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Abstract
This article extends the works of Gonçalves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite

subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We
get explicit criteria for subgroups of the (complex) reflection group to lift to subgroups of this quotient. In
the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that
every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also
determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.

1 Introduction
Let V be a finite dimensional complex vector space and W ⊂ GL(V ) be an irreducible complex reflection

group. We define A to be the set of reflection hyperplanes for W and V reg = V \ ∪H∈AH. Let x0 ∈ V reg. We
consider P = π1(V reg, x0) the pure braid group of W and B = π1(V reg/W, x0) its braid group where x0 is the
image of x0 in V reg/W . We have the following defining exact sequence (see [BMR] for more on this subject)

1 // P // B // W // 1

giving rise to the abelian extension of W

0 // P ab i // B/[P, P ] p // W // 1

This last extension whose order has been studied in [B4] will play a key role in the sequel. Let us say that
B/[P, P ] is the relative abelianization of the braid group of W . Let us also remind that as a W -module P ab is
the permutation module ZA (see [O-T, Section 6.1]).

We get a very concrete criterion for a subgroup of W to embed in B/[P, P ] in terms of the stabilizers of
the hyperplanes of W (Theorem 2); for the case of the symmetric group Sn (and more generally for a wide
class of complex reflection groups including the real ones) and the standard braid group Bn, we are able to
describe all finite subgroups of B/[P, P ] (see Corollary 13 and Proposition 17). In particular we show that every
odd-order subgroup of Sn can be embedded in Bn/[Pn, Pn] and that every odd-order group can be embedded in
B∞/[P∞, P∞] where B∞ (resp. P∞) denotes the infinite (pure) braid group. We are also able to give a complete
list of the irreducible reflection groups such that B/[P, P ] is a Bieberbach group (Corollary 12).

Let us start with the notations we will use in this article. The group W acts on A : if H is the hyperplane
of the reflection s ∈W , then wH is the hyperplane of the reflection wsw−1. Moreover wH = H if and only if
wsw−1 = s. For H ∈ A , we denote by NH = {w ∈W,wH = H} = {w ∈W, sw = ws} the stabilizer of H which
is also the centralizer of any reflection of W with hyperplane H.

For a subgroup G of W and H ∈ A , the stabilizer of H under the action of G is NH ∩G. We denote it by
NH,G.

Since W is generated by reflections, we then deduce wH = H for every H ∈ A if and only w ∈ Z(W ) where
Z(W ) is the centre of W . In particular, the group W = W/Z(W ) acts faithfully on A .

All along this article, we will consider subgroups G of W and subgroups G of W . For a subgroup G of W ,
we denote by G its direct image in W .

Finally since W is finite, we may assume that 〈·, ·〉 is an hermitian product invariant under W . For H ∈ A ,
we set CH = {w ∈W, ∀x ∈ H⊥, w(x) = x} the parabolic subgroup of W associated to H⊥.

Let us end this introduction with a cohomological lemma that we will need later.
Lemma 1 Let G be a finite group, X a set on which G acts and ZX the corresponding permutation module.
Then H1(G,ZX) is trivial.
Proof. Decomposing X into G-orbits X = tA∈X/GA, we get H1(G,ZX) =

⊕
A∈X/GH

1(G,ZA). Choosing
for each A ∈ X/G a representative a and using Shapiro’s isomorphism ([BR, Proposition III.6.2]) we obtain
that H1(G,ZX) =

⊕
A∈X/GH

1(Ga,Z) where Ga is the stabilizer of a. But Ga acts trivially on Z and then
H1(Ga,Z) = Homgr.(Ga,Z) = {0} since Ga ⊂ G is finite.
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2 Finite subgroups of B/[P, P ]
2.1 A criterion for finite subgroup

In this subsection, we give a criterion for a subgroup of W to lift in B/[P, P ]. The criterion (Theorem 2) has
many consequences such that the description of the finite subgroups of Bn/[Pn, Pn] and B∞/[B∞, B∞] which
are explored in the following subsections.
Theorem 2 Let G be a subgroup of W then the extension

1 // P ab i // p−1(G) p // G // 1

splits if and only if for every H ∈ A we have NH ∩G ⊂ CH . When these conditions are fulfilled, G identifies to
a finite subgroup of B/[P, P ] and G is isomorphic to G. Moreover p−1(G) is a crystallographic group.

Let G̃ be a torsion subgroup of B/[P, P ] then G̃ is finite and is isomorphic to its image inW and the extension

1 // P ab i // p−1(p(G̃)) p // p(G̃) // 1

splits. Moreover every subgroup of B/[P, P ] isomorphic through p to p(G̃) is conjugated to G̃ by an element of
P ab and the intersection of the normalizer of G̃ in B/[P, P ] with P ab is isomorphic to ZA /G.

Proof. Let us consider the extension 1 // P ab i // p−1(G) p // G // 1 as an element in H2(G,P ab).

This is the image of the extension 1 // P ab i // B/[P, P ] p // W // 1 through the restriction map
Res : H2(W,P ab)→ H2(G,P ab).

Following the proof of Proposition 5 of [B4], we get the following commutative diagram

H2(W,P ab) //

Res
��

[⊕
H∈A H2(NH ,Z)

]W //

Res
��

[⊕
H∈A Homgr(NH ,C×)

]W
Res
��

H2(G,P ab) //
[⊕

H∈A H2(NH ∩G,Z)
]G //

[⊕
H∈A Homgr(NH ∩G,C×)

]G
Hence the extension 1 // P ab i // p−1(G) p // G // 1 can be identified with the family of group
homomorphisms rH : NH ∩G→ C× given by the restriction to the line H⊥ whose kernel is by definition CH .

In this case, G ∩ ZW = {1} since for every non trivial element w of the center of W and every hyperplane
H ∈ A , we have rH(w) 6= 1. So G and G are isomorphic. Finally, p−1(G) is a crystallographic group since G
acts faithfully on A since G ∩ ZW = {1}.

Let us now consider G̃ a torsion subgroup of B/[P, P ]. For x ∈ G̃, let us first show that the order of x is the
same that the order of p(x) ∈W . Let m be the order of x and assume that p(x)n = 1 for some n dividing m and
n 6= m. Then xn ∈ P but xn /∈ [P, P ]. But P ab is a torsion-free group, so it is impossible. The map p : G̃→W

is then injective and G̃ is finite and p : G̃→ p(G̃) is an isomorphism.
The P ab-conjugacy classes of subgroups of B/[P, P ] isomorphic to p(G̃) through p are in bijection with

H1(p(G̃), P ab) (see [BR, Proposition 2.3 Chapter IV]). But H1(p(G̃), P ab) is trivial (Lemma 1) and we get the
result.

Finally, let x ∈ P ab such that xG̃x−1 = G̃. Then for every g ∈ G̃, we have xgx−1g−1 ∈ G̃ ∩ P ab. But G̃ is
finite and P ab is torsion-free, hence xgx−1g−1 = 1. We then deduce gxg−1 = x for all g ∈ G̃ and so

x =
∑

C∈A /p(G̃)

αC

(∑
H∈C

cH

)
.

Since w ∈W has a finite order lifting in B/[P, P ] if and only if the extension

1 // P ab i // p−1(〈w〉) p // 〈w〉 // 1

is split, we get the following corollary.
Corollary 3 An element w ∈W has a lifting in B/[P, P ] of finite order if and only if 〈w〉 ∩NH ⊂ CH for every
H ∈ A .

We can then easily generalize Theorem 2.5 of [MAR2].
Corollary 4 Let w ∈ ZW \ {1}; the order of every lifting of w in B/[P, P ] is infinite.

Let w ∈W such that w has two eigenvalues one of those is 1 then the order of every lifting of w in B/[P, P ]
is infinite. In particular, if w ∈W has order 2 or is a reflection then the order of every lifting of w in B/[P, P ] is
infinite.



Proof. Let w ∈ ZW \ {1} then w ∈ NH for every H ∈ A and w /∈ CH . So Theorem 2 gives the result. This
result follows also directly from the fact that, when W is irreducible p−1(ZW ) is a free abelian group of rank
|A | generated by P ab and the class z of the path t 7→ exp(2iπt/|Z(W )|)x0 (see [MAR2]).

Let us now consider w ∈W with w having two eigenvalues 1 and λ 6= 1. Steinberg’s theorem implies that
there exists a reflection in W such that its hyperplane H contains the eigenspace of w associated to 1. Then H⊥
is contained in ker(w − λid) = ker(w − id)⊥. Thus the restriction of w on H⊥ is λid 6= id.

If w ∈ W has order 2 then either w = −id ∈ ZW \ {1} or w has two eigenvalues 1 and −1. If w ∈ W is a
reflection, its eigenvalues are 1 and λ for some λ 6= 1.

Remark 5 In fact, Theorem 2.5 of [MAR2] and its proof can easily be extended to the case of w ∈ W such
that w has two eigenvalues one of those is 1. So the previous corollary was already known but we give here a
different proof.

Lemma 6 If w ∈ W is such that a power of w has only infinite lifting in B/[P, P ] then every lifting of w in
B/[P, P ] has infinite order.

This is in particular the case when w is of even order or if a power of w is a non trivial element of ZW .
Proof. If x is a lifting of w then xn is a lifting of wn.

We may interpret Theorem 2 as a kind of local property in the following sense: a subgroup G of W identifies
to a subgroup of B/[P, P ] if and only if every element of G has a finite order lifting in B/[P, P ]. More precisely,
we get the following corollary.

Corollary 7 Let G be a subgroup of W . The extension 1 // P ab i // p−1(G) p // G // 1 is split if
and only if every element of G has a finite order lifting in B/[P, P ].
Proof. Both conditions are equivalent to the following: for every H ∈ A and every w ∈ G ∩NH , w ∈ CH .

2.2 Examples and Applications
We start this subsection by describing the elements of the groups in the infinite series that can be lifted in

their restricted braid group. We then study the groups W such that B/[P, P ] is a Bieberbach group and finally
we give a list of groups W (containing the Coxeter groups) such that every odd-order element of W has a finite
order lifting in B/[P, P ].

For an integer n, we denote by Un the set on nth root of unity in C. Let us consider (e1, . . . , er) the canonical
basis of Cr. For w ∈ G(de, e, r), we denote by σw ∈ S the image of w through the natural homomorphism
G(de, e, r)→ Sr. Thus, there exists a family (ai)1≤i≤r ∈ Uder such that w(ei) = aieσw(i) for all i ∈ {1, . . . , r}.
Let us write σw = σ1 · · ·σs as a product of disjoint cycles. For such a cycle σ = (i1, . . . , iα), we denote by
pw,σ = ai1 · · · aiα ∈ Ude.
Corollary 8 Finite order lifting for the infinite series. Let w ∈ G(de, e, r).

If w has a finite order lifting in B/[P, P ] then either σw 6= id and for every cycle σ appearing in σw, we have
pw,σ = 1, or σw = id and for every i 6= j ∈ {1, . . . , r} the order of aiaj−1 is a multiple of the order of ai.

If w is of odd order and for every cycle σ appearing in σw, we have pw,σ = 1 then w has a finite order lifting
in B/[P, P ].

When d ≥ 2, then w has a finite order lifting in B/[P, P ] if and only if w is of odd order and for every cycle
σ appearing in σw, we have pw,σ = 1.

When d = 1, w has a finite order lifting in B/[P, P ] if and only if w is of odd order and for w for every cycle
σ of σw, we have pw,σ = 1 or σw = id and for every i 6= j ∈ {1, . . . , r} the order of aiaj−1 is a multiple of the
order of ai.
Proof. The result is clear for r = 1. Let us assume that r ≥ 2.

Let us consider w ∈W with a finite order lifting in B/[P, P ] and σ a cycle of σw of length greater than 1.
Set i 6= j in the support of σ and ζ ∈ Ude and consider the hyperplane

Hi,j,ζ = {(z1, . . . , zr) ∈ Cr, zi = ζzj}.

For ` ∈ Z, if w` ∈ NHi,j,ζ then {σw`(i), σw`(j)} = {i, j}. But σw is of odd order (Corollary 4), hence σw`(i) = i

and σw`(j) = j. We then deduce that ` is a multiple of the length α of σ: we can write ` = αm. Then the
restriction of w` to the space Span(ei1 , . . . , eiα) (where σ = (i1, . . . , iα)) is pw,σmid. But from Corollary 3, we
get that w` ∈ CHi,j,ζ , hence pw,σm = 1. Since we can choose m = 1, we get the result.

If i is a fixed point of σw. We have w(ei) = aiei. We want to show that ai = 1 when there exists a non
trivial orbit σ of σw, we consider j in the support of σ. If w` in NHi,j,1 then Span(ei, ej) is stable by w`. Hence
` is a multiple of the length of σ. Hence w`(ej) = ej by the preceeding point. But w`(ej − ei) = ej − ei since
w` ∈ CHi,j,1 (Corollary 3). Hence w`(ei) = ei.

Let us now consider the case where σw = id then we can write w(ei) = aiei for all i. For i 6= j, we have
w` ∈ NHi,j,1 if and only if ai` = aj

`. If w` ∈ NHi,j,1 then w`(ei − ej) = (ei − ej) (since w` ∈ CHi,j,`). Hence
ai
` = aj

` implies ai` = aj
` = 1. So for every i 6= j the order of aiaj−1 is a multiple of the order of ai and aj .



Conversely, assume that pw,σ = 1 for every cycle σ of σw and w is of odd order and let us apply the criterion of
Theorem 2 to show that w has a finite order lifting in B/[P, P ]. Let 1 ≤ i ≤ r andHi = {(z1, . . . , zr) ∈ Cr, zi = 0}.
If w` ∈ NHi then w`(ei) ∈ C×ei. Hence ` is a multiple of the length of the cycle y = (i, i1, . . . , iα) of σw whose
support contains i. So that the restriction of w` to Span(ei, ei1 , . . . , eiα) is the identity since pw,σ = 1. So
w` ∈ CHi .

For i 6= j ∈ {1, . . . , r} and ζ ∈ Ude, if w` ∈ NHi,j,ζ then {σw`(i), σw`(j)} = {i, j}. If i and j belongs to
different orbits σ and σ′ under σw then necessarily σw`(i) = i and σw

`(j) = j. Hence ` is a multiple of the
lengths of σ and σ′. But pw,σ = pw,σ′ = 1 so that w`(ei) = ei and w`(ej) = ej and w` ∈ CHi,j,ζ . If i and j are
in the same orbit σ under σw then we also have σw`(i) = i and σw`(j) = j because if σw`(i) = j and σw`(j) = i
then σw would be of even order and w too, which is not. Hence ` is a multiple of the length of σ and since
pw,σ = 1, we get that w` ∈ Ci,j,ζ .

Let us now consider the case d ≥ 2. From the first two parts, the only thing to show is that if w verifies
σw = id and w has finite order lifting in B/[P, P ] then w = id. Let i ∈ {1, . . . , r}. We have w(ei) = aiei. Hence
w ∈ NHi where Hi = {(z1, . . . , zr) ∈ Cr, zi = 0}. We then deduce that w ∈ CHi that is ai = 1.

Let us consider the case d = 1. From the first two parts, the only thing to show is that if σw = id and for
i 6= j ∈ {1, . . . , r}, the order of aiaj−1 is a multiple of the order of ai then w has a finite order lifting in B/[P, P ].
For i 6= j ∈ {1, . . . , r} and ζ ∈ Ude, if w` ∈ NHi,j,ζ then w` stabilizes three lines in the plane Span(ei, ej); namely
Cei,Cej and the line Hi,j,ζ

⊥. So ai` = aj
` and then aiaj−1` = 1. Hence ai` = aj

` = 1 and then w` ∈ CHi,j,ζ .
Corollary 3 gives then the result.

Example 9 Let j = −1/2 + i
√

3/2. The preceding corollary ensures us that w = diag (j, j2, 1 . . . , 1) ∈ G(3, 3, r)
verifies σw = id and has a finite order lifting in B/[P, P ]. In particular, for r = 2, diag (j, j2) gives an example
of an element of G(3, 3, 2) of order 3 that has a finite order lifting in B/[P, P ] but such that no element of order
3 of S2 (since there are no such element) lifts in B/[P, P ].

More generally, if de = 2mq with q odd, let ζ of qth root of unity. Then w = diag (ζ, ζ−1, 1, . . . , 1) ∈ G(de, de, r)
has a finite order lifting in B/[P, P ].

Remark 10 Let G be a subgroup of G(de, e, r) where d ≥ 2 which lifts in B/[P, P ]. Then Corollary 8 shows
that G ∩D = {1} where D is the subgroup of diagonal matrices of G(de, e, r). In particular G is isomorphic to
its image in Sr. Moreover the criterion of Corollary 8 shows also that every odd-order subgroup of Sr lifts into
B/[P, P ]. So that the isomorphism classes of finite subgroups of B/[P, P ] are the same that the isomorphism
classes of odd-order subgroups of Sr. The preceding example shows that this is not the case when d = 1.

In [MAR2], Marin shows that B/[P, P ] is a Bieberbach group for G4 and G6. We are able to give the list of
the irreducible group such that B/[P, P ] is a Bieberbach group (Corollary 12). But we start with two small
groups that we can study by hands.
Corollary 11 For W = G5, the group B/[P, P ] is a Bieberbach group of holonomy group A4 and dimension 8.

For W = G7, the group B/[P, P ] is a Bierberbach group of holonomy group A4 and dimension 14.
Proof. In G5, there are elements of order 1, 2, 3, 4, 6, 12. Corollary 6 ensures us that we have only to study the
case of the elements of order 3. There are 26 of them shared in 8 conjugacy classes. There are two elements in
the center of G5. There are 16 reflections. Both cases are treated by previous results. It remains to consider two
conjugacy classes which are products of an element of order 3 of ZG5 with a reflection and are not reflections:
they have two eigenvalues which are j and j2 (the third non trivial roots of unity). Such an element is contained
in the stabilizer of a hyperplane but not in the corresponding CH . So Theorem 2 allows us to conclude.

The situation is exactly the same for G7 since the elements of G7 have order 1, 2, 3, 4, 6, 12 and every element
of order 3 of G7 is contained in the G5 subgroup of G7.

Corollary 12 Bieberbach groups. For W = G(de, e, r), then B/[P, P ] is a Bieberbach group if and only if
r = 1 or r = 2 and d ≥ 2 or r = 2, d = 1 and e = 2m for some m.

Among the exceptionnal groups, the group B/[P, P ] is a Bieberbach group for

W = G4, G5, G6, G7, G10, G11, G14, G15, G18, G19, G25, G26.

Proof. Assume that for G(de, e, r), B/[P, P ] is a Bieberbach group. Corollary 8 ensures us that (1, 2, 3) ∈ Sr

has a finite order lifting in B/[P, P ]. Hence r ≤ 2. If r = 2 and d = 1, then Example 9 shows that e has to be a
power of 2.

Conversely, if r = 1, then B = B/[P, P ] = Z. If r = 2 and d ≥ 2 then a diagonal matrix D ∈ G(de, e, 2) has
a finite order lifting only if D = id (since for every i ∈ {1, 2} we have ai = pD,{i} = 1). And a non diagonal
matrix is of even order so it does not have a finite order lifting in B/[P, P ].

For r = 2, d = 1, e = 2m, let D = diag (ζ, ζ−1) be a diagonal matrix of G(e, e, 2) with ζ ∈ Ue. If ζ 6= 1 then
the order of ζ2 is half the order of ζ (since e is a power of 2) and by Corollary 8, D does not have a finite order
lifting in B/[P, P ]. A non diagonal matrix is of even order so it does not have a finite order lifting in B/[P, P ].

For the exceptionnal groups, we use the package [CHEVIE] of [GAP] to compute stabilizers of hyperplanes
and parabolic subgroups associated to the orthogonal line.



We now give a corollary generalizing Corollary 2.7 of [MAR2] and Theorem 16 of [GGO].
Corollary 13 Real reflection groups. Let W be a real reflection group. Then every odd-order element has
a finite order lifting in B/[P, P ]. More generally, if W is a reflection group for which the roots of unity inside its
field of definition all have for order of power of 2 (The irreducible groups verifying this property are the following
G8, G9, G12, G13, G22, G23, G24, G28, G29, G30, G31, G35, G36, G37 for the exceptional ones, and G(de, e, r) with d
and e powers of 2 and r ≥ 2, Sr, G(d, 1, 1) with d power of 2 and G(e, e, 2) with e ≥ 3 for the infinite series),
then every odd-order element has a finite order lifting in B/[P, P ].

For those groups, let G ⊂W then p−1(G) the inverse image of G in B/[P, P ] is a Bieberbach group if and
only if G is a 2-subgroup of W .

Again, for those groups, let G ⊂ W with |G| odd then B/[P, P ] has a finite group isomorphic to G and
p−1(G) is a crystallographic group.
Proof. Let w be an odd-order element of W and H ∈ A . If w ∈ NH then w stabilizes H⊥ and the restriction
of w to H⊥ is still of odd order. In particular the eigenvalue of w along H⊥ is of odd order. But by hypothesis,
this eigenvalue is a root of unity belonging to the field of definition of W . Its order is then a power of 2. Hence
w acts trivially on H⊥ which means that w ∈ CH .

If G is a 2-subgroup of W then every element in p−1(G) has infinite order thanks to Corollary 4. Let
P0 = p−1(Z(W )) gr.' Z|A | (see [MAR2]), the extension 0 // P0 // p−1(G) // G // 1 gives the
result (let us remind that G is the direct image of G in W/ZW ).

With Theorem 2, we get the converse. If G is not a 2-group, then it contains an element of odd order. The
first part ensures us that this element may be lifted in p−1(G) as a finite order element.

Let us now consider G ⊂ W whose order is odd. Then, for every H ∈ A and every w ∈ G ∩NH , we have
w ∈ CH by the above argument since the order of w is odd. Hence Theorem 2 gives the result.

Remark 14 The irreducible complex reflection groups W such that every element of odd order has a finite order
lifting in B/[P, P ] are the same as the list of Corollary 13 that is to say G8, G9, G12, G13, G22, G23, G24, G28,
G29, G30, G31, G35, G36, G37 for the exceptional ones, and G(d, 1, 1) with d a power of 2, G(de, e, r) with d and e
powers of 2 and r ≥ 2, Sr and G(e, e, 2) with e ≥ 3.

The preceding corollary shows that all these groups verify the property. For the exceptional ones, a [GAP]
computation using [CHEVIE] gives that there are no more exceptional group such that every element of odd
order has a finite order lifting in B/[P, P ]. Let us now study the infinite series and consider G(de, e, r) such that
every element of odd order has a finite order lifting in B/[P, P ]. If r = 1, since B/[P, P ] = Z then G(d, 1, 1)
should have only one odd order element, so that d is a power of 2. Let us assume that r ≥ 2 and d ≥ 2. For every
ζ ∈ Ude \ {1}, the element diag (ζ, ζ−1, 1, . . . , 1) does not have a finite order lifting in B/[P, P ] (see Corollary 8).
It implies that de has to be a power of 2. Let us consider the case where r ≥ 3 and d = 1. For ζ ∈ Ude \ {1}, the
element diag (ζ, ζ, ζ−2, 1, . . . , 1) does not have a finite order lifting in B/[P, P ] (see Corollary 8). It implies that
de has to be a power of 2. When r = 2 et d = 1, we get G(e, e, 2) which verify the property.

Remark 15 Following Cayley’s argument, every odd-order group may be identified to a subgroup of Sn for n
large enough and thus to a subgroup of Bn/[Pn, Pn] thanks to Corollary 13. In the course of writing, Gonçalves,
Guaschi and Ocampo have communicated to us that they independently got this same result.

2.3 Infinite Braid Group
Let B∞ the infinite braid group. This is the direct limit of the family (Bn)n∈N where Bn is the standard

braid group on n strands and the map Bn → Bn+1 consists to add one strand on the right. The pure braid
group P∞ is the direct limit of the family (Pn)n∈N where Pn is the pure braid group on n strands.

Since [Pn−1, Pn−1] = [Pn, Pn] ∩ Bn, Bn−1/[Pn−1, Pn−1] may be identified to a subgroup of Bn/[Pn, Pn]
and then also to a subgroup of the direct limit of the family (Bn/[Pn, Pn])n∈N which is nothing else than
B∞/[P∞, P∞]. Moreover, with the same kind of arguments P∞/[P∞, P∞] is the direct limit of the groups
Pn/[Pn, Pn] and is a free abelian group on the set of 2-sets of the infinite set N∗. Finally, the group S∞ may be
defined as the direct limit of the family (Sn)n∈N where an element of Sn−1 is seen as an element of Sn fixing n.
But S∞ may also be viewed as the group of permutation of N∗ whose support is finite.
Proposition 16 For every odd-order group G, there exists a subgroup of B∞/[P∞, P∞] isomorphic to G and
B∞/[P∞, P∞] contains no even order element.
Proof. The group B∞/[P∞, P∞] is the direct limit of the family (Bn/[Pn, Pn])n∈N. Moreover Proposition 2.4
of [MAR2] ensures us that the maps Bn−1/[Pn−1, Pn−1]→ Bn/[Pn, Pn] are injective for all positive n. Then the
map Bn/[Pn, Pn]→ B∞/[P∞, P∞] is injective for all n.

Let us now consider G a group of odd order. Following Cayley’s argument, we let G acts on itself by left
translation, so that G identifies to an odd-order group ofS|G| the symmetric group on |G| letters. But Corollary 13
ensures us that G identifies to a subgroup of B|G|/[P|G|, P|G|] which itself is a subgroup of B∞/[P∞, P∞].

Let x be an even order element of B∞/[P∞, P∞], then it belongs to Bn/[Pn, Pn] for some n. But Bn/[Pn, Pn]
has no even order element.



We can be even more precise.
Proposition 17 Let S∞ be the permutation group of the infinite set N∗ = {1, 2, . . .} with finite support. We
have the following extension 1 // P∞

ab // B∞/[P∞, P∞] p // S∞ // 1 and P∞ab identifies to the
free abelian group over the set P2 of 2-subsets of N∗.

A finite subgroup of B∞/[P∞, P∞] is of odd order and maps isomorphically to S∞ through p. For every
odd-order subgroup G of S∞, there exists a group homomorphism s : G→ B∞/[P∞, P∞] such that ps = idG.
Moreover two such group homomorphisms are conjugated by an element of P∞ab and the intersection of the
normalizer of a finite subgroup G̃ of B∞/[P∞, P∞] with P∞ab is isomorphic to ZP2/p(G̃).
Proof. A finite subgroup of B∞/[P∞, P∞] is contained in some Bn/[Pn, Pn] and hence of odd order (Corollary 13).
Moreover since P∞/[P∞, P∞] is a free abelian group, the surjective map p preserves the order of the finite order
elements (we have already seen this in the proof of theorem 2). So a finite subgroup of B∞/[P∞, P∞] maps
isomorphically onto a subgroup of S∞ through p.

LetG be a finite subgroup ofS∞. Then it is a subgroup ofSn for some n and hence embeds in Bn/[Pn, Pn] and
so in B∞/[P∞, P∞]. The second part follows from the fact that H1(G,P∞/[P∞, P∞]) = {0} since P∞/[P∞, P∞]
is a permutation module (Lemma 1). Finally, let x ∈ P∞ab. Then, as in the proof of Theorem 2, x verifies
xG̃x−1 = G̃ if and only if gxg−1 = x for every g ∈ G̃.

2.4 Some More Examples
We have seen that every odd-order subgroup of Sn can be lifted in Bn/[Pn, Pn]. This has been applied to show

that every odd-order group G can be embedded in B∞/[P∞, P∞]. Here we describe some odd-order subgroups
of finite symmetric groups verifying a stronger property: they do not meet any stabilizer of a hyperplane.

The study of such subgroups is quite natural because they are the subgroups of W that acts freely on A .
Moreover, when G is a subgroup of W such that for every H ∈ A , G ∩NH = {1} then the criterion of Theorem
2 is clearly verified for G. But we have in fact a stronger property: H2(G,ZA ) is trivial. In order to prove this,
it suffices to consider the orbits of A under G and to apply Shapiro’s isomorphism.

2.4.1 The case of the symmetric group

To study the case of the symmetric group, let us introduce the following notation. For an integer n, we
denote by Fn the set

Fn = {σ ∈ Sn, σ is of cycle type k[n/k] or 1[1]k[(n−1)/k] with k odd} .

Proposition 18 Let G be a subgroup of Sn. For i 6= j, we denote by C(i, j) the centralizer of the transposition
(i, j): this is also the stabilizer NHi,j . Then, G ∩ C(i, j) = {id} for all i 6= j if and only if G ⊂ Fn.
Proof. We have Ci,j = Sn−2 × 〈(i, j)〉. In particular, w ∈ Ci,j if and only if {w(i), w(j)} = {i, j}.

Let now G such that G∩C(i, j) = {id} for all i 6= j. If G has an element w of order n = 2k then wk is a non
trivial product of transpositions and then belongs to C(i, j) for some (i, j). So every element of G is of odd order
and every cycle of an element of G is of odd length (to see this, we could also have applied the fact the G lifts
into B/[P, P ] thanks to Theorem 2). Moreover every non trivial element w of G has at most one fixed point: if
there are two or more, then let {i, j} be two such fixed points, then w ∈ C(i, j). We then deduce that the length
of every non trivial cycle of w ∈ G is the same. Indeed if c1 and c2 are two non trivial cycles of length k1 < k2
then wk1 6= 1 and has more than one fixed point. This gives the wanted cycle decomposition.

Conversely, assume that G ⊂ Fn. For g ∈ Fn, every power of g is still in Fn since every cycle of g will
decomposes in cycles of length a divisor of an odd number. So for every i 6= j, the set {i, j} is not stable by any
non trivial element of G.

Example 19 Group of odd order. Let G be a group of odd order. When G acts on itself by left
multiplication, then the cycle decomposition of an element g ∈ G ⊂ S|G| is a product of [G : 〈g〉] cycles of length
the order of g which is odd. And so G ⊂ F|G| which a bit more precise that what was needed in Proposition 17.

Let us know study a bit Frobenius groups who will provide some more examples. Let G be a Frobenius group
with kernel N and H a Frobenius complement. The group G is a disjoint union

G = N t
⊔

g∈G/H

(gHg−1 \ 1) .

Lemma 20 The group G acts on G/H with the following properties.
(i) An element n ∈ N \ {1} has no fixed point on G/H.
(ii) For g ∈ G, an element of gHg−1 \ 1 has only one fixed point on G/H namely gH.
In particular, G acts faithfully on G/H.
Proof.



(i) If ngH = gH then g−1ng ∈ H and n ∈ gHg−1 which is absurd thanks to the set partition of G.
(ii) If ghg−1g′H = g′H (with h ∈ H \ {1}) then g′−1ghg−1g′ ∈ H and h ∈ H ∩ g−1g′Hg′−1g. Hence, the set

partition of G ensures us that g−1g′ ∈ H.

Corollary 21 For every g ∈ G, the cycle decomposition of g ∈ G seen as a permutation of G/H is the following
(i) if g ∈ N , then g is a product of [G : H]/k cycles of length k where k is the order of g.
(ii) if g ∈ g′Hg′−1 \ {1} then g is a product of ([G : H]− 1)/k cycles of length k where k is the order of g.

Proof. It is trivial when g = 1. Let us consider g 6= 1.
(i) For g′H ∈ G/H and 1 ≤ ` < k, we have g`g′H 6= g′H since g` ∈ N \ {1}. Hence the orbit of g′H under 〈g〉

has k elements.
(ii) Let 1 ≤ ` < k and g′′H ∈ G/H with g′′H 6= g′H. We have g`g′′H 6= g′′H since g` ∈ g′Hg′−1 \ {1} and

g′′H 6= g′H. Hence the orbit of g′′H under 〈g〉 has k elements.

Corollary 22 Let K be a subgroup of a Frobenius group of odd order, then K is contained in F(G:H).
This last corollary associated to Corollary 13 generalizes Corollary 3.10 and 3.11 of [MAR2] and Theorem 7

of [GGO].

2.4.2 The infinite series

Let us introduce the following subset of G(de, e, r)

F (de, e, r) = {w ∈ G(de, e, r), the cycle type of σw is [k]r/k with k odd and pw,σ = 1 for every σ cycle of σw}

where σw is permutation associated to w.
Proposition 23 Let us consider G a subgroup of G(de, e, r) with d ≥ 2 and A be the set of hyperplanes of
G(de, e, r). Then G ∩NH = {1} for every H ∈ A if and only if G ⊂ F (de, e, r).
Proof. Assume that G ∩NH = {1} for every H ∈ A then from Theorem 2 we deduce that every element of
G is of odd order and so for every w ∈ G and every σ cycle of σw is of odd order and from Corollary 8 that
pw,σ = 1 for every σ cycle of σw and every w ∈ G. Moreover consider w ∈ G such that σw has at least two cycles
of different lengths. Suppose that these lengths are `1 < `2. Then w`1 ∈ G \ {1} and stabilizes every hyperplane
of the form {zi = 0} where i belongs to the orbit of length `1.

Conversely, assume that G ⊂ F (de, e, r). If w ∈ G stabilizes the hyperplane {zi = 0} then σw(i) = i and
hence σw = id since every cycle of σw has the same length. Since pw,σ = 1 for every σ cycle of σw = 1, we get
that w = 1. If w ∈ G stabilizes Hi,j,ζ for i 6= j and ζ ∈ Ude then {σw(i), σw(j)} = {i, j}. Since every cycle of σw
is of odd length then σw(i) = i and σw(j) = j. Hence w stabilizes {zi = 0} so w = 1.
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