THE FREENESS CONJECTURE FOR HECKE ALGEBRAS OF COMPLEX
REFLECTION GROUPS, AND THE CASE OF THE HESSIAN GROUP Gy

IVAN MARIN

ABSTRACT. We review the state-of-the-art concerning the freeness conjecture stated in the
1990’s by Broué, Malle and Rouquier for generic Hecke algebras associated to complex reflection
groups, and in particular we expose in detail one of the main differences with the ordinary case,
namely the lack of 0-Hecke algebras. We end the paper by proving a new case of this conjec-
ture, the exceptional group called G2 in Shephard-Todd classification, namely the largest linear
group of automorphisms of the Hessian configuration.
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1. INTRODUCTION

Between 1994 and 1998, M. Broué, G. Malle and R. Rouquier introduced a natural generaliza-
tion of the generic Iwahori-Hecke algebras, associated not only to a Weyl or Coxeter group, but
to an arbitrary (finite) complex reflection group W (see [9, 10]). Extending earlier work by Broué
and Malle (see [7]), they found an adequate definition involving the generalized braid group B
associated to W. They stated a number of conjectures, some of them involving the braid group
B, some others involving the Hecke algebra H. All the conjectures concerning the braid group
B have apparently been solved now (see [3, 4, 11]). The ones concerning the Hecke algebras, on
the other hand, are not solved yet for the finite but rather large number of exceptional groups
involved in the Shephard-Todd classification of irreducible reflection groups. Arguably, the most
basic one is the so-called freeness conjecture, which states that H is free of rank |W| as a module
over its ring of definition R.

The many other existing conjectures about these generalized Hecke algebras originate in a
program about representation theory of finite groups of Lie type, and involve notably the existence
of a canonical trace; this program also suggests a number of other properties, including that the
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2 I. MARIN

center of H should also be a free module, that it behaves well under base changes, and so on. It
is also very important to be able to compute matrix models for the irreducible representations of
H. However, the reason why the freeness conjecture is more basic than the other ones is that,
once it is proved, we can rest on our better knowledge of the world of the associative algebras
which have finite type as modules. This better knowledge includes the possibility of putting
structure constants for the multiplication into a computer and apply various algorithms in order
to improve our understanding of what happens in each case (see [25] for an explanation of how
the determination of a canonical trace can be made effective in this way). Also, it is proved in [18]
that, provided that the freeness conjecture is true, the category of representations of H (actually
defined over a larger ring) is equivalent to a category of representations of a ‘Cherednik algebra’,
and this provides other tools in order to possibly deal with the other conjectures.

The primary goal of this paper was to prove this freeness conjecture, that we call here the
BMR conjecture in order to emphasize its central role, for the case of the exceptional group Gag,
which has rank 3 and is the largest of the two complex reflection groups groups that appear as
symmetry groups of the classical Hessian configuration (theorem 4.1). In addition, in the first part
of the paper, we provide some more scholarly work, that we felt were missing in the literature.
This includes the comparison of various versions of the BMR conjecture, and the algebraization
of the powerful argument of Etingof and Rains, which proves a weak version of the conjecture
for all groups of rank 2. We also explore in detail why it does not seem possible to define an
analogue of the 0-Hecke algebra for complex reflection groups, which is a big difference with the
usual (Weyl/Coxeter) case.

In this part, we have tried to be as precise and detailed as possible, at the risk of being pedantic
or boring. One reason for this is that we felt that previous work on this conjecture, whose difficulty
has for a long time been underestimated, has sometimes been sloppy on details. For instance, the
proofs given in [7] for the groups G4, G5, G12 and G5 are very sketchy. In addition, one caveat
that has repeatedly been overlooked for years is the possibility that H might have torsion, a
phenomenon that should not happen in view of the conjecture, but which is hard to rule out a
priori — and this should not be too surprising in view of the example of some torsion elements
inside the ‘0-Hecke algebras’ that we describe below (see figure 1 and proposition 3.4). Because
of this, one cannot use embeddings of H into H ® F, for F = Frac(R) the field of fractions of R.
This mistake appears in [25]: proposition 2.10 is not correct because of this, and this appears to
ruin the strategy explained there of first proving that H ® F' has finite dimension and deducing
from it the freeness conjecture (in the notations of [25], deducing conjecture 2.2 from conjecture
2.1). Tt had already appeared in [7] §4B, in the few details that are given concerning the proof of
the BMR conjecture for G4, G5 and G125 : the expressions described there have coefficients which
are not specified, but are claimed to belong to F', which means that the authors are dealing with
H ® F instead of H. It also appears in [8], proposition 2.2 where the uniqueness of the trace is
not actually proved over R, as it should be in view of [8] 2.1 (2), but over some Ry, k D Z (see
below for notations).

Concerning the known cases of the conjecture among the exceptional groups, the situation
thus heavily depends on the standard of rigorousness and checkability you are willing to accept:
depending on this, you can say that either almost all or almost none of the exceptional cases have
been proved (with the exception of the weak version proved by Etingof and Rains for groups of
rank 2). On the lax side, one may say that Broué and Malle proved it for the 4 groups above
(Berceanu and Funar independently did the case of G4 in [16], appendix A), that I proved it for G
(rank 4) in [26], and J. Miiller has announced results 10 years ago involving Linton’s algorithm
called ‘vector enumeration’, claiming the result for all groups of rank 2 but Gi7, G1s, Gig, as
well as all the groups of rank 3 (including Gag). The missing cases in large rank would then be
Gag, G31, G33 and G34. On the uncompromising side however, we already mentioned possible
mistakes in [7], and Miiller’s program has not been made publicly available and checkable (so far,
none of the usual software in computer algebra implements vector enumeration over R). This is
problematic in view, not only of the possible mistakes mentioned above, not only because the need
to trust the scientist’s word is something modern science has been trying to avoid for centuries,
but also because of the very nature of the vector enumeration algorithm. This algorithm is indeed
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a (clever) variation of the Todd-Coxeter algorithm, and as such provides no control a priori on
when it stops if it does. Moreover, the moment it ends depends a lot on a number of heuristic
choices that need to be made inside the specific implementation of the algorithm. According to
J. Miiller (private conversation, Aachen, 2010), it is moreover unclear that the program he wrote
would run now on modern computers.

In the current situation, running the welcome risk of being checked and judged with the same
severity, we thus stick to the hardline position, of somewhat provocatively claiming that only the
cases of Gy, Ga5, G32 and now Gaog have been fully checked so far. Our hope is to encourage
people to treat the other cases ‘by hand’, which is a way that usually provides more information
about the algebras under consideration, and also to encourage authors and editors to provide and
publish full details for these computations. This would enable people to check and improve these,
or use them in possibly unpredicted ways.

2. GENERAL CONSIDERATIONS ON THE GENERIC HECKE ALGEBRAS

Let W be a (pseudo-)complex reflection group, always assumed to be finite, and let R =
Zlas ;, a;é] where s runs among a (finite) representative system P of conjugacy classes of distin-
guished reflections in W and 0 < i < o(s) — 1, where o(s) is the order of s in W. We let B denote
the braid group of W, as defined in [10], and recall that a reflection s is called distinguished if its
only nontrivial eigenvalue is exp(2im/o(s)), where i € C is the chosen square root of —1.

Definition 2.1. The generic Hecke algebra is the quotient of the group algebra RB by the relations
ools) — as,o(s),lao(s)_l — - —as0 =0 for each braided reflection o associated to s.

Actually, it is enough to choose one such relation per conjugacy class of distinguished reflection,
as all the corresponding braided reflections are conjugated one to the other. In [10] was stated the
following conjecture.

Conjecture 2.2. (BMR conjecture) The generic Hecke algebra H is a free R-module of rank |W|.

2.1. Root parameters vs. coefficient parameters. Usually, the Hecke algebra associated to
a complex reflection group is defined over the ring R = Z[u“,u:}] More precisely, this Hecke
algebra H is defined as the quotient of the group algebra RB of the braid group by the ideal
generated by the relations Ho(s) "(o —us,;) = 0 where the o are the braided reflections associated
to s. Note that R is the subring RS of invariants of R under the natural action of & = [Lcp Gos)-

The Broué-Malle-Rouquier conjecture for H, namely that H is a free R-module of rank |[W/|,
clearly implies that H is a free R-module of rank |W|. The converse being less obvious, and since
most authors including [7] use the Hecke algebra over R instead of R, we prove it here. Note that
J. Miller in [29] uses the definition over R for his computer calculations.

Lemma 2.3. H is a free R-module of rank N if and only if H is a free R-module of rank N.

Proof. Let I denote the two-sided ideal of RB generated by the 0°() —a o(s)— pools)—1 s,0-

By definition H is the quotient of RB = RB ®g R by the i image of I ®g R in RB ®p R which,

by right-exactness of the tensor product, is H ®p R. Thus H = H ® R. If H = RN then clearly
= RN @r R= RY is free of rank N.

Conversely, we assume that H = RN. First note that R is a free R-module of rank |&|
(see e.g. [5] chapitre 4, §6, n° 1, théoreme 1), hence H = RNISI as a R-module. Moreover,
H=H®rR~H®pg R'Q" ~ H'b‘ as an R-module. In particular H is a direct factor of the free
R-module H and is thus projective, hence flat, as an R-module.

Now note that H = H ®zs R = H @z R® = H ®r Hompe (R, R) where R is considered as
a trivial R&-module. Since R is a noetherian ring, RS is noetherian as an R-module and thus
left-noetherian as a ring, hence R admits a finite presentation as an RG-module. Since R is flat,
it follows from general arguments (see [6] ch. 1, §2, numéro 9, prop. 10) that

Hompe (R, H @p R) ~ H @ Homps (R, R) = H o R® = H

But the LHS is Hompe (R, H) = Hompe (R, RY) = Hompe (R, R)N = RV and this proves the
claim. O
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2.2. The BMR conjecture and Tits’ deformation theorem. Let F' = Q(as;) denote the
field of fractions of R, and F an algebraic closure. For k a unital ring, we let R, = R ®gz k,
Hy, = H ®pr Ri. We let C denote the field of complex numbers. Part (1) of the next proposition
is in [10] (see the proof of theorem 4.24 there).

Proposition 2.4.

(1) If H is generated as a module over R by |W| elements, then H is a free R-module of rank
W]

(2) If H is finitely generated as a module over R, then H @r F ~ FW.

(3) If He is finitely generated as a module over Rg, then H @r F ~ FW.

Proof. Let O = CJ[h]], and K = C((h)) its field of fractions. By the Cherednik monodromy
construction, one can build a morphism ¢ : H ® O — OW ~ OWI where the morphism R —
O defining the tensor product H ® O depends on the collection of parameters involved in the
monodromy construction. We take these parameters to be linearly independent over Q, so that
the morphism R — O is injective. Modulo h, the morphism ¢ is the identity of CW, hence the
original morphism is surjective by Nakayama’s lemma.

Let N = |W|. If H is generated by N elements, then there exists a surjective morphism of R-
modules 7 : RY — H, which induces 7@ O : ON - H®O. Then po(7®0) : ON — OW ~ ON.
Such a surjective morphism between two free modules of the same finite rank is necessarily an
isomorphism, hence 7 o O is injective, and in particular 7 is injective. This means H ~ RN that
s (1). Clearly (3) implies (2), so we prove (3).

For this purpose we consider Ho = Hc ® O, and 7o : oN' Hp. Let H(O9 the torsion
submodule of He. Since Hp is finitely generated over the principal ring @, we have that Hp =
Ho/HY is a finitely generated free O-module.

Ho‘»-OW

IEs

H0 —CW

By the above commutative diagram, the specialization morphism Hp — CW factors through H, 0,
hence we can apply Tits’ deformation theorem to the free O-module Hp and get Ho®K ~KW.
Since Ho ® K ~ Hp ® K this means Hpo ® K ~ KW, hence H ® F is a semisimple algebra
with the same numerical invariants (because Ho ® K = H ® K is an extension of scalars, since
F — K), and this implies H @ F ~ FW.

O

Recall that every finitely generated flat R-module is projective ; moreover, as a consequence of
Swan’s big rank theorem (see [32], and [20], ch. 5) every finitely generated projective R-module
of rank at least 2 is actually free and, because Z is a regular ring, Ko(R) ~ Ky(Z) = Z which
implies that also the rank 1 projective modules are free (see e.g. [20], ch. 5 lemma 4.4 and ch.1
cor. 6.7). We summarize this as follows.

Proposition 2.5. If H is finitely generated as an R-module, then H is free of rank |W| if and
only if it is flat.

If it is known that H is finitely generated, the BMR conjecture thus becomes a local condition.
For a prime ideal p of R, and M an R-module, let R, denote the localization of R at p and
M, =M ®r R,.

In the specific neighborhoods of Spec R corresponding to the specializations H — kW, the
following can be proved.

Proposition 2.6. Let k be a field. Let m = Ker(R — k) be the mazimal ideal defined by as; — 0
for i >0 and as,o — 1. If Hy is finitely generated as a Ry-module (for instance if H is finitely
generated as a R-module), then it is free of rank |W/|.
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The proposition above is a consequence (see e.g. [6] ch. III §3 no. 5, cor. 2 prop. 9) of the
next one, basically deduced from [10] by Etingof and Rouquier (unpublished). This property is
essentially what P. Etingof calls ‘formal flatness’.

Proposition 2.7. Let p = Ker(R — Z) be the prime ideal defined by as; — 0 fori > 0 and
as,0 1, and let R H etc., denote the completions w.r.t. the p-adic topology. Then Hisa free
R-module of rank |W|.

Proof. Let W = {& | w € W} be the image of a set-theoretic section of B — W, and W be
its image in H. The map w w induces usmg the natural prOJectlon RB — H a continuous
morphism of R-modules RW — H hence ® : RW ~ RW — H. We prove that ® is surjective.
We first need a lemma.

Lemma 2.8. Forallr>1, H=RW +p"H.

Proof. Let P = Ker(B — W) denote the pure braid group. We have RB = RW +W > geplg—1).

The image in H of (g — 1) for g € P falls into pH, hence H = RW + pH which easily implies the
conclusion. (]

As a consequence, we get that RW is dense inside H , thus proving that @ is surjective. Now,
the KZ-like construction of [10] provides a morphism ¢ : H — C[[h]]W associated to some
morphism R — CJ[[h]], which is continuous for the (p, h)-topologies, hence extends to a morphism
H— C[[h]]W. We have the following diagram.

RW H
p=0 Cl[hw
h=0
W~ CW

Since RW is a free module of finite rank the injectivity of the natural map ZW — CW implies
that RW — H is injective, whence RW ~ H and the conclusion.
O

An elementary remark is that, in a number of exceptional cases, the BMR, conjecture can be
reduced to a problem in 1 variable. Indeed, the following apply to all the exceptional non-Coxeter
groups of rank at least 3, except the Shephard group G5, Gog and G32, that is to the groups Gay,
Go7, Gag, G31, Gs3, G34. We let A denote the collection of all the hyperplanes which are sets of
fixed points for reflections in W. It is naturally acted upon by W

Proposition 2.9. Assume that |A/W| =1 and that all reflections have order 2. Let k be a com-
mutative unital ring. Then Hy is a free Ri-module of rank |W| (respectively, a finitely generated
Ry-module) if and only if the quotient of k[z=1|B by the ideal generated by (o —1)(c —x) for o a
braided reflection, has the same property.

Proof. Let H° denote the quotient of k[z*!]B by the ideal generated by (o — 1)(¢ — z) for o
one given braided reflection. Since all braided reflections are conjugate in B, this is the algebra
involved in the statement. Moreover notice that B is normally generated, as a group, by o. Let
Ry, = k[uo , Uy ] We already know that the assumptions of the proposition on Hj are equivalent
to the same assumptlons for H, = H,® R Ry. For every (8 € Rk, there exists an algebra morphism
g : RiB — Ry, B which maps o to 8o ; it can be defined, using that B ~ Z is generated by the
image @ of o, as the composite of the natural algebra morphisms

Ry B —> (R B) @ (RB) ——— (f{kB) (RkB“b) — (RyB) ® R, — Ry B

Id®A
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where A denotes the coproduct. These morphisms are equivariant under the conjugation action of
B on itself, thus ¢g, 0 pg,(0) = s, 8, (0) implies that g opz-1 = Id, hence pg is an isomorphism
when 8 € RY. Recall now that Hj, is the quotient of RyB by the relation (o0 — ug)(o — uy).
Taking 8 = ug, we get that the image of (¢ — ug)(c — u;) under @, is u2(c — 1)(o — uyug ),
whence a Rj-isomorphism Hj, ~ H° Ople£1] Ry, where k[z* Ry, is defined by z uluo_l. We
have R, = €, , kugub = @ h(ujug ') ud is free hence faithfully flat as a k[z*!]-module, and this
proves the claim. O

Let 2 € Z(B), B = B/(z), and s : B — B a set-theoretic section of the natural projection
b+ b. We let R: = Ry[z,27']. We denote o1, ...,0, a distinguished system of braided reflections
(all corresponding to distinguished reflections, and at least 1 for each conjugacy class). We let
P; € Ri[X] denote polynomials defining Hy, that is Hj, is the quotient of RyB by the relations
Pi(o;) = 0.

Proposition 2.10.
(1) RiB admits an R,j' -module structure defined by x.b = zb forb € B. It is a free R: -module,
and we have an isomorphism R B ~ R',:F.

(2) Under this isomorphism, the defining ideal of Hy, is mapped to the ideal of Rzg generated
by the Qi(7;) for Qi(X) = Pi(Xz*) € RT[X], the a; € Z being defined by o; = s(7;)z%.

Proof. Since Z(B) is torsion-free, (z) ~ Z, and there is a uniquely defined 1-cocycle o : B — Z such
that Vb € B b = 2% s(b). Therefore, as Ry-modules, Ry B = @, 5 Rib = Dy Ruz*Ps(b) =
@Dt Bp_y Rrz*®d. Under this identification, for every d € B, @Pj_, Rrz*"d is a free R} -
submodule of rank 1, whence (1). Let I C Ry B the defining ideal for Hy. It is the Rg-submodule
spanned by the bP;(o;)c for i € {1,...,7} and b, c € B, hence also the R,:—submodule spanned by
the s(d)P;(0;)s(e) for d,e € B. We have P;(0;) = Q(s(7;)), hence I is identified inside R} B with
the R,j-submodule generated by the dQ;(7;)e for d,e € B, that is to the ideal of R;E generated
by the Q; (Ei). O

Note that, if the P; have been chosen to be monic, one can replace the @; by the monic
polynomials 2~%?" " P;(X2%) € R} [X], where d°P; denotes the degree of P;. Note also that,
being the quotient of Ry B by an Rﬁ—submodule7 Hj, inherits a structure of R,:f—module.

The following proposition is based on one of the arguments of Etingof-Rains [13].

Proposition 2.11. If Hy is finitely generated as a R,Jg -module, then it is finitely generated as a
Ry -module.

Proof. By assumption, Hy is generated as a R,j—module by a finite set of IV elements. Let us
choose some @ € Rylx] C R,j7 and M = QH;, C Hy. By assumption it is generated by N
elements as a R;—module. We have M = 0 as soon as M, = 0 for all the maximal ideals a of R,j,
where (R})q denotes the localization of R} at a, and My = M gy (R} )a (see e.g. [12] lemma
2.8, p. 67-68). Since (R} ), is a local ring, by Nakayama’s lemma we have M, = 0 iff M, = aM,,.
Since (R} ), is a flat R, -module, this is equivalent to M = aM, that is M Bt ((Rf)/a) = 0. Let
us denote K = (R;")/a and K the algebraic closure of K, and A : R}’ — K the natural morphism.
We have M @ K = Q(Hy ®py K) = (QHy) @py K = Hy ©pr MQ)K. Let Ry, = Rz k and
RZ‘ = Ry, [z,27]. Since it is clearly an integral extension of RZ‘ and K is algebraically closed, A
can be extended to \ : R,:' - K.

We know that Hy, gt K is a K-algebra of dimension at most N;. If Hy, B gt /N\(Q)f # 0, there

exists a simple Hy, Dpt K-module V of dimension N»(V) < Nj in which S\(Q) acts by a nonzero

scalar. It defines an irreducible representation p : B — GL N(VQ)(F) of B over K. By definition, z

acts on V through (z), which has determinant A(z)™>(). On the other hand, z is the product of
N3 distinguished braided reflections o; . ..oy, with N3 independgnt of the previous choices. Since
each p(o;) is annihilated by a split polynomial with roots inside {\(u.;) | ¢ € A/W,0 <i < e.—1},
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det p(0;) is a monomial of degree Ny in these variables. It follows that A(z)N>(Y) is a monomial
of degree No(V')N3 in these variables. Let M be the set of all such monomials of degree at most
NjNs3. Since No(V) < Ny, we get that A(z) is annihilated by the polynomial

Q= I II & —m)e (Ri[X])® = Ry[X]
1<r<N; meM
so we set Q = Q(z) € R;. By construction we have that MQ) = Q(A(x)) acts by 0 on Hy, Qg+ K,
hence M = 0 and QH, = Hy. It follows that H, = Hy, Bt (R} /(Q)) is finitely generated as an
R} /(Q)-module. Since R /(Q) is a finitely generated Rj-module, the conclusion follows. O

2.3. Groups of rank 2. Assume that W is an irreducible exceptional group, and that it has rank
2. This part is a rewriting of the part of [13, 14, 15] which is relevant here. Let B = B/Z(B),
and W = W/Z(W). A consequence of the classification of the finite subgroups of SOz(R) =~
SU,/Z(SU,) is that W is the group of rotations of a finite Coxeter group C of rank 3, with

Coxeter system y1,y2,y3 and Coxeter matrix (m;;). Let Z = Z[exp (3;—7;)]

Etingof and Rains associate to every Coxeter group C with Coxeter system yi,...,y, the
following Z-algebra (for simplicity, we assume m;; < oo, although their construction is more
general). Let a;; = y;y; € W. and define A(C) to be the (associative) algebra with generators
Yi,..., Yo, tij[k] for 4,5 € {1,2,3}, i # j, k € Z/m;;Z, and relations t;;[k] ™' = t;;[—k], Y? =1,

w1 (YiYj — tij[k]) = 0, yetys[k] = tjilk]y,, tij[k]tig (K] = tirj [K']ti;[k]. The subalgebra A, (C)
generated by the A;; = Y;Y; becomes a RC-algebra, with RC = Z[t;;[k]*']. As a RC-algebra,
it admits a presentation by generators A;; and relations [, (A;; — ti;[k]) = 0, AjjA; = 1,
AijAjkAki = 1 whenever #{i,j, k‘} =3.

Proposition 2.12. (Etingof-Rains) If C is finite, then A, (C) is a finitely generated RC -module.

Proof. (sketch) Every word in the A;;’s corresponds to a word (of even length) in the y;’s ; if the
length of this word is greater than the length of the corresponding element of C, then there is
a sequence of braid relations that transforms this word into another one containing y? for some
i. Moreover, it is easily checked that every braid relation can be translated inside A, (C) into

the transformations AijTl ~ Aﬁ# 4+ ... or Ag;“jfl)m/lig ~ A;Tirl)/2Ajg 4 ... where the dots
represent terms of smaller length. Finally, when the word in the y;’s contains a yjz-, this means
that our original word contains a A;;A;x, which is either 1 or A;x, hence the length gets reduced.
This proves that A, (C) is generated as a R°-module by words of bounded length in the A;;’s,
hence that it is finitely generated as a R¢-module. O

In order to apply this to our W, Etingof and Rains exhibit case-by-case in [13] explicit lifts
ai; € B, using which they prove the following, where we use the notations of proposition 2.10.

Proposition 2.13. There exists a ring morphism RC — R% inducing A4 (C)®pc RJZr — R%E/Qi(ﬁi)
thTO’U,gh Aij — (Nllj

An immediate consequence of this proposition together with propositions 2.10 and 2.11 is the
following, essentially due to Etingof and Rains.

Theorem 2.14. If W has rank 2, then H is finitely generated over R.

Proof. By the above proposition and propositions 2.10 and 2.11 we get that H is finitely generated
over 5. Since Z is a free Z-module of finite rank (being finitely generated and torsion-free) Ry
is also free of finite rank over Rz. This implies that H C H; and that Hj is finitely generated
over R. Since R is noetherian this implies the conclusion. O

Remark 2.15. There are exceptional groups of higher rank which are related to Coxeter groups,
notably Gss3/Z(Gs3) and Gs2/Z(Gs2) are isomorphic to the group of rotations of the Coxeter
group of type FEg (which is a simple group of order 25920). One has |Z(G33)| = 2, |Z(G32)| = 6.
However, the same method does not readily apply, because of the lack of convenient lifts.
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3. REMARKS ON THE 0-HECKE ALGEBRAS

In the Coxeter case, there is a notion of a 0-Hecke algebra which, although not being the quotient
of the group algebra of B anymore, nevertheless displays many pleasant properties. In particular,
it is still a free module of rank the order of the Coxeter group, and it admits an interpretation as
an algebra of differential operators. In this section we expose two different kinds of obstructions
for such a nice behavior to generalize.

3.1. Demazure operators. In [21], problem 5 in appendix C, G. Lehrer and D.E. Taylor ask
whether the ‘Demazure operators’, which provide a description of the 0-Hecke algebra in the Cox-
eter setting, may provide a satisfactory description of the 0-Hecke algebra in the complex setting.
More precisely, they ask whether these operators satisfy the homogeneous relations originating
from the usual braid diagrams of the braid group.

In this section we give a negative answer to this problem, by computing precisely these operators
in the smallest exceptional case, namely of the exceptional reflection group of type G4. Recall e.g.
from [10] that this group admits a Coxeter-like diagram of the form

Gy @—0O

S1 So

meaning that its braid group B is generated by two braided reflections s; and s, with relations

518281 = 828182 (hence B is isomorphic to the usual braid group on 3 strands, or Artin group of

type A), and that the reflection group itself is the quotient of B by the relations s} = s3 = 1.
The defining embedding W < GL3(C) can for instance be described as follows, with j =

exp(2in/3),1i=+v/—1.
(YO L= 2+
0 ) T3 \4i 2 -2

Let 6F € End(S(V*)) denote the Demazure operator associated to s;, and ¢; € End(S(V)) its dual
operator. It is true that (67)% = (65)% = 0 (see e.g. [21], chapter 9, exercises), and the general
question specializes to whether 073507 = 650704 holds, or equivalently whether 61291 = 026192
holds, possibly up to a renormalization of the operators by non-zero scalars. We now explain the
following computation.

Proposition 3.1. §10261 & Q(j)* 620102, hence the Demazure operators associated to the braid
diagram of G4 do not satisfy the braid relations up to a scalar.

Proof. We let V = C? with canonical basis z = e, y = e, hence S(V) = C[z,y], and sy maps z
on ((5 — 7%z + (45 + 25%)y)/3, etc. The reflecting hyperplane of sy is spanned by x, and its root
is a multiple of y ; the reflecting hyperplane of s, is spanned by x — 2y, and its root is a multiple
of z 4+ y. Thus the corresponding Demazure operators are defined, up to a scalar of degree 0, by
$1.p —p = Yo1p, S2.p — p = (x + y)d2p. The expression of 47 is simple, as it maps a monomial of

the form 2% to (j® — 1)z%y®~1, as shown by a simple induction. The computation of d, is more
intricate. One gets easily
o 36092 = —jxr — (3+5°
30y = 2§+ ;2 2-Y _ gf” B+57)y
36 — A4 272 36y = jr — 2y
2 J T4 36022 = —do — 4y
and
902> = (j—5%)a% — (7j +2j%)xy + (10 + 85%)y?
902.y* = %+ (45 — j*)ay — (105 + 55%)xy® — (10 + j2)y°

Starting from d;.y* = (5% — 1)y = (j — 1)y one thus gets

3010201.y" = (557 — 2j)= + (10j + 85%)y
and
9090109y = (45 — 1352 + (252 — 2j)y.
This implies that §16261.y* and 62612.y* are linearly independent, which proves the claim. O
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Of course, this obstruction might a priori vanish by taking another kind of diagrams. However,
we notice that all the 6 pairs of the form {s,¢} with s,¢ among the 4 distinguished pseudo-
reflections of the reflection group G4 are conjugate to each other, whence from the above we get
350:0s & Q(4)*0+059; for each of them.

After this example was computed, R. Rouquier told the author that M. Broué had already
tried, some twenty years ago, to use Demazure operators for complex reflection groups, and that
he had already noticed a similar defect.

3.2. 0-Hecke algebras defined by diagrams.

3.2.1. The case of G4 : finite generation and torsion. In view of the diagram described above,
a natural candidate for the 0-Hecke algebra associated to the reflection group G4 would be the
following algebra.

Proposition 3.2. Let k be a ring. The unital k-algebra defined by generators s1, s2 and relations
§15281 = S95189, 8:13 = sg = 0 is not finitely generated as a k-module.

Proof. Let W, W' Y, V' be free k-modules with bases w,,w.,y.,y., v > 1, and let E=WSW' &
Y@ )Y'. We define k-endomorphisms S; and Sy of £ by

Siw, = 0 S1yr = 0 Srw, = y;+1 S1y, = wy
Sowr = Yri1 Soyr = wy ro=0 S2yp = 0

It is immediately checked that S;S555] = 525152 = S} = S5 = 0, and that S?5%.w, = w, for all
r > 1. This proves that S1, 52 defines on £ a structure of module over the algebra A that we are
considering. If A were finitely generated as a k-module, A.wy C E would also be finitely generated
as a k-module, contradicting the fact that it contains an infinite subset of a basis for F. O

Corollary 3.3. Let m € Z \ {—1,1}. The unital Z-algebra defined by generators si,ss and
relations s15981 = 828152, s‘;’ =m, s% = m is not finitely generated as a Z-module.

Proof. Choosing a prime p dividing m, we get that this Z-algebra admits for quotient the algebra
defined in the proposition for k = F,,. O

An immediate corollary is that we cannot expect the BMR conjecture to hold without invert-
ibility conditions. This is a big difference with the Coxeter case. More precisely we prove the
following.

Proposition 3.4. The algebra defined over Zla,b, c] by generators s1,s2 and relations s15281 =
528189 and s = as? + bs; + ¢ fori € {1,2} is not finitely generated as a Za,b, c|-module. In the
specialization a = b = 0, a non-zero torsion element of the corresponding Z[c]-module is provided
by (s253)6 — 8.

Proof. Infinite generation follows again from the specialisation a = b = ¢ = 0. By the computation
described in figure 1, we prove that ¢((s3s3)% — ¢®) = 0. Specializing to a = b = ¢ = 0 we get that,
on the Z-module already used above, s2s3 is mapped to an endomorphism of infinite order, thus
proving (s2s2)¢ # 8.

O

3.2.2. The case of G12. The example of G4 might suggest that differences with the Coxeter case
may happen only when the reflections have order more than 2. We prove that this is not the case,
by considering the reflection group of type G2, whose reflections all have order 2. A suitable
monoid for its braid group is given by the presentation (A, B,C | ABCA = BCAB = CABC).
The generators are braided reflections, and the monoid is known to be Garside (see [31]).

Proposition 3.5. Let k be a ring. The unital k-algebra defined by generators A, B, C and relations
ABCA = BCAB = CABC, A? = B? = 0% = 0 is not finitely generated as a k-module. The
same holds if the latter relations are replaced by A2 = A, B> =B, C? =C.
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2.2\6 __ 2.2.2.2.2:2.222.2.22.2
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FIGURE 1. Torsion element in type Gy : ¢((s3s3)6 —c®) =0

Proof. We introduce the free modules W*, W~ with bases w, w;", for r > 1, and make A, B,C
act through C.w;” = C.w,” = 0 and

Awf = 0 Bw}! = w.,
Aw, = wl, Bw, = 0
One easily gets that A2, B2 et C? act by 0, as well as ABCA, BOCAB, CABC, thus defining

a module structure for the first algebra. Since one can check that AB acts by w,;" — w. , one

gets the conclusion. For the second algebra, we make still C' act by 0, whereas A.w} = w, 1,
Aw; =w;, Bw, =w!,, Bw =w/. This time BA maps w; — w,",. O

3.2.3. The case of G(d, 1,2). We finally make a third example, this time inside the infinite series.
The usual Hecke algebra has a presentation with generators t,s and relations stst = tsts, t% =
ag+ait+---+ag_1t971, 52 = as+ B, defined over Z[a;, aal, a, 3,71, and the BMR conjecture
is known for them, by work of Ariki and Koike [2] . However, and somewhat surprisingly in
view of the previous examples, it can be proved (see [2]) that it is actually finitely generated over
Zla;, o, 3, 71]. This feature is true for the general case of the G(d,1,r). For r = 2, an explicit
spanning set of 2d?> = |G(d,1,2)| elements is given by the t™u"s® for 0 < m,n < d — 1 and
e € {0,1}, for u = sts. The fact that it is a spanning set over Z[a;, «, 3, 371] can be deduced from
the easily checked relations tu = ut, us = Bst + au, st = S~ us — S~ 'au ; and their consequences
st = Btsu™ + auntl, sty = B ust™u” — B at™un . However, B really needs to be
invertible, as we illustrate now.

Proposition 3.6. Let k be a ring. The unital k-algebra defined by generators t,s and relations
stst = tsts, t3 = 0, s = s, is not finitely generated as a k-module.

Proof. Let E be the free k-module with basis the elements w;., w!.,y, for r > 1. We make s, ¢ act

on E through

sw, = w, sl = Wwpy sy, = 0

tw, = vy, tw, = 0 ty, = w,
One checks easily than s? acts like s and that both ¢3 and stst = tsts act by 0. The corresponding
module is generated by wi. Since it is a free k-module of infinite rank this proves that the algebra

of the statement is not finitely generated. O
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Corollary 3.7. The algebra defined by generators t,s and relations stst = tsts, t¢ = ag + a1t +
o ag 19T, % = as + B, is not finitely generated over Z[a;, o, B] when d > 3.

Proof. The specialization of this algebra at a; = 0, « = 1,8 = 0 admits a quotient (by the ideal
generated by ¢3) which is not a finitely generated Z-module, whence the conclusion. O

Note that the assumption d > 3 is necessary, because the case d = 2 corresponds to a Coxeter
group, for which 0-Hecke algebras are finitely generated.

Inside the infinite series, R. Rouquier communicated to us the following other example of the
group G(4,2,2), for the presentation (A, B,C | ABC = BCA = CAB,A? = B? = C? = (). Then,
it can be checked that the algebra (A, B|A? = B? = () naturally embeds inside the Hecke algebra
H, and that it is not finitely generated.

4. THE HECKE ALGEBRA OF Ggg

According to [29], the BMR conjecture has been checked to hold for Gag by J. Miiller, using
Linton’s algorithm of vector enumeration (see [22]) and unpublished software. For completeness,
we also note that the Schur elements of Gag have been computed in [24], §6C, under the additional
assumption of the existence of a suitable trace form.

Theorem 4.1. The BMR conjecture holds for Gag.

We recall that the group Gag is a Shephard group, and a quotient of the braid group of type
Bj3. It is the largest of the two ‘linearizations’ of the group of automorphisms of the projective
‘Hessian configuration’ (see e.g. [30], example 6.30 p. 226), the other one being Gas.

We take for generators of the braid group B of Gy the elements ¢, s5, s1 satisfying the braid
relations tsotss = Sotsat, 98189 = 818981 and ts; = sit.

The generic Hecke algebra A of Gag is then defined over the ring R = Zla,b,c7 1, d, e,
with generators si, se,t subject to the above braid relations, and in addition to the relations
s3 = as? 4+ bs; + ¢ and t2 = dt + e. The ring A admits useful (skew)automorphisms, defined by
S — sfl, tst L as —bc b= —ac e ¢ d— —de !, e e We let ¢ denote the
automorphism, ¥ the corresponding skew-automorphism.

Let A3 = (s1,82) C A and A"tD) = A(MyA;. For technical reasons, we also introduce the
following intermediate bimodules

AR3) =A@ 4 AgtsysitsytAs + Astsysitsy ‘tAs+Astsysy sy tAs + Astsy LsT sy [t As

B = 4(2%) + A302 + Agc_2

We have the following inclusion/equalities, some of them being obvious from the definitions,
the other ones being proved in the sequel.

A A@)cC AY) A — A6) — A

Let C = (tsys1)®. It is central in /1, as it generates the center of the braid group, and its image
in Gg¢ has order 6. We let u; = R + Rs; + Rsi_1 denote the subalgebra generated by s;, and
v = R + Rt the subalgebra generated by t. We will need the following results on the ‘parabolic’
subalgebras As = (s1,$2) and (sq,t), which correspond to the rank 2 parabolic subgroups of
Shephard-Todd type G4 and G(3,1,2), respectively.

Proposition 4.2.

(1) <31a 52> = ujugu; + ulszsflsg
(2) <81a 32> = U1 + U1S2UL —+ ’1,L1$2_1u1 + u1$231_182

—1
(3) (52,1) = Xae-1.0.1y B3+ 0 neq-1.0.1) RS3EBFD0eq 10,1y RSStsat+D 0101y Robtsy 't
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Proof. (1) and (2) are easy and proved in [26]. We prove (2). The RHS clearly contains 1
and is stable under left multiplication by so. It thus sufficient to prove that it is stable under
left multiplication by t. Let U denote the RHS. Since (sp) is R-spanned by 1,ss,53, we need
to prove ts$tsy € U and tsg“tsgt € U for all b € {0,1,2} and o,8 € {-1,1}. If a = 1 we
have ts%tsg = tsztsg. If b = 1 we get in addition tsztsg = tSotsg = sSotsot € U; If b = 1 we
get (tsotsg)se = sa(tsatss) = sitset € U; if b = 0 we know tsot € U. If a = —1 we have
tsy 'tsh € R*t syt sh 4 (s9)t(so) € R*t 'sy 't~ 1sh + U and the proof of t~1s; 't 1sh € U is
similar, taking this time b € {—2,—1,0} and using t~'s; 't 1s; ' = 55 't "1s; 1t ! instead. This
in particular implies that t(s%tsgt) = (tsgtsg)t € Ut. The same proof, reading from the right,
proves that s§tsit € U for all a, b, which clearly implies Ut C U, and this concludes the proof.

O

4.1. Bimodule decompositions of A(k), 1<k<3.

Proposition 4.3.  (bimodule decomposition of AW qnd A(Q))
(1) A(l) = A3 + AstAs
(2) AR = A + AstsotAsz + AgtsgltAg + A3t828;182tA3

Proof. (1) is clear, as v = (t) is R-generated by 1 and t. For proving (2) we note that Az =
u1825f152+u1u2u1 hence tAst C tulsgsflsgt—i—tulugult C u1t523f132t+u1tu2tu1 C U1t828;182t+
urt?uy + urtsotuy + uitsy tur. This proves (2). O

Lemma 4.4.
(1) For alli,j € {1,2}, tustujt ¢ A®

(2) tugustust C Y, 5 Rtsgts) st

Proof. We prove (1). If i = 1 or j = 1 this is clear by the commutation relations. One can thus
assume ¢ = j = 2, and consider ts3tsit with a,b € {0, 1,2} since uy is R-spanned by 1,s, and
s3. If a = 0 or b = 0 this is clear. If @ = b = 1 then this is (tsatss)t = satsst? € A® ; if
a =1 and b = 2, then this is (tsotsq)sat = sa(tsatse)t = sotsot? € A® ; the case a = 2 and
b =1 is similar. We thus only need to consider the case a = b = 2. Using s3 € ngl + Rsy + R
we get from the preceding cases ts3tsit € tsy'tsy 't + A®) ; moreover t € R*t~ + R hence
tsy syt € R¥t syt sy it 4 A®). Now (t1sy 1t sy )t~ = syt 1sy 12 € A® and this
cor;cludes the proof of (1). (2) obviously follows from (1), as u; is the R-linear span of 1, s; and
s; . O

(2

Lemma 4.5.

(1) tsasy tsy 't € Aftsy tsatsy tAS + A
(2) tsy'sitsy 't € Aftsy sy tsat AS + AP
(3) tsasitsy 't € AStsgs] 'tsot AY
(4) tsgsy tsat € AStsy 'sitsat AL

Proof. We have

s1(tsgsy sy 't) = t(sispsy )tsy
= tsy ' s180(tsy tsy t)so )
€ R*tsy'syso(t lsy 't sy )sy + AR

and ts; 'syso(t sy 1t s t) = tsy tsysasy Mt lsy Tl = tsy st lsy 't € R¥tsylsitsy 't +
A® | which proves (1). Now
(tsy 'sitsy 't)s7t = tsy 't(s1sy'sy )t

= tsy'tsy sy tsat A

€ R¥tlsyltlsy sy tsot + AR
and (t71sy sy )sy tsat = s sy T s tsat = sy Mt sy sy T bsgt € R¥ sy Mtsy tsy st +
A®) and this proves (2).
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We have
1

(tsasitsy 't)sy tsot(s1sy sy )t tsatsy s sot

= 52—1(52t82t)52_151—152t — S;lt82t82$2_1$1_132t _ 52_1t5251_1t52t
and this proves (3). Now sitsasy 'tsat = t(s1sgsy ' Jtsat = tsy s1(satsat) = tsy 'sitsatsy =
(tsy 'sitsat)sy and this proves (4). 0

Proposition 4.6. (bimodule decomposition of 121(3))
4(3) = A(Q) + A3t82517152t82817182t143 + AstsositsotAs + A3t5251t8;1tA3

+Agtsgsy sy 't Az 4+ Agtsy sy sy A

Proof. Since Az = U1$251_182 + uiuguy = Sle_ngul + urugu; we get
tAgtAgt C A3t828;182t828;182t143 + A3tU2tA3tA3 + AgtAgtUQtAg.
Now tugtAst = Rt2Ast + RtsotAst + Rtsy 'tAs C A®) 4 RisstAst + Rits; 'tAs. Using again
Az = 5251_1527“ + ujugu; we get tsot Azt C (t52t52)51_152u1t + tsatuiusurt C 52t52t51_152tu1 +
tsotuyustuy C AstusuqtustAs ; using As = sglslsglul + ujuou; we get similarly tS;ltAgt -
(tsy'tsy t)s185 turt + tsy ‘tusuguit C sy ttsy 'tsysy ttug + tsy Mtugustu; C AstuguitustAz. This
yields tustAst € A® + AstuguitustAs. In a similar way, we leave to the reader to check that
tAstust C AP + AstusuitustAs. This implies
tAstAst € A® 4 Agtugugtugt As + Astsasy Lsatsasy Lsat As.

The conclusion then follows from lemmas 4.4 and 4.5. O

4.2. The bimodule A(23),

Proposition 4.7.

(1) C € tsysitsatAY and C~' € Aftsy sy sy 't + A®?)

(2) AB) = A23) ¢ A3t5251_152t5251_152tA3

(3) AC2) = A®) 4 Agtsysitsot + Astsositsy 'tAs + Agtsysy sy 't As + Astsy LsT sy 't
Proof. We have C' = tsgs1tsasitsas) = ts281t82ts15281 € tsasitsatAs . One gets similarly Ccle
AXtVsy s sy 1l Since t71 € R*t + R this implies C~' € AStsy 'sy sy 't + A®). This
proves (1). (2) follows from proposition 4.6. Since C'is central, (3) then follows from (1). O

We now compute the number of elements which are needed to generate A2) modulo A® as
a As-module. We need the following two lemmas.
Lemma 4.8.
(1) For all « € {0,1,—1}, (ts251)s5 = s5(¢ts2s1)
(2) t5251t52iltu2 C A(2) + Aotsositsat + A2t8281t8;1t
(3)
t5281ts§t1tA3 c A®4 Z Z AQtSQSlfSZtSl{S%—l- Z (Agtszsltsgtslsglsl + A2t3231ts§t)
ac{—-1,0,1} bec{—1,1} ee{—1,1}
(4)

tszsltsétltAg c A® 4 Astsgsitsat + Z Z A2t32$1tsgltsl{sg
ae{-1,0,1} be{—1,1}

+ (A3t5251t52_1t5152_151 + A2t3251t52_1t)

(5) A® 4 256{71’1} A3t3231t52i1t143 is spanned as a Az-module by A® and 9 elements orig-
inating from the braid group.
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Proof. For (1), this is because tsos)s§ = t(s95155) = ts¥s951 = s¢ts951. Since tsFltug C (so,1),
proposition 4.2 implies
tsgsitsiltuy, < A® 4 Zae{—LO,l} Rtsys18%tsot + Zae{—l,O,l} Rtsysysitsy 't
A®) 4 Zae{—LO,l} Rs§tsgsitsat + Zae{_m,l} Rs‘ftszsltsglt
A(2) + A2t5251t52t + A2t5251t32_1t
that is (2). Then (3) is an immediate consequence of (2) and of the decomposition of Az as (s3)-

module given by proposition 4.2 up to exchanging s; and sy (see also [26]). (4) is readily deduced
because tsos1ts2t commutes with As, and then (5) is clear. O

Lemma 4.9. The image under ¢ ofA(Q)—I—Agtsglsfltsglt—i—Agtstflts;ltAg 18 A(2)+A3t8281t82t+
A3t5251t52_1tA3. Thus

A3 = A®) 4 Agtsysytsat + Astsysytsy 'tAs + Asd(tsasitsat) + Asd(tsysitsy 1) As

Proof. This image is clearly A®@ 4 Agt_lsgslt_lsglt_l + Agt_lsz_lslt_lsgt_lAg, that is A® +
Astsysitsy 't+ Astsy Lsitsat A by 71 € R*t+ R, hence A®) + Agtsysitsy '+ Agtsysy syt As be-
cause sfl(tsglsltsﬂ) = t(sflsglsl)tsﬁ) = tszsflsgl(tsﬂ) = (tszsfltSQt)sgl. Now tSQSfltSQt €
AZ t3231t32_1tA§ by lemma 4.5 (3), and this concludes the proof of the lemma, the last equality

being an obvious consequence.
O

These two lemmas imply the following proposition.

Proposition 4.10. As a Az-module, A3) g generated by A® together with 2 x 9 = 18 elements
originating from the braid group.

Additional properties of A2) include the following two results.

Lemma 4.11. Whatever the choices of signs =+,
(1) tiUQU1UQtiU1UQti C 4(2%)
(2) tiUQU]_tiU/QU]_UQti C A(Q%)

Proof. (1). Since t~! € Rt + R and A® ¢ AQ%), it suffices to show tusujustujust C A2,
Now tusuiustuiust = tusuiusuitust and usuiusu; = Az = ujusuius, thus tusuiusuitust =
tuguguy ustust = uytuguyustust. Now ustuat C (sg,t) hence, by proposition 4.2 (and applying the
skew-automorphism induced by so — sgl,t = t71) we have ugtust C us +ustus +tsatus +t32_1tuQ
whence tusujustust C A® + tusugtsstus + tu2u1t$2_1tu2 c A23) by lemmas 4.4 (2) and lemma
4.5. This proves (1), and (2) follows from (1) under application of the skew-automorphism already

mentionned.
O

Proposition 4.12.
(1) A(Z%) = A(Z) + A3<t>U2U1 (t>u2 <t>A3 = A(2) + A3 <t>UQ<t>U1UQ<t>A3

Proof. (1) is an immediate consequence of the above, and (2) is a direct consequence of (1).
Recall that (A) (s2,t) = ug + ustus + ugtsat + ugtsglt hence, applying ¢ o 1, we have (B)
(s2,t) = ug + ugtug + tsatus + tsgltuz. In particular, (sq,t) C A®) ¢ 121(2%), thus it is sufficient
to show (sg,t)s¥(s2,t) € A22) for & € {—1,1}. Since A2) is a uy-bimodule, because of (A) this
amounts to proving (a) tuss®(sq,t) C A22) and (b) ts5ts¥(sq,t) C A22) for all € € {—1,1}. We
start with (a). By (B),

tug st (sa, t) C A@) 4 tussTtsatug + tuzs‘ftsgltUQ c A2
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by lemma 4.11, and this proves (a). We turn to (b). By (B),
ts5ts (sq,t) C AP 4 tsStsFugtug + tsstsStsotus + tsstsStsy Htus.

Now tsgts‘ftséﬂtug = tsgs‘l"tzséﬂtug c A23) and tss5tsfuqt C A(2) | and this concludes the proof
of (3). For proving (4), we use that As = ujusujusg, hence (t) Az(sq,t) C uy(t)usuius(se,t) C A3)
because of (3). Now (5) is a consequence of (4) by applying . O

4.3. Computation of C?> modulo A3),
Lemma 4.13. C? € A] t82t8182_181t82t14§< 1+ A,

Proof. We actually prove C? € 121(2)—&-/1; tSQtSl851SltSQt(Sl8281)+A3t$28;1t82t(8%8281)+A3t8281t82t.
We have C' = (tsgs1)3 € AStsasitsat, hence C? € A tsasitsattsasitsasitses; and

t3251t52t28231t5251t5251 € th5231t5351t3251t5251 + Rtsositsotsositsasitsasy.
e We have
t8251t5351t8251t5251 S th5251t52_151t5251t3231 + Rtsositsositsasitsas) + Rtsasitsitsasitsasy.

We also have t5251t52_151t5251t5251 = t32t3152‘151t52t515251, and

t5251t5281t5251t5251 = t52t515251t8251t8251 = t52t525152t5281t8281
= 82t82t81t82t82818281 = 82t$281t282t82818281
€ So9tS951tS9tS9815287 + A(Q)
C  AstsgsitsatAs + A(Z)
C  Astsgsitsst + A(2) .

Finally, tsositsitsasitsesy = tszs%t%gsltszsl € A® 4 Rt@s%tszsltstl. Moreover,
t525%t5251t5251 S Rtszsl_ltstltstl + Rtsositsositses: + Rtsaotsositsasy.

But since tsotsos1ts281 = SotSots1ts2S] = Sotsas1t2s981 € A® and 15951t525115951 = tS251t591515281 €
tsositsot Az C Astsositsat, we get

t5251t5351t5251t5251 € tsztslsglslt,th(slsgsl) + Astsesitsat + A3t5251_1t52t(515251) + A®
e We have

t8281t82t8251t5251t5281 = t828182t52t51t5251t5251 = t825182t$2t2518251t82$1
= t81$281t82t2818281t8281 = 81t8281t82t2818281t8281

and tSsos1tsat?s1S951ts051 € Rtsositsats)sas1tsasi + Rtsas1tS9515951tS951. Moreover

1595115981895811t8981 = 189811818281 81tS281 = tSQS%tSQtS%SQSl
€ RtSQSIltSQt(S%SQSl) +  Rtsgsitsatsisgsy +  tsotsotsisas).

We have t5251t52t5%5281 € ts9s1tsatAg C A3t5251t32t+121(2), t32t52t5%5251 = 52t52t28§3231 c A,

On the other hand, tsositsats;s981tSos1 = tS281tSatS28182tS281 = tS9S189t89t8180tS281 =
t515251t52t5182t8251 = 51t5251t52t5152t5281 = 81t5251t5231t82t5251 = 51t5281t525152t52t51 =
S1t59511815251t82t51 = 51t82t3%5231t52t51 € AgtSQtS%SQSltSQtAg. Moreover, tszts%@sltsﬁ €

RtSQtsf15251t32t+Rt82t515231t32t+Rt32t52$1t52t and tsotses1tSat = SotSotsitsat = Sotsasit2sat €
A3t$2$1t52t+/1(2), t82t8182$1t52t = t82t828182t82t = 82t82t$182t82t = 82t5251t282t82 S A3t8281t82t+
A(z)’ t82t81_18281t$2t = t52t523132_1t32t = SQtSQtSltSQtS;l = 52t5251t232t52_1 € AstsgsitsotAs +
A® ¢ Astsositsot + A®) | This concludes the proof. O

For subsequent use, we also need the following related computation.

Lemma 4.14.
(1) tsosy ‘tsots C € A7)
(2) t$251_1t52t51t82$1t52t c A23)
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Proof. (1) is a clear consequence of (2), so we focus on (2). We have

tszsfltSQtsltSQSltSQt = t525f1t52t2515251t52t = t32t3f15251t23231t32t
_ —1,2 _ —1,2 -1 _ —1,2 -1
= 159152518, lt 52511153215 = SatsalsyS, 1t 51251t52t52 So = 32t32t31312 tl 828185 tSaotsa
= Sotsals18y t281_ S98118atse = SatSatsiSy Sy 125951tsotsy = Solsatsy 81 Sot?S9s1tsatse
= 32$§1t32tsf132t25251t32t32 = t82t3f132t252$1t52t52
IS RtSQtSl_lsgtSQSltSQtSQ + Rt52t51_1528231t52t52.

Now, on the one hand t82t81_1828281t82t = tSQtSflsgsltSQt = tSQtSQS%sg_ltth = SQtSQts%tSQtsz_l =
52t525ft252t52_1 € A23). On the other hand, tsztsl_lsgthsltth = t5251_1t52t5251t52t = t5251_152t52t31t52t =
t828;182t82t28182t S RtszsflsztSQtslsgt—i—Rtstfl52t525152t. Then, t325;152t525132t = tszsflsgtslszslt =
tSQSflsgtslsgtsl c A3 by lemma 4.11, and tSQSflsgtSQtslsgt = t528f1t82t525152t = tSQSfltSQtslsgslt =
t5231_1t32t3132t81 = t52t51_15251t52t31 = t82t828182_1t52t51 = 82t82t8182_1t82t81 = 52t52t31t32t32_131 =
sotsas t2satsy 's) € A3, O

4.4. Properties of the bimodule B.

Proposition 4.15.
(1) B is stable under ¢ and .
(2) B = A®2) 4 Astsyts;sy tsitsot + At~ sy L sT sgsT i Lsy !
(3) B = As(so,t)As(sa,t)As

Proof. Recall that B =A%) +A3C? 4+ A3C~2. Since C € Aftsasitsat and C = (tszs1)3, we have
Cc—1l= sflsglt_lsf1s;1t_1sf1351t_1 = sflsglsflt_lsglsflt_lsglt_l = sflsglsf1¢(t5251t52f) €
AF (A C) hence C~1 € AS¢(C), and this implies C~2 € A ¢(C?). From this we deduce that B
is ¢-stable. Moreover, ¢ o 1)(C) € tsatsysatA; = tsasitsatAy € C AL hence B is ¢ o i)-stable, and
thus also v-stable, that is (1). An immediate consequence of lemma 4.13 and of C~2 € AJ ¢(C?)
is then that B = A(23) ¢ A3t52t3132_131t32tA3 + Agt_lsg_lt_151_15251_1t_152_1t_1A3 = A3 4
A3t52t5152_151t52t + Agt’152_1157151_15251_%7152_115’1. Since t—! € R*t + R, from lemma 4.11 one
gets B = A2) 4 Agtsyts)sy tsitsot As + Astsy 'tsT sgsy sy 't As = AR2) 4 Astsyts; sy tsitsot +
A3ts§1tsflsgsf1tsglt and (2). From this, and because of proposition 4.12, (3) is equivalent to
(s2,t)Asz(s2,ty C B, and we prove this now.

We have (s2,t) C ug + uatuz + 3 c(_y 1y uztst hence (sa, 1) Ag(sa,t) C A®) 4 ugtAs(sy, t) +
Dee{_1,1} u2ts5tAs(se,t). Since (s2,t) C ug + ugtus + Y- oy 1y ts5tua, ustAs(sa,t) C A® 4

_ ugt AstsStus and ust Astsitus C ustuiuouiustsstuy C Astusuiustsitu; C A3 ¢ B.

ee{-1,1} 2 2 2 2
Moreover, ts5tAs(sa, t) C A®) + ts5tAgtus + 3, () ts5tAststus. We have ts5tAst € A
by proposition 4.12 ; ts§tAstsat C ts5t®Astsat + A2 ¢ € s5t° Astsat + A% by proposition
4.12, applying ¢ € Rt + R two times. Similarly, one gets €55t Agtslt € t=s5t° At s7t" + A22),
Whatever the choice of a € {—1, 1}, one has As = uz8¥s; “s¢ + ugujuz and

1es5t° Ast st C 155t ugs sy C st sat + 1€ s5t ugug ust sat”
C ugt®s5tessy Cs{tsat + ugt® s5tust" sgtMug
C ugt®s§tes¥sy “sotnshtn 4 A22)

by proposition 4.12, so we need to prove t€s5t°s{ sy “s{tsat" € B for a suitable choice of o €

{~1,1}.

If n = —¢ we take a = e. Then t°s5t°s{'s, “s{tsat" = 1°55t°s5s, “s5t~ s, °t° and, up
to applying ¢, we can assume ¢ = 1. Then t°s5t°s7s; “s{t %s, “t° = tsztslsglsltflsglt =
t5251ts§1t_151351t. From tsotss = tsotss one gets tsglt_l = sglt_lsglts% hence

tsositsy 't s syt = t(sgs185 )t lsy Mtsasisy 't = ts] 'sasit sy 'tspsisy 't
= sl_lt5251t’152_115(525152_1)15 = sf1t5231t’152_1t51_15251t = sl_lt,th’l(5152_151_1)15521551
= S;ltSQt_18518;182t82t81 € As(sq,t)uy(sq,t)As - A3)

by proposition 4.12.
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Otherw1se we have either € = 1 = 1, in which case we take & = 1 and get €5t s¢s5 “s§t"sJt" =
tsotsisy S]_tSQt S B, or we have ¢ = 1 = —1, in which case we take « = —1 and get (b(tthsls;lsltth) S
B. This concludes the proof. O

4.5. Computation of C® modulo B. We first need to prove a few preliminary lemmas.

Lemma 4.16.
(1) t3251_152t32t251_132t € RXtSQSl_lsgtSQSl_lSQt +B
(2) tsysy lsotsatsy sot € B
(3) tsotsy 'sasttsasy Mtsat € R¥tsotsy ‘sotsosy tsat + B
(4) t32t3f1523f1t325f1t52t S —c_lthQtsflsgtSQSfltszt +B
(5) tsztsl_lstltstl_ltth € A?2) c B

Proof. Clearly (1) is a consequence of (2), since t> € R* + Rt, so we only need to prove (2).
Now tszsfl(SQtSQt)sflsﬂ = tSQS;ltSQt(SQSIISQ)t, and 828;182 € sglslsglul + uquouy, hence
t525f1t52t(828f182)t € tszsflts.'gts;l31sgltul—i—tszsfltthuluﬂul. We have t525f1(t32t)55131551t =
t(sps] tsy tsatsisy 't = tsy by tsitsats syt = sy 'ty 't(s15081)tsy 't = 87 'tsy 'tspsisatsy 't €
A23) by proposition 4.12, and tSQSl_ltSQtu1u2t = t52t51_132u1tth C tsat Astust C B by proposi-
tion 4.15.

Since s3 = as? + bs; + ¢, we have s? = as; + b+ csf1 hence s3 = a(as; +b+ csfl) +bs1+c=
(a® 4+ b)sy + acsy* + (ab+ ¢). Thus, since ¢ = (ab + ¢) + ac(—c'b) € R*, (4) and (5) imply (3).

We first prove (5). We have t52t51_15251t5251_1t52t = tht(Sl_1$2$1)t8281_1t82t = (t52t52)5152_1t5251_1t52t =
SQtSQtslsgl(tSQt)sflsﬂ = sztSQtsl(tSQt)sglsflsﬂ = 82t82t81t82t8518;182t = sﬂszsltszt(s;lsflsQ)t =
52t8251t252t515515f1t = 52t52t2515251t551t5f1 = 52t52t2525152t551tsf1 S A3) CB by proposi-
tion 4.12.

We prove (4). From the study of Az, we have that s, '(sy s2s7') = (sy3's] s2)s]! =
(5155 871 )87t = s185 1 s 2. Moreover, s72 = ¢ 's; — ¢ ta — ¢ 'bs; ! hence sy (57 sasyt) =
0_13155151 — c_laslsgl — c_lbslsglsfl. It follows that t32t5f1323f1t523f1t82t is equal to
8232_1(tSQt)81_18281_1t8281_1t82t and thus to

82255225(52_ 51_15251_ )t32sl_1t52t
= 32t32t( 8182 ls1 —¢ 1asls§1 — C_1b818518;1)t828;1t82t
= c~ 52t52t5132 31t5251 tSQt — cf1a52t52t5152_1t5251_1t52t — Cilb32t82t5152_1Sl_ltSQ.Sl_ltSQt

We deal separately with each of these three terms. We prove that the first one belongs to B.
We have
t32t3135131t82$f1t52t = t82t81851t(81828;1)t82t = t82tsls§1ts§151(32t52t)
= tsytss, ts,y tsitsaotsy = tsysi(t)s, ‘tsy tsitsatsy
S Rt5251t—1s;1ts;131t52t52 + Rt82818;1t8;181t82t82

Now t(sg8155 )ty sitsat = ts] ' sasitsy ‘sitsat = s7 ‘tsatsisy ‘sitsat € Ag(sa,t)Az(se,t) C B,
and similarly t5251t’1851(t)5§151t52t32 € Rt5231t*1551t*1sglsltSQtSQ—i—Rtstlt*lsglsglsltsﬂsQ
with tszslt_lsglsglsltsﬂ = tSQt_18182_281t52t € B. Finally,

tsasy(t~ sy 't sy Dsitsat = tsgsysy 't sy Mt lsitsot =  t(sas155 )t lsy tssat
= tsl_lsgslt’lsglslsgt = Sl_lt5251t7182_18182t c A(23)

We now turn to the second one. We have t82t81851t828;1t82t = tSQtslsgl(tSQt)sflsgt =
tsotsitsatsy s tsat = tsatsitsat(sy s Lsa)t = tsztsltsztslsglsflt = tsotsitsatsi sy syt € AR,
We finally turn to the third one We have t52t5152_ s t3231_ tszt = t82t(8182_181_1)t8281_1t82t =
(tsat)sy 151 52t5251 Lsot = Sy t52t51 52755251 Ligot = Sy t52t51 52t5251 Lisot. Altogether this
proves tsats; 15251 tsasy tSQteB c_lb5252 1t52t81 Sotsasy t82t—B c 1bt52tsl Sotsas| tszt
hence (4).

O

Lemma 4.17.
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(1) t52t5152_ s1ts3sitsat € R® tsztslsg Slt$2_1$1t$2t +B
(2) tsatsisy Lgitsasitsot € AC2) c B
(3) tsatsisy, lsitsitsot € B

Proof. Since s3 € R*s;" + Rsy + R, (1) is a consequence of (2) and (3). We first prove (2). We
have

t82t8182_181t52$1t82t = t32t3152_1t($18281)t52t = t32t8182_1t8281(52t82t)
= t32t313§1t3231t32t82 = t32t81851t8281(tSQt)sglsg = tsztslsglt(@slsgl)tsztsg
= t82t8182_1t81_15251t52t83 = t52t(5152_151_1)1552511552155% = (tSQt)82_151_182t5251t82t53
= S;itSQtS;ll Sots281tsotss = sgltSQtsfl(sztSQt)slsgtsg = S;lt82t8;1t82t8281 sots3
s, tsas] t2sat(sas1s2)tss = sz_ltSQSfltzsgtslsgsltsg = 82_1t82$1_1t282t8182t81$§

and, since t? € Rt+R, tszsfltzsgtslsgt S RtszsfltSQtslszt—&—Rtstflthslsgt ; we have tszsflsgtslsgt S
A3) by lemma 4.11, and tszsfltSQtslsgt = tSQt(S;182Sl)t82t = t82t8281851t82t E A3) by
proposition 4.12. This proves (2). Then (3) follows from tsatsy sy Lgitsytsot = t52t5152 s3t2s9t €
<82,t>A3<82,t> C B. O

Lemma 4.18.
(1) tsatsisy, Loqtsot2sysitsot € RX tsatsisy 31t3251t52t—|—B
(2) tsatsisy slt32t32$1t32t € B.
(3) tsgsitsotsesit € A3)
(4) tSQS%t32t3231s§1t32t € B.

Proof. Since t? = dt+e € Rt+R*, (1) is an immediate consequence of (2). We prove (2). We have
t52t3155151t52t5251t52t = t82t8182_181(tSQtSQ)SltSQt = t82t8132_15152t32t51t52t = t82t81(52_15152)t3281t252t =
t52t8181828f1t8281t252t = tSQS%tSQt(SIlsgsl)t282t = t@s%tsﬂszsw;lt%gt. Using t*> € Rt + R,

we see that (2) is a consequence of (3) and (4). We have tsgs3tsotsosit = tsgsitsatsats) € A23)

by proposition 4.12 and this proves (3). We turn to (4). We have tsys?(tsotsy)sisy ‘tsot =
t523%32t$2t3132_1(t82t) = t323%52t32t81t32t82_1 = tSQS%SQtSQSthSQtsz_l. Using t2 € Rt + R, we only

need to prove t523%32t8251t82t S B, since t323%52t323152t = tSQS%SQt(SQSlSQ)t = tSQS%SQtSlSQSlt =
t59535981tsots) € (sa,t)Az(sa,t) Az C B. But tsos2sotsasitsat = tSQS%(SQtSQt)SlSQAt = ts983tsatsas St =
tsotstsot(s28182)t = tsots?satsisasit = tsatstsasitsats) € (sa,t)As(se,t)A3 C B, and this con-

cludes the proof of (4), and thus of the lemma. O

Proposition 4.19. C3 ¢ A;t@sl—lsgt@sl—lsgt +B

Proof. Since C? is central and Bisa As-bimodule, it is sufficient to prove C3 € A% t5251_152t5251_152tA3X +
B. We have already proved (s1s281) " 1C? € A% t32t51sglslt52t25231t32t(515281)—&—AgtsQSfltsztsl C+
A3C? + A®@ ¢ Aftsotsysy tsitsat?sasitsat AS + B by lemma 4.14, so we only need to prove
t52t8185131t82t25251t52t € A;tsgsflsgtSQSIISQtAg + B. Now

t52t8155181t82t25251t82t
€ tsztslsglsltsgsltsﬁ +B (by lemma 4.18)
C 52_1(52t52t)3152_151t52_151t52t +B (by lemma 4.17)
55 M tsot(sasysy )sitsy tsitsat + B
S;lt82t8I1828181t85181t82t8285 + B
= sgltSQtsf1525151t(s§13152)t32t52 +B
Sy tsztsl szslslt(slsgsl t52t52 +B
Sy t52t31 8281t8281 t52t52 +B
85 'tsatsy (82t82t)31 32t52 '+ B (by lemma 4.16 (3))
= 5, 1t52t51 tsotsasy 521552 +B
Sy tszsl t252t52$1 32t32 + B
Sy t5281 Lsotsot? 51 52t52 +B
C sy 'tsgsy Lsotsasy Lsatsy L + B (by lemma 4.16 (1))

N
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and this concludes the proof of the proposition. O
4.6. Conclusion of the proof.

Proposition 4.20.
(1) A®)t c A2 4 AB®)

(2) A2t c A® + B

(3) Btc A®) + B

(4) AW = AG) + B

(5) AW = AB) = A = AB) 4 A30? + A3C—2
(6) AW = A2) 4 A302 + A3C~2 + A3C3

Proof. In order to simplify notations, we let X = tsysy 52t8281 32t Y, =tsotsisy SltSQt Y =
tsy ttsy tsgsy Mty Mt By proposition 4.19, we have C?® € A X + B, hence X € AFC3 + B =
AXC3 4 A3C? + A3C~2 + A32). From this we deduce that, for all m € Az, mX — Xm e A?2),
hence A3X Az + AR2) = A3X + AR2) and A®) = AR3) 4 A3X A3 = AP2) 4 A3X. Tt follows
that A®t ¢ AC2)¢+ A;X¢, and clearly Xt € A® whence A®t c A22)t+ A®) and (1). On the
other hand,

AC2) = A®) 4 AgtsysitsatAs + Astsositsy 'tAs + Astsasy sy 'tAs + Astsy LsT sy 1t As
hence

ARt APt 4 Agtsysitsat Ast + Astsysitsy ‘tAst + Astsysy sy 't Ast + Agtsy tsy M sy Mt Azt
ARt ¢ AB®) 4 Agtsositsgt Ast + Astsositsy ‘tAst + Astsysy sy 't Ast 4+ Astsy LsT sy it Ast

We have AstsositsotAst = AsCAst = A3Ct = Astsasitsot? C /Al(g’), and similarly tsz_lsl_ltsz_lt €
AZC™1 + AP implies Agtsy 'sy sy 'tAzt C Agtsy tsy sy 2+ APt c AB),
Moreover, by lemma 4.8,

t8231t351tA3t c A@¢4 Z Z A2t5251ts§tsl{s§t+ Z (A2t3251ts§t8155151t + A2t3231ts§t2)
ae{-1,0,1} bec{—1,1} ee{—-1,1}

hence

tSQSltsgltAgt C 4(3) + Zae{—LO,l} Zb,ae{—l,l} A2t8281t85t8?5‘27’t + Zae{—l,l} (A2t8281t55t5132_131t)
c A® 4 Zae{_l 0.1} > ee{—1,1} Aotsotsys§sbtsit + de{_Ll} (A2t52t515551t52_1t$1)

and, by proposition 4.15, tsys1tsy 1tA3t CA® 4 B = A®) 4 A3) 4 4302 4+ A302 = A®) 4
A3C? + A3C~2. This implies ¢(tsos7 sy tAst) C (tsasy sy 1) Ast™1 € AB) + A3C2 + AsC—2
by lemma 4.9 and the above, whence (4).

We have B c A(23) A3t52t5152_151t52t + Agt_lsglt_lsl_lsgsl_lt_ _115_1 by proposition
4.15, and we already know A2t ¢ A® 4+ B. Since t~1s;t 1sT sgsy it sy 1t € A®) and
tsztslsglsltsﬂ € Rtsots1sy Lsitsot+AB) ¢ AB) 4 B because of t2 € Rt+R, thls proves (3). From
(3) and (4) we get AWt ¢ A®t4+Bt c AW +Bt c AW+ ABG) 4B = A® . This implies A®) ¢ A®
hence A4 = A®) and (5). As already noticed we have A®) = A2) 4 A3 X A3, and X € AYC3+B
with C3 central implies A® = A®) + B = A2 4 B+ A;0% = A22) 4 A;0% + A3C~2 + A3C3
and (6). O

Corollary 4.21. As a Az-module, A is generated by 54 elements.

Proof. By the above property, Ais generated by A2) and 3 elements. By proposition 4.10, A3)
is generated by A® and 2 x 9 = 18 elements. By proposition 4.3, A® = AW 4+ AstsotAs +
AgtS;ltAg + A3t5251_152tA3. Since tsot commutes with ug, and because As is a (free) uz-module
of rank (at most) 8, we know that AstsotAs is generated as a Asz-module by 8 éléments. Since
t € R*t~!' + R, we have AgtsgltAg + A = Agt_lsglt_lAg + A and, because t_lsglt_l
commutes with usg, this Az-module is generated by AWM together with 8 éléments. Finally, because
Az = ulsgsl_lsz + ujugu, we have (tszsl_lsgt)sl = t52(51_15251)t = ts%slsglt S tulsgsl_lszt +
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tujusuqt C U1t8281_182t+U1tUQtul C U1t5251_152t+A3t82tA3 +A3t52_1tA3 + AM | Since Aj is also
a (free) uj-module of rank 8, we deduced from this that A® s generated by AW 4 AstsotAs +
Astsy 1t A3 together with 8 elements, and it follows that A® g generated by AW together with
2 x 8+ 8 = 24 clements. Finally, A) = As + AgtAs is As-generated par 1+ 8 = 9 elements,
since t commutes with u; and As is generated by 8 elements as a u;-module. This proves that A
is generated as a Az-module by 21 + 24 + 9 = 54 elements. O

Since Ajz is a R-module of rank 24, this has for immediate consequence the following, which
proves theorem 4.1.

Corollary 4.22. As a R-module, A is spanned by 1296 elements.

Remark 4.23. The R-basis provided by this corollary is actually made out of elements of B, and
contains 1.

Acknowledgements. 1 thank Marc Cabanes, Christophe Cornut, Jean Michel, Raphaél
Rouquier and Olivier Schiffmann for useful discussions. I also thank Jean Michel and Gunter
Malle for a careful reading of the first part of the paper.

REFERENCES

[1] S. Ariki, Representation Theory of a Hecke algebra of G(r,p,n), J. Algebra 177 (1995), 164-185.
[2] S. Ariki, K. Koike, A Hecke algebra of (Z/rZ) 1S, and Construction of Its Irreducible Representations, Adv.
Math. 106, 216-243 (1994).
3] D. Bessis, Finite complex reflection arrangements are K (m,1), arXiv:math/0610777 v3 (2007).
4] D. Bessis, J. Michel, Ezplicit presentations for exceptional braid groups, Experiment. Math. 13 (2004), 257-266.
5] N. Bourbaki, Algébre, chapitres 4 a 7, Masson, 1981.
6] N. Bourbaki, Algébre commutative, chapitres 1 & 4, Masson, 1985.
7] M. Broué, G. Malle, Zyklotomische Heckealgebren, in Représentations unipotentes génériques et blocs des
groupes réductifs finis, Astérisque 212 (1993), 119-189.
[8] M. Broué, G. Malle, J. Michel, Towards Spetses I, Transform. Groups 4 (1999), 157-218.
[9] M. Broué, G. Malle, R. Rouquier, On complez reflection groups and their associated braid groups, CMS Conf.
Proc. 16 AMS (1995).
[10] M. Broué, G. Malle, R. Rouquier, Complex reflection groups, braid groups, Hecke algebras, J. Reine Angew.
Math. 500 (1998), 127-190.
[11] F. Digne, I. Marin, J. Michel, The center of pure complex braid groups, J. Algebra 347 (2011), 206-213.
[12] D. Eisenbud, Commutative algebra. With a view toward algebraic geometry, Springer-Verlag, 1995.
[13] P. Etingof, E. Rains, Central extensions of preprojective algebras, the quantum Heisenberg algebra, and 2-
dimensional complex reflection groups, J. Algebra 299 (2006), 570-588.
[14] P. Etingof, E. Rains, New deformations of group algebras of Coxzeter groups, Int. Math. Res. Not. 2005,
635-646.
[15] P. Etingof, E. Rains, New deformations of group algebras of Cozeter groups. II, Geom. Funct. Anal. 17 (2008),
1851-1871.
[16] L. Funar, On the quotients of cubic Hecke algebras, Comm. Math. Phys. 173 (1995), 513-558.
[17] M. Geck, R. Rouquier, Centers and simple modules for Iwahori-Hecke algebras, in Finite reductive groups
(Luminy 1994), Birkhduser, Boston, 1997, 251-272.
[18] V. Ginzburg, N. Guay, E. Opdam, R. Rouquier, On the category O for rational Cherednik algebras, Invent.
math. 154 (2003), 617-651.
[19] G. Genet, N. Jacon, Modular representations of cyclotomic Hecke algebras of type G(r,p,n), Int. Math. Res.
Not. 2006, Art. ID 93049.
[20] T.Y. Lam, Serre’s problem on projective modules, Springer-Verlag, Berlin, 2006.
[21] G.I. Lehrer, D.E. Taylor, Unitary reflection groups, Cambridge University Press, 2009.
[22] S.A. Linton, On vector enumeration, Linear Algebra Appl. 192 (1993), 235-248.
[23] G. Malle, On the rationality and fake degrees of cyclotomic Hecke algebras, J. Math. Sci. Univ. Tokyo 6 (1999),
647-677.
[24] G. Malle, On the generic degrees of cyclotomic algebras, Represent. Theory 4 (2000), 342-369.
[25] G. Malle, J. Michel, Constructing representations of Hecke algebras for complex reflection groups, LMS J.
Comput. Math. 13 (2010), 426-450.
[26] 1. Marin, The cubic Hecke algebra on at most 5 strands, J. Pure Applied Algebra 216 (2012), 2754-2782.
[27] 1. Marin, J. Michel, Automorphisms of complex reflection groups, Represent. Theory 14 (2010), 747-788.
[28] A. Mathas, The representation theory of the Ariki-Koike and cyclotomic q-Schur algebras, in Representation
theory of algebraic groups and quantum groups, 261-320, Adv. Stud. Pure Math., 40, Math. Soc. Japan,
Tokyo, 2004.

[
[
[
[
[



FREENESS CONJECTURE AND THE HESSIAN GROUP

[29] J. Miiller, On exceptional cyclotomic Hecke algebras, preprint 2004.

[30] P. Orlik, H. Terao, Arrangements of hyperplanes, Springer-Verlag, Berlin, 1992.

[31] M. Picantin, Petits Groupes Gaussiens, These de I'université de Caen, 2000.

[32] R. Swan, Projective modules over Laurent polynomial rings, Trans. Amer. Math. Soc. 237 (1978), 111-120.

LAMFA, UNIVERSITE DE PICARDIE-JULES VERNE, AMIENS, FRANCE
E-mail address: ivan.marinQu-picardie.fr

21



