Φ = Φ−1 . 3. The
non degeneracy condition can be deduced from group-like and pentagone properties [Ma2,
Proposition 1]

The notion of associator is due to Drinfeld [D], who also obtained an associator with
complex coefficients using monodromy of KZ system, showed that associators with rational
coefficients exist, and emphasized the role of associators in constructing monoidal functors
from braids to the universal envelopping algebras of infinitesimal braids. This functor was
extended to the tangle category by Kontsevich [K] and further developped by Bar-Natan,
Le-Murakami and others. Considering parenthesized braids and tangles converts Drinfeld-
Kontsevich functor into a strictly monoidal functor. Drinfeld-Kontsevich functor on the
whole parenthesized tangle category is constructed in [LM1, BN1]. We consider as a target

category the (strict) monoidal category B̂ whose objects are integers and morphisms are
defined by

EndbB(n) = B̂n ,

HombB(n,m) = {0} for n 6= m .

Cabling associators and braidings. For p ∈ Obj(PaB), we denote by |p| the number
of points of the parenthesization p. Let Φ be an associator and let p, q, r ∈ Obj(PaB), we
define the cabled associator Φp,q,r by

Φp,q,r = (d
|p|
1 ◦ d|q|2 ◦ d|r|3 )Φ .

The identity braid, viewed as an element in HomPaB ((pq)r, p(qr)), is denoted by ap,q,r.

Let R ∈ B̂2 be the element depicted below. Here a product from right to left is depicted
from the bottom.

For parenthesizations p and q, Rp,q denote d
|p|
1 d

|q|
2 R, and cp,q ∈ HomPaB (pq, qp) denote

the element depicted below.
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From d2
i = di+1di, we get that (p, q, r) 7→ Φp,q,r and (p, q) 7→ Rp,q commutes with the

cabling operation. We quote that Φp,q,r and Rp,q only depend on the integers |p|, |q|, |r|.

Theorem 1. If Φ is an associator, then there exists a unique strictly monoidal functor

Z : PaB → B̂

such that, for a parenthesization p, Z(p) = |p|, and for all parenthesizations p, q, r

Z(cp,q) = Rp,q , Z(ap,q,r) = Φp,q,r .

From the definition of the functor Z in the above theorem, we obtain the following result,
first proved by Le-Murakami [LM2].

Corollary. The functor Z commutes with cabling operations.

Proof. The elements cp,q and ap,q,r generate PaB as a monoidal category; unicity of the
functor Z follows.

As already said, the proof of existence can be found in [LM1, BN1] and rests on Mac-
Lane coherence theorem for braided monoidal categories [JS, Section 2]. We like to give
here a rather self contained argument. From the pentagon identity, we get that for any two
parenthesizations P , Q with the same length |P | = |Q| = n we have a canonical invertible

element ΦQ
P ∈ Ân obtained by composing associators corresponding to a decomposition of

the identity braid, considered as an element in HomPaB(P,Q), into tensor products and
composition of elements a±1

p,q,r.
Now consider a parenthesized braid τ ∈ HomPaB(P,Q) , and represent it as a diagram

corresponding to a word w in Artin generators w = σ±1
ik
. . . σ±1

i1
. For each integer n we

denote by p(n) the parenthesization from the left, i.e. p(n+1) = (p(n)•), and pi = pi(n) =
di(p(n− 1)). We decompose τ as follows

τ = aQ
pik
σ±1

ik
a

pik
pik−1

. . . σ±1
i1
a

pi1
P .

For 0 < i < n, let Ri = si exp(1
2
ti,i+1) ∈ B̂n (R is inserted along strands i, i + 1). Here

si ∈ Sn is the transposition (i, i+ 1).
We associate to the representative of τ written above

Z(τ, w) = ΦQ
pik

R±1
ik

Φ
pik
pik−1

. . .R±1
i1

Φ
pi1
P .

We will show that the assignement t 7→ Z(t) = Z(t, w) constructs a well defined functor Z
with the required properties. This follows from the statements below whose proof is left
to the reader. This is just playing with the definition, hexagon and pentagon relations,
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together with the naturality property of the cabling operation on chord diagrams (lemma
1).

(1) Functoriality: Z(ττ ′, ww′) = Z(τ, w)Z(τ ′, w′), for any τ , τ ′ for which ττ ′ makes
sense.

(2) Braid relations: if w and w′ are equivalent as braids, then we have Z(τ, w) =
Z(τ, w′). Hence we get that Z is a well defined functor on PaB.
It is sufficient to show that for 0 < i+ 1 < j < n,

Z(τ, w1σiσjw2) = Z(τ, w1σjσiw2) ;

and for 0 < i < n,

Z(τ, w1σiσi+1σiw2) = Z(τ, w1σi+1σiσi+1w2) .

(3) Z is strictly monoidal, i.e. Z is compatible with juxtaposition.
(4) Z(cp,q) = Rp,q, and Z(ap,q,r) = Φp,q,r.

�

1.2. Commutation property. We already considered the cabling operator which dupli-
cates one strand. We want now to duplicate all strands. We denote by ∆ the functor
PaB → PaB which duplicate all strands (and put a parenthesis around each pair). More
generally, we denote by ∆r the functor PaB → PaB which replace each strand by r paral-
lel copies (for each r-uple put parenthesis from the left). The functors for chord diagrams
similar to ∆ and ∆r are denoted respectively by ∂ and ∂r. We saw that the functor Z
commutes with the cabling operation. This shows the following proposition.

Proposition 1. The following square of functors is commutative.

PaB

∆r

��

Z //
B̂

∂r

��
PaB

Z //
B̂

For each parenthesization p with |p| = n, by extending linearly the map, we have an
algebra morphism x 7→ Z(x):

Zp : kBn ≈ kEndPaB(p) → B̂n .

If q is another parenthesization with |q| = n, then Zq is obtained by intertwining with
Z(identity braid), where identity braid is considered as an element in HomPaB(p, q).

Definition. Let σi, i ∈ [1, n− 1], be the Artin generators of Bn. A morphism ϕ : kBn →
B̂n for some n is said to satisfy property (*) if, for all i ∈ [1, n− 1],

(∗) ϕ(σi) is conjugated to Ri = si exp(
1

2
ti,i+1) by some ψi ∈ exp[T̂n, T̂n]

Here si ∈ Sn is the transposition (i, i+ 1).
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This implies that ϕ(σi) equals si(1 + 1
2
ti,i+1) plus higher terms.

Recall that for an integer n, we denote by p(n) the object in PaB equal to the left
parenthesization (. . . ((••)•) · · · •). Observe that the object ∆r(p(n)) is not equal to the
left parenthesization p(rn), but rather: ∆rp(n) = (. . . ((p(r))p(r)) . . . p(r)). We denote by
∆r,n the linear extension of ∆rp(n):

∆r,n : kBn ≈ kEndPaB(p(n)) → kEndPaB(∆rp(n)) ≈ kBrn .

The morphism for chord diagrams similar to ∆r,n is denoted by ∂r,n.

Proposition 2. For all n ≥ 1, r ≥ 2, the morphisms

ϕn = Zn(p) : kBn ≈ kEndPaB(p(n)) → B̂n

and
ϕr,n = Z∆r(n(p)) : kBnr ≈ kEndPaB(∆r(n(p))) → B̂nr

satisfy (*) and the following diagram commutes :

kBn

∆r,n

��

ϕn // B̂n

∂r,n

��

kBnr

ϕr,n // B̂nr

Proof. We have property (*), with ψi = Φpi

n(p). Commutativity of the diagram follows from
proposition 1. �

2. Representations of the braid groups from an infinitesimal view point

For the decomposition of representations of the braid groups Bn with generic parameters
it is much more easier, if possible, to deal with the representations of Bn from which they
arise. Indeed, there is a dictionnary between properties of representations of Bn and the
representations of Bn obtained through a morphism ϕ such as the ones discussed above.

This dictionnary is discussed at length in [Ma2]. In the following sections we show how
to get the representations involved here from “ infinitesimal representations ”.

2.1. General facts. Let K = k((h)) and L = k(q). We view L as embedded in K by

q 7→ exp(h/2). Let n ≥ 2 and ϕ : kBn → B̂n satisfying (*). To every representation

ρ : Bn → End(kn) one associates a representation ρ̃ : B̂n → End(Kn) defined by{
ρ̃(tij) = hρ(tij)
ρ̃(s) = ρ(s) if s ∈ Sn.

and a representation ϕ̂(ρ) = ρ̃ ◦ ϕ. of Bn. The condition (*) implies that ρ is (absolutely)
irreducible iff ϕ̂(ρ) is (absolutely) irreductible (cf. [Ma2], proposition 7 and proposition 8).

In general, for any representation ρ of Bn and R = ϕ̂(ρ) with ϕ satisfying (*), one has
R(σi) ≡ ρ(si) modulo h. It follows that KerR ⊂ Pn as soon as the restriction of ρ to Sn

is faithful. Let us assume that this is the case. Recall that Pn has standard generators
ξij with 1 ≤ i < j ≤ n whose images generate Pn/(Pn, Pn). Under condition (*) one has
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R(ξij) = 1 + hρ(tij) modulo h2, hence KerR ⊂ (Pn, Pn) as soon as the endomorphisms
ρ(tij) are linearly independant.

2.1.1. Framing. For any given representation R : Bn → GLN(K) and a ∈ K
× one may

define another representation, denoted aR and defined by (aR)(σi) = aR(σi) for all i ∈
[1, n− 1]. It is clear that, if KerR ⊂ (Bn, Bn), then KerR ⊂ Ker aR.

At the infinitesimal level, to any ρ : Bn → End(kN) and v ∈ K one can associate the
representation v + ρ defined by{

(v + ρ)(tij) = ρ(tij) + vId
(v + ρ)(s) = ρ(s) if s ∈ Sn.

It is easily checked that, under condition (*), one has

ϕ̂(v + ρ) = exp(hv)ϕ̂(ρ).

Let us assume that R = ϕ̂(ρ) with ϕ satisfying (*). Then detR(x) is a formal series in
h with constant term 1. Such series form a group with unique roots. When KerR ⊂ Pn,
a sufficient condition for the converse inclusion Ker aR ⊂ KerR to hold is then that
detR(σ1)

2 6= a−2 dim R. Indeed, if l = l(x) denotes the length of x ∈ Bn with respect to the
set of Artin generators, x ∈ Ker aR means that R(x) = a−l, hence detR(x) = a−l dim R.
If l = 0, then x ∈ KerR and we are done. Otherwise, since the Artin generators are
conjugated one to the other, then detR(x) = det(R(σ1))

l, thus det(R(σ2
1))

l = (a−2 dim R)l

hence detR(σ1)
2 = a−2 dim R, which has been ruled out.

2.1.2. Twisting. For any given representation R : Bn → GLN(L) and r ∈ Z \ {0} one
may also define another representation, denoted Rqr

and defined by twisting R by the field
morphism q 7→ qr. It is clear that R and Rqr

have the same kernel.
In a similar manner, to any b ∈ k∗ and any representation ρ of Bn one can associate the

representation bρ defined by{
(bρ)(tij) = bρ(tij)
(bρ)(s) = ρ(s) if s ∈ Sn.

In the situations described below, these two operations are intimately related.

2.2. The Burau representation. Let Hn(q) = LBn/I, where I is the ideal generated
by the elements (σi − q)(σi + q−1) for i ∈ [1, n]. Note that, since the Artin generators are
conjugated one to the other, this is the same as the ideal generated by (σ1 − q)(σ1 + q−1).
This algebra is the (generic) Iwahori-Hecke algebra of type A. This is a well-known finite-
dimensional algebra, isomorphic to the group algebra over L of the symmetric group on n
letters. Its representations are explicitely described in [Ho, Wz].

Let V be a n-dimensional L-vector space with basis e1, . . . , en. The Burau representation
of the braid group Rbur : Bn → GL(V ) is defined in matrix block-diagonal form on this
basis by

Rbur(σi) = qIk−1 ⊕
(
q − q−1 q
q−1 0

)
⊕ qIn−k+1.
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It is easily checked that (Rbur(σ1) − q)(Rbur(σ1) + q−1) = 0. From the classical represen-
tation theory of the Iwahori-Hecke algebra, one checks that the Burau representation is
characterized among its representations by the following properties

(1) It is n-dimensional, with a (n− 1)-dimensional irreducible subspace
(2) −q−1 has multiplicity 1 in the spectrum of σ1.

In particular, the image of σ1 has determinant −qn−2. The Burau representation Rbur can
be deduced from the representation ρbur of Bn defined by ρbur(tij).ei = ej

ρbur(tij).ek = ek if k 6∈ {i, j}
ρbur(s).ei = es(i) if s ∈ Sn

Indeed, given any ϕ : kBn → B̂n satisfying (*), the representation ϕ̂(ρbur) extended
to L factorizes through Hn(q) because the eigenvalues of s1 are 1,−1 and ϕ̂(ρbur)(σ1) is
conjugated to ρbur(s1) exp(hρbur(s1)/2). Moreover, −1 has multiplicity 1 in the spectrum of
ρbur(s1), hence −q−1 has multiplicity 1 in the spectrum of ϕ̂(ρbur)(σ1). Finally, the kernel
of the linear map α : V → L defined by α(ei) = 1 is stable under ρbur, and it is a standard
fact from the representation theory of the symmetric group that it is irreducible under the
action of Sn. It follows that ϕ̂(ρbur) admits an irreducible (n − 1)-dimensional subspace,
hence the following proposition.

Proposition 3. For all ϕ : kBn → B̂n satisfying (*), the Burau representation is isomor-
phic to ϕ̂(ρbur).

Moreover, by the same characterization, one gets that, once extended overK, the twisted
representation Rqr

bur is isomorphic to ϕ̂(rρbur) for all r ∈ Z \ {0}.
It is readily checked that the restriction of Rbur to the center is faithful for n ≥ 3. For

n ≥ 5 it is known to be unfaithful. Indeed, Bigelow found in [Bi], improving results of
Moody [Mo], Long and Paton [LP], that the element β = (ψ2ψ

−1
1 σ4ψ1ψ

−1
2 , δ5) is non trivial

and lies in the kernel of Rbur for n ≥ 5, where ψ1 = σ−1
3 σ2σ

2
1σ2σ

3
4σ3σ2

ψ2 = σ−1
4 σ3σ2σ

−2
1 σ2σ

2
1σ

2
2σ1σ

5
4

δ5 = σ4σ3σ2σ
2
1σ2σ3σ4.

At the present time, very few things are known about this kernel. However, from the basic
observations above, the faithfulness of the permutation representation of the symmetric
group implies that KerRbur ⊂ Pn, and the fact that the ρ(tij) are linearly independent
implies KerRbur ⊂ (Pn, Pn).

2.3. The extended permutation representation. The extended symmetric group (from

the french “groupe symétrique étendu”) can be defined as S̃n = Bn/(Pn, Pn) and has been

introduced by J. Tits in [Ti]. If ρ is a representation of Bn and ϕ : KBn → B̂n satisfies

(*), then ϕ̂(ρ) factorizes through S̃n if and only if ρ([tij, tkl]) = 0 for all i, j, k, l, which is
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equivalent to saying that ρ([t12, t23]) = 0 (see [Ma2] lemma 5). Moreover, in that case, for
all i ∈ [1, n],

ϕ̂(ρ)(σi) = ρ(si) exp(hρ(ti,i+1)/2).

The natural representation Rsym of S̃n over L can be defined over a n-dimensional vector
space Ln in block-diagonal form by

Rsym(σk) = Ik−1 ⊕
(

0 q
q 0

)
⊕ In−k+1.

It is readily checked that, if ϕ satisfies (*) then Rsym = ϕ̂(ρsym) where the restriction of
ρsym to Sn is defined in block-diagonal form by

ρsym(sk) = Ik−1 ⊕
(

0 1
1 0

)
⊕ In−k+1

ρsym(tk,k+1) = 0k−1 ⊕
(

1 0
0 1

)
⊕ 0n−k+1.

More generally, ϕ̂(rρsym) = Rqr

sym. It is easily checked that ρsym, thus Rsym, is (absolutely)
irreducible (cf. [Ma1] II 2.3.1 lemme 8). Again by faithfulness of the permutation repre-
sentation of the symmetric group one gets that KerRsym ⊂ Pn. Moreover by definition of
the extended symmetric group one has (Pn, Pn) ⊂ KerRsym, hence KerRbur ⊂ KerRsym.

3. Cabling the Burau representation

3.1. Infinitesimal result. Let us consider the infinitesimal Burau representation of Bnr.
We can index the basis elements es as ej

i for 1 ≤ i ≤ r and 1 ≤ j ≤ n with s = r(j− 1)+ i.

Using ∂n,r : Bn → Bnr one gets a representation ρbur ◦ ∂n,r defined by s.ej
i = e

s(j)
i for

s ∈ Sn and 
tij.e

i
s =

∑
t∈[1,r] e

j
t + r(r − 1)ei

s

tij.e
j
s =

∑
t∈[1,r] e

i
t + r(r − 1)ej

s

tij.e
k
s = r2ek

s if k 6∈ {i, j}.
For all 1 ≤ i ≤ n, Let us introduce ui =

∑
s∈[1,r] e

i
s. The subspace U generated by u1, . . . , un

has dimension n. From the above formulas one gets tij.ui = ruj + r(r − 1)ui

tij.uj = rui + r(r − 1)uj

tij.uk = r2uk if k 6∈ {i, j}.
This means that, on U , tij acts in the same way that r(i j) + r(r − 1), hence the action

of B̂n is isomorphic to rρbur + r(r − 1). Using ϕ one thus gets a representation of Bn

isomorphic to r(r − 1)Rqr

bur.
Let Ei for 1 ≤ i ≤ n denote the subspace spanned by ei

s pour s ∈ [1, r], and αi be the
linear form on E∗

i defined by αi(e
i
s) = 1. Let Ki = Kerαi ⊂ Ei, which is spanned by the

ei
s − ei

t, and let K be the (direct) sum of these subspaces.
If x ∈ Ki or x ∈ Kj, one has tij.x = r(r − 1)x and, if x ∈ Kk for k 6∈ {i, j}, then

tij.x = r2. It follows that K is stable under the action of Bn and that the action of An on
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K is commutative. More precisely, on the subspaces Fs,t spanned by the vi
s,t = ei

s − ei
t for

i ∈ [1, n], when s 6= t, the action of Bn is isomorphic to r2− rρsym. It follows that we have
the following result.

Proposition 4. The representation ρbur ◦ ∂n,r is isomorphic to the direct sum of rρbur +
r(r − 1) and r − 1 copies of r2 − rρsym.

3.2. Global result. Since there exist morphisms ϕ and ϕn,r satisfying the conclusions of
proposition 2, the above proposition implies our main theorem.

Theorem 2. The representation Rbur ◦∆n,r is isomorphic to the direct sum of qr(r−1)Rqr

bur

and r − 1 copies of qr2
Rq−r

sym.

As far as faithfulness questions are concerned, this theorem implies that the kernel of
Rbur ◦∆n,r in Bn is the intersection of those of qr(r−1)Rbur and qr2

Rsym. Because q2n−4 6=
q−2r(r−1)n for all values of r ≥ 1, and KerRbur ⊂ (Bn, Bn) ∩ Pn, then Ker qr(r−1)Rbur =

KerRbur. Moreover KerRbur ⊂ (Pn, Pn) ⊂ Ker qr2
Rsym. It follows that cabling does not

improve faithfulness of the Burau representation.

Corollary. For all n ≥ 3 and r ≥ 1, the kernel of Rbur ◦∆n,r coincides with the kernel of
Rbur. In particular Rbur ◦∆n,r is not faithful for n ≥ 5.
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