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Abstract. Broué, Malle and Rouquier conjectured in [2] that the center of the

pure braid group of an irreducible finite complex reflection group is cyclic. We
prove this conjecture, for the remaining exceptional types, using the analogous

result for the full braid group due to Bessis, and we actually prove the stronger

statement that any finite index subgroup of such braid group has cyclic center.

1. Introduction

Let W denote a (finite) complex reflection group of rank n ≥ 1, that is a finite
subgroup of GLn(C) generated by pseudo-reflections, that is elements of GLn(C)
which fix an hyperplane. We assume W to be irreducible, in order to simplify
statements. To such a group is associated an hyperplane arrangement A, made of
the collection of the fixed hyperplanes associated to the pseudo-reflections in W .
Let X = Cn \

⋃
A denote the hyperplane complement. The groups P = π1(X)

and B = π1(X/W ) are known as the pure braid group and braid group associated
to W . There is a short exact sequence 1→ P → B → W → 1. In the case W is a
real reflection group, the group B is an Artin-Tits group, with prototype the usual
braid group B associated to W = Sn. An extension of many results on Artin-Tits
groups to the more general setup introduced here has been proposed in [2]. Several
of them are still conjectural, such as the determination of the center of these groups.
The goal of this note is to clarify the status of this question. Recall that in [2] are
introduced (infinite order) elements β ∈ Z(B), π ∈ Z(P ), with β|Z(W )| = π such
that the image of β in W generates Z(W ).

Our purpose is to summarize what can be stated on this topic, as follows:

Theorem 1.1. The center Z(B) is infinite cyclic, and generated by β.

Theorem 1.2. The center Z(P ) is infinite cyclic, and generated by π.

Theorem 1.3. There exists a short exact sequence

1→ Z(P )→ Z(B)→ Z(W )→ 1

These three results were conjectured in [2], and proved there for the infinite series
G(de, e, n), as well as for the (easy) case of groups of rank 2. Actually, for a given
group W , theorem 1.2 implies by general arguments theorem 1.3 and theorem 1.1,
as every element in Z(W ) can be lifted to an element in Z(B). The remaining
cases were the exceptional groups G24, G25, G26, G27, G29, G31, G32, G33, G34 in
Shephard-Todd notation. As noted in [2], theorem 1.1 for the so-called ‘Shephard’
groups G25, G26, G32 is true because they have the same B as some Coxeter group
(however, contrary to what is claimed in [2], this does not prove the other two
results !). Note also that in [2, proposition 2.23] the bottom-right square in the
diagram is not commutative and the bottom sequence is not exact.
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Theorem 1.1 was proved by D. Bessis in [1] for the well-generated groups G24,
G25, G26, G27, G29, G32, G33, G34. The remaining case of G31 can be obtained
by a short argument due to D. Bessis (personal communication) that we reproduce
here for the convenience of the reader (see section 3).

Once theorem 1.1 is known, theorem 1.3 reduces to theorem 1.2, and more pre-
cisely to the statement Z(P ) ⊂ Z(B). Actually we prove the following stronger
theorem in the subsequent sections.

Theorem 1.4. If U is a finite index subgroup of B, then Z(U) ⊂ Z(B).

2. Garside theory

A Garside monoid is a cancellative monoid such that any two elements have
a least common right-multiple and a greatest common left-divisor and such that
there exist an element ∆ (a “Garside element”) whose left- and right-divisors are
the same and generate the monoid. Here a left-divides b, which will be denoted by
a 4 b, means that there exists c with b = ac and similarly for right-divisibility. We
refer to [7] or [11] for the basic notions on Garside theory. We will use in particular
the following property: if M is a Garside monoid, let α(x) denote the left gcd of
an element x ∈M with ∆, then α(xy) = α(xα(y)) for any y ∈M .

In this section, we consider a Garside monoid M which satisfies in addition the
following properties:

(i) There is an additive length function on M such that elements of length 1
form a generating set and the only element of length 0 is 1.

This implies that an element of length 1 is an atom, that is has no proper
divisor.

(ii) For every couple of atoms s 6= t, their lcm ∆s,t is balanced (meaning that
its left- and right-divisors are the same).

(iii) For any couple of atoms s 6= t and any positive integer n, the left gcd of
∆s,t and sn is equal to s.

Note that many of the monoids which have been studied for complex braid groups
and for Artin-Tits groups satisfy the above conditions. In particular we have

Proposition 2.1. Let M be one of the following monoids:

(M1) The classical monoid of positive elements in the Artin-Tits groups associ-
ated to finite Coxeter groups (see [7]).

(M2) The “dual” monoid of [1].
(M3) The “parachute” monoid of [6].

(M4) The “dual” monoids for Artin-Tits groups of type Ã and C̃ of [9] and [10].
(M5) The monoids f(h,m) (for h,m ≥ 1) presented by generators x1, . . . , xm

and relations

x1x2 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= x2x3 . . . xmx1 . . .︸ ︷︷ ︸
h terms

= . . .

Then M satisfies (i), (ii) and (iii).

Proof. In case (M1) since in the classical monoid we have ∆s,t = sts . . .︸ ︷︷ ︸
e

= tst . . .︸ ︷︷ ︸
e

for some e ≥ 2 and these are the only decompositions of ∆st, we get that ∆st is
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balanced. Moreover the only divisors of sn are smaller powers of s, of which only s
divides ∆s,t.

In cases (M2) and (M4) all divisors of ∆ are balanced, in particular the lcm of
two atoms. Moreover in any decomposition of ∆ into a product of atoms, all atoms
are different, hence the same property holds for divisors of ∆. If s is an atom we
have thus s2 64 ∆, so that α(s2) 6= s2. Since α(s2) has length at most 2 and is
different from s2 it has to be of length 1, hence equal to s and by induction we get
α(sn) = α(sα(sn−1)) = α(s2) = s. This implies that the gcd of sn with ∆s,t, which
divides α(sn), is equal to s.

In the monoid M for G(e, e, r) introduced in [6], any pair of dictinct atoms can
be embedded in a submonoid M ′ which is of type (M1) or (M2) (see [4, section
6.3]). This embedding maps lcms in M ′ to lcms in M and left-divisibility in M ′ is
the restriction of left-divisibility in M (see [4, lemmas 5.1 and 5.3]).

This implies that for properties (ii) and (iii) we are either in the first or second
situation, depending on the choice of the couple of atoms .

The monoids (M5) have been investigated by M. Picantin in his thesis [19].
Property (i) is clear, as the presentation is homogeneous. It is readily checked
that the gcd of two distinct atoms is the Garside element ∆ = x1x2 . . . xmx1 . . . (h
terms), which proves (ii). Finally, (iii) follows from the fact that every divisor of ∆
but itself has a unique decomposition as a product of atoms.

�

As pointed out to us by E. Godelle, there exist Garside monoids satisfying (i) and
(ii) but not (iii), such as M =< a, b | a2 = b2 >, which provides a counterexample
to the next proposition. In [13, proposition 4.4.3] the next proposition is proved
for a classical Artin-Tits monoid (see also [14, lemma 2.2]).

Proposition 2.2. Let M be a Garside monoid satisfying (i), (ii) and (iii) above.
Let r be an atom of M and b, z ∈ M be such that rjb = bz for some j ≥ 1; then
z = tj for some atom t with rb = bt.

Proof of the proposition. Note that by properties (i) and (iii), given two atoms
r 6= t, the element δr,t defined by ∆r,t = rδr,t satisfies δr,t 6= 1 and r 64 δr,t.

We first prove the following lemma.

Lemma 2.3. Let r be an atom in M and b ∈ M such that r 64 b and let j ≥ 1 be
such that rjb is divisible by some atom different from r; then there exists an atom
s 6= r such that δr,s 4 b.

Proof. The proof is by induction on j ≥ 1. Let u 6= r be an atom with u 4 rjb.
Then ∆r,u 4 rjb; writing ∆r,u = rδr,u, we get δr,u 4 rj−1b. If j = 1 the conclusion
holds with s = u, and this covers the case j = 1.

In the case j > 1, since δr,u 6= 1 and r 64 δr,u, we have v 4 δr,u for some atom
v 6= r hence v 4 rj−1b and we can apply the induction assumption to j−1 < j and
get the result. �

We also need the following lemma.

Lemma 2.4. Let b ∈ M be a balanced element. Then, for any atom r 4 b there
exists an atom t 4 b with rb = bt, and r 7→ t provides a permutation of the atoms
dividing b.
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Proof. For r 4 b we write b = rb′. Since b is balanced we have b′ 4 b hence b = b′t
for some t ∈ M (which obviously divides b). Thus rb = rb′t = bt and r 7→ t is
well-defined and clearly injective from the set of divisors of b to itself. Because
of the length function it maps atoms to atoms, and it is surjective by the obvious
reverse construction. �

We show now the proposition by induction on the length of b, the case of length
0 being trivial. If r 4 b then, by simplifying b by r, we get the result by induction.
We thus can assume b 6= 1 and r 64 b. By lemma 2.3 there is an atom s 6= r such
that δr,s 4 b. Writing b = δr,sb

′ we get rjδr,sb
′ = δr,sb

′z. As ∆r,s is balanced, it
conjugates r to some atom u, by lemma 2.4, hence, cancelling a power of r, we get
rδr,s = δr,su, whence δr,su

jb′ = δr,sb
′z. Cancelling δr,s and applying the induction

assumption we get z = tj for some atom t with ub′ = b′t, so rb = rδr,sb
′ = δr,sub

′ =
δr,sb

′t = bt. �

We first prove a general corollary for a Garside group, that is for the group of
fractions G of a Garside monoid M . It is a property of Garside monoids that G is
generated as a monoid by M and the powers of ∆.

Corollary 2.5. Let G be the group of fractions of a Garside monoid M satisfying
properties (i), (ii) and (iii) then if U is a subgroup of G containing a nontrivial
power of each atom, the center of U is contained in the center of G.

Proof. If x ∈ Z(U), then for any atom s, there exists a positive integer N such that
x commutes with sN . Let i be large enough so that x∆i ∈ M . Since conjugation
by ∆ permutes the atoms by lemma 2.4, we have sNx∆i = xsN∆i = x∆iuN for
some atom u such that s∆i = ∆iu. Proposition 2.2 applied with b = x∆i, r = s,
j = N implies that sx∆i = x∆it, for some atom t, hence we have tN = uN , which
gives t = u by property (iii), since the gcd of tN = uN with ∆t,u has to be equal to
t and to u. Hence sx∆i = x∆iu and sx = xs. �

A particular case of the above corollary is the following, using the fact that for
monoids of type (M4) in proposition 2.1, the squares of the atoms lie in the pure
group.

Corollary 2.6. The center of pure Artin-Tits groups of type Ã or C̃ is trivial.

Another application of proposition 2.2 gives theorem 1.4 for all finite complex
reflection groups except G31.

Corollary 2.7. Assume W is a complex reflection group different from G31 and
let U be a finite index subgroup of B. Then Z(U) ⊂ Z(B).

Proof. It is well-known that all possible braid groups B can be obtained from a
2-reflection group, so we can restrict to this case. Corollary 2.5 gives the result for
all complex braid group for which a monoid satisfying (i), (ii) and (iii) is known.
This covers all of them except for a complex reflection group of type G31 and the
infinite series G(de, e, r) for d > 1 and e > 1. Indeed, one can use

• the classical monoid for Coxeter groups and Shephard groups (groups which
have X/W as a Coxeter group), as well as for G13, which has the same braid
group as the Coxeter group I2(6)

• the parachute monoid for the G(e, e, r)
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• the dual monoid for the G(e, e, r), G(d, 1, r) and the exceptional groups of
rank at least 3 which are not G31

• the monoids f(4, 3) and f(5, 3) for G12 and G22.

Since the only 2-reflection exceptional groups are G12, G13 and G22 this indeed
covers everything but G31 and the G(de, e, r), for d > 1, e > 1.

But the braid group associated with G(de, e, r) is a subgroup of finite index in
the braid group associated to G(de, 1, r) (and thus of the classical braid group on
r strands), whence the result in this case. �

3. Springer theory and G31

We let Bn denote the braid group associated to Gn, and Pn = Ker(Bn → Gn)
the corresponding pure braid group. In particular B37 denotes the Artin-Tits group
of type E8. By Springer theory (see [20]), G31 appears as the centralizer of a regular
element c of order 4 in G37, and, as a consequence of [1, thm. 12.5 (iii)], B31 can be
identified with the centralizer of a lift c̃ ∈ B37 of c, in such a way that the natural
diagram

B31
//

��

B37

��
G31

// G37

commutes. The proof of theorem 1.1 for G31 was communicated to us by D. Bessis.
For the convenience of the reader we reproduce it here. We let π denote the positive
generator of Z(P37). We have c̃4 = π. On the other hand, it can be checked that
G37 has a regular element of order 24, and as a consequence of [3] there exists

d̃ ∈ B37 with d̃24 = π whose image in G37 is a regular element d of order 24.
Moreover, by [1, 12.5 (ii)], d̃6 is conjugated to c̃, so up to conjugating d̃ we can

assume d̃6 = c̃, and in particular d̃ ∈ B31. So Z(B31) lies inside the centralizer of

d̃, which is by another application of [1, 12.5 (iii)] the braid group of the centralizer
in G37 of d. Since 24 divides exactly one reflection degree of G37, Springer’s theory
says that d generates its centralizer, as its centralizer is a reflection group whose
single reflection degree is 24. This implies that the centralizer of d̃ is the cyclic
group generated by d̃, thus any x ∈ Z(B31) is a power d̃a of d̃. Since its image in

G37 should lie in Z(G31) =< d6 >, Z(B31) =< d̃6 > is a cyclic group, isomorphic
to Z as it is infinite, for instance because β31 ∈ Z(B31) has infinite order. But

β31 ∈ Z(B31) =< d̃6 > satisfies β4
31 = π31 = π37 = (d̃6)4, hence d̃6 = β31 and

Z(B31) =< β31 >' Z. This concludes the proof of theorem 1.1.
In order to prove theorem 1.4, we will need an explicit description of this em-

bedding B31 ↪→ B37. Using the algorithms of [12] included in the GAP3 package
CHEVIE (see [21]), we find that B31, considered as the centralizer of β31 in B37, is
generated by

x1 = (s2s3s1s5)−1s1s4(s2s3s1s5)

x2 = (s4s2s3s5s6s5s7)−1s2s5(s4s2s3s5s6s5s7)

x3 = (s5s6s7)−1s1s4(s5s6s7)

x4 = (s2s5s6)−1s4s6(s2s5s6)

x5 = (s3s1s5s6)−1s4s8(s3s1s5s6)
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These generators satisfy the defining relations of the presentations for B31 con-
jectured in [2] (and proved in [1]). Here the presentations taken for B37 and B31

correspond respectively to the Coxeter-like diagrams

©
s1

©
s3

©s2

©
s4

©
s5

©
s6

©
s7

©
s8

and

©
x4

�
©
x1

©
x2

n
©
x5

©
x3�

where the circle means x1x2x3 = x2x3x1 = x3x1x2.
One can check β31 = (s4s2s3s1s4s3s5s6s7s8)6 = (x4x1x2x3x5)6.

4. Krammer representations and G31

We use the generalized Krammer representation R̂ : B37 ↪→ GL120(Q[q, q−1, t, t−1])
for the Artin-Tits group of type E8 defined in [8] and [5]. We use the defini-
tions of [8] (note however the erratum given in [15]). One has β37 = β2

31 and

R̂(β37) = q30t. The standard generators si of B37 are mapped to semisimple ma-
trices with eigenvalues q2t (once), −q (28 times) and 1 (91 times). We embed
Q[q±1, t±1] into Q[q±1, u±1] under t 7→ u2. Then R(β31) can be diagonalized, has
two 60-dimensional eigenspaces, corresponding to the eigenvalues ±q15u. An ex-
plicit base change, that we choose in GL120(Q[q±1, u±1) so that it specializes to the
identity when q 7→ 1, u 7→ 1, provides another faithful representation R : B37 →
GL120([q±1, u±1]) with R(B31) ⊂ GL60(Q[q±1, u±1]) × GL60(Q[q±1, u±1]). Let U
be a finite index subgroup of B31, and let N ≥ 1 such that x2Ni = (x2i )

N ∈ U for
all i. Note that, since the images of the xi’s in G31 have order 2, we have x2i ∈ P31.

We prove that the centralizer of R(U) in GL60×GL60 is equal to the centralizer of
R(B31). This is the case as soon as Rj(KU) = Mat60(K), where j ∈ {1, 2}, where
K is an arbitrary extension of Q(q, u), R = R1 ×R2 is the obvious decomposition,
and KU is the group algebra of U . Actually, it is clearly enough to prove this
for a specialization of Rj to given values of t, u. More precisely, if A is a unital
ring with field of fractions K and if we have a morphism Q[q±1, u±1]→ A, letting
R′j : B31 → GL60(A) denote the induced representation we have that R′j(KU) =
Mat60(K) implies that Rj(Q(q, u)U) = Mat60(Q(q, u)).

Let j ∈ {1, 2}. We use the morphism Q[q±1, u±1] → Q[[h]] which maps q 7→
eh, u 7→ e7h (the choice of 7 being rather random), and denote R′j : P31 →
Mat60(Q[[h]]) the induced representation. We prove that the unital algebra gener-
ated over Q((h)) by the R′j(x

2N
i ) full Mat60(Q((h))). As x2i ∈ P31 ⊂ P37 we have

R′j(x
2
i ) ≡ 1 modulo h (see e.g. [15]) hence R′j(x

2
i )
N ≡ 1 modulo h. We define

yi ∈ Mat60(Q) by h−1(R′j(x
2
i ) − 1) ≡ yi modulo h and thus h−1(R′j(x

2
i )
N − 1) ≡

Nyi. By Nakayama’s lemma it is now sufficient to prove that the yi generate
Mat60(Q). It turns out that the yi belong to Mat60(Z). By another application of
Nakayama’s lemma it is sufficient to check that the reduction mod p of the yi gen-
erates Mat60(Fp) for some prime p. For a given p, the determination by computer
of the dimension of the subalgebra of Mat60(Fp) generated by elements y1, . . . , y5
is easy : starting from the line F0 = FpId ⊂ Mat60(Fp) we compute the vector
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space Fr+1 = Fr + Fry1 + . . . Fry5 until dimFr = dimFr+1. For p = 37 we get
3600 = dim Mat60(Fp), thus concluding the argument.

By faithfulness of R this proves that Z(U) commutes with all B31, thus Z(U) ⊂
Z(B31), and this concludes the proof of theorem 1.4.

5. Miscellaneous consequences

We notice that the representations R1 and R2 are deduced one from the other
under the field automorphism of Q(q, u) defined by q 7→ q, u 7→ −u. Since R is
faithful, this implies that the representations Rj are faithful representations of B31.
We note that the Rj have dimension 60, which is the number of reflections in G31,
and thus the dimension of the representation involved in conjecture 1 of [18].

This enables us to prove this conjecture for G31, that is the following theorem:

Theorem 5.1. B31 can be embedded into GL60(K) as a Zariski-dense subgroup,
for K a field of characteristic 0, and P31 is residually torsion-free nilpotent.

Proof. Since P31 embeds in P37, the statement about residual torsion-free nilpo-
tence is a consequence of the corresponding statement for P37, proved in [15], [17].
Embedding Q(q, u) into Q((h)) through q 7→ eh, u 7→ eαh, for α a transcendent
number, we can assume Rj(B31) ⊂ GL60(Q[α]((h))).

In addition we know that Rj(x
2
i ) = exp(hai) for some ai ∈ gl60(Q[α][[h]]) with

ai ≡ ỹi mod h for some ỹi ∈ gl60(Q[α]) which specialize to yi under α 7→ 7. A
computer calculation similar to the above shows that the Lie algebra generated by
the yi is gl60(Q), and thus that the Lie algebra generated by the ai over C((h))
is gl60(C((h))). By [16] lemme 21 this proves that the Zariski closure of Rj(B31)
contains GL60(C((h))), which proves the theorem. �

We remark that this conjecture, if true for all braid groups, would immediately
imply theorem 1.4. Note however that the representations Rj have same dimension
as, but are not isomorphic to the representation constructed in [18]. This can be
seen from the eigenvalues of the generators : since R(x1) is conjugated to R(s1s4)
and since s1s4 = s4s1, the 3 eigenvalues of the R(si) provide at most 9 eigenvalues
for R(x1), and by checking each of them we find that R(x1) has for eigenvalues q2t
(twice), q2 (6 times), −q (44 times) and 1 (68 times). As a consequence, the Rj(x1)
both have 4 eigenvalues, to be compared with the 3 eigenvalues the generators have
in the construction of [18].
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