ON TERNARY QUOTIENTS OF CUBIC HECKE ALGEBRAS

MARC CABANES & IVAN MARIN

Abstract. We prove that the quotient of the group algebra of the braid group introduced
by L. Funar in [F1] collapses in characteristic distinct from 2. In characteristic 2 we define sev-
eral quotients of it, which are connected to the classical Hecke and Birman-Wenzl-Murakami
quotients, but which admit in addition a symmetry of order 3. We also establish conditions
on the possible Markov traces factorizing through it.

1. INTRODUCTION

Let By, be the braid group on n strings (n > 2), that is the group defined by n—1 generators
51,...,8p—1 submitted to the relations s;s; = s;s; whenever ¢« — j > 2, and s;s;418; =
Si+18iSi+1 for any i = 1,...n — 2 (see e.g. [Bi] or [KM] for basic results on these groups).

This paper grew out as an attempt to understand the mysterious ‘cubic Hecke algebras’
defined by L. Funar and used in [F1] and [BF]. In [F1], an algebra K, (v) for v € k is defined
over a commutative ring k£ as the quotient of the group algebra kB, of the braid group
B,, on n strands, by the relations s? = v, and si+1s?si+1 + sisgﬂsi + 3?8i+157j + 5i8j+15Z2 +
s?s2.1 + s7.157 + vsi + vsiy1 = 0. Notice that the relations are equivalent to s7 = 7,
828%82 + 818%81 + 8%8281 + 81828% + 3%3% + 3%5% + vs1 + vs2 = 0. The striking property of this
algebra is that the latter relation involves only s, s2 and that, as proved in [F1], it is a finitely
generated k-module (hence finite dimensional over k if k is a field). Although many finite-
dimensional cubic quotients of the (group algebra of the) braid groups have been defined,
to our knowledge it is the only one which is not a quotient of the classical Birman-Wenzl-
Murakami algebra and which can be defined from relations in kB3. Notice that, whenever ~
admits an invertible third root o € k with o = v, we have K,(v) ~ K, (1) under s; — a~!s;
— and in particular always K,(—1) ~ K,(1). Moreover, K, (1) is a quotient of the group
algebra kI, for T';, = B,/ < s} >. This group I',, is a semidirect product I' x Cs3, with
C denoting the cyclic group of order k, and the defining ideal of K, (1) has the remarkable
property to be generated by a Cs-invariant ideal in ZT'J — thus deserving the name ternary
used in the title.

By a theorem of Coxeter, I}, is finite if and only if n < 5. Moreover, in this case it is a
finite complex reflection group, and, as was conjectured by Broué, Malle and Rouquier, kI'),
for n < 5 admits a flat deformation similar to the presentation of the ordinary Hecke algebra
as a deformation of k&,,. This has been proved in [BM], Satz 4.7 for n = 3,4, and recently
in [M] for n = 5. Partly stimulated by this conjecture, the authors of [BF]| constructed a
deformation of K, () (still finitely generated).

The main motivation in [F1] and [BF] is to construct link invariants. In [F1] it is claimed
that K,(—1) admits a Markov trace with values in Z/6Z. A more general statement is
claimed in [BF], that the constructed deformation provides a link invariant with values in
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some extended ring. Around 2004-2005, S. Orevkov pointed out a gap in a part of [BF]
devoted to the proof of the invariance of the trace under Markov moves, which originates
in [F1]. In 2008, the second author of the present paper noticed that, when k is a field of
characteristic 0, the 'tower of algebras’ K, (1) collapsed, more precisely that K, (1) = 0 for
n > 5 (see theorem 4.8 below). However, when k = Z, this tower does not collapse. This
can be seen from the fact that the natural group morphisms I';, - (3 induce morphisms
2oy, — ZCs — (Z/8%)Cs which factorize through K, (1).

1.1. Statement of the main results. Letting K,, = K, (1) we prove (see corollary 4.3 and
theorems 4.8 and 4.9)

Theorem. When k =7,
(i) Ky is a finite Z-module for n > 5.
(ii) The exponent (as an abelian group) of K, has the form 2"3% for some r,s (depending
on n) when n > 5.
(iii) The exponent of K, is a power of 2 (not depending on n) when n > 7.

When £k is a field, in order to get a stably nontrivial structure, we thus need to assume
that k£ has characteristic 2.

Theorem. Assume k is a field of characteristic 2. For all n, there exists a quotient H, of
Ky, which has dimension 3(n!—1) and which embeds inside a product of three Hecke algebras.
This algebra H, is the quotient of kT, by the relation sysy* + sasy ' + 57 s2 + 85 151 = 0.

We call this algebra the ternary Hecke algebra, as it can be defined as the quotient of kI'),
by the intersection of the three ideals whose corresponding quotients define the three possible
Hecke algebras at third roots of 1.

Taking k = Z, we let Ko, denote the direct limit of the K,, under the natural morphisms
K, — K,4t1, and we similarly define H.,. Using the second definition above, Ho can be
defined over Z/47.

We recall that a Markov trace on K is a Z-module morphism ¢ : Ko, — M, where M
is some Z[u,v]-module, which satisfies t(xy) = t(yzx) for all z,y € K, t(xs,) = ut(z) and
t(xs; ') = vt(z) for all 2 in (the image of) K. It can be shown that such a Markov trace, if
it exists, is uniquely determined by the value ¢(1), and takes values in Z[u, v]t(1) C M.

Theorem. (i) If t + Koo — Z[u,v]t(1) is a Markov trace, then 16t(1) = 0, 4duv.t(1) =
4t(1), 4ud.t(1) = 4v3.4(1) = —4t(1) and (3u> + 3v3 — 3uv + 1)t(1) = 0.
(ii) If 4t(1) = 0, then t factors through Heo (defined over Z/AZ)
(ili) There exists a Markov trace t : Hoo — (Z/AZ)[u,v] with t(1) = 1 € Z/AZ, which
originates from the Markov traces on ordinary Hecke algebras.

Modulo 4, the most general link invariant that can be defined this way is thus given by the
following operation : take the Homfly polynomial, consider the three possible specialisations
‘at third roots of 1’, and reduce these three values modulo 4.

Finally, we investigate another quotient of K,,, that we denote BMW,, and which is ob-
tained from the usual Birman-Wenzl-Murakami algebras by a similar ‘ternary’ operation.
Computer calculations seems to indicate that this quotient is asymptotically very close to
K,,. However, the study of this quotient is more delicate, and we get only partial results on
it. This nethertheless shows that, over a field of characteristic 2, K, is actually larger than
all the quotients of kI'),, by relations on 3 strands that have been defined so far.
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1.2. Open problems. The work leaves for now the following questions open :

(i) Over Z/4Z, and even over Z, does H,, coincide with the quotient of the group algebra
of I';, by the ideal generated by 51551 — 8;182 + SQSIl — 55151 ?

(ii) Which are the Markov traces on K, (1) with 4¢(1) # 0 7 Are there non-obvious ones ?
(Notice that the natural projection I';, — C3 =< s > obviously induces a Markov
trace t : K,, — (Z/8)C3 with u = s and v = s2.)

(iii) What is the minimal r (r > 3) such that 2"K,, = 0 ? Note that 2°K,, = 0 by
proposition 4.17.

(iv) We lack a nice description of the intersection of the defining ideals of the ‘two
Temperley-Lieb algebras’, at third roots of 1 and in characteristic 2. This would
help understanding BMW,, (see Definition 6.4).

(v) Do we have BMWy, = Ko (1), over a field of characteristic 2 7

(vi) Are there ‘nice generators’ for the defining ideal of BMW,, ?

(vii) We did not study here the deformation of K, proposed in [BF], although we hope

our work now provides a firmer ground for it. See [M] for the characteristic 0 case.

Does H,, admit a ‘nice’ deformation, and a related Markov trace ?

Is there a nice description of the algebra K4(1) in characteristic 3 ?

What are K5, K¢ as modules over the ring Zs of 3-adic integers ?

Are the natural morphisms I',, — I'), injective for 6 <n <m ?

(vii
(ix
(x

(xi

— N —

1.3. Notations. Let G be a group. We denote by Z(G), resp. (G,G), the center, resp.
derived subgroup of G, and we denote by G& the quotient G/(G,G). If H is a group on
which G acts by group automorphisms, we denote by H x G the associated semi-direct product.

If A is a ring and G acts on A by ring automorphisms, we denote by A x G the semi-direct
product ring, that is the free A-module ®4ccAg endowed with multiplication (ag).(a'g’) =
a(g.a’)gg' for a,a’ € A, g,¢' € G.

If n > 1 is an integer, one denotes by C,, the cyclic group with n elements.

For k a field we let k denote an algebraic closure of k.

If G is a finite group, we denote by Irr(G) the set of irreducible characters of G, that is
trace characters of simple CG-modules.

If Ais aring and n > 1 is an integer, one denotes by Mat,(A) the ring of n x n matrices
with coefficients in A. We will also use the more general notation Mat;(A) for I an arbitrary
finite set. Omne denotes by Id, the identity matrix. One denotes matrix transposition by
M M.

Let g be a power of a prime. We denote by I, the field with ¢ elements. We denote
by GL,(¢) = GL,(Fy), resp. SL,(¢) = SL,(IF,) the general and special linear groups in
Mat,,(F,;). One denotes by Sps,(q) = Sps,(Fy) the multiplicative group of matrices M €

Matay, (IF,) satisfying
¢ 0 Id, B 0 Id,
M < —Id, © M= —Id, 0 /)’

Let us denote by a + @ = a? the field automorphism of F2 order 2, which extends as a
ring automorphism of Mat,,(IF;) denoted in the same fashion. One denotes by GU,(q) the
subgroup of matrices M € GL,(¢?) such that

‘MM =1d,.



4 MARC CABANES & IVAN MARIN

Denote SU,(¢) = GU,(q) N SL,(¢?). When m < n we always consider GU,,(q) as the
subgroup of GU,(q) fixing the last n — m elements of the canonical basis of IFZQ.

1.4. Acknowledgements. The second author benefited from the ANR grant ANR-09-JCJC-
0102-01, corresponding to the ANR project ‘RepRed’.

2. GROUPS

2.1. The groups I';,. Let I';; be the quotient of B,, obtained by adding the extra relations
5?:1 forany i =1,...n—1.
The following is due to Coxeter [Co] (see also [As2]).

Theorem 2.1. T'y, T's, Ty, T's are finite (complex) reflection groups, respectively denoted
by G(3,1,1) ~ C3, G4 ~ Q x C3 where Q is the quaternion of order 8 and C3 acts by
any automorphism of order 8, Gos ~ GU;3(2), Gs2 ~ C3 x Sp,(3) in the Shephard-Todd
classification. Their orders are respectively 3, 24, 648 and 155,520 = 27.35.5. Forn > 6, I,
is infinite.

The following is due to Assion [Asl].

Theorem 2.2. (i) Every non-trivial normal subgroup of I's contains either ((8182)3.(8334)3)3

3 3o \3
or 33.31.358253) .358253) (s354)°

(ii) Let U(m) be the quotient of Ty, 41 obtained by imposing the extra relation ((3132)3.(3334)3)3 =
1. Then it is isomorphic with GU,(2) except when m =2 mod 3 in which case

U(m) = Ym_1 A GUm_l(Q)

where Y1 = {(x,V) | x € Fy,V € B o + T+ V.V = 0} is endowed with the
multiplication (z,V).(2',V') = (x + 2’ +' V.V, V + V') and the action of GU,,_; is
by (z, V)4 = (z, A71V).

(iii) Forn > 5, the quotient of Ty, by the relation 33.51.555253)3.553253)3(8354)3 =1 is a finite
group, isomorphic to Sp,_1(Fs) if n is odd, and to the stabilizer of one vector in
SPny1(F3) if n is even.

Remark 2.3. In [Asl], the group U(m) for m =2 mod 3 is defined in the projective unitary
11
11
in dimensions m,m + 1 (zeros elsewhere). This clearly amounts to the subgroup of GUs(2)

of elements fixing the sum esi_1 + egp of the two last elements of an orthonormal basis of
Fik.

group PGU,,,11(2) as the centralizer of Id,,+1 + Epmy1 with Ep4q the matric E =

For n < m, the classical embeddings B, < B,, induce morphisms ¢, : I', = I'y,. The
length function B,, — Z defined by s; — 1 induces morphisms [,, : I', — C3 such that
lm © onm = lp. In particular, the finite index subgroup F% = Kerl, of I';, is mapped to F%H
under @y, 541.

Recall from [Bi, KM] that Z(B,,) is infinite cyclic, and generated for n > 3 by

Zn = (8182...8p-1)".

We gather here a few additional results on these groups. For explicit computations in
the finite groups I';, for n < 5, we used the development version of the CHEVIE package for
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GAP3 : in this package, the finite complex reflection groups G4, Gos, G2 are represented as
permutation groups on a set of ‘complex roots’, which makes some computations easy to
do. This development version can be found at http://www.math.jussieu.fr/~jmichel/
chevie/index.html.

Theorem 2.4. (i) The image of z5 in I's has order 6 and generates Z(I's). Under the

isomorphism U's ~ C3 x Spy(FF3), Cs is generated by z3, while 22 € Z(Sp4(F3)).

(ii) Under Bs — T, 22 is identified with 53.31.358283)3.558283)3(8384)3 and z3 with ((5152)3.(3354)3)3.

(iii) The natural morphisms I'y, — Ty, are injective for n < 5.

(iv) The morphism I's — I'¢ admits a retraction, i.e. there exists a morphismp : T'g — I's
with po 56 = Idr,. In particular, Tg = T's x Kerp. It is given by p(ss) = 2322.

(v) For every n, Ty, is a semidirect product T2 x Cs, and T'Y is the commutator subgroup
of I'y.

(vi) Forn > 2, Inyq is normally generated by o ni1(Ty) ; Forn >3, TY . is normally
generated by gpn7n+1(F9Z).

Proof. Parts (i) and (ii) are easily checked by direct computations in I's = G32 using CHEVIE
(and in addition part (i) consists in well-known properties of the group Gso, also denoted
3 x 2.54(3) in Atlas notation, see [Atlas] p. 26). For part (iii), the case m < 5 follows
from the identification of I'g,I'3, I’y with parabolic subgroups of G3y (see e.g. [BMR]). We
thus can assume n = 5. Let K = Kerys,,. We have K C Kerls since I, o ¢5,, = I5.
Since I5(z5) =5 % (5 — 1) mod 3 we get Kerls = Sp,(F3) and K < Sp,(F3). Since Sp,(F3)
is quasisimple we have K = {e} or K = Z(Spy(F3)) =< 23 > or K = Spy(F3). The
third case is excluded because I'y, is nontrivial and generated by conjugates of @2 ,,(s1), the
case K = Z(Sp4(F3)) would imply the finiteness of I';,, ~ Sp,,,_;(F3) by Assion’s theorem,
contradicting Coxeter’s theorem. This proves (iii). Proving (iv) amounts to saying that
ziz? € I's has order 3, commutes with the s; for ¢ < 3, that is with I'y, which is clear, and
that s4(2222)s4 = (2222)s4(2322), which is easily checked using CHEVIE; this proves (iv). The
first statement of part (v) is trivial, as the subgroup < s; > generated by s; provides a
complement to I'Y in T, ; then, clearly (I',,I',) C Kerl, = T'%, as C3 is abelian. In order to
prove that 'Y C (T,,T,), we consider the abelianization morphism 7, : Ty — F%b. From

the braid relations we have 7(s;) = m(s;4+1) for all ¢, hence 7(g) = 7T(Sl1"(g)) for all g € T,
; this proves 7(I'%) = {1} hence (v). Rewriting the braid relation s;s;115; = s;+15;8i+1
as si+1 = (8i8i41)8i(8i8i41) 1 we get that ¢, ,41(T) normally generates T'y1. Now recall
that, when G is a group generated by elements aq,...,a,, H a subgroup of G and S C G
a set of representatives of G/H with set-theoretic section G/H — S denoted x +— Z, then
H is generated by the ya;ya; ! for i € [1,7] and y € S (see e.g. [MKS]). It follows that
I‘% is generated by the 82‘31_1, slsisl_Q = 518;81, s%si = sl_lsi, by taking S = {1,31,3%} as
a set of representatives of T',,/T% ~ C3. Using s;11 = (8i8i+1)si(sisi11)" 1 we get that, for
i >3, sip15] = (8i8i41)8i87 H(8i8i41) 7Y, s18i0151 = (8i8i41)518i51(8:8i41) " and sy 'siq1 =
(si8¢+1)sflsi(sisi+1)_1. Thus, for n > 4, the generators of I',, 11 involving s,, are conjugates
of elements in ¢y, ,,+1(I',), and this proves (vi) for n > 4. The case n = 3 is easily checked by
hand.

|

Remark 2.5. Part (iii) of Assion’s theorem has been generalized by Wajnryb in [Wa] ; the
question of whether the natural morphisms I'y, — 'y, are injective for n > 6 seems to be open
; part (vi) is clearly false for n =2, as T = {1}.
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2.2. Additional preliminaries on the groups I',,,n < 5. The group I's ~ G4 is a semi-
direct product @ x Cs where @ is the quaternion group of order 8, (5 is the cyclic group
of order 3, and the semi-direct product is associated to any automorphism of @) of order 3.
Writing classically Q = <i,j> with i = j2 = z the central element of order 2, k = ij and
C = <s> with s acting on @ by the permutation (i,j, k), an isomorphism is obtained by
51— s and sy +— i%s (so that s1s3 — i).

Using the above morphisms we identify I's and therefore @) to subgroups of I's. In the
sequel we will need to use the Atlas character tables on elements of (). For this we need to
identify a few conjugacy classes in I's = C'3 x Sp,(IF3). In Atlas notations, Sp,(F3) = 2.Uy(2)
contains 2 classes of order 2. One of the two being central (hence corresponding to z32), the
value of the other one on any Brauer character in characteristic not 2 lies in the column
labelled 2a of [AtMod]. Among the three classes of order 4 in Sp,(IF3), two are deduced one
from the other by multiplication by 23. It is easily checked that, if x € T's C I's has order
4, then it is not conjugated to ng. It follows that the column of the ordinary or Brauer
character table corresponding to z is the one labelled 4a in [AtMod]. We can thus read on the
tables the values taken by elements of () on ordinary and Brauer characters in characteristic
prime to 2.

The group I's ~ C3 x Spy(IF3) and therefore Sp,(IF3) contains another useful quaternion
subgroup o, characterized up to I's-conjugacy by Z(Qo) =< zg’ >. For later computa-
tions, an explicit description of this subgroup in terms of the generators will turn out useful.
A 2-Sylow subgroup of I's is generated by the elements a; = s; 's3515; 835155 87", ag =
83:18285181828381,&3 = 5215332153@4 = 5455134525351551515351. Two generators of such a
Qo are then given by ip = a;lagagag, jo = aial.

2.3. The groups Y,,. For 1 <r < m — 1 we let e, denote the r-th vector of the canonical
basis of ]FT_I, and we let 7 : Y, — IFT_I denote the canonical projection (x,V) — V. We
choose v € Iy \ Fg, and let i, = (e, @), jr = (aer, ). Then i, j,. have order 4 and generate
a quaternion subgroup @, of Y;,. It is easily checked that Y}, is a central product of the Q,,
namely the quotient of Q1 X - -+ X @,_1 by the identification of the centers of Q1,...,Qm_1.
If z denotes the generator of Z(Y;,), the elements of Y,,, can be uniquely written in the form
Uy lrg - pyJsy - - - Jsy 2€ with € € {0,1} and 71,...7y, S1,...,s, distinct indices.

In particular, the group Y, is an extra-special group of type 2'+2(m=1) (see [Go] § 5.5).
In characteristic distinct from 2, such a group admits m — 1 linear characters and a 2™ 1-
dimensional irreducible representation, afforded by the tensor product of the 2-dimensional
irreducible representations of the Q.

We need to recall some basic facts on the representations of the quaternion group. When
k is a field of characteristic p # 2, the 1-dimensional representations are clearly defined over
k. When k contains a primitive fourth root of unity w, then the 2-dimensional representation

can be defined over k, through i — _01 (1) ) , Jj— ( L(‘)j _Ow > . It is also defined over

k = 3, through i — < _01 (1) ) ,j = ( 1 _11 > . It follows that, under these conditions
on k, the 2™~ 1-dimensional representation of Y;, can be explicitly defined over k.
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3. REMINDER ON PROJECTIVE REPRESENTATIONS

Let G be a group and k a field. An action of G as algebra automorphisms of Mat,, (k)
yields a projective representation p : G — PGL,, (k) by the Skolem-Noether theorem, hence a
2-cocycle ¢ : G x G — k* defined by c(g1, g2) = p(g192)p(g92) "*p(g91)~* where p: G — GL, (k)
is a set-theoretic lifting of p. It is always possible to choose p(e) = Id,,, which we always
assume from now on. Then the cocycle satisfies c(e,g) = 1 for all g € G ; we say that such a
cocycle is normalized. The corresponding class [¢] € H2(G, k*) is trivial if and only if we can
lift p to a linear representation p : G — GLy (k). In that case, if ¢ = da for some o : G — k%,
i.e. c(g1,92) = a(giga)a(g2) tal(gr) L, then p(g) = a(g)~1p(g) provides such a lifting. Under
our assumption, such an « satisfies a(e) = 1.

We recall the short exact sequences in low-dimensional group cohomology, provided by

(i) the universal coefficients exact sequence :
0 — Ext(H,G, k™) = H*(G,k*) — Hom(H,G, k™) — 0.
(ii) the Kiinneth exact sequence :
0 — Tor(HoG, H1 K) & Tor(H1\G, HoK) — Ha(G x K) — HoK & (H1G @ H1K) & HoG — 0
We recall that, when G is finite, then HG is the so-called Schur multiplier of G.

Lemma 3.1. (i) H*(T3,k*) ~ Ext(C3, k) hence H*(I's,k*) = 0 when char.k = 3.
(ii) We have a short exact sequence 0 — Ext(Cs, k*) — H?*(GU(4,2), k*) — Hom(Cy, k*) —
0. If k is a finite field of characteristic 3, then H?(GU(4,2),k) = Cs.
(iii) Let Cy ~ Cy x Cy denote the image of Qo C Sps(F3) inside SU(4,2) ~ PSU(4,2) ~
PSp4(F3), and assume k is a finite field of characteristic 3. Then the restriction
morphism H*(GU(4,2),k*) — H?(Co, k*) is injective.

Proof. 1t is known that HoI's = 0 (see [K] table 8.3), whence (i). We have GU(4,2) = C3 x
SU(4,2), and it is known that Ho SU(4,2) ~ Cy (see [K] table 8.5) hence Hy GU(4,2) = Co
by Kiinneth, since SU(4,2) is perfect and H2C3 = 0. Then the short exact sequence is the
universal coefficients exact sequence. When k has characteristic 3, Hom(Cs, k*) ~ C5 since
—1# 1in k, and k* is 3-divisible hence Ext(Cs5, k*) = 0, which proves (ii). The group I's =
C3 x Sp,(IF3) provides a nonsplit central extension of GU(4, 2), hence the nontrivial element
of H?(GU(4,2),Cs) ~ H?*(GU(4,2),k*). For g1,92 € GU(4,2) and arbitrary preimages
g1,92,9192 in T'5 = C3 x Spy(FF3), it can be defined by c(g1,92) = 1 if g1g2 = Gi1g2 and

c(g1,92) = —1 otherwise. Restricting it to Cy yields the cocycle associated to the extension
1 — Z(Qo) — Qo — Cyp — 1 which is not split, hence (iii). ]
Lemma 3.2. (i) Let x,y be generators of C3 and let ¢ : (C3)* — F5 be a normalized

2-cocycle. Its class [c] is trivial in H*(C2,F5) if and only if c(z,y) = c(y,x) and
c(z,x) =c(y,y) = 1.

(ii) Let g be a generator of Cs and let ¢ : C3 — F be a normalized 2-cocycle. Its class
[c] is trivial in H?(Cs,F}) if and only if c(g,9)c(g,g7') = 1.

Proof. The group H?(C3,F5) ~ H?(C3,C») is an extension of Hom(H>Cs, F5 ) = Hom(Cy, FY)
by Ext((C2)?, F5) = Ext((C2)?, C2) ~ (C2)?. We check that the normalized cocycles associ-
ated to the nonsplit extensions of Cy by Co x Cy satisty c(z,y) = —c(y, ) when the extension
is not abelian, and |[{c¢(z,z),c(y,y)}| = 2 when it is. Conversely, all coboundaries satisfy
c(z,y) = c(y,z) and ¢(x,x) = c(y,y), which proves (i). The proof of (ii) is similar and left to
the reader. ]
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We will use the following in several instances.

Proposition 3.3. Let G be a finite group, k a commutative ring and A a k-algebra. Let
f: G — A* be a group morphism. This induces an action of G on A by conjugacy. Then the
associated semi-direct product A x G (defined by multiplication ag.a'g’ = af(g)d’ f(9) ‘gq’)
is isomorphic with the (commutative) tensor product A @ kG.

Proof. The map is a®g — af(g~"').gsince (af(g7").9).bf(h™).h = af(g~ ") f(g)bf(g~ ") f(h™1).gh =
abf((gh)~').gh which is the image of ab ® gh. A reverse map is clearly afforded by a.g
af(g) ®g. I

The following essentially consists in making explicit a Morita equivalence summing up
Mackey-Wigner’s method of “little groups” (see [S] § 8.2 and [CE] ex. 18.6).

Proposition 3.4. Let G a finite group (left) acting transitively on a set X. Let k be a
commutative ring, and let A be the k-algebra G x kX where kX = @yexke, is endowed with
the product law (ezey = 0y 1€,) and the action of G is induced by the one on X. Then any
choice of g € X with stabilizer Gy C G and any choice of a “section” s: X — G such that
s(x).xg =z for all x € X, define a unique isomorphism

A — Matx (kGy)
sending each € € k™ (v € X ) to 0(e;) := Ey, and each g € G to

0(9) == s(gx) ' g.5(x) Egu

rzeX

(where E, , € Matx (k) is the elementary matriz corresponding to z,y € X ).

Proof. Note that indeed s(gz)~'g.s(x) € Gy since s(gr).z¢g = gz = g.5(z).70.

We assume k = Z. The general case is deduced by tensor product — ®yz k.

Note that we are below actually checking explicitly that, denoting i = €;,, one has A ~
End; 4;(A7)°PP where Ai is a A-bimodule-iAi isomorphic with (i4i)X as right iAi-module,
with moreover i4Ai = kGy and AiA = A.

To check that the proposed formulae define a morphism between our algebras and in view
of the law on A, it suffices to check that 6(¢)8(¢") = 0(gg’), 0(g)0(ex) = 0(eg2)0(g) and
0(ex)0(€yr) = 05 10(ez) for each g,¢' € G and z,2’ € X.

We have 0(9)0(9') = >, vex s(gz)"tg.s(z).s(¢'2") ¢ .s(2') EgzwEy . The product
Egr2Egq 2 s Egp o whenever = ¢'z’, and is zero otherwise. When z = ¢'z/, we also
have s(z).s(¢'a") ! = 1, so that 0(9)0(¢') = Y pex s(99'2") " 99" .5(a") Eggrar o = 0(g9').-

Samely, 0(g)0(e;) = ch’eX s(g$/)_lg'8($/)ng’,x’ r,x = 5(935)_19'5(1:)ng,1’ while ‘9(691)9(9) =
S wex $(92') 1 9.5(2") Ega gu Bger v = $(92) ' g.5(x) Ega  since gz = ga’ if and only if z = 2’

The morphism is now clearly surjective by the equation above (with x = z() since any
elementary matrix is then reached up to an element of Gy, and the elements of Gpe,, C A
surject on ZGo.Ey a4 -

Isomorphism follows by noting that we have a surjective morphism between free Z-modules
of equal rank. Since it has to be split, it is an isomorphism. |

4. ALGEBRAS

We define and study a quotient of the group algebra of the groups I'y,.
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Definition 4.1. We define q to be the sum of elements in @, and ¢ = qs1 (or equivalently
s182¢ = q), that is

q = 1+ sls% + 523% + 8%82 + s%sl + 518981 + s%s%s% + slsgsls% € ZI's

c = 525%52 + 515351 + 5%8281 + 31323% + 3%3% + s%s% + 81+ S2
and I, = 7ZT,.q.ZT,, = (q) = (c) be the two-sided ideal it generates in ZI'y, for any n > 3.
Let K, =71, /1I,.

Note that K, is the algebra K, (1) of the introduction.
If R denotes a (unital) commutative ring, we let RK,, denote the quotient of RI',, by
RI, = Rl',,.q.RI';, C RI';,. We have RK,, ~ K,, ®7 R.

4.1. First results. As proved by L. Funar, for every n this algebra is a finitely generated Z-
module. For the convenience of the reader, we provide another (shorter) proof of the following
result of [F1].

Proposition 4.2, (Fugar) Let Z’L denote the image of the natural morphism K, — K,11.
One has K11 = Ay + Apsp A, + Aps A,

Proof. The case n = 2 is trivial, so we can proceed by induction. Let C,, = A4,, + 4,5, A, +
Znsizn. We have 1 € C,, so we only need to prove that C,, is a left ideal. Since A,C, C
C,, this amounts to saying s,C, C C,, that is anns;Zn C C, for € € {0,1,2}. By the
induction assumption Znsizn = Zn,ls;izn + Zn,lsn,lzn,lsflzn + Zn,lsi_lzn,lsiﬁn.
Since s, commutes with A,_1 we get Znsflzn = s%ﬂn + Zn,lsn,lsfbﬂn + Zn,ls%_lsiﬂn.
Now SnstZn = s;“Zn C Chp, ann_lsn_lngn = Zn_lsnsn_lsizn and ann_lst_lstZn =
Zn_lsnsiflsiﬂn. It is thus sufficient to show that s,s,_1s5, € C), and snsiflsi e (Cy fore e
{0,1,2}. The case ¢ = 0 is obvious, $,8,—-15n = Sn—15n5n—1 € Ch, SnSn—_152 = 82 _18pSn—1 €
Chn, sns,%_ls,% = s%_ls%sn,l € (), and there only remains to show that sns%_lsn e C,,. But
c=0in Zn+1 implies, under conjugation by I';,4 1, that snsi_18n+sn,1s%8n,1+s%_lsnsn,1+
Sn—1 snsfl_ljts?l_ls%—l—s%s%_l +8,_1+5, = 0in A, 1, hence sns%_lsn € ('}, and this concludes
the proof.

|

Corollary 4.3. For all n, K, is a finitely generated Z-module.

The following lemma will be useful.

Lemma 4.4. Let p be a prime, H a finite group, S is a simple F,H-module, and ¢ is its
Brauer character. Let Q) is a p’-subgroup, that is a subgroup whose order is not divisible by
p, then q := Ztth annihilates S if and only if ¢(q) = 0. The same holds in characteristic 0

for arbitrary H and Q and ¢ the ordinary character of a simple QH -module.

Proof. We may replace H by @ itself and assume ¢ is the Brauer character of an arbitrary
finite dimensional IF,@-module S. Since @ is a p’-group, this module lifts to an OQ-module

S where O is a finite extension of Zp. Then ¢ is the ordinary character of S. Since q is an

idempotent up to an invertible scalar of O, we have ¢(¢q) = 0 if and only if q§ = 0, and this
is equivalent to ¢S = 0. The characteristic zero case is included in the above reasoning. ]

The structure of K3 and K4 as Z-modules can be obtained by computer means, as I's and
I'y are small enough : K, is the quotient of ZT,, ~ Z | by the submodule spanned by the
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elements g1qge for g1, g2 € I',,. Using the algorithms implemented in GAP4 for computing the
Smith normal form, we get the following.

Theorem 4.5. As Z-modules, K5 ~ Z*' and
Ky~ 7% @ (2)22)°* © (2)37)" & (2.)97)*®

The size of I's is too large for the same kind of computations to settle the case of K.
However, we manage to get the following

Proposition 4.6. The algebra Fo K5 has dimension 3 x 863 = 2589.

Proof. For computing this dimension we cannot rely on usual high-level mathematical soft-
ware, and needed instead to write our own code. The computation is done as follows. Since
qcE Fgfg, we can content ourselves with computing the subspace spanned by the g1qgs for
g1,92 € T'? = Sp,(F3). We can assume g; € Fg/NFg(Qg) and g2 € Qs\I'Y. Taking representa-
tives in Fg of these cosets, this leaves 90 possibilities for g; and 6480 for g». Encoding each
entry on one bit, each vector in FoI’ (5) occupies 6480 bytes, and a basis of Fgfg occupies about
330 MBytes. The encoding of elements of I'Y as matrices in Sp,(IF3) is more economic than en-
coding them as permutations, and the time-consuming procedures such as finding 90 x 6480 x 8
times the position of an element in the list of the 51840 elements of T'Y can be optimized by
using a numerical key and ordering these elements. Each time a new sequence of 8 elements is
computed and converted into a new line vector, a Gauss elimination is performed (using xor
operations on 4-bytes words) with respect to the precedingly obtained free family. We wrote
a C program based on these ideas and computed the dimension of this submodule (this lasts a
few hours on todays PCs). One gets 50977, hence dim Fo K5 = 3 x (51840 — 50977) = 3 x 863.
|

Theorem 4.7. If k is an algebraically closed field with k = 2k = 3k (i.e. its characteristic is
#2,3), then kK3 ~ Mata(k) x Mata(k) x Mato(k) x Mats(k), kK4 ~ Mata(k)? x Matz(k) x
Matg(k)2

Proof. For the case n = 3, we first just assume 2k = k and k contains a primitive fourth root
of unity w. Then one has kQ = k x k x k x k x Maty(k) by the only k-algebra map such that

) 0 1 . w 0
1H(15_1717_1)<_1 O>)7 J'_)(]"]"_]-’_l,<0 —w >)

In kQ, eg = q/8 is a central idempotent acting by 1 on the first coordinate above and by
0 on the others. So kQ/kQeg ~ k3 x Mata(k) by the same map as above deleting the first
coordinate, and kI'3/kI'se( is a semi-direct product [k* x Mata(k)] x C5 where the generator of
C'3 permutes cyclically the first three coordinates and acts on the summand Mats (k) according

s s ss s . 0 1 w 0 0 —w 0 1 .
to i+ j— ij— i, that is < 1 0>r—> ( 0 _w)r—> ( w0 >»—> < 10 > This
-1 w

1
semi-direct product is isomorphic with Maty (k) ® kC3 = Maty(kC3).

Note that when moreover 3k = k and k contains a third root of unity, then kC3 ~ k3 and
MatQ(k03) ~ MatQ(k)g.

The other semi-direct product k® x C3 is isomorphic with Matz (k) by identifying k% with di-
agonal matrices and sending the generator of Cs to the permutation matrix of the appropriate
cycle of order 3.

last action is by conjugacy by , so Proposition 3.3 implies that the corresponding
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This gives the claim about kK3.

We notice that the primes dividing the orders of I's and I'y are 2,3. It follows that kI'y
is semisimple and that kK is a direct sum of By = Mat,;)(k) among all irreducible Brauer
characters x corresponding to modules S with S # 0, that is x(q) # 0 by Lemma 4.4. Equiv-
alently, x(q) # 0 means that the restriction of S to I's does not contain any 1-dimensional
component. The ordinary character and induction tables of I's = G4 and I'y = G5 are easily

accessible using CHEVIE, so this readily provides the set of such characters and the conclusion.
1

4.2. Characteristic distinct from 2 and 3.

Theorem 4.8. If k is a field with k = 2k = 3k (i.e. its characteristic is # 2,3), then kK,, =0
forn > 5.

Proof. In order to prove kK, = 0 for n > 5, it is sufficient to show that kK5 = 0, as kK,
is generated by conjugates of the image of the natural morphism K5 — K,. Since kKj5 is
a quotient of kI's it is finite dimensional, so we can assume k = k, as kK5 = kK5 ®y, k.
The ordinary character table and elements of the complex reflection group Gso = I's are
easy to deal with using CHEVIE. We get that no irreducible character of I's vanishes on q,
hence proving that kK5 has no simple module by Lemma 4.4, hence kK5 = 0, provided
that the characteristic of k is not 2,3 or 5. For p = 5 we use that I's = C3 x Spy(F3),
with @ C Spy(F3) C I's, hence kK5 = kC3 @ (kSpy(F3)/(q)). We check that no 5-modular
Brauer character of Sp,(FF3) vanishes on q by using the table of Brauer characters provided
by [AtMod], and the conclusion follows again from Lemma 4.4.

1

4.3. Characteristic 3. This section is devoted to the proof of the following.

Theorem 4.9. If k is a field of characteristic 3, then
(1) ng ~ Matg(k) X Matg(k?C;g).
(11) kiKg, ~ kiKﬁ >~ Mat25(k03),
(iii) kK, =0 forn>7.

4.3.1. The case n = 3 has been treated at the start of the proof of Theorem 7 provided
that k contains a 4-th root of 1. In the case char.k = 3 we remove that assumption. The
irreducible representations of ) are defined over k. This is clear for the 1-dimensional ones,

1 1
1 1 > The rest of the

argument remains valid, provided that the cocycle given by the projective representation
Cs — Aut(Maty(k)) = PGLa(k) is zero in H?(C3,k>). Since H%(Cs3, k*) ~ Ext(C3,k*) = 0
when char.k = 3 this concludes the proof.

and the 2-dimensional one is given by i +— —01 (1) >, j— <

4.3.2. Case n = 5. Let us look at I'Y = Sp,(3) whose group algebra contains ¢ since '
contains all 2-elements of I's. We have K5 = kC3 ® AL where AL = kI'?/I and I is the
two-sided ideal of kfg generated by q. In order to show that kK5 ~ Matgs(kCs), it suffices
to check that kI'Y/If ~ Matas(k). We first assume that k is algebraically closed.

A first step is to check that all simple k‘I‘g—moduleS except one are annihilated by If. Using
the table of Brauer characters of Sp,(3) = 2.54(3), it is easy to check that only the simple
kT'2-module M of dimension 25 is such that its Brauer character (with values in k) 75/ satisfies
m(q) = 0. So we have qM = 0, by Lemma 4.4, AL # 0, and the only simple kI'%-module
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which gives rise to a Aj-module is this module M of dimension 25. Moreover, this module
has no self-extension as kI'S-module by [B1] 12.2 (vi). So this unique simple Aj-module has
no selfextension, so is projective, hence AL ~ Matos(k) as claimed.

In case k # k, we get from the above that kAL ~ Matas(k). We prove that the 25-
dimensional irreducible representation of Sp,(IF3) is defined over 3, which provides a non-
trivial surjective morphism kA, — Matos(k), hence an isomorphism (e.g. by equality of
dimensions). The proof goes as follows. We let k& = 3. The 4-dimensional reflection repre-
sentation of Ggg is defined over Z[j], where j = exp(2im/3), hence defines, after tensorisation
by a suitable linear character, a 4-dimensional irreducible representation py of Sp,(FF'3) over
Z[j]. We let pg : Sps(F3) — GL4(F3) denote its reduction modulo the ideal (3, j + 1) (which
is isomorphic to the standard representation of Sp,(IF3) over F3). We use the character table
and the decomposition matrix of Sp,(F3), as provided by [B1] (or by the package CTb1Lib of
GAP4) to show the following :

o S%pg, A%pg, A%(S2%pg) are absolutely irreducible, as well as S2pp.
e The composition factors over IF3 of the 45-dimensional representation A%(S?pg) are
S2po (twice) and the 25-dimensional irreducible (once).

Since S?(A2py) and A2p are defined over I3, the same thus holds for our 25-dimensional
representation.

Let us extract from the above the following proposition for future reference.

Proposition 4.10. Let k be a field of characteristic 3. Under the isomorphism I's ~ Cg x
Sp4(3), one has q € kSp,(3) and the only simple k Sp,(3) annihilated by q is the only simple
kSp,(3)/Z(Sp4(3)) = kSU4(2)-module of dimension 25.

4.3.3. Case n = 6. From the above, note that 23 — 1 € I%, since the isomorphism kAL /I —
Matss (k) is given by the 25-dimensional simple representation of I'; = 2.54(3), which factor-
izes through S4(3) (see [AtMod]) hence has the center < z3 > of I'; in its kernel.

Therefore, by Theorem 2.2 (and Theorem 2.4 (ii)),

kK¢ is a quotient of the group algebra of U(5) = Y4 x GU4(2), the GUy(2) term corre-
sponding to I's/ Z(I'?). Note that q is a sum of elements of that group. Let us show that
the simple kKg-modules are all annihilated by q except the one which corresponds with the
25-dimensional Brauer character of SU4(2). By Proposition 4.10, we are looking for the sim-
ple kU (5)-modules whose restriction to SU4(2) annihilates q, hence has all its composition
factors isomorphic to the 25-dimensional representation singled out above.

From the description of U(5) recalled in Theorem 2.2 (ii), we have kU (5) = kY. GUy(2)
where Y} is clearly an extra-special group of type 278 (notation of [Atlas]). We have Irr(Y;) =
Irr(kYy) = Irr(Y2P) U {x0} where xq is the irreducible character of degree 16 (see [Go] §5.5
on the characters of the extra-special groups).

If A € Irr(Y2P), let ey be the sum of idempotents of kY associated with elements of the
orbit U.A C Trr(Y2P). Let us abbreviate U = GUy(2) and let Uy denote the stabilizer of A in
U by conjugacy.

By Proposition 3.4, kYyU.eyx >~ Mat.i,)(kUy), so the simple kY U.ey-modules are of
dimensions (U : Uy) times the dimension of some simple kUy-module.

If A=1, then Uy = U, so we find a block isomorphic to kU and the quotient by the ideal
generated by q is Matos (k).
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To study other stabilizers, note that Y2* ~ Irr(Y*®) by the hermitian form. This is U-
equivariant, so we may consider those subgroups U, as stabilizers of non trivial elements V'
in the natural representation space IF4.

If 'WV # 0, then F4 = F,.V @ V* and U, then identifies with the unitary group on V=,
isomorphic with GU3(2). By computing its Brauer character table (e.g. using GAP4), we get
that its simple modules over k have dimensions 1,2,3, so we get dimensions 1,2,3x (GU4(2) :
GUs(2)) which is never a multiple of 25.

If 'V V =0, then V can be taken as the sum of last two vectors of an orthonormal basis, so
that the computation of its stabilizer is similar to the one of Remark 2.3. Then U) identifies
with a semi-direct product Y x GU3(2). By the discussion used above for Y3 x GU4(2), one
can sort out the dimensions of the simple k[Y2 x GUz2(2)]-modules as follows. We first have
GU3(2) ~ (C3xC5) xCy with trivial Schur multiplier. So the simple projective representations
of this group and the simple representations of its subgroups are of degree 1, hence the simple
E[Y2 x GU2(2)]-modules are of dimensions dividing 18. They are prime to 5, so that once
multiplied with (GU4(2) : GU2(2)) = 1440 they give dimensions not a multiple of 25.

Let now eg be the idempotent of kY, corresponding to the only non linear character of the
extra-special group Y. It is central in kY U, eg.kYy ~ Mati6(k) by semi-simplicity and we
have an action of U on the latter.

The following shows that egkKg = 0, thus establishing our claim.

Proposition 4.11. (i) The above action of GU4(2) on Matis(k) is induced by a mor-
phism GU4(2) — GL16(k) and conjugacy.
(ii) One has ey € kYaU.q.kY,U.

Proof. This action defines a projective representation GU(4,2) — PGLi¢(k), and we need to
show that it is linearizable, meaning that the induced element of H%(GU(4,2), k*) is zero. By
Lemma 3.1 it is sufficient to compute its image in H?(Cp, k*) where Cy ~ (C3)? is the image
of the quaternion group Qo C I's in GU(4,2) ~ C3 x PSp,(F3). We compute it explicitly as
follows. Since k has characteristic 3, we can assume that k = F3 and that the 16-dimensional
representation ¢ of Yy is defined over IF3 by the matrix models given in Section 2.3. For
x,y two generators of Cp C GU(4,2), their actions on Y, define twisted representations
Yy = o Adx, ¢y, = 1 o Ady of Yy, which provides intertwinners P,, P, € GLig(k) and a
normalized cocycle. We check that they satisty P,P, = Py P, and P:f = Py2 = Idjg. From
Lemma 3.2 it follows that this cocycle is a coboundary, which concludes (i).

We let U' = SU(4,2) € GU(4,2) = U. From the above and Proposition 3.3 we get
that egkYy x U’ ~ Matig(k) x U’ is isomorphic to Matig(k) @ kU'. If p : Q@ — GLyg(k)
denotes the restriction to @ C GU(4,2) of the representation defined above, q is mapped to
M =3 copr(9)®g € Matig(k) ® kU’ under this isomorphism. Then the ideal eokY2U'qYsU’
of egkY,U’ is mapped to the ideal generated by M inside Matg(k) ® kU’ ~ Mati6(kU’).
Every ideal of Mati(kU’) being isomorphic to Matyg(I) for some ideal I of kU’, we get that
this ideal is Matig(I) for I generated by the entries (m;;) of the matrix M. In order to
compute it we need to explicitly lift the representation p : Q@ — PGLg(k) afforded by the
intertwinners to a linear representation p. It is clearly sufficient to lift the generators i,j of
Q. Although any lifting will do, as k* = {—1,1} hence the set of the p ® x for x a linear
character of @) covers all the possible liftings of the generators, we find that the four possible
liftings are not equivalent as representations of (), hence only one is the restriction of the
linear representation of U’ providing the isomorphism. Nevertheless, computing the entries
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of M in the four cases, we find that ij(z — 1) belongs to all four possible vector subspaces
of kQ spanned by the entries of M, where z = i2 = j2. It follows that z — 1 belongs to I.
Since U’ = SU(4, 2) is simple, the conjugates of z € @ C U’ generate U’ hence I contains the
augmentation ideal of kU’. As a consequence the quotient of egkYy; x U’ by q is either zero
or isomorphic to Matig(k). Since the image of kU’ C egkYy x U’ factorize through Matos (k)
it has to be 0. Since it generates (egkYy x U’)/(q) we get egkY, U' = egkY U'qY,U'. ]

4.3.4. Casen > 7. It suffices to show that q generates kI'y as a two-sided ideal, to get the
same in any kI, for any n > 7. By the argument at the start of 4.3.3 above, 22 — 1 belong
to the ideal generated by q in kI's5, hence to the ideal generated by (q) in kI'7, and Theorem
2.2 (ii) then implies that kK7 is a quotient of k GUg(2) by the two-sided ideal generated by
qck SU4(2).

Assume that kK7 # 0 and let S be a simple kK7-module. We see it as a simple k GUg(2)-
module such that @S = 0. Since the restriction of S to SU4(2) is a module annihilated by q,
all its composition factors are isomorphic to the same 25-dimensional simple &£ SU4(2)-module.
Its Brauer character ¢g then satisfies Resgg4 6((22)) ¢s = m.¢pa5 where m > 1 is an integer and
¢o5 is a Brauer 3-modular character of degree 25.

In the table of Brauer characters of GUg(2) (denoted by 3.Us(2).3 in the notations of
[AtMod]), it should then appear as a character of degree 25m and with values in mO for the
classes of elements of SU4(2) C GUg(2) (O denotes the ring of integers of the 3-adic ring of
a splitting field of GUg(2)).

Since the publication of [AtMod], this table has been computed and made available in GAP4
(package CTb1Lib 1.1.3), so we can check that only two characters match the condition on
degree, and it is for m = 111 and 154. But the condition on values is satisfied in neither case.
(see table 1).

4.4. Even characteristic. Here we choose another equivalent description of K, and intro-
duce a new element b € ZI's that will prove important to our study of characteristic 2.
Definition 4.12. Let

b= 3132_1 + 32_131 + 31_132 + 3231_1

Note that b + 5155 'b = q, and in particular (q) C (b).

In characteristic 2, we will not get a complete description of kK. This section is devoted
to the description of kK, for n € {3,4}, and to preliminary results on the ideal generated by
b. We will prove the following, letting 2 — z denote the element z — 22 of Gal([Fy/IFy).
Theorem 4.13. If k is a field of characteristic 2, then

(i) kK3~ kI's/J(k['3)* ~ (kQ/J(kQ)*) x Cs. B
(11) When k D ¥y, kK4 ~ kK3 @ Mat3(kF3/Iq) D Mat3(kF3/Iq) with Iq = Mq03 C kI's,
My a 4-dimensional ideal of kQ with J(kQ)*> C My C J(kQ)?, My + M, = J(kQ)?.

For n = 3 this is a consequence of the following.

Proposition 4.14. Keep k of characteristic 2. Then J(kI's)* = (q) C (b) = J(kI'3)3.
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-1
-1

[EEV

Ta
Ta
7o
Ta
1a
Ta

-2

M3 O
= m

do &b
b 4c
da &b
do &b
ga &b
do &b

-1 1
-1 1

-1 -1
31

|

18a
Ra
160
Za
160
18a

11q
11hk
11a
11a
11k

1a

11k
11a
11k
11k
11a

1a

15

(ib)sf, oij = (ib)** € (b). Let K = koy @ koy @ koy; C kQ. It is easily checked to be a 2-sided
ideal, stable under s;-conjugation. Since @ is a 2-group, the Jacobson radical J(kQ) is the
7-dimensional augmentation ideal, and in particular 1+1i € J(kQ). By Jennings theorem (see
[B2] thm. 3.14.6) one easily gets that >, <, t" dimy J(kQ)"/J(kQ)"T! = 1+2t+2t2 +2¢3 + ¢4
hence J(kQ)® = 0, dim J(kQ)* = 1, dim J(kQ)? = 3 and dim J(kQ)? = 5. In particular
J(kQ)* coincides with the simple submodule kq. We have o, = (1 + z)3 for = € {i,j,ij},
so K C J(kQ)? hence K = J(kQ)? by equality of dimensions. The ideal J(kQ) of kQ
being stable under sj-conjugation, we get that J(kQ)Cs = CsJ(kQ) is an ideal of kI's =
kQ x C3 with (J(kQ)C3)® = 0 hence J(kQ)Cs C J(kI's). We have dim .J(kQ)C5 = 21 and
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dim J(kI'3) = 24—3 = 21 because kI's admits 3 simple 1-dimensional modules (when k D Fy),
hence J(kQ)Cs = J(kI'3).

From J(kQ)C3 = C3J(kQ) and C3C3 = Cs we get that J(kI'3)" = J(kQ)"Cs. It follows
that the ideal (b) in kT3 is KC5 = J(kQ)3C3 = J(kI'3)?, and the one generated by q is
k:q.Og = J(kQ)4C3 = J(kF3)4. |

We now consider the case n = 4. We let K denote the kernel of the natural morphism
I'y — T'3. It is the extra-special group 3'*2 with exponent 3. Generators are given by a =
5153 Lu = (s15351) 7 (s383s3), ¢ = (s15283)* € Z(T'4), and we have (a,u) = aua™'u™! = (.
The action of I's on K is given by Slusl_1 = au, 32a32_1 =u"Ya, (s1,a) = (s2,u) = (51,() =
(827 C) =1L

We assume k D F4. The irreducible representations of K are defined over k. Choosing
j € Fy\ Fg, an irreducible 3-dimensional representation R : K — GL3(IF4) is given by

1 00 111
a— |7 72 0lu— [0 1 1|¢— 42
1 1 4 010

and another one is afforded by its Galois conjugate R. Then kK = k? @ Matz(k) ® Mats(k),
and kT'y = (k? xT'3) ® (Matg(k) xg['3) ® (Mats(k) x 3 T'3). We will prove that Mats(k) x ' ~
Mats3(kT'3) and describe an explicit isomorphism. For g € I's we denote RY : z — R(gxg™').
From RY ~ R for every g € I's we get a projective representation p : I's — PGL3(k) ; by
explicit computations we check that this p can be lifted to a linear representation p : I's —
GL3(k) given by

1 0 0 32 0 g
si—= |7 72 0] sa—= [0 1 0
j o1 0 0 1

Then, an explicit isomorphism Matz(k) x I's — Mats(k) ® kI's is given by 1 ® g — p(g) ® g.
The ideal generated by q € kI's in Matgz(k) xI'3 then corresponds to Mats([,) with I, the ideal
generated in kI'3 by the entries of erQ p(x). By computer we find that I, has dimension
12, and is generated by 81_18281 +j28182_181 +j28281_182 —|—st_131_1 +j231_132_1. We also check
that I, = M,C3 with M, the 4-dimensional ideal of £Q) generated by 14 jsis251 —i—j2(3132)3 +
jsisy '+ jsy ts1, that J(kQ)? € M, C J(kQ)?.

Similarly, we get that the ideal generated by b in Mats (k) xI's corresponds to Matg () with
I, an ideal of dimension 21 that contains sy 'sy + 1. since (kT'3)/(s7 sa+1) = k(I'3/s7 's9) =~
kC3 we get I, = (s] 'sg + 1) and Matz(kT'3)/ Matg(I}) ~ Mat3(kCs).

Lemma 4.15. The images of the elements ri = 528§ + 8%82 + sls% + 838% + 8%83 + slsg and
T9 = 8353 + 51 + 52 + S9535% + 35351 + S%S% of kI'y inside Mats(k) x I's lie inside the image

of (b).

Proof. We first write r1,ry inside kK x I's. We get 1 = u‘lg“aSQS% + 8%82 + 5133 +a 4+
au_lasgsl 4+ a and ry = C_luasgs% + 51 + s9 + auass + au_las%.s% 4+ asy. We need to
prove that they map to 0 through the composite of the morphisms kK x I's — Mats(k) x
s — Mats(k) ® kI's — Matz(kC3), that is that R(u='Ca)p(s2s?) + p(s2s2) + p(s153) +
R(a™")+ R(au"a)p(s351) + R(a) = 0 and R(C™'ua)p(s3s7) + p(s1) + p(s2) + R(aua)p(sz) +
R(au=ta)p(s3s%) + R(a)p(s1) = 0. This follows from a straightforward computation. 1
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The case of the other 3-dimensional representations is similar and can moreover be de-
duced from the first one by Galois action : letting « — Z denote the nontrivial element of
Gal(F4/F5), (q) corresponds to the ideal I, = M,Cj3, and we check M, + M, = J(kQ).

We now turn to the 1-dimensional representations p, 5 : K — F} defined by a — j*, u
§%,¢ = 1 for a,8 € {0,1,2}. We have Papla) = 7% poglu) = jots, prgla) = jo8,
pizﬁ(u) = j#. Identifying the possible (a, 3) with I3, the I's-action on the classes of repre-
sentations thus corresponds to the identification of I's with SLo(IF3) given by

L[t o (1
51 1 1) 27 o 1

It follows that there are two orbits, of cardinalities 1 and 8. We have k9 x5 = k3@ k'3/C 'y
with C' the stabilizer of a nonzero vector in F3.

We apply Proposition 3.4 with C' =< s; > and @) making a representative system of I's /C.
Then, under the isomorphism k13/€¢ x Ty ~ Matg(kC3), g € @ is mapped to ZuEQ Egyu. In
particular, q € kQ is mapped to

Z Z Evu,u = Z Eu,v-

vEQ UEQ u,VEQR

The ideal of k'3/C x T'3 generated by q is then mapped to Matg(I) for I the ideal of kCs
generated by 1, hence is the full block £73/C x T's. Since q € (b), the same holds for the ideal
generated by b.

Proposition 4.16. The elements 11,79 € kI'y of Lemma 4.15 belong to the 2-sided ideal
generated by b.

Proof. We showed that kI'y/(b) is isomorphic to (kI's/(b)) & Mats(kCs3) & Mats(kCs). The
images of 1, 2 in both Mat3(kC3) is 0 by Lemma 4.15, and it is readily checked that r; — b
and 79 — 0 through kI'y — kI's. The conclusion follows. |

4.5. A finer description of K5 as a Z-module. Similar algorithms as the ones used in
the proof of proposition 4.6 enabled us, using several months of CPU time, to determine the
structure of (7Z/327) K5 as a (7 /327)-module. Combined with our study of odd characteristic,
this implies the following.

Proposition 4.17. As a Z-module, K5 ~ (K9)? with
K9 ~ (Z/27)™ x (7.)A7)* x (Z./87)®° x (Z/167) x G
where G is an abelian 3-group with dimp, G ® F3 = 252 = 625.

5. A TERNARY HECKE ALGEBRA IN CHARACTERISTIC 2

We assume that k is a field of characteristic 2 with k¥ D Fy = {0,1,7,5?}. Recall that b
and q are defined in Definitions 4.12 and 4.1.

Definition 5.1. For o, € k, and n > 3, we define the following.
Let J,(a, B) = kI'y.(s1 — a)(s1 — B).kTy,
Let Hy (o, B) = kI'yy/ Jn (v, B).
Let Jn = Jn(1,5) N Jn(1,5%) 0 Jn (5, 5°).
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The aim of this section is essentially to prove the following. In particular, we see that
kK, never collapses and actually has dimension > 3(n! — 1). Recall that q € kI',,.b.kT,, (see
Proposition 4.14)

Theorem 5.2. Let n > 3. Then J, = kI',,.b.kT'y, as a 2-sided ideal of kT, and kI'y,/J,, has
dimension 3(n! — 1).

Notice that J, (e, ) contains (s; — a)(s; — 3) for arbitrary 1 <i < n.
Lemma 5.3. Assume n > 3. We have I,, C J,(a, 3) whenever o® = 33 =1 and a # B.

Proof. We need to show that ¢ = 0 modulo J,(a,3). From s? = (a + 8)s1 — a3 we get
595289 = (o + B)sas182 — afBsi = (a + B)s2s152 — aB(a + B)s2 + (aB)? and symmetrically
518351 = (a+B)s15281 — aB(a+ B)s1 + (aB)?, thus s1s381 + 8257892 = 2(a+ B)s18251 —af(a+
B)(s1 + s2) + 20242, From the same equation we get 3%3231 = (a + B)s15251 — af¥sas1 and
515257 = (a+3)s15251 — 35189 hence s3s951 + 515257 = 203515251 — (5152 + 8251). Finally
253 = ((a + B)s1 — aB) ((a+ B)sa2 — aB) = (a+ B) 5152 — afla+ B)(s1 + 52) + (af)? and
symetrically 5352 = (a + 3)%s251 — afB(a + B)(s1 + s2) + (aB)?. Altogether this yields

c = 4(a+ B)s1s251 + ((a+ B)? — aB) (s251 + s182) + (1 — 3aB(a + B)) (51 + s2) + 4a?B%.

Since (a + B)? —aB = a®> +af + B2 = 0 and aB(a + B) = (B/a) + (a/B) = —1 we get
c = 4(a+ B)s18981 + 4(s1 + s2) + 4a?B2. Since 4 = 0 this concludes the proof. ]

Recall J,, = J,,(1,5) N Jn(1,5%) N Jn(4,5%). From the above lemma, .J,, D I,, and obviously
kK, surjects onto kI',/.J,, while kI, /.J,, embeds into H,(1,7) x H,(1,5%) x H,(j,5?).

In order to deal with quotients of an intersection of three ideals we will need, here and later
on, the following two lemmas.

Lemma 5.4. Let A be a (possibly non-commutative) unital ring, Iy, Iz, I3 three 2-sided ideals,
such that A=1, + Is + Is. Then I1 + Iy N I3 = (I + 1) N (11 + I3).

Proof. Denote I = (I1 + I2) N (I; + I3). Then the inclusion I3 + (IoN13) C I is trivial. On the
other hand, we have [ = I(Il —|—12—|—13) = I(Il —{—12)—1—113 - (Il —FIg)(Il —{—Ig)—l—(]l —|—Ig).[3 C
I+ I3ly + 1213 C I + (12 N I3).

|

Lemma 5.5. Let A be an abelian group, I,J, K subgroups of A with [ +J + K = A. We
define morphisms

AJINTNE 55 AJT x AJJ x AJK 25 A)(J + K) x AJ(I + K) x A/(I+J)

where dg is induced by (a,b,c) — (b—c,a —c,a—0b) and dy is the natural (injective) map.
Then dg ody =0, dg is surjective and Kerds/Imdy ~ (K +1)N(K+J)/K+1nNJ.

Proof. dy od; = 0 is clear. Imdy contains A/(I +J) =0x0x A/(I+J),as A/(I+J) =
(I+J+K)/(I+J)is clearly do(K/I x 0 x 0), where K /I denotes the image of K in A/I,
hence ds is surjective by symmetry. An element of Ker ds is the class of a triple (a, b,c) € A3
witha—b=i+j,b—c=7+k,a—c=14+k forsomei,i' €1, 3,5 € J, k,k' € K, hence of
a(a—ib+j,¢)=(d,d,c)withad =a—i=b+j. Onehasad' —c=b—c+j=a—i—c€
(K+1)N (K +J). Conversely, the class of any (a,a,c) with a—c € (K+1)N (K + J) belongs
to Kerds.

On the other hand, such a triple (a,a,c) originates from A iff there exists i € I, j € J,
k € K such that a+i = a+j = c+k, which means ¢ € K+ 1NJ. This proves Ker ds/Im dy ~
(K+I)n(K+J)/(K+1InJ)under (a,a,c)— a—c. 1
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When a, 8 € us(k) with a # 38, we let g : Hy(a, ) — k denote the natural morphism
sending each s; to a.

H,(j,5%) H,(1,5%) Hy(1,7)
T
4a; 1
k k k
Definition 5.6. We let H,, denote the subalgebra of H,(j,7%) ® Hy(1,5%) @ H,(1, ) made of
the triples (x1,xj,x:2) such that ¢o(xa) = qa(zar) whenever {a, o', "} = ps(k).

J
We also denote U,, = kI',,/(b) (see Definition 4.12).

Recall that J,, = J,,(j,5%) N Jn(1,5%) 0 T, (1, 5).

Proposition 5.7. The image of the natural embedding kTy/J, — Hy,(j,5%) © Hu(1,5%) ®
H,(1,7) is Hn. We have dimH,, = 3(n! — 1) and kK,, - H,.

Proof. We want to apply lemmas 5.4 and 5.5 to the ideals J,,(«a, ) for «, 5 distinct third roots
of 1. If us(k) = {«, 8,7}, we first prove J,,(«, 8) + Jn(a,y) = kI'y(s1 — @)kl : under ¢, we
can assume for this « = 1, 8 = j, v = j2 and we have (s1 — 1)(s1 — j) — (s1 — 1)(s1 — j%) =
(1+425)(s1 —1) with 1425 invertible. This implies at once that the sum of the three J,(«, /3)
have for sum kI'),. We also get that the map ds of 5.5 defines H,, as its kernel. We thus get the
first statement of our proposition by applying Lemma 5.5 in a case where Lemma 5.4 ensures
that the sequence of maps is exact. This exactness also implies the claim on dimensions since
each Hecke algebra has dimension n!. |

Remark 5.8. Lemma 5.3 and Proposition 5.7 hold true with k replaced by (Z/AZ)[j] =
(Z/4Z)[z]/(z* + = + 1), with the same proofs (except, of course, for the statement on the
dimension,).

Remark 5.9. We have natural morphisms H, — Hp(«a, ), hence every simple Hy (o, B)-
module M provides a simple module for H,, and for kI',. Since char.k = 2 and s1 € ',
has order 3, the action of s1 is semisimple, and so we can assume that the induced morphism
kT, — Endg(M) either factorizes through Ky(«) (up to exchanging o and () or does not
factorize through any of the J,(u,v) for {u,v} # {«a, B}. It follows that a collection of non-
isomorphic simple modules for H,, is afforded by the simple Hy(«, 3)-modules of dimension
at least 2 and the three 1-dimensional modules defined by s1 — « for a given o € pg(k). By
the same argument, the same holds for indecomposable modules as well.

Proposition 5.10. Forn > 3, J, is generated as a 2-sided ideal by b (see Definition 4.12).

It is easily checked that, for n > 3, b € J,. Indeed, we have b € J,(a, ) because the
image of b = 5152 + 5351 + 5252 + 5257 in Hy(, B) = kT /Jn(a, B) is 2(a + B) (5152 + s251) +
2a3(s1 + s2) = 0, using s? = (a + B8)s; + af and char. k = 2.

Recall U,, = k', /(b). In view of Proposition 5.7, in order to prove J, = (b), it is enough
to check that dim U,, < dim kI",,/J,, = 3(n! —1). We need a lemma, where we abuse notations
by letting Uy denote the image of Uy in Upy1.

Lemma 5.11. Forn > 2, one has
(i) Uns1 = Up + UpnspUy + Ups2U,
(i) Upt1 = Uy + UpspUy, + Uys?

(iii) If k < n, r,t € {0,1,2} we have systs? = s}T's?

modulo U, + U, sy,.
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(iv) Uny1 = Uy + Upnsp Uy + Uas?

Proof. Ttem (i) is a consequence of q € (b) by Proposition 4.2.

We now prove (ii). One has s3s; = s153 + 5252 + s25? + b. By (1), U,y is spanned by
U,, U,s,U, and the wls%wg for wy,wy positive words in the s; for i < n — 1. We let I(w2)
denote the length of wy with respect to these generators. If, as a word, wy = s,w) with
r < n—2, then wys2wy = w82 s,wh = wys,s2wh with [(wh) < I(ws). If we = 1 is the empty
word, then wys2ws € U,s2. Otherwise, we have wy = s,_jw). By conjugating b, we get
825, 1 = 8152 + si_lsn + sns%_l mod (b) hence

2 - 2,1 2 / 2 /
W18 Sp—1Wy = W1Sp—155,Ws + W1S5_1SpWh + W1SpSs,_jwy mod (b)

On the other hand, [(w)) < l(ws) and wis2_ sp,wh + wisps2_wh € UnspUy, so we can
conclude by induction on the length of ws.

We first note that (iii) is trivial for n = 2, so we assume n > 3. It is also trivial for » = 0,
so we can assume r € {1,2}. We first deal with the case t = 0. We let V,, = U,, + Uys,, and
we use that, in kI'y/(b), s2s2 = (s2s9 + s153) + (8753 + s3s3) + 5152 and s3s3 = (51 + s2) +
(528983 + 535183) + 5753 (see Proposition 4.16). Here and in the following, all congruences are
modulo additive subgroups. By conjugation we thus get s,,_152 = (52_58p_1 + Sp—252_1) +
(8082 _o + 82_185) + Sp—252 mod (b) whenever n > 3, and in particular s,_152 = s,_25>

modulo V,, and also s2_;s2 = s2_,s2 modulo V,,. We need to prove that sis? = s7s2

mod V,, for all k < n and r € {1,2}, or, equivalently, that s}s2 = 52+13% mod V,, for all
k< n—1andr € {1,2}. We prove this by decreasing induction, the case k = n — 2
being already known. Let now k£ < n — 2. Notice that V,, is both a left U,-module and
a U,_1-bimodule. Modulo V,,, we have by the induction hypothesis and the commutation
relations that S%HSZS% = sgﬂs%si = sgﬁs%sz = siszﬂs% = 828%+1S% for all a,b € {1,2}.
On the other hand, spspi1Sk = Sk1+1SkSk+1 hence Sk8k+13k8% = 3%8k+18% = 3k+1s%8721 is equal
modulo Vj, to sj418k5k4152 = siﬂsks%. Multiplying on the left by sglslz_il_l we thus get
sks% = Slzlsk_t'_lSkS% = S’;lSkSkJ'_ngL = sk+1s% hence the conclusion for t = 0. For arbitrary t,
o2 — rot o2 — rtt.2 — rtt

we then have s} s|s; = sisps; =57 sy, = 51 s2.

Notice that (ii) and (iv) are the same statement for n = 2, so we can again assume n > 3.
Since Uy, + Up sy, C Uy, + UpspUsy, (iii) implies U,s2 C Uss? + Uy, + Uy s,U,, hence (iv) follows
from (ii).

1

For 0 <k <n, welet s, = sp5p—1...8p—k+1 With the convention that s, 0 =1 and 5,1 =
5n. We let UF = Unsn i (hence US = U,). Similarly, we let z,, 1 = spsp—1... 3n7k+2331_k+1
for 1 <k < n, with the convention z,, ;1 = s%.

Lemma 5.12. (i) Ifr<n—1,1<k<mn andcc {0,1,2}, then s,8§x, 1 € s7 a1 +
U+ 4+ Uk
(ii) Forw e I'y, wap ), € sll(w)xn,k + U+ -+ U", wherel : Ty, — 7/37 is s; — 1.

Proof. We first deal with (i). Notice that the statement is trivial for n < 2, so we can assume
n > 3 and in particular sis, = s,s1. We prove the statement by induction on k, for all n. The
case k = 1 being known by the previous lemma, we can assume k > 2. Let r < n—1. We first
consider the case r < n—2. Then 5,577y 1 = 5,575,551 .- .si_kﬂ = SpSrS{Sn—1... s%_k_H =
Sn8r8{Tn—1k—1. By the induction hypothesis we have s,s{x,_1 -1 = 3§+1xn_17k_1 modulo
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US|+ + U,’f:ll hence s,5,5{Tp_1 -1 = snsf{+1xn,17k,1 modulo s,UY | + - + SnUlel.
Noticing that anfL'_l = 8pUn-15n-1,j = Un—15n8n-1,; = Un—15nj+1 C Upsp j+1 we get that
SpSpS{Tn—1 k-1 = sns‘{Hxn,LkA = s‘{“snxn,l’k,l = 3‘{+1xn7k modulo Uy, + U} +--- + UF.

We now consider the case r = n — 1. For clarity, we let b = n — k + 1. Then, using
stsg = 3§+18b + sbsgJrl + 3§3b+1, we get that s,_1s{z, = A+ B+ C with

2
A = $p-187SnSn—1--- Sb+25}415b
2
B = s,-15{spSp—1... Sb+25bSh41
C = 8,-15(5n5n—1-.-5p425;5p+1

First note that C = sn,lsfsgsnsn,l o SpaSpy1 € Upspp—1 = U,’f_l. By the induction
. 2 . 1 2
hypothesis, A = (8,-15{SnSn—1- .- Sp428j,1)sp is congruent to (s‘{+ SnSn—1 - - -Sbt23b+1)8b =
s‘{“:cn,k,lsb modulo (U, +U} 4 - -+UF s, Cc U, +UL+-- - +UF24+UF. Now s‘ﬁ T k—15p =
59 sn,k_gsgﬂsb and using again sgﬂsb = Sb+1s§ + sbngrl + Sgsb_i'_l we get that
1 1 2 +1 2
it Tl ... Sp425b5p11 T 51 Sn ... Sb425,She1-

We have Si+15n...5b+2858b+1 = s?lsgsn’k_l € UF'. Moreover, sf“sn...sbwsbsgﬂ =

1
Ty 150 = 87 Tk + 8§

sfﬂsbxn’k_l, and by the induction hypothesis, we have syx,, ,—1 € 512y 51 +Up+---+ U,'f_l.
Hence A ¢ sfﬂxn,k + sf+2xn7k_1 +Up +---+ U

We now consider B. We have sbsgle € slsgﬂ + Ups+1+ Uptr1Sp+1 by Lemma 5.11. Moreover
Sn—1558n . - Sp2Up11 = Spn—1Up415n, . . . Sp+2 C Up Sy ... Sp42 and similarly s,—157sp . . . Sp+2Up+15p4+1 C
UnSn . ..Sp+1, hence B € 5,157 ... sb+2515l2)+1+U7]§_2+U,’f_1 i.e. Be sn,lsfﬂmn,k_l—i—Uﬁ_Q—l—
f S§+21‘n,k_1 + U, +U!+---4UF! by the induction hypothesis. Altogether this yields
A+B+C €57 a,, + U, + -+ UF and the conclusion for (i).

Part (ii) is an immediate consequence of (i), as we have s,z = siz,; and s%xmk =
SpSrTnk = SpS1Tnk = s%xmk modulo Ug + U,}b +---+ U} whenever r < n, and the s, forr <n
generate I'y,. |

Proposition 5.13. Let n > 2. Then dimU,, = 3(n! — 1) and
Un+1 :Un@UﬁEB"'@Uﬁ@UQl’n,l@”'@UzJZmn

Proof. We first prove that U, 1 = U, + UL + -+ + UP + Uswp 1 + -+ + Usxy,,n by induction
on n. Assuming this to be true for n, we have U412 = Upt1 + Upt15n41Uns1 + Uspg11 by
Lemma 5.11, and

Un+15n+1Un+1 C Upg15n11(Un + -+ + U))) + Ung1Sn1Uszn g + -+ - + Un1Snp1Unp .

But, for & = 1,...,n, Un+15n+1U7]zg = n+15n+1Un5n,k = Un+1Un3n+15n7k = U:ill and
Unt15n+1U2%0 1 C Upt1Sn41Zn ke = Unt1@ny1 k1. Therefore Uypio C D00 Upp1@ng1 k1 +
Y1 Uspi1 k. On the other hand, Upt12p+1 k41 C Us@pt1fr1 + Ung1 + -+ + Ugill by
Lemma 5.12. It follows that U,42 C Upy1 + U71z+1 +- Ugill +Uswpi11+ - +UZpi1nt1
and we conclude by induction.

We then prove that dim U,, < 3(n! — 1), again by induction on n. Since U, 41 = U, + U} +
e+ U+ Uszng+ -+ Ustp g, we get dim Uy < (n+1)dim Uy, +3n < 3(n+1)! = 3(n+
1)+3n=3((n+1)!-1).

Finally, since U,, maps onto H,, we know dim U,, > 3(n! — 1) hence dimU,, = 3(n! — 1). It
follows that all inequalities above are equalities and the sum is direct, which concludes the
proof. |
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FIGURE 1. Basis for BWj3
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81851 — by + bg + bg + b1 + b1g

T

5] 82 > b3 +be+br+bg+bg

sas ' > b3 +bs+big

55181 > by +bs+bio

$18281 b4

s1'sy s > by +bs+by+bs+bg+ by + big + bia + bis

T

S 5155131 — by + by + b3 + bs + bg + by + big + b1y + b1z + b3 + bis

TABLE 2. The map F4Qgs - BW3

bis = by bys
bys = bs+bg+ bio | bss
bzs = by bgs
bigs = bio bi1s
bizs = b3 bi4s

b1 + bz + b7
bz + bs + b13
by
b12
bis

ng
bﬁS
ng
b128
b15S

bs
by
b7 + bg + by

bio + b11 + b12
b1z + b1a + b1s

TABLE 3. Multiplication by s in BWj3

6. A TERNARY BIRMAN-WENZL ALGEBRA

6.1. Birman-Wenzl algebras. If k is a ring and z,\,q € kX, § € k with § = ¢ — ¢ 1,
+

and 20 = § — A + A~! the Birman-Wenzl algebra BW,, is defined by generators s

é1,...,€e,_1 and relations

(1) $iSi+18i = Si+1SiSi+1

+

IEERE

787p—1)
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ii) ss] —sjsZ for [j —i| > 2
iii) e;s;— 161 —)\jFlei
(iv)
V) siej = ejsZ for [j—i] > 2
(vi) eje; = eje; for |j —i| > 2
(vii) sije; = e;s; = Ae;
) s
)

(viii sjeZ =eje; = ejs;s5 for [j—i| =1
(ix) e? = we;
(x) eieir1e; = €;.

It is a free k-module of dimension (2n —1).(2n—3)..... 3.1, isomorphic to Kaufmann’s tangle
algebra (see [MW]). In case ¢ is invertible, the e; can be expressed in terms of the s;. This
algebra can then be described as the quotient of the group algebra kB, with relations (3),
(7) ,(8), (9), (10) where e; is defined as 1 — §~(s; — s; ). Relation (7) is then equivalent to
(7)) : (85 = N)(si + g H)(si — q) = 0, and a straightforward calculation shows that it implies
(9). Now notice that the pair (s;, s;+1) is conjugated in B, to the pair (s;+1,s;), hence (3)
can be rewritten as e;s7'e; = ATle; whenever |j —i| = 1. Then (10) is easily seen to be a
consequence of (3) and (9), hence of (3) and (7). The relation (8) can be shown to be implied
by (3) and (7’) (see [We| §3). Finally, note that conjugation in the braid groups shows that
(3) is equivalent to (3°) : e;site; = ATley.

A natural quotient of BW,, is obtained by adding the relation e; = 0, or equivalently
si—s; ' = 6. This quotient is naturally isomorphic to the Hecke algebra kB, /(s;—q)(si+¢ ™).

We now specialize to the specific instance we are interested in, by taking k =F4, g =j €
F4 \ Fy hence § = 1, and 2 = 1. Then relation (7°) is s3 = 1, which means that BW,, is the
quotient of kT, by the relations (3'), which we split as the two relations (34) : e;sie; = ep. It
can be checked (e.g. by computer) that the ideals generated by (3/,) and (3"_) have dimension
8 in kI'3, while their sum has dimension 9, as is known by dim BW3 = 15. Note that the
relations (3/.) can also be rewritten in our case e1(s3 + 1)e; = 0.

Definition 6.1. Let r} = el(sgE + 1)e; € kI's, that is, writing I's = Qg x Cs,

i o= (1+iz+jz +k2)(1+s+s?)
{ ry = (14+i+j+k)(1+s+s?)

We notice for future use that the three 1-dimensional representations of kI'), factor through
BW,. Indeed, the two non-trivial ones factor through the Hecke algebra H,(j,j2), which is
a quotient of BW,,, while BW,, admits the representation s; — 1, e; — 1, which induces the
trivial representation of I';,.

6.2. Another quotient of K, in characteristic 2. We use the representation of BW,, in
terms of tangles, taking for convention that the product zy of the tangles x and y is obtained
by putting y below z. Following [MW], a basis for BW,, is given by a basis of the algebra
of Brauer diagrams and an arbitrary choice of over and under crossings. The basis chosen
for BWj3 is pictured in figure 1, with s; = s = bg ; the morphism kQs — BWj3 and the
multiplication on the right by s = by are tabulated in tables 2 and 3, respectively.

Let ¢ € Aut(kB,,) be defined by ¢(s;) = js;. It induces an automorphism of kI, of order
3, and ¢® = Id. Let B} be the kernel of kI, - BW,,, namely the ideal (3/,) + (3"). We have
¢(a) = q, and we let B = o(BY), B}, = ¢*(B}),

Proposition 6.2. (i) The natural morphism kI'y, — BW,, factors through K,
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When n = 3, its kernel is contained in J(kI's)
(iii) We hcwquB" By n B} N B

(i)
i)
(iv) (q) =
(v) 1+Z3€B+—81+B + Bj2
(vi) kI',/By = kCs forn > 5.

)

(vii) Forn =3, By = J(kQg)*Cs = J(kT'3)%.

Proof. Part (i) means that ¢ is mapped to 0, which can be checked on table 2. Part (ii) is
because kI's has only 3 simple representations, all coming from BW,, hence all annihilated
by the kernel. Part (iii) follows from ¢(q) = q. For part (iv), notice that B3 is stabilized
by ¢, hence B> = I & I; & IJ2 with I, = Ker(p — «), as char.k # 3. On the other hand,
kl's = @?:O(ng)si and ¢(s") = j's’. Since B® is an ideal, I; = I1s,I2 = I1s*, hence
Bs = I1 x C3 with I an ideal of kQ)g. This ideal is the kernel of the natural map kQg — BWjs,
and it is easy to determine from table 2. We find I} = kq, hence (iv). In Qg, we have
1+2z=(1+zi+2zj+2zk)+2(1+i+j+k), hence (1+2)S € By with S =1+ s+ s2. Since
S, 0(S), p?(S) span kC3, we have 14z € B, which proves (v). We have I's = T'Y x C3, with T'
the normal subgroup of I's generated by z3. Since B is invariant under ¢, we have By = I xCs
with I C kI'2. Now 1+ 23 € By hence 1+23 € I, and kI'Y/I = k(TY/ < 23 >>) = k. The ideal
I is then the augmentation ideal of k:Fg, kT's /B4 = kCs. This implies kI',, /B4 = kC3 for all
n > 5, hence (vi). For n = 3, we have similarly By = IC3 for some ideal I of kQgs. We have
(14+i)(1+j) = 1+i+j+k,and 1+zi+zj+ 2k = 2(1+1)(1+j) + (1 +1)% hence I C J(kQg)?
We know that dim J(kQg)? = 5 and we compute that dim B, = 15, which proves (vii). 1

Remark 6.3. Forn =4, B, has dimension 639.

The proposition above enables us to define the following quotient of K.

Definition 6.4. We define the algebra BMW,, as kI'y/B = kI',,/(B1 N B; N Bj2). It is a
quotient of K,.

6.3. A natural embedding. Let (T,,,w € &,) denote the standard basis of the Hecke
algebra under consideration (see [Hu|) and ¢ : &,, — Z>( the Coxeter length. For a € pug(k),
we let E,(a) = Zwegn a!@T, . In particular E3(a) = a3sys981 + a?s189 + asasy + asy +
asy + 1 = 518951 + as150 + a?sysy + asy + asy + 1. We recall from ([GL], §4.3) that the
Temperley-Lieb algebra T'L,,(1,7) is H,(1,5)/E3(j%) = Hn(1,57)/E3(j ') (notice that a slight
renormalization of the Artin generators is needed from the original formulations there). It
has dimension the n-th Catalan number C,, = n%rl 2:

Let {o, 8,7} = pu3. We introduce the involutive automorphism ., of kI',, defined by s; —
7257t Tt maps (s;+a)(s;+8) to saB(s+B)(s+a), hence induces an involutive automorphism
Ta,p of Hy(a,3). The automorphism ¢ induces isomorphisms @ : Hy(a, 8) = Hy (5%, 528)

making the natural diagram commute.

kT, L kT,

| |

Hy (v, ) —— H,(j%a, j%8)
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@
® %
— —_—
Hy —— Hn(j,5°) X Hn(1,5) X Hy(1,5°)
Kn k]_“n/Bl X an/Bj X /{?Fn/sz
\_/ \_j
® ¢
@

Let ITL% (1, j) denote the ideal of H,,(1, j) generated by E3(j2) = Es(j~'). Then ITLL(1,5) =
11;ITL}(1,7) is the ideal generated by 71 ;E3(j~!) = E3(1). A straightforward computation
shows more generally that 7,E3(a~!) = E5(37!). We define more generally

Definition 6.5. For {«, 5,7} = ps(k), we define ITLS (o, B) = ITLY(B, ) as the 2-sided
ideal of Hy(a, B) generated by Ez(a™!).

With this definition, we have 7, g(ITL$ (e, 3)) = ITLﬁ(ﬁ, a). Moreover, we have p(E3(x)) =
E5(jz), hence ¢ maps ITL% (o, 3) C Hp(a,B) to the ideal of H,(j%a,j28) generated by
Bs(ja~t) = E3((j2a)™1), that is ITLY, “(j2, j26).

Lemma 6.6. In H,(«a, ), let M, («) and M, (B) denote the kernels of the natural morphisms
H,(a,B) — k defined by s; — a and s; — (3, respectively. We have

(i) ITLy (o, B) © Mp(a) 0 M ()
(ii) ITL®(a, B) 4+ ITLA(a, B) = My (c) N My, (B) for n > 5.
(iii) For all n, My (o) N My (B) is generated by s152 + s251.

Proof. Part (i) comes from the fact that Es(a~!) is mapped to 0 under both s; — o and
s; — [, as is easily checked. We now deal with part (ii). For n = 5 We check by computer
that s;sgsy +1 € I = ITL®(a, ) + ITLA (v, 8) when n = 5, hence for n > 5. It follows
that Hy(«,3)/I is a quotient of kI';,/N, where N is the normal subgroup of I',, generated
by w = s1s954. Note that w € I = Ker(T,, —» C3). In particular, for n = 5, w belongs
to Sp,(TF3), and one easily check that N = Sp,(IF3) = ' in this case, by quasi-simplicity
of Spy(TF3). By Theorem 2.4 (vi) it follows that N = T'Q for all n > 5. Thus H,(«a, 8)/I is
a quotient of kC3 = k[s]/(s® — 1) of dimension at least 2, and even of k[s]/(s + a)(s + f3),
which has dimension 2. It follows that H,(«, 3)/I has dimension 2 hence I = M,,(«) N M,(3)
hence (ii). In order to prove (iii), we first note that x = s;s2 + sa2s1 is mapped to 0 under
the maps s; — a and s; — 3, hence (x) C K = M,(«a) N M,(5). It is then sufficient to show
that Hy,(«, 8)/(x) has dimension 2. From the presentation of H,(«, 3) one gets that adding
$152 = s2s1 implies s; = s; for all 4, j hence Hy(a, B)/(z) = k[s]/(s +a)(s+ () has dimension
2. This proves (iii).

1

Remark 6.7. In the characteristic 0 (semisimple) case with generic parameters, the sum
of the two copies of the Temperley-Lieb ideals is the whole Hecke algebra for n > 5, as the
corresponding quotient has irreducible representations labelled by the Young diagrams with at
most 2 rows and 2 columns, and there are clearly no such diagram of size more than 4.
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Lemma 6.8. In H,(1,5), we have r}, = j?E3(52),ry = jE3(5%),0(r}) = 0,0(r;) =

w =

0,9%(riy) = jEs(1) and ©*(ry,) = 52 E3(1).

Proof. Straightforward computation from the equations 512 +5%s;+7 =0 and 5;1 = j2s; + 7.
|

Lemma 6.9. Let n > 3 and 7 : kI, — H, — H,(j,7%) x Hu(1,5) x Hy(1,5%). Then
7(B1) C 0 x ITL), x ITL}, , 7(B;) C ITL}, x 0 x ITLY, 7(Bj2) C ITL}, x ITLY x 0

Proof. Let py : Hp — Hp(a, ), for {a, 8,7} = p3. The induced map from Kp, also denoted
by py, factors through kT, /B,-1. We have p1(B1) = 0, p;2(B1) = ITL},(1,7) by the lemma.
We have p,og = @gop,; hence p, o ©? = p%o D~j-2 and, using the lemma and the commutative

diagrams above, p;(B1) = $(pj2(¢~ (B1))) = $(pj2(Bj2)) = GUTLL(1,5)) = ITLL (1, 52). .

Proposition 6.10. Recall b = s155 " + sgs7 " + 57 59 + 55 '51.
(i) b e (B + Bj) N (By + Bj2) N (Bj + Bjz) forn >4
(ii) In Hy(1,75), one has ITLL N ITL], = {0}
(iii) For m >4, the inclusions of Lemma 6.9 are equalities.
(iv) Forn > 5, dimkI',/(B1 + B;j) = 2dimTL,, — 1.
(v) Bi+B;n sz = (B1+ Bj)N (B + BjQ) forn =4.
(Vi) Forn>4,bebB; —i—Bj mB]‘Q.

Proof. For proving (i) one needs to check that b € By + Bj, as ¢(b) = b, and one needs to
do it only for n = 4, which follows from a computer check. (ii) also follows from a computer
check. As a consequence of (b) C By +Bj, kI',,/B1 + B, is a quotient of kI',,/(b), that is of the
ternary Hecke algebra. Letting again 7 : k', = H, C Hy, (1, ) x Hy(1,52) x H,, (4, 72) denote
the natural map, we have 7(By + B;) = 7(B1) + 7(B;) C ITL}, x ITL}, x (ITL}, + ITL%Q).
When n = 4 a computer check shows that the two sides of this inclusion have the same
dimension (which is 40). Since ITL; N IT Lff = {0} by (ii), this implies that the inclusions
of Lemma 6.9 are equalities for n = 4, say for B;. This means that 7(5;) contains, for n = 4
hence for all n > 4, the elements (0, E3(51),0) and (0,0, E3(j72)) ; it follows that, for n > 4,
7(By) contains 0 x ITL}, x I TL%,Q, hence is equal to it. Since m commutes with ¢ this implies
(iii) also for all the B,. For (iv), let = : kI';, = kI',,/(b) = H,, denote the natural projection.
Since b € By + Bj, the dimension of kI',,/(B1 + B;) is

Hy(j, %) x Hn(1,j) x Ha(1,5%)
ITL} x ITLL x (ITLL + ITLY)
for n > 5 by Lemma 6.6, which proves (iv). (v) is proved by a direct computer check, and
(vi) is a trivial consequence of (v) and (i). 1

=—-3+4+2dimTL, +2

dim’Hn/ﬂ'(Bl + B]) = -3 +dim

Remark 6.11. 1) b & B+ B; forn = 3. 2) Using a computer one can prove that the natural
map K3 — Ky 1s injective.

It follows from the proposition that 7(B1 + B;) = ITL} x ITLY, x (ITLL + ITL%Z) for all
n > 4. By Lemma 6.6, for n > 5 this is IT L7, x ITL}, x My, (1) N M,(5%), and likewise 7 (B +
By2) = ITLY x (ITLL 4 ITLA) x ITL, . Letting NITL denote ITLE(a, B) N ITLE(a, B), we
have 7 ((B1 + Bj2) N (B1 + B;)) = m(B1+B,2)Nm(Bi+B;) = NITL, x ITL} x ITL], , because
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(B1+ Bj2) N (B1 + Bj) contains Ker 7 for n > 4 by (1). Also, 7(B;) N7(B,2) = NITLy, x0x0,
hence m(By) + 7(Bj) Nw(Bj2) = m ((B1 + Bj2) N (B1 4 B;)). This implies 7(B1 4+ B; N Bj2) C
NITL, x ITL), x IT Lff. We check by computer that the dimensions on both sides are equal
for n = 4. This proves that 7(B1 4+ B; N B;2) contains (0, E3(j~1),0),(0,0, E3(j72).

In order to have the property that By +B;NB;2 = (B1+B,2)N(B1+8B;) it would be sufficient
to control NIT L, in the sense that, if (B, N sz) = NITL, for some n, and ITL,, for m >n
is generated by elements in NIT Ly, this would prove 7(B; N Bj2) = NIT Ly, for all m > n.
This at first seems not be such an obstacle as, in the semisimple case, NIT'L is generated by
ab € NITLs (or ba) with a = E3(1) and b = 1+ j2s3+j2s4+ 5354+ 5453+ 535453 a conjugate
of E3(j%), and ab is clearly in the image of B; N Bj2. However, by computer calculation, we
get that the situation is much more complicated in our case, as shown by the next lemma,
which gathers the result of computer calculations.

Lemma 6.12. Inside Hy,(1,7), we have
(i) dimNITLs = 38.

)

) NITLs = (ab) & kE5(1) & kEs(52)
(iv) dimNITLg = 458

)

456 and contains Eg(1), Eg(52).
(vi) dimNITL; = 4184
(vii) For n =17, dim(ab) = 4180, and NIT Ly is generated by NITLg C NIT L7.

The fact that NIT Ly is generated by NIT Lg is checked as follows : we find randomly a
(complicated) element in NI7T'Lg which it generates as an ideal, and check that this element
also generates NIT L;. Note that the following always holds true.

Lemma 6.13. For alln >3 and o, 8 € us(k), we have E,(a™') € Hy(a, B)Es(a™1).

Proof. Let h =3, p a W, with ¢ : &,, — 7 the Coxeter length and D the representative
system of &,,/G3 consisting of G3-reduced elements on the right so that any element o € &,,
writes uniquely o = wo’ with w € D, 0’ € &3 and {(0) = ¢(w) + £(o’) (see [Hu] §1.10). Then
clearly E,(a™1) = hE3(a™!). 1
Lemma 6.14. Letn > 5. Then
(B1 + B;) N (By + Bjz2)
Proof. Recall from Proposition 6.10 that dimkI',/(B1 + Bj) = 2dimTL,, — 1. We apply
Lemma 5.5 with A = By, I = By, J = Bj, K = Bjz. We get dmA/(INJNK) =
dimImd; = dimKer dy —dim(K +I1)N(K+J)/(K+1NJ), and, since dz is onto, dim Ker dy =
3dim By /By — dim By /(B + Bj) = 3dimkI',, /By — 3dim kT, /(B1 + B;).

Since dim kT, /By = 3, we get dim BMW,, = dim kI, /INJNK = 3+dim B, /(INJNK) =

) ) . (Bi+B;)N(B1+8.2)
3+ 3dim BMW, — 3(2dim 7L, — 1) — dim — Bl;m;ﬂ £

dim BMW,, = 3(dim BW,, — 2dim T'L,, + 2) — dim

whence the conclusion.

Remark 6.15. In particular, since dimT Ly = 42 and dim BM W35 = 945 one gets dim BMWs5 =

Bi+B;)N(B1+85.;
3 x 863 —dim ( 1211_);%2; 12) , to be compared with dim Fo K5 = 3 X 863 (see proposition 4.6).




28 MARC CABANES & IVAN MARIN

7. MARKOV TRACES

7.1. Definitions and conditions for n = 3. In this section we deal with Markov traces.
We let K,, = K,,(1), and denote K, the direct limit of the K,, under the natural morphisms
K, — K,y1. Letting A = Z[u,v], we denote ABy,, Al's, the direct limits of the group
algebras AB,,, Al',, respectively.

Definition 7.1. A Markov trace is a pair (t,R), where R is a Zu,v]-module and t €
Hom 4 (ABw, R) satisfying

o t(zy) =t(yx) for all z,y € AB
o t(zsy) = ut(x) for all z,y € AB,_1
o t(ws,!) = vt(z) for all x,y € AB, 1

A Markov trace is said to factorize through a quotient H of the A-algebra AB if it lies in
the image of Hom(H, R) — Hom(ABs, R).

We now assume that ¢ is a Markov trace that factors through K. This means that it
factors through AT, and that t(g1qg2) = 0 for all g1, g2 € ', or equivalently that ¢(qg) = 0
for all g € T's, and finally these conditions for g € I's reduce to t(q) = t(qs1) = t(qs?) = 0.
A direct computation shows that these equations imply the following.

Lemma 7.2. Ift is a Markov trace that factors through K, then 4(u? + v)t(1) = 4(v? +
w)t(1) =0 and t(z3) = —(1 + 6uv)t(1)

Notice that a Markov trace factorizing through K, takes values in A¢(1) C R, and that,
as a consequence of Proposition 4.2, it is uniquely determined by the value of ¢(1) € R.

It should be noted that {23} is the only conjugacy class in I's that does not meet any gs
for g € I'g and € € {0,1,2}. Let Al's, denote the direct limit of the AT',,. Of course a Markov
trace on K, induces a Markov trace on AI'so. A Markov trace on AI's, then induces elements
Tn € Homy (AT, R) for all n (recall from Theorem 2.4 that Al'o, contains the ALY, for n < 5).
The condition 7,(xy) = 7,(yx) means that 7, is actually a function on the conjugacy classes
of T',,. For instance, a consequence of the special property of {z3} mentionned above is that
any such 73 is defined uniquely by the values 73(1) and 73(z3). In the following section we
looked at the conjugacy classes of I'y and I's, and checked whether one could define functions
T4, Ts such that 74, 75 vanish on the ideal generated by q.

7.2. Conditions for n = 4. In order to shorten computations with words in the s;’s, we

will use when convenient the notation ijk... for s;s;s..., with - meaning si_1 (for instance
_1 _

518, s3 = 1-23).

Lemma 7.3. Ift is a Markov trace that factors through K, then (3u3+3v3—5uv—1)t(1) = 0.

1 1 2

Proof. We consider x = sas7 53551 and y = s5 515355535281 inI's4. In K, we have —s35553 =
-1 —1 1, —1T.-1, —1.-1 -1 -1

S283 S2+ 5, 3524825355 485 S5 4S5 S, +S2+s3. Then t(y) = —t(sy s15255 S25251) —
2141 21 21 -1, —-1.-1 -1, -1.-1 —1

t(sy 8155 53528251)—t(S5 51525355 S251)—t(S5 5155 S5 S251)—t(S5 8153 S5 S251)—t(S5 51525251)—
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t(85151535281). We have

t(sz_lslsgsglsQSQSl) = t(82_18182_18182851) = Ut(82_13132_18182) = Ut(818282_18182_1)
= wt(sylsy ) = v3t(1)
t(s;15155153525251) = t(851818518185183) = ut(sglslsglslsgl) = ut(slsglsglslsgl)
= ut(81828182_1) = ut(32313232_1) = ut(s152)
= u3t(1)
t(82_181828382_18281) = t(5132_1313233) = ut(3132_18182) = Ut(81$28182_1)
= ut(s9515255 ") = ut(s152) = u3t(1)
t(551818515518281) = t(525155151551551) = vt(sgsls;lsls;l) = Ut(81851$251551)
= wt(sylsyh) = v3(1)
t(syts1s3tsytsas1) = t(sisy s185") = wit(s185,'51) = wt(sy'sy!)
= v3t(1)
t(s5 '51525251) = t(s2515351) = t(z3) = (—1—6uv)t(l)
t(52_181838281) = t(828182_15153) = ut(823132_151) = ut(slszslsgl)
ut(82818282_1) = ut(s182) = u3t(1)

hence t(y) = (—3u® —3v3+1+6uv)t(1). One has t(x) = t(s] 's3) = uvt(1). It is easily checked
that x and y belong to G = Ker(I'y — I's), which is an extra-special group 3'*2 which contains
z4 = (s18253)%, hence (G,G) = Z(G) = Z(I'y) =< 2z >. We prove that y = xz;. From
the braid relations we get (818283)3 = 123123123 = 121121321 = 81828%8281838281, hence
Yy = xz4 means that 35313333 = 323%333531323331323%3231 ; this comes from the equalities
211322123121121 = 211322121321121 = 211322212321121 = 21312321121 = 211132321121 =
223221121 = 223221212 = 223222122 = 223122 = 221322. Clearly z ¢ Z(I'4) = Z(G). For an
extra-special group, the conjugacy classes not lying in Z(G) are determined by their images
in G/(G,G) = G/Z(G), hence x,y are conjugated in G hence in I'y. This proves t(x) = t(y)
hence (3u® + 3v® — 5uv — 1)¢(1) = 0 in R. 1

Lemma 7.4. If t is a Markov trace that factors through K, then 16t(1) = 0, duvt(1l) =
4t(1), 4udt(1) = 403t(1) = —4t(1).

Proof. We recall (32-3) = (-232) and (3-23) = —(2-32) —(-232)—(23-2) —(-2-3) — (-3-2)—(2) —
(3) and note that t(z3) = (—1 — 6uv)t(1), t(12121) = t(11211) = ¢(11112) = #(12) = u?¢(1).
We will compute ¢(a) and ¢(b) with a = (2-312-3121) and b = (-3231-2312). It can be checked
by hand that, in I's, we have ac = ¢b with ¢ = (2-13-2), hence t(a) = t(b).

We first compute t(a) = £(2-312-3121). We have ¢(2-312-3121) = ¢(21-32-3121) = £(21332-3121) =
£(213-232121) = —£(212-322121)—¢(21-2322121) —£(2123-22121) —£(21-2-32121) —£(21-3-22121) —
£(2122121) — ¢(2132121)

o 1(212-322121) = £(22121212-3) = v¢(22121212) = v¢(22212121) = vt(12121) =
u?vt(1)

o 1(21-2322121) = £(2212121-23) = wt(2212121-2) = w¢(-22212121) = wt(212121) =
wt(121212) = ut(z3)

o £(2123-22121) = #(2123121) = £(1212123) = wt(121212) = ut(z3)

o 1(21-2-32121) = #(212121-2-3) = vt(212121-2) = v#(-2212121) = v¢(12121) =
u?vt(1)

o 1(21-3-22121) = £(21-3121) = £(12121-3) = v #(12121) = u2vt(1)

o 1(2122121) = #(2122212) = #(2112) = #(1122) = v2¢(1)

o £(2132121) = £(2121213) = wt(212121) = ut(121212) = ut(z3)
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hence #(2-312-3121) = (—3u’v — 3ut(z3) — v?)t(1) = (—3u?v + 3u(l + 6uv) — v)t(1) =
(3u + 15uv — v2)t(1).

We now compute t(b) = #(-3231-2312). We have #(-3231-2312) = #(-3213-2312) = —#(-3212-3212)—
t(-321-23212) — #(-32123-212) — #(-321-2-312) — ¢(-321-3-212) — #(-321212) — #(-321312) and
(-3212-3212) = #(-3121-3212) = ¢(1-32-31212) = ¢(1332-31212) = ¢(13-2321212)

o 1(-321-23212) = #(-3-1213212) = #(-1-3231212) = #(-133231212) = ¢(-132321212) =
t(-123221212) = #(221212-123) = wut(221212-12) = ut(-12221212) = wut(212) =
ut(122) = u?vt(1)

o 1(-32123-212) = #(-31213-212) = #(1-3231-212) = #(133231-212) = ¢(132321-212) =
£(123221-212) = #(221-212123) = ut(221-21212) = ut(2221-2121) = ut(1-2121) =
ut(1-2212) = ut(112) = w?vt(1)

o #(-321-2-312) = #(-3-121-312) = #(-1-32-3112) = #(-1332-3112) = #(-13-232112)

o #(-321-3-212) = #(-32-31-212) = #(332-31-212) = #(3-2321-212)

o 1(-321212) = #(21212-3) = v#(21212) = v#(22122) = v #(22221) = vt(21) = vt(12) =
u?vt(1)

o #(-321312) = ¢(-323112) = #(3323112) = #(3232112) = #(2322112) = #(2211223) =
ut(221122) = ut(112222) = ut(112) = u?v t(1)

We have t(21212) = #(22122) = #(12222) = t(12) = u?t(1), #(221212-12) = ¢(221212112
t(112221212) = #(111212) = #(212) = t(122) = wwt(1), t(13-2321212) = #(213-232121
(3u + 15u%v — v?)t(1) as we already computed, hence #(-13-232112) = #(113-232112
t(13-2321121) = #(13-2321212) = (3u + 15u?v — v?)t(1), ¢(3-2321-212) = #(3-23212212
t(3-23212121) = #(13-2321212) = (3u + 15uv — v?)t(1). We thus get (-3231-2312) =
(—=3(3u + 15uv — v?) — 4u?v)t(1) = (=9u + 3v% — 49u?v)t(1). We have that (-3231-2312) is
conjugated to (2-312-3121) hence t(b) = (3u + 15u?v — v?)t(1) = (—9u + 3v? — 49u?v)t(1).
Therefore t(a) = t(b) means (64uv + 12u — 4v?)t(1) = 0. Since 4v%*t(1) = —4ut(1) and
duvt(1) = (4u?)vt(1) = —4v%t(1) = 4ut(1), this means (64u + 12u + 4u)t(1) = 0, i.e.
80ut(1) = 0. Since 80 = 16 x 5 and we know 2"¢(1) = 0 for some r, there exists g, h € Z with
2" g+5h = 1 hence 80hut(1) = 16ut(1) = 0. From 4vt(1) = —4u?t(1) we then get 16vt(1) = 0.
By Lemma 7.3 we have (3u® + 3v3 — 5uv — 1)t(1) = 0, whence 16ut(1) = 16vt(1) = 0 implies
16t(1) = 0. Moreover, 0 = 4 x (3u® + 3v® — 5uv — 1)t(1) = (12u® + 1203 — 20uv — 4)¢(1) =
(—12uv — 12uv — 20uv — 4)t(1) = (—44uv — 4)t(1) because 4ut(1) = —duvt(1) = 4v3t(1).
Since —44t(1) = 4t(1). This proves 4uvt(1) = 4¢(1), and 4u3t(1) = 403t(1) = —4t(1).

~—

~— — —

Remark 7.5. Over A = Zu,v]/(16,4(u* + v),4(v? + u), 3u3 + 3v3 — buv — 1), one can
define a ‘Markov trace’ for n = 4 extending a given T3 originating from MT (K, R), namely
a linear map 74 : ATy — A with 74(xy) = 74(yx) and, when x € Al'3, 14(xs3) = urs(x),
7'4(3:3571) = v7r3(x). This can be checked as follows : for each one of the 24 conjugacy classes
of 'y, one takes an element in it and find a word in si1, Se, S3 representing it ; we then get
a value for the Markov trace by the implicit algorithm used to prove Proposition 4.2. This
class function naturally extends to a trace 74 : Al'y — A, and we check that, for each gy € I's,
we have T4(gos3) = uts3(g0), Ta(gos3') = vr3(go). Finally, we check that this T4 factorizes
through Ky, that is that 74(g1qg2) = 0 for each g1, g2 € Ty and, as before, q is the sum of the
elements of Qs C I's. Since g1 can be taken in I'y/Nr,(Qs) and ga can be taken in Qs\I'4,
there is only 729 conditions 14(g1qg2) = 0 to check. Since 14 is already a class function this

number of equations reduces drastically to 18, so we can check that 14 indeed factors through
Ky.
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When n = 5, we check similarly that there is a linear map 75 : Al's — A with 15(zy) =
5(yz) and, when x € ATy, 75(xs4) = ura(x), T5(wsy ') = vra(x) : the computations in GAP
take only a lot more time, and we use the software Macaulay 2 in order to automatize equality
checking inside A. The conditions for t to factorize through K5 amount to 248 equalities in
A, which we check to be true using Macaulay 2.

The two lemmas above can be combined to show the following.

Lemma 7.6. Ift is a Markov trace that factors through K., then (u-+v+1)(u+jv+52)(u+
v+ (1) = (ud +v3 — 3uv + 1)t(1) = 0.

Proof. (u+ v+ 1)(u + jv + 3%)(u + j%v + j) = v® + v® — 3uv + 1 holds true in Z[j], and
(u3 + 3 — 3uv + 1)t(1) = 0 because u? + v* — 3uv + 1 = (4ud +4) + (403 +4) — 2 x (duv —
4) — (3u? + 3v® — 5uv — 1) — 16. 1

7.3. Markov traces modulo 4. In this section we prove that Markov traces exist modulo
4. We let R = (Z/AZ)[j], that is (Z/47Z)[z]/(x® + x + 1), and consider the reduction ? :
Koo — Rlu,v]t(1), with values in R ®z47 (Zlu,v]t(1)/4t(1)). Here we let us = {1,7,5%}.
Since 4£(1) = 0, we have 0 = (3u3 + 3v® — buv — 1){(1) = —(u® + wv + v3 + 1)E(1) =
—(u+v+1)(u+jv+3%)(u+ 5%+ 7)t(1) hence a natural map
Rlu,

vl /(u® +0* +uv+1) » M = ][ Rlu,v]/(v+yu+~) ~ Rul®.
YEU3

It can be checked (e.g. using Macaulay 2) that the intersection of the ideals (v 4 yu ++2) in
R[u,v] is equal to their product (u?+v3+uv+1), so the above map is injective. Now consider
the Hecke algebras H,(«, 3) over R = (Z/4Z)[j], their direct limit Hy (v, 5), and introduce
their Markov trace try : Hoo(a, B) — Ru] ~ Rlu,v]/(v + yu +~?) for {a, 8,7} = ps, such
that try(gs,) = utry(g) and try(gs, ') = (yu + v 1try(g) = vtry(g) for g € Hy(a, B).

They extend to Markov traces Ko, — Ru,v]/(v + yu + 4?). Then a convenient Markov
trace t : Koo — Rlu,v]/(u® 4+ uv+v® +1) can be deﬁned by t(g) = (try(9))~epus ; indeed, this
defines at first a map to the cyclic R]u, v]/(u + uv 4 v® + 1)-module generated by #(1) € M,
which is free of rank 1 as R[u, v]/(u® +uv +v® + 1) < M. In particular, £(g) = 0 for g in the
ideal J,(«, 8) of RT, defining H,(«, 3), for every «, 8. It follows that ¢ vanishes on J, hence
factorizes through the direct limit H., of the H,, = RI',,/J. Finally the proof of Lemma 5.3
says that ¢ € J not only modulo 2 but modulo 4, hence t factorizes also through K,(1), so
this ¢ is indeed a Markov trace on K

Proposition 7.7. Any Markov trace t on Ko with 4t(1) = 0 factorizes through Hso, and is
induced by the Markov traces of the Hecke algebras Hoo(cv, 3).

Remark 7.8. (i) Over (ZJAT)[j], and even over Z[j], denoting b = sys;' — s7's9 +
szsfl — 85131, one still gets that b belongs to the intersection of the ideals Jy (v, ).
Do we still have H,, = RT',,/(b), for R = (Z/AZ)[j] or even R = Z[j] ?

(ii) A natural question is whether the Birman- Wenzl algebra is still a quotient of RT',,/(q)
when R = (Z/AZ)j] N\ =1, 8§ = j — j%> = 1+ 2j). The answer is no, as a
straightforward though tedious calculation shows that, over Z[j], q is mapped inside
BWs3 to (1 =3+ 6%—63)by + (=26 + 62 — 53)ba + (62 — 30)b3 + 2by + (2 — 6 — 62)bs +
(3 —8)bg + (62 — 6%)by + (0 — 262 — 63)bg + (28 + 62 + 6%)bg + (6 — 5)b1g + 263b17 +
(6 — 0% —20%)b1a + (62 + 0)b13 + (6 — 62)b1g + (0 — 62)bys, which is nonzero modulo 4.
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7.4. Comparison with the claims of [F1]. In order to make the comparison with [F1]
easier, we switch our notations to the ones there. We first briefly review the setting used in
[F1]. In [F1], elements z,z" € C* are chosen, A = A(z,2’) is defined to be the subring of C
generated by z, 2/, the K, () are defined over A with v € A, and the direct limit Ko, = Koo ()
of the K, = K,(7) is introduced. Let K2 be quotient of the module K, by the submodule
[K,, K,] spanned by the 2y — yz for x,y € K,, and K2 be the direct limit of the K2P.

For R some fixed A-module, the following A-modules are defined :

AF(Ks,R) = {t € Homy(K, R) | t(xs,y) = 2t(zy), t(xs; ly) = 2't(zy), v,y € K, }
MT(Ks,R) = {te€ Homyu(K2, R)|t(zs,y) = 2t(xy), t(xs, y) = 2't(xy), z,y € K2P}

Since, for a,b € K2%,, ab = ba, we have t(zs,y) — zt(zy) = t(yzs, — 2yx) and t(zs;'y) —

Zt(zy) = t(yxs,t — 2'yx). It follows that MT (K, R) = Homu(L(K), R) with L(K.) the
quotient of K2 by the A-submodule spanned by the zs,, — zz, s, ! — 2'z for x € K,,.

Then is introduced an A-module M defined as the quotient of K,, by the A-submodule
spanned by the as;b — zab, as?b — tab for a,b € K; and i < n (by abusing notations, here K;
means the image of K; in K,,), and with ¢t = vz’. Since K11 is the sum of the K, s K, for
e € {0,1,2} we have AF(K,,R) = Hom4(M,R). The author of [F1] incorrectly identifies
this space with R ® 4 M. More generally, most of the arguments in [F1] implicitely assume
that the A-modules involved are free, which is incorrect in view of our results. In particular,
for a nontrivial ¢ € MT (K, R) to exist, it is claimed that z, 2’ have to be related by the
relations (2')%2 = —z, 22 = —2/, these coming from t(qgs;) = 0, t(qs?) = 0 (in the notations of
[F1], gs1 = Ro, qs? = Ry and q = Ry). Actually, one finds that, if ¢ is such a Markov trace,
then t(qgs?) = 4(2%2 + 2)t(1), t(qs1) = 4((2')? + 2)t(1) and t(q) = t(z3) + 622"t(1) + t(1), with
z3 = (s5182)3. Of course division by 4 is not licit in general.

8. APPENDIX : THE 25-DIMENSIONAL REPRESENTATION OF S4(3)

A crucial tool for investigating K, in characteristic 3 has been the 25-dimensional irre-
ducible representation of S4(3), denoted @5 in [AtMod] (see section 4.3.2). We proved and
used that it is defined over '3, and we computed an explicit matrix model for it. We provide
in figures 2 to 5 the images of the Artin generators in such a model, so that the reader have
the possibility to check some of the computations of this paper. In order to save space, the
following convention has been adopted for representing elements in Fg : a dot - represents 0,
a black square M represents —1 and an empty square [J represents 1.
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