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1. Introduction

In 1992, Links and Gould introduced a polynomial invariant of knots and links out of a
family of 4-dimensional representations of the quantum Lie superalgebra Uqsl(2|1). This in-
variant satisfies a cubic skein relation, that is the simplest skein relation on simple crossings
that can be asked for, the quadratic one being characteristic of the HOMFLY-PT polynomial.
It shares this property with the Kauffman polynomial (which corresponds to the quantum or-
thosymplectic Lie algebras and their standard representations), but behaves quite differently,
notably with respect to disjoint union of links : the Kauffman polynomial is multiplicative
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with respect to the disjoint union of two links, whereas the Links-Gould polynomial vanishes
on such disjoint unions.

The additional skein relations satisfied by the Kauffman polynomial are relations of the
so-called Birman-Wenzl-Murakami (BMW) algebra (see [BW], [Mu]). This BMWn algebra
is a quotient of the group algebra KBn of the braid group over some field K of characteristic
0 by a generic cubic relations and by some other relation in KB3, and there exists a single
Markov trace on the tower of algebras (BMW )n, whose value on closed braids provides
the Kauffman invariant. This algebra is a deformation of the classical algebra of Brauer
diagrams, and as such admits a basis with a nice combinatorial description. It describes
the centralizer algebra of the action of Uqosp(V ) inside V ⊗n. In addition, since the faithful
Krammer representation factorizes through this BMW algebra, Bn embeds into the group
BMW×n of invertible elements of the BMW algebra ; its Zariski closure is described in [M4].

The goal of this paper is to define a similar algebra for the Links-Gould polynomial. We
first consider the corresponding centralizer algebra LGn and prove the following statement,
analogous to the well-known fact that the BMWn algebra, defined as a (quantum) centralizer
algebra, is a quotient of KBn (see corollary 4.4).

Theorem 1.1. The natural morphism KBn → LGn is surjective.

As a consequence, LGn is a natural candidate for being an analogue of the BMWn algebra
for the Links-Gould polynomial. As it is a centralizer algebra, we have a natural (combina-
torial) description of its simple modules, but we do not have yet a satisfactory description of
its elements. We have the following conjecture about its dimension.

Conjecture 1.2. For all n,

dimLGn+1 =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2

We checked this formula for n ≤ 50. It gives dimLG1 = 1, dimLG2 = 3, dimLG3 = 20,
dimLG4 = 175, dimLG5 = 1764, dimLG6 = 19404. As communicated to us by F. Chapoton,
this formula appears in the following setting. It is the number of pairs of paths, inside a
square whose side has length n + 1, which go from the top left corner to the down right by
down and right moves, which do not cross each other (see figure 1 for the corresponding 20
diagrams for LG3). It suggests the possibility of a natural basis of this algebra indexed by such
combinatorial objects. Sloane’s encyclopedia of integer sequences suggests another (related)
combinatorial interpretation, as the number of non-crossing partitions of 2n+ 1 inside n+ 1
blocs. R. Blacher suggested to us to consider it as (Cn)2(2n + 1), where Cn is the Catalan
number, and to interpret it as couples of binary trees together with a suitable marking of the
leaves. In any case, it is natural to ask for a pictorial description of this algebra, and also if
it admits a natural ‘cellular structure’ in the sense of Graham and Lehrer.

Our next goal is to get a presentation of LGn by generators and relations. We know that it
is a quotient of the generic cubic Hecke algebra, namely the quotient Hn of the group algebra
of the braid group by a generic cubic relation. The latter is an infinite dimensional algebra
for n ≥ 6 (see section 5). In [I2], Ishii introduced a relation r2 ∈ H3 satisfied inside the skein
module of the Links-Gould polynomial, and proved that the quotient of H3 by (the image
of) r2 has dimension 20. We first prove that the natural morphism H4/(r2) � LG4 is not an
isomorphism, and introduce a new relation (r3) such that H4/(r3) = H4/(r2, r3) = LG4. We
let An = Hn/(r2, r3) for n ≥ 4, A3 = H3/(r2), A2 = H2. By definition, An ' LGn for n ≤ 4.
We prove (see section 7) the following.
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Theorem 1.3.

(i) A5 ' LG5.
(ii) An is finite dimensional for all n.
(iii) There exists only one Markov trace on (An)n≥1.

We also get that there is only one Markov trace on LGn. These two algebras An and LGn
are related by An � LGn and the above theorem provides some evidence in favor of the
following conjecture.

Conjecture 1.4. For all n, An ' LGn.

The conjunction of these two conjectures clearly implies the next one :

Conjecture 1.5. For all n,

dimAn+1 =
(2n)!(2n+ 1)!

(n!(n+ 1)!)2
.

While this conjecture is open, we have two (conjecturally equal) algebras, and one may use
either of them, depending on our needs, to deal with the Links-Gould polynomial.

A computational use of the new relation r3 (that is, of the algebra An) is theoretically
possible, as it provides a new algorithm, which should use less memory space than the brutal
use of the R-matrix. Unfortunately, the relation r3 has too many terms to be printed here,
not to mention to be used by a human. A computer implementation is in progress, though.

We also use these algebras to get new proofs of known results. For instance, using the classi-
cal notations for the parameters of the polynomial, the classical form of the R-matrix (recalled

in section 3) implies that the Links-Gould polynomial takes values in Z[t
± 1

2
0 , t

± 1
2

1 ,
√

(t0 − 1)(1− t1)].
Using our results we provide another proof of the following theorem of Ishii.

Theorem 1.6. (Ishii, [I3] theorem 1) The Links-Gould polynomial takes values in Z[t±10 , t±11 ].

Proof. The algebras A3 and A4 are defined and are split semisimple over Q(t0, t1). Moreover,
the decomposition of An+1 as a An-module described in section 7 is valid over the field
Q(t0, t1), and the unicity of the Markov trace proves that it is also defined over Q(t0, t1). It
follows that the Links-Gould invariant takes value in Q(t0, t1). The conclusion follows from

the elementary fact that Z[t
± 1

2
0 , t

± 1
2

1 ,
√

(t0 − 1)(1− t1)] ∩Q(t0, t1) = Z[t±10 , t±11 ]. �

Finally, we investigate the image and kernel of the morphism Bn → LG×n , and get the
following (see section 8).

Theorem 1.7. The morphism Bn → LG×n is injective. If LGn =
⊕

1≤k≤N Matc(k)(K) is

the decomposition of LGn in a sum of matrix algebras, the Zariski closure of Bn inside LG×n
contains

⊕
1≤k≤N SLc(k)(K).

Finally, the question of whether these conjecturally equal algebras are the ‘right’ algebras,
in the sense of being the minimal ones, for the Links-Gould polynomial, is equivalent to the
following one, that we leave open for the time being.

Question 1.8. Is this Markov trace non-degenerate on An ? on LGn ?

We prove that it is non-degenerate on A4 = LG4, as it is a linear combination with non-zero
coefficients of matrix traces (see table 10), thus providing some evidence to a ‘yes’ answer to
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Figure 1. Non-crossing paths as a potential combinatorial model for LG3.

this question. A complete answer of this question for LGn should be given by the complete
determination of the similar coefficients for arbitrary n, which is an interesting task in itself.

Acknowledgements. I.M. thanks C. Gruson and P. Vogel for useful discussions on Lie
superalgebras. E.W. thanks N. Geer for fruitful email correspondence on the Links-Gould
invariant. E.W. has been partially supported by a FABER Grant X110CVHCP-2011 and
by the French ANR project ANR-11-JS01-002-01. I.M. has benefited from the ANR grant
ANR-09-JCJC-0102-01, corresponding to the ANR project ‘RepRed’.

2. Quantum definitions and properties

2.1. Lie superalgebras. We recall the basic notions about Lie superalgebras. From now
on the vector spaces under consideration are defined over a field k of characteristic 0. For
simplicity we moreover assume k ⊂ C. A superspace V is a Z/2Z-graded space V = V0⊕ V1.
An homogeneous element in V is called even if it belongs to V0, odd if it belongs to V1. We
denote |a| ∈ {0, 1} the degree of an homogeneous element. A superalgebra A is an associative
unital Z/2Z-graded algebra (that is A = A0⊕A1 with AiAj ⊂ Ai+j). The tensor superproduct
A ⊗s B of two superalgebras A,B is defined as the vector space A ⊗ B endowed with the
natural (Z/2Z)-graduation and by the multiplication (a ⊗ b)(c ⊗ d) = (−1)|b||c|(ac ⊗ bd) for
homogeneous b, c. It is straightforward to check that ((A⊗sB)⊗s C) is naturally isomorphic

to (A⊗s (B ⊗s C)), hence the superproduct A(1) ⊗s A(2) ⊗s · · · ⊗s A(n) of an ordered (finite)

family of superalgebras A(1), . . . , A(n) is well-defined.
For a superspace V = V0 ⊕ V1, the algebra End(V ) has a natural superalgebra structure,

with End(V )0 = End(V0) ⊕ End(V1) and End(V )1 = Hom(V0, V1) ⊕ Hom(V1, V0). For V,W
two superspaces, the tensor product V ⊗W has a natural superspace structure (V ⊗W )0 =
(V0 ⊗ W0) ⊕ (V1 ⊗ W1), (V ⊗ W )1 = (V0 ⊗ W1) ⊕ (V1 ⊗ W0). Assuming that V and W
are finite dimensional, there is an isomorphism End(V ) ⊗s End(W ) ' End(V ⊗ W ). It
associates to a ⊗ b ∈ End(V ) ⊗s End(W ), with homogeneous a, b, the endomorphism of

V ⊗W that maps v ⊗ w to (−1)|b||v|(av) ⊗ (bw) for homogeneous v, w. It can be extended
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to an isomorphism of superalgras End(V )⊗sn = End(V ) ⊗s End(V ) ⊗s · · · ⊗s End(V ) with
End(V ⊗ · · · ⊗ V ) = End(V ⊗n).

For the axiomatic definition of Lie superalgebras we refer to [K1], and recall the lazy
definition as a graded subspace of some associative superalgebra stable under the superbracket
defined by [a, b] = ab−(−1)|a||b|ba for homogeneous elements a, b. To each Lie superalgebra g is
associated its universal envelopping algebra Ug. It is a superalgebra with a (super)coproduct
∆ : Ug→ Ug⊗s Ug defined by ∆(a) = a⊗ 1 + 1⊗ a for a ∈ g (the definition of the ‘diagonal
homomorphism’ of [K1] is well-known to be flawed). We let ∆n : Ug → (Ug)⊗sn denote the
iterated coproduct.

2.2. Casimir operators. Let g be a finite-dimensional Lie superalgebra, with a non-degenerate
bilinear form < , > which is invariant, that is < [a, b], c >=< a, [b, c] >), supersymmetric, that

is < b, a >= (−1)|a||b| < a, b > for homogeneous a, b, and consistent, that is < g0, g1 >= 0. Let
e1, . . . , en be an homogeneous basis of g, and denote |i| = |ei|. The dual basis (ẽi) is defined by
< ẽi, ej >= δij (Kronecker symbol), and |ẽi| = |ei| = |i| by consistency. By supersymmetry,
≈
ei= (−1)|i|ei. Let Ω =

∑
i ei ⊗ ẽi ∈ g⊗ g. It is independent of the choice of the basis, as it is

the image of < , > under the isomorphism of vector spaces (g⊗g)∗ ' g∗⊗g∗ ' g⊗g induced

by < , >. In particular, Ω =
∑

i ẽi⊗
≈
ei=

∑
i(−1)|i|ẽi ⊗ ei.

The Casimir operator is the element C =
∑

i eiẽi =
∑

i(−1)|i|ẽiei ∈ Ug. It does not depend
on the choice of the basis either. Note that C ∈ Ug is even.

Let n ≥ 2. For i < j ≤ n, we let

Ωij =
∑
r

1⊗ · · · ⊗ er ⊗ 1⊗ · · · ⊗ 1⊗ ẽr ⊗ 1⊗ · · · ⊗ 1 ∈ Ug⊗sn

where the er’s are in position i and the ẽr’s are in position j. The following lemma is standard
in the classical (that is, Lie algebra) case. Its extension to the ‘super’ case is straightforward.

Lemma 2.1.

2(Ω1,n + Ω2,n + · · ·+ Ωn−1,n) = ∆n(C)−∆n−1(C)⊗ 1− 1⊗ · · · ⊗ 1⊗ C

Proof. It is easily checked that
∑

i<n Ωi,n =
∑

r ∆n−1(er)⊗ ẽr. On the other hand, ∆n(C) =∑
r ∆n(er)∆n(ẽr) is

∑
r

∑
i

1⊗ · · · ⊗ er︸︷︷︸
(i)

⊗ · · · ⊗ 1


∑

j

1⊗ · · · ⊗ ẽr︸︷︷︸
(j)

⊗ · · · ⊗ 1


that is the sum over r of∑
i<j

1⊗ · · · ⊗ er︸︷︷︸
(i)

⊗ · · · ⊗ ẽr︸︷︷︸
(j)

⊗ · · · ⊗ 1 +
∑
j<i

(−1)|er||ẽr|1⊗ · · · ⊗ ẽr︸︷︷︸
(j)

⊗ · · · ⊗ er︸︷︷︸
(i)

⊗ · · · ⊗ 1

and of ∑
i

1⊗ · · · ⊗ erẽr︸︷︷︸
(i)

⊗ · · · ⊗ 1

It follows that

∆n(C)−∆n−1(C)⊗ 1 = 1⊗(n−1) ⊗ C +
∑
r

∆n−1(er)⊗ ẽr +
∑
r

∆n−1(ẽr)⊗
≈
er
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since |er||ẽr| = |r|2 = |r| and
≈
er= (−1)|r|er, this proves the lemma. �

We recall that the Ωij satisfy the infinitesimal braids or 4T-relations, namely the 1-form∑
i<j

Ωi,jdlog(zi − zj)

is integrable on Cn
∗ = {(z1, . . . , zn) ∈ Cn | zi 6= zj}. There is a Kohno-Drinfeld type theorem

due to N. Geer (see [Ge]) saying that the representations of the braid group obtained in this
way are isomorphic to the ones originating from the Yamane quantization of the corresponding
Lie superalgebra.

2.3. The Lie superalgebras sl(2|1). When V is a superspace with V0 = km and V1 =
kn the Lie superalgebra associated to End(V ) is traditionnaly denoted gl(m|n). It admits
a linear form called the supertrace str : gl(m|n) → k defined by str(End(V )1) = 0 and
str|End(V )0 = IdEnd(V0) − IdEnd(V1). Choosing the natural homogeneous basis of V = km ⊕ kn

the elements of End(V ) are represented by matrices

(
α β
γ δ

)
, with supertrace trα − trδ.

The Lie superalgebra structure of gl(m|n) restricts to a Lie superalgebra structure on Kerstr,
denoted sl(m|n). We assume m 6= n. Then < a, b >= str(ab) defines on sl(m|n) a bilinear
form fulfilling the requirements of section 2.2.

We now specialize to the case m = 2, n = 1, and choose for basis of sl(2|1) the following
elements

h1 =

 1 0 0
0 −1 0
0 0 0

h2 =

 0 0 0
0 1 0
0 0 1

 e1 =

 0 1 0
0 0 0
0 0 0

 f1 =

 0 0 0
1 0 0
0 0 0


e2 =

 0 0 0
0 0 1
0 0 0

 f2 =

 0 0 0
0 0 0
0 1 0

 [e1, e2] =

 0 0 1
0 0 0
0 0 0

 [f1, f2] =

 0 0 0
0 0 0
−1 0 0


The elements h1, h2, f1, f2 are even, the other four are odd. We have [hi, hj ] = 0, [hi, ej ] =
aijej , [hi, fj ] = −aijfj , [ei, fj ] = δijhi, [e2, e2] = [f2, f2] = 0, [e1, [e1, e2]] = [f1, [f1, f2]] = 0

with (aij)i,j the Cartan matrix

(
2 −1
−1 0

)
, so our notations are compatible with [GP].

These 8 elements are weight vectors under the adjoint representation for the Cartan sub-
algebra h spanned by h1, h2. Clearly h is a subspace of the space d of the diagonal matrices
in gl(2|1). Following [K2] we let εK1 , ε

K
2 , δ

K
1 ∈ d∗ denote the dual basis of the diagonal vectors

E11, E22, E33. Under the natural restriction map d∗ → h∗ one has εK1 7→ h∗1, ε
K
2 7→ h∗2 − h∗1,

δK1 7→ h∗2, where (h∗1, h
∗
2) denotes the dual basis of (h1, h2). Recall that a root α ∈ h∗ is called

even (odd) if the corresponding eigenspace is even (odd). The only positive even root is thus
α1 = εK1 −εK2 = 2h∗1−h∗2, the odd ones are α2 = εK2 −δK1 = −h∗1, α1+α2 = εK1 −δK1 = h∗1−h∗2. It
follows that the ‘super half-sum’ of the positive roots is ρ = 1

2(α1−(α2+α1+α2) = −α2 = h∗1.

2.4. Highest weight modules for sl(2|1). To each λ ∈ h∗ one can associate a Kac module
V (λ) for sl(2|1), which is an irreducible heighest weight module, if < λ + ρ, α >6= 0 for odd
root α (see [K2]). Such a weight is called typical. The Cartan matrix is the matrix in the
basis (h1, h2) of the Killing form a, b 7→< a, b >= str(ab) to the Cartan subalgebra h. We
have h∗1 =< −h2, · > and h∗2 =< −h1 − 2h2, · >. It follows that the induced bilinear form
< , > on h∗ satisfies < h∗1, h

∗
1 >= 0, < h∗1, h

∗
2 >= −1, < h∗2, h

∗
2 >= −2. In particular, for
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λ = a1h
∗
1 + a2h

∗
2 one computes < λ + ρ,−h∗1 >= a2 and < λ + ρ, h∗1 − h∗2 >= a1 + a2 + 1.

Thus λ is typical if a2 6= 0 and a1 + a2 + 1 6= 0.
In that case, the (usual) dimension of V (λ) is 4 < λ − α2, α1 >= 4(a1 + 1), and its odd

and even parts have the same dimension 2(a1 + 1).
Finally, the value of C on V (λ) for a typical λ is < λ, λ + 2ρ >. We find C|V (λ) =

−2a2(a1 + a2 + 1).
Letting V (a1, a2) denote the highest weight module with weight a1h

∗
1 + a2h

∗
2, which is

typical for a2 6= 0 and a1 + a2 + 1 6= 0. If a1 6= 0, then V (a1, a2)⊗ V (0, b2) is isomorphic to

V (a1, a2 + b2)⊕ V (a1 + 1, a2 + b2)⊕ V (a1 − 1, a2 + b2 + 1)⊕ V (a1, a2 + b2 + 1)

whenever all the weights involved are typical. When a1 = 0, and under the same conditions,
it is isomorphic to V (a1, a2 + b2) ⊕ V (a1 + 1, a2 + b2) ⊕ V (a1, a2 + b2 + 1) (see [GP] lemma
1.3 or [Gr] proposition 4.1).

2.5. The bimodules V (0, α)⊗2. According to the Clebsh-Gordan decomposition above, for
generic values of α we have V (0, α) ⊗ V (0, α) = V (0, 2α) ⊕ V (0, 2α + 1) ⊕ V (1, 2α), with C
taking values −4α(2α+ 1), −4(α+ 1)(2α+ 1), −8α(α+ 1) and the supersymmetrizer τ the
values 1, 1,−1 (see [LG]). Since, on V (0, α), C takes value −2α(α + 1), then Ω12 takes the
values −2α2, −2(α+ 1)2, −2α(α+ 1).

3. The Links-Gould invariant of links

In this section, we give a definition of the Links-Gould invariant [LG] of links. It is an
2-variable invariant constructed by using the Reshetikhin-Turaev recipe [RT] applied to a
one-parameter family of representations of the quantum supergroup Uq(sl(2, 1)) – or Ugl(2|1),
which does not make any difference, see e.g. the introduction of [DIL]. It is naturally defined
to be an invariant of (1-1)-tangle [DWKL] and turn’s out to be in fact an invariant of links
(see Remark [GP]). For convenience we define following closely Ishii [I1] the Links-Gould
invariant as a partial trace on the braid group.

Recall that it follows from Alexander theorem [AL] that any link can be presented as the
closure of a braid. In addition Markov’s theorem [MA] precises exactly when two braids
represent the same link. Hence one can always define a link invariant on a braid closure
representative, as long as it is invariant under the Markov moves (see also Section 7).

Let K be a field of characteristic 0 containing two algebraically independent elements
t0, t1 ∈ K×, as well as the square roots

√
t0,
√
t1 and

√
(t0 − 1)(1− t1). Consider a four-

dimensional vector space V over K with basis (e1, e2, e3, e4). Recall that a R-matrix R is an
invertible element of End(V ⊗V) that satisfies the Yang-Baxter equation:

(IdV ⊗R)(R⊗ IdV )(IdV ⊗R) = (R⊗ IdV )(IdV ⊗R)(R⊗ IdV ).

An endomorphism A of V ⊗ V will be represented by a matrix (Ai,j)i,j∈[|1,16|] where

A4(i−1)+j,4(k−1)+l = Ai,jk,l with A(ek ⊗ el) =
4∑

i,j=1

Ai,jk,lei ⊗ ej for all k, l = 1, . . . , 4.

The endomorphism R ∈ End(V ⊗V ) given by the following matrix (Ri,j)i,j∈[|1,16|] [DWKL] is
a R-matrix :
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

t0 · · · · · · · · · · · · · · ·
· · · · t

1/2
0 · · · · · · · · · ·

· · · · · · · · t
1/2
0 · · · · · · ·

· · · · · · · · · · · · 1 · · ·
· t

1/2
0 · · t0 − 1 · · · · · · · · · · ·

· · · · · −1 · · · · · · · · · ·
· · · · · · t0t1 − 1 · · −t1/20 t

1/2
1 · · −t1/20 t

1/2
1 Y · · ·

· · · · · · · · · · · · · t
1/2
1 · ·

· · t
1/2
0 · · · · · t0 − 1 · · · · · · ·

· · · · · · −t1/20 t
1/2
1 · · · · · Y · · ·

· · · · · · · · · · −1 · · · · ·
· · · · · · · · · · · · · · t

1/2
1 ·

· · · 1 · · −t1/20 t
1/2
1 Y · · Y · · Y 2 · · ·

· · · · · · · t
1/2
1 · · · · · t1 − 1 · ·

· · · · · · · · · · · t
1/2
1 · · t1 − 1·

· · · · · · · · · · · · · · · t1



,

where Y = ((t0 − 1)(1− t1))
1
2 .

Let Bn be the braid group on n strands with Artin generators s1, . . . , sn−1. A R-matrix
R ∈ End(V ⊗V ) defines a representation ρnR of the braid group in Aut(V ⊗n) by sending si to

Id
⊗(i−1)
V ⊗R⊗ Id

⊗(n−1−i)
V ∈ Aut(V ⊗n), for i = 1, . . . , n−1. In addition denote µ the automor-

phism of V defined by µ(ei) = µiei for i = 1, . . . 4 where (µ1, µ2, µ3, µ4) = (t−10 ,−t1,−t−10 , t1).

Given A ∈ End(V ⊗n) such that

A(ei1 ⊗ · · · ⊗ ein) =
∑

1≤j1,...,jn≤4
Aj1,...,jni1,...,in

ej1 ⊗ · · · ⊗ ejn ,

define for m = 1, . . . , n the partial trace operator trmn (A) ∈ End(V ⊗(n−m)) by

trmn (A)(ei1 ⊗ · · · ⊗ ein−m) =
∑

1≤j1,...,jn≤4
A
j1,...,jn−m,jn−m+1,...,jn
i1,...,in−m,jn−m+1...,jn

ej1 ⊗ · · · ⊗ ejn−m .

Given a braid β ∈ Bn we denote by β̂ the closure of β (see Figure (2)) we define the Links-

Gould invariant LG(β̂; t0, t1) of the link β̂ by the following formula:

trn−1n ((IdV ⊗ µ⊗(n−1))(ρnR(β)) = LG(β̂; t0, t1)IdV .

BnBn

Figure 2. Closure of a braid and partial closure of a braid.
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The Links-Gould invariant can also be defined by considering the right picture of Figure (2)
which describes a topological partial trace and use the tangle invariant construction described
in [DWKL] (notice that one just needs to assign an endomorphism to each cup or cap). These
two constructions coincide up to a change of variables.

The R-matrix that we introduced here has for eigenvalues −1, t0, t1. Rescaling the R-matrix
construction by si 7→ (−a)si with a ∈ K×, we get a representation Bn → GL(V ⊗n) in which
the image of si is annihilated by the cubic polynomial (X − a)(X − b)(X − c), with b = −t0a,
c = −t1a. We use this renormalization from now on.

4. The morphism KBn � LGn(α)

We take g = sl(2|1) and we let LGn(α) denote the commutant algebra of the image of Ug
inside End(V (0, α)⊗n). Note that LGn(α) ⊂ LGn+1(α) under m 7→ m⊗ 1.

It contains the group algebra kSn of the symmetric group, as well as the image LGn(α) of
the Lie algebra Tn of infinitesimal braids (or horizontal chord diagrams), also known as the
holonomy Lie algebra of the space Cn

∗ . Recall that this algebra Tn is generated by elements
tij which are dual to the 1-forms dlog(zi − zj), and which satisfy the relations tij = tji,
[tij , tik + tkj ] = 0 and [tij , tkl] = 0 whenever #{i, j, k, l} = 4. The morphism Tn → LGn(α) is
given by tij 7→ Ωij .

Let Tn be the image of
∑

1≤i,j≤n tij in LGn(α).

We let [a, k]r = ah∗1+(rα+k)h∗2 for 0 ≤ a ≤ r−1, 0 ≤ k ≤ r−a−1, that we identify with the
corresponding module V (a, k+rα). We also replace ⊕ by + when it lightens notations. Notice
that rα+k 6= 0 and a+rα+k+1 6= 0 for α 6∈ Q<0. The tensor product decomposition above
is thus translated as [a, k]r⊗V (0, α) = [a−1, k+1]r+1 +[a, k]r+1 +[a, k+1]r+1 +[a+1, k]r+1,
under the convention that [a, l]r+1 is omitted if a < 0. From this we get that, if a ≥ 2,

[a, k]r ⊗ V (0, α)⊗2 = [a− 2, k + 2]r+2 + 2[a− 1, k + 1]r+2 + 2[a− 1, k + 2]r+2

+4[a, k + 1]r+2 + [a, k]r+2 + 2[a+ 1, k]r+2

+[a, k + 2]r+2 + 2[a+ 1, k + 1]r+2 + [a+ 2, k]r+2

and in particular [0, 0]1 ⊗ V (0, α) = [0, 0]2 ⊕ [0, 1]2 ⊕ [1, 0]2.
We note the following decompositions

[a, k]r ⊗ V (0, 2α) = [a, k]r+2 + [a+ 1, k]r+2 + [a− 1, k + 1]r+2 + [a, k + 1]r+2 if a 6= 0
[0, k]r ⊗ V (0, 2α) = [0, k]r+2 + [1, k]r+2 + [0, k + 1]r+2

[a, k]r ⊗ V (0, 2α+ 1) = [a, k + 1]r+2 + [a+ 1, k + 1]r+2 + [a− 1, k + 2]r+2 + [a, k + 2]r+2 if a 6= 0
[0, k]r ⊗ V (0, 2α+ 1) = [0, k + 1]r+2 + [1, k + 1]r+2 + [0, k + 2]r+2

Since V (0, α)⊗ V (0, α) = V (0, 2α) + V (0, 2α+ 1) + V (1, 2α) it follows that

[a, k]r ⊗ V (1, 2α) = [a− 2, k + 2]r+2 + [a− 1, k + 1]r+2 + [a− 1, k + 2]r+2 + 2[a, k + 1]r+2

+[a+ 1, k]r+2 + [a+ 1, k + 1]r+2 + [a+ 2, k]r+2

Theorem 4.1. For generic values of α, the image of UTn in End(V (0, α)⊗n) is LGn(α).

Proof. The techniques used to prove the result are inherited from [M1], to which the reader
can report for a detailed description of the general setting. The value of C on [a, k]r is
−2(rα + k)(rα + k + a + 1). It is a polynomial of degree 2 in α with dominant term −2r2,
hence it is uniquely defined by its roots −k/r and −(k + a + 1)/r. For a given r, no two
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such polynomial can be equal, as {−k/r,−(k + a + 1)/r} = {−k′/r,−(k′ + a′ + 1)/r} iff
{k, k + a+ 1} = {k′, k′ + a′ + 1}, and k is determined by k = min{k, k + a+ 1}.

We now consider a given r, and the UTr module HomUg([a, k]r, V (0, α)⊗n), with g = sl(2|1).
We choose a basis compatible with the Bratteli diagram (that is, a basis of highest weight

vectors for all ∆s(g)⊗ 1⊗(r−s) for all s ≤ r). We call such a basis a standard basis. See table
1 for the beginning of the Bratteli diagram.

The above remark on the Casimir together with lemma 2.1 imply that, when restricted to
the commutative Lie subalgebra Dr of Tr generated by the t1,r + · · · + tr−1,r, the restriction
of this Tr-module is the multiplicity-free sum of 1-dimensional representations, this decom-
position being necessarily given by a standard basis. In particular, the image of UDr in such
a basis is the whole algebra of diagonal matrices. In order to prove the theorem, we more-
over only need to show that such a UTr-module is irreducible, as the eigenvalues of

∑
Ωij

determine the value of ∆r(C) hence the module [a, k]r.
In order to prove the irreducibility, we make the following remark. Let tr = t1,r+· · ·+tr−1,r

and Y = tr− tr−1, s the transposition (r− 1, r), and u = tr−1,r. We introduce the subalgebra
L of Sr n UTr generated by s, u and Y , and L the Lie subalgebra of Tr generated by u and
Y . Note that they commute with UTr−2, and that the image of L in EndUg(V (0, α)⊗r) is the
same as the image of UL ⊂ UTr, as the image of s is a polynomial (depending on α) of the
image of u, at least for generic values of α (this last assertion needs only to be checked for
r = 2, and in this case it follows from the spectral decomposition of V (0, α)⊗2).

Now, the restriction to UTr−2 × UL of HomUg([a, k]r, V (0, α)⊗r) is⊕
b,l

HomUg([b, l]r−2, V (0, α)⊗(r−2))⊗HomUg([a, k]r, [b, l]r−2 ⊗ V (0, α)⊗2)

We first prove that is sufficient to show that the UL-modules HomUg([a, k]r, [b, l]r−2⊗V (0, α)⊗2)
are irreducible. Indeed, any stable subspace of HomUg([a, k]r, V (0, α)⊗r) need to have for ba-
sis a subset B0 of our given (standard) basis B. Note that this standard basis is naturally
indexed by sequences of Ug-modules of the form ([a1, k1]1, [a2, k2]2, . . . , [ar = a, kr = k]r) or,
more combinatorially, by paths in the Bratteli diagram.

By induction on r, we can assume that all the HomUg([b, l]r−1, V (0, α)⊗(r−1)) are irreducible
under the action of UTr−1. Since the restriction of HomUg([a, k]r, V (0, α)⊗r) to UTr−1 is⊕

b,l

HomUg([b, l]r−1, V (0, α)⊗(r−1))⊗HomUg([a, k]r, [b, l]r−1 ⊗ V (0, α))

(with UTr−1 acting trivially on the second tensor factor) this implies that, if some γ =
(γ1, . . . , γr = [a, k]r) belongs to B0, then all the elements of B with the same γr−1 belong to
B0. From the Bratteli diagram it is clear that, if B0 6= B, there exist δ ∈ B \ B0 and γ ∈ B0
which differ only at the place r − 1, that is γi = δi for i 6= r − 1. But if we know in addition
that the UL-action on HomUg([a, k]r, γr−2 ⊗ V (0, α)⊗2) = HomUg([a, k]r, δr−2 ⊗ V (0, α)⊗2) is
irreducible, there exists an element of UL that maps γ and δ, which proves the contradiction
that we want.

We now prove that every M = HomUg([a, k]r, [b, l]r−2 ⊗ V (0, α)⊗2) is an irreducible UL-
module, or equivalently an irreducible L-module. There are several cases to consider. We
contend ourselves with the most difficult (4-dimensional) one, the other ones being similar and
easier (and basically already dealt with in [M1], annexe). This is the case where [b, l]r−2 =
[a, k − 1]r−2, with a ≥ 1. For the action of u and s, M can be decomposed as D1 ⊕D2 ⊕ U
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with dimD1 = dimD2 = 1, dimU = 2, and

D1 = HomUg([a, k]r, [a, k − 1]r−2 ⊗ V (0, 2α))
D2 = HomUg([a, k]r, [a, k − 1]r−2 ⊗ V (0, 2α+ 1))
U = HomUg([a, k]r, [a, k − 1]r−2 ⊗ V (1, 2α))

We choose a basis of M compatible with this decomposition. In such a basis, we have

u = −2


α2 0 0 0
0 (α+ 1)2 0 0
0 0 α(α+ 1) 0
0 0 0 α(α+ 1)

 s =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


Now, we note that s, u and Y are related by the (easy-to-check) relation Y + sY s = 2u. This
relation implies that Y has the form (

D M
N vId

)
with M,N,D, Id ∈Mat2(k),

D = −2

(
α2 0
0 (α+ 1)2

)
Id =

(
1 0
0 1

)
and v = −2α(α + 1). We now compute the eigenvalues of Y , using lemma 2.1. Recall the
part of the Bratteli diagram that is involved here.

[a, k − 1]r−2

ss ww '' ++
[a− 1, k]r−1

++

[a, k − 1]r−1

''

[a, k]r−1

ww

[a+ 1, k − 1]r−1

ss
[a, k]r

By lemma 2.1, the eigenvalues of Y are the ones of (∆r(C)+∆r−2(C)⊗1⊗1−2∆r−1(C)⊗1)/2,
that is −2(α2 + α− a

2 ),−2(α2 + rα+ k + a
2 ),−2(α2 + (2− r)α− a

2 − k),−2(α2 + α+ a
2 + 1).

Since a ≥ 1 and r ≥ 3, we note that Y and u share no common eigenvalue for generic α. This
implies the following

• detM 6= 0, for otherwise there would exist some m = (x, y) ∈ k2 in KerM , hence
Y m̃ = vY for m̃ = (0, 0, x, y) contradicting v 6∈ Sp(Y ).
• the columns of N are non-zero.

Since Y has the same eigenvalues as its transpose, this implies also that detN 6= 0 and that
the rows of M are non-zero. It is then straightforward to check that these conditions imply
the irreducibility of M under u and Y , unless Y has one of the following two forms

Y = −2


α2 0 x 0
0 (α+ 1)2 0 y
z 0 α(α+ 1) 0
0 t 0 α(α+ 1)

 or Y = −2


α2 0 0 x
0 (α+ 1)2 y 0
0 z α(α+ 1) 0
t 0 0 α(α+ 1)


But in these two cases, Y would have two distinct eigenvalues whose sum is−2(α2+α(α+1)) =
−2(2α2 + α) (the two others having sum −2((α+ 1)2 + α(α+ 1)) = −2(2α2 + 3α+ 1)). It is
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[1, 0]4

uu

{{ ��

))

[1, 1]4

uu

{{ ��

))

[1, 2]4

uu

{{ ��

))

[2, 0]4

uu

{{ ��

��

[2, 1]4

uu

{{ ��

��

[3, 0]4

��{{ww

uu
[0, 0]5 [0, 1]5 [0, 2]5 [0, 3]5 [0, 4]5 [2, 0]5 [2, 1]5 [2, 2]5

[1, 0]5 [1, 1]5 [1, 2]5 [1, 3]5 [3, 0]5 [3, 1]5 [4, 0]5

Table 1. Bratteli diagram for r ≤ 5 : labels

immediately checked that, when r ≥ 3, this cannot happen for generic α, and this concludes
the proof. �

This theorem implies the following.

Corollary 4.2. For generic values of α, the monodromy morphisms C((h))Pn → LGn(α)
are surjective, where Pn denotes the pure braid group on n strands.

Proof. The monodromy construction provides a morphism APn → LGn(α) where A = C[[h]].
The image of Pn is generated by elements whose image is 1 + 2hΩij + higher terms . The
conclusion is then an elementary application of Nakayama’s lemma. �

Remark 4.3. In the case of ordinary Lie algebras, the list of cases for which we have a
similar property has been obtained in [LZ].

Since, for generic α ∈ k, the Bratteli diagram does not depend on α, we can define a generic
version of the split semisimple (tower of) algebra(s) LGn(α), defined over an arbitrary field K,
that we denote LGn. By the R-matrix construction, we get a morphism KBn → LGn, with K
as in section 3. By the Kohno-Drinfeld theorem of N. Geer, this morphism is conjugated, up to
a convenient embedding K ↪→ C((h)), to the monodromy morphisms considered above. This

embedding maps q 7→ e−h, t0 7→ q−2α, t1 7→ q2(α+1), a 7→ (−1)q2α(α+1) = − exp(−2hα(α+1)),
b = −at0 7→ exp(−2hα2), c = −at1 7→ exp(−2h(α+ 1)2).

The previous corollary thus implies the following one.

Corollary 4.4. The morphism KPn → LGn is surjective, where Pn denotes the pure braid
group on n strands.

5. Cubic Hecke algebras and their representations

5.1. Definition and general properties. Let K be a field of characteristic 0, and a, b, c ∈
K×. The cubic Hecke algebra Hn = Hn(a, b, c) is the quotient of the group algebra KBn of
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1

��
V (0, α)

vv �� ''
V (0, 2α)

ww ++��
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Figure 3. Generic encoding of the sl(2|1)-modules on the Bratteli diagram
for r ≤ 3.
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Table 2. Bratteli diagram for r ≤ 5 : dimensions
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the braid group by the relations (si − a)(si − b)(si − c) = 0 or, equivalently, by the single
relation (s1 − a)(s1 − b)(s1 − c) = 0, since all si’s are conjugated in Bn. In case a, b, c are
three distinct roots of 1, Hn is the group algebra of the group Γn = Bn/s

3
i = Bn/s

3
1, which is

known to be finite if and only if n ≤ 5, by a theorem of Coxeter (see [Co]).
We recall from [M5] the following theorem

Theorem 5.1. Let K denote the algebraic closure of K. If a, b, c are algebraically independant
over Q, then Hn ' KΓn for n ≤ 5. Moreover, these isomorphisms can be chosen so that the
natural diagrams commute

H2
//

��

H3
//

��

H4
//

��

H5

��
KΓ2

// KΓ3
// KΓ4

// KΓ5

and they are uniquely defined up to inner automorphism. In particular the correspondence
between irreducible representations of KΓn and Hn is canonical.

A consequence of this theorem is that the algebras Hn are semisimple, and thus isomorphic
(over K) to a direct sum of matrix algebras, each of the matrix algebras corresponding to an
irreductible character of Γn.

Note that, inside LGn(α), s1 acts as a conjugate of τ exphΩ12, with τ,Ω12 as in section
2.5, and thus it acts semisimply with eigenvalues b = exp−2hα2, c = exp−2h(α + 1)2, a =
− exp−2hα(α+ 1). For generic values, 1, α and α2 are linearly independent over Q, and thus
these eigenvalues are algebraically independent. We can thus consider LGn as a quotient of
Hn, that is LGn = Hn/In for an ideal In over Hn. By the above theorem, In is itself a sum
of matrix algebras, and is uniquely determined by the irreducible representations of Hn which
are not annihilated by In.

Recall from [M5] that H3 = H2 + H2s2H2 + H2s
−1
2 H2 + H2s2s

−1
1 s2, that is H3 = H2 +

H2s2H2 + H2s
−1
2 H2 + Ks2s

−1
1 s2 + Ks1s2s

−1
1 s2 + Ks−11 s2s

−1
1 s2. In particular a Markov

trace on H3 is uniquely determined by its value on H2 and its value on s−11 s2s
−1
1 s2, since

tr((s1s2s
−1
1 )s2) = tr((s2s1s2)s

−1
1 ) = tr(s1s2s1s

−1
1 ) = tr(s1s2). Notice that the value on

s−11 s2s
−1
1 s2 is the value of the corresponding link invariant on the figure-eight knot 41.

5.2. The cubic algebra on 3 strands and Ishii’s relations. We recall from [Co] that Γ3

is a semidirect product Q8o(Z/3), where Q8 is a quaternion group of order 8. Its deformation
H3 admits

• three 1-dimensional representations Sx for x ∈ {a, b, c}, defined by si 7→ x.
• three 2-dimensional representations Tx,y indexed by the subsets {x, y} ⊂ {a, b, c} of

cardinality 2,
• one 3-dimensional representation V .

The spectrums of the generators are Sp(Sx(si)) = {x}, Sp(Tx,y(si)) = {x, y}, Sp(V (si)) =
{a, b, c}. In particular, these irreducible representations of B3 (or H3) can be uniquely iden-
tified through their restriction to B2. One has matrix models over K of these irreducible
representations (see below), hence H3 is split semisimple, and we have

H3 ' K ×K ×K ×M2(K)×M2(K)×M2(K)×M3(K)

and every ideal of H3 is a sum of some of these matrix algebras. For instance, the ideal
corresponding to the BMW algebra has the form K ×M2(K) ×M3(K), whereas the ideal
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corresponding to the Funar-Bellingeri quotient of [BF] (see also [CM], [M5]) is Z(H3) =
K×K×K. The mere fact that dimLG3 = 20 = 24− 22 imposes that the ideal defining LG3

as a quotient of H3 is one of the M2(K), precisely the only one which does not correspond
to a representation of LG3. From the Bratteli diagram of LG3(α) we get that our choice of
parameters imposes that it is Tb,c. Since it is a simple ideal, it is clearly generated by either
one of the non-trivial Ishii’s relation of [I2]. The fact that at least one of Ishii’s relation is
non trivial in H3 is easily checked, and can be used to provide another quick proof of theorem
1 of [I2]. We choose one of these non-trivial relations and call it r2.

5.3. Description of the representations of H4. A description of the irreducible represen-
tations of H4 can be found in [M1]. We use the same notation here. There are

• three 1-dimensional representations Sx for x ∈ {a, b, c}, defined by si 7→ x.
• three 2-dimensional representations Tx,y indexed by the subsets {x, y} ⊂ {a, b, c} of

cardinality 2, which factorize through the special morphism B4 → B3 (hence through
H3).
• one 3-dimensional representation V , factorizing through B3.
• six 3-dimensional representations Ux,y for each tuple (x, y) with x 6= y and x, y ∈
{a, b, c}.
• six 6-dimensional representations Vx,y,z for each tuple (x, y, z) with {x, y, z} = {a, b, c}
• three 8-dimensional representations Wx for x ∈ {a, b, c}
• two 9-dimensional representations X, X ′.

Except for X,X ′, they are uniquely defined by their restriction to B3. If one let Sx, Tx,y, V
also denote the (irreducible) restriction to B4 of the representations Sx, Tx,y, V , we have

ResUx,y = Sx + Tx,y
ResVx,y,z = Sx + Tx,y + V
ResWx = Sx + Tx,y + Tx,z + V
ResX = Tx,y + Tx,z + Ty,z + V

The representations Tx,y of B3 are well-determined by their restriction to B2 : with obvious
notations, ResB2Tx,y = Sx + Sy.

A complete set of matrices for these representations was first found by Broué and Malle
in [BrMa]. Other constructions were subsequently given, in [M1] and [MM]. The latter ones
have been included in the development version of the CHEVIE package for GAP3, and the
order in which they are stored in this package at the present time is Sa, Sb, Sc, Tb,c, Ta,b, Ta,c, V ,
Ub,a, Ua,c, Uc,b, Uc,a, Ua,b, Ub,c, Vc,a,b, Vb,c,a, Va,b,c, Vb,a,c, Vc,b,a, Va,c,b,Wa,Wc,Wb, X,X

′.
For the convenience of the reader, we provide these models in tables 3 and 4.

5.4. Representations of H4 which factorize through LG4. Since LG3 is the quotient
of H3 by the ideal corresponding to its representation Tb,c, It follows that the quotient of
the group algebra of B4 by the cubic relation and (r2) can be identified with the quotient
of H4 by the ideal J corresponding to all irreducible representations whose restriction to H3

contains an irreducible component of type Tb,c. Viewed the other way round, this proves
that the quotient algebra H4/J is a semisimple algebra whose irreducible representations are
the irreducible representations of H4 whose restriction to H3 do not contain an irreducible
component of type Tb,c.

From the description of the branching rule we get that these representations are the Sx
for x ∈ {a, b, c}, Ta,b, Ta,c, V , Ua,b, Ub,a, Ua,c, Uc,a, Va,b,c, Vb,a,c, Va,c,b, Vc,a,b, Wa, hence the
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Ta : s1 7→
(
b 0
bc c

)
s2 7→

(
c −1
0 b

)
s3 7→

(
b 0
bc c

)

V : s1 7→

 c 0 0
ac+ b2 b 0

b 1 a

 s2 7→

a −1 b
0 b −ac− b2
0 0 c

 s3 7→

 c 0 0
ac+ b2 b 0

b 1 a


Ua,b : s1 7→

b 0 0
0 a 0
a 0 a

 s2 7→

a −a+ b −b
0 b −b
0 0 a

 s3 7→

 a 0 0
0 a 0
−a 2a b


Table 3. Representations of H4, first part.

Va,b,c Wa X
a 0 0 0 0 0

ac+ b2 b 0 0 0 0
b 1 c 0 0 0
0 0 0 a 0 0
0 0 0 0 a 0
0 0 0 1 0 b





b 0 0 0 0 0 0 0
1 c 0 0 0 0 0 0
c ab+ c2 a 0 0 0 0 0
0 0 0 b 0 0 0 0
−1 −c 0 b a 0 0 0
0 0 0 0 0 c 0 0
0 0 0 b 0 −1 a 0
0 0 0 0 0 b− c 0 a





c 0 0 0 0 0 0 0 0
ac+ b2 b 0 0 0 0 −j2bc 0 0

b 1 a 0 0 0 c 0 0
0 0 0 a 0 0 −c jc a+ j2b

j2a− b 0 0 0 b 0 0 0 0
j2a 0 0 0 b a 0 0 0
0 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 j2c b


c −1 b −1 −b a
0 b −ac− b2 0 0 −ab
0 0 a 0 0 0
0 0 0 b ac+ b2 −ab
0 0 0 0 a 0
0 0 0 0 0 a





a −ab− c2 c 0 0 0 0 0
0 c −1 0 0 0 0 0
0 0 b 0 0 0 0 0
0 −a 0 a −a 0 0 0
0 0 0 0 b 0 0 0
0 0 −a 0 −ac a ac 0
0 0 −1 0 b− c 0 c 0
0 0 −c 0 bc− c2 0 ab+ c2 a





a −1 b −jb 0 0 0 0 b
0 b −ac− b2 −ac+ jb2 0 0 0 0 −ac− b2
0 0 c 0 0 0 0 0 0
0 0 0 c 0 0 0 0 0
0 0 a a a −a 0 0 0
0 0 jb 0 0 b 0 0 0
0 0 0 a 0 0 a a a
0 0 0 0 0 0 0 b −jb
0 0 0 0 0 0 0 0 c


a 0 0 0 0 0
0 a 0 0 0 0
0 0 a 0 0 0

ac+ b2 0 0 b 0 0
−b 0 0 −1 c 0
0 1 0 0 0 b





a 0 0 bc− c2 0 0 0 0
0 a 0 c 0 −1 0 0
0 0 a 0 0 b− c ac+ c2 −c
0 0 0 c 0 0 0 0
0 0 0 0 a 1 −a 0
0 0 0 0 0 b 0 0
0 0 0 0 0 0 c −1
0 0 0 0 0 0 0 b





c 0 0 0 0 0 0 0 0
ac+ b2 b 0 0 −j2bc 0 0 0 0

0 0 b 0 0 −j2c 0 0 0
0 0 a+ j2b a −c −jc 0 0 0
0 0 0 0 c 0 0 0 0
0 0 0 0 0 c 0 0 0

j2a− b 0 0 0 0 0 b 0 0
−j2a 0 0 0 0 0 −b a 0
b 1 0 0 c 0 0 0 a


Images of s1, s2, s3 (from top to bottom) under Va,b,c, Wa and X.

In these formulas, j denotes a third root of 1.

Table 4. Representations of H4, second part.
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corresponding quotient has dimension 12 × 3 + 22 × 2 + 32 + 32 × 4 + 62 × 4 + 82 × 1 = 264.
From the Bratteli diagrams of section 4 we can compute dimLGn for arbitrary n, and we get
that LG4 has dimension 175. This proves that Ishii’s relations are not sufficient to define
LGn. More precisely :

Proposition 5.2. The quotient of KB4 by a generic cubic relation r1 and Ishii’s relation r2
has dimension dimKB4/(r1, r2) = dimH4/(J) = 264 > dimLG4 = 175.

Remark 5.3.

(i) The following argument, by contradiction, could alternatively be used to show that
KB4/(J) 6= LG4. Up to some permutation of the parameters, BMW3 is a quotient
of LG3. Since the relations of BMWn are on 3 strands, this implies that BMW4

is a quotient of KB4/(J). But it is not a quotient of LG4, and actually even the
(ordinary, quadratic) Hecke algebra on 4 strands is not a quotient of LG4 ; this can
indeed be inferred from the fact that the Bratteli diagram for the representation of
the Hecke algebra traditionnally indexed by the partition [2, 2] does not appear as a
sub-diagram inside the Brattelli diagram of LG4.

(ii) By the same method, one can get the dimension of KB5/(r1, r2). It is 6490.

We now explain how to get a matrix description of LG4. Since each irreducible rep-
resentation of H4 is well-determined from its restriction to H3, the Bratteli diagram ob-
tained before determines the irreducible representation of LG4 ; they are the Sa, Sb, Sc,
Ub,a, Ua,c, Uc,a, Ua,b, Vc,a,b, Vb,a,c,Wa. This provides an explicit morphism Φ : KB4 � K3 ×
M3(K)4 ×M6(K)2 ×M8(K) ' K175 factorizing though H4 whose image can be identified
with LG4.

1

��
1

|| �� !!
Sc

{{ ((��

Sb

��}} ((

Sa

vv �� "" ((
Sc

++}} ��

V

{{ �� **

Sb

}} �� **

Ta,c

tt �� !! **

Ta,b

tt �� !! **

Sa

}} "" (( **Sc Vc,a,b Vb,a,c Sb Uc,a Wa Ub,a Ua,c Ua,b Sa
In the forecoming section we will use this matrix description to get a inductive properties

of this algebra. Before that, we conclude the present section by describing the part of LGn
which factorizes through ordinary quadratic Hecke algebras.

There is clearly one quotient of LGn which factors through a quadratic Hecke algebra
for each irreducible component [u, v]2 of V (0, α)⊗2 : if 〈u, v〉2 denotes the simple ideal of
LG2 corresponding to it, then LGn/〈u, v〉2 is a quotient of a quadratic Hecke algebra. Any
quotient of a quadratic (generic) Hecke algebra is uniquely determined by its irreducible
representations, namely the irreducible representations of the Hecke algebra (indexed as usual
by partitions of n) which factor through it. It follows that this quotient can be uniquely



18 Ivan Marin & Emmanuel Wagner

identified by its Bratteli diagram, which is the part of the Bratteli diagram of LGn made
of the paths which do not pass through [u, v]2. When [u, v]2 = [1, 0]2 we easily get from
this description that the irreducible representations of LGn/〈1, 0〉2 are the 1-dimensional
representations corresponding to [0, 0]n and [0, n − 1]n, hence LGn/〈1, 0〉2 ' K2. Under
the correspondence between irreducible representations of the quadratic Hecke algebras and
partitions, which is canonical up to the operation of transposing all Young diagrams at the
same time, we have for instance [0, 0]n 7→ [n], [0, n − 1]n 7→ [1n]. When [u, v]2 = [0, 0]2, we
get that the irreducible representations of LGn/〈0, 0〉2 are the [n −m,m]n for 1 ≤ m ≤ n,
and that the correspondence with partitions can be chosen to be [n − m,m]n 7→ [n − m +
1, 1m−1]. The situation is similar with [u, v]2 = [0, 1]2, the correspondence being given by
[m, 0]n 7→ [n −m, 1m]. Since the quotient of the quadratic Hecke algebra whose irreductible
representations are indexed by hook partitions, which is a centralizer algebra for gl(1|1) inside
End(U⊗n) with U its standard 2-dimensional representation (see e.g.[BeMo]), is a defining
algebra for the Alexander polynomial (see [RoSa, V]), this gives another explanation for the
well-known connection between the Links-Gould and Alexander polynomials (see [I3, GP]).

6. Inductive description of LGn

We investigate the image of braid words in the algebras LG3 and LG4. We first determine
a basis made of braid words for LG3 (section 6.1), then of LG4 (section 6.2). This first basis
enables us to get a new relation in LG4. We now start again from the basis of LG3 obtained
earlier and get in section 6.3 a new basis which is a more suitable for induction. We use it to
prove a decomposition of LG4 as a LG3-bimodule, and then more generally, in section 6.4, a
decomposition of LGn+1 as a LGn-bimodule.

6.1. A basis for n = 3. The braid words with at most 3 crossings and avoiding the pattern
sri for |r| ≥ 2 are 1, s±11 , s±12 , s±11 s±12 , s±12 s±11 , s±11 s±12 s±11 , s±12 s±11 s±12 , that is 29 words, whose
image span LG3. Among them, there are 13 words (13 = 1 + 4 + 2 × 2 + 2 × 2) with at
most two crossings. These 13 words have linearly independent images in LG3. We denote

B0 = B(3)0 these images, V0 the subspace of LG3 that they span (see table 5).

B0 = [1, s1, s
−1
1 , s2, s

−1
2 , s1s2, s1s

−1
2 , s−11 s2, s

−1
1 s−12 , s2s1, s2s

−1
1 , s−12 s1, s

−1
2 s−11 ]

We let V1 denote the span of the 8 words of the form s±11 s±12 s±11 . We have dimV0+V1 = 19.
Somewhat arbitrarily, we choose for basis of LG3 the following set (see table 6)

B(3) = B = B0 t [s−11 s−12 s−11 , s−11 s−12 s1, s
−1
1 s2s

−1
1 , s1s

−1
2 s−11 , s1s

−1
2 s1, s1s2s

−1
1 , s−12 s1s

−1
2 ];

This basis is made of all possible braid words with at most 2 crossings with in addition
6 of the 8 words of the form s±11 s±12 s±11 (the words s1s2s1 and s−11 s2s1 are removed), which

together form a basis of V0 + V1, and one of the form s±12 s±11 s±12 . Since, according to [M5],
the words s±1 s

±
2 s
±
1 are linearly independent in H3, there should be a relation arising from the

expression of s1s2s1 and s−11 s2s1.
We get the following :

s−11 s2s1 = −1
a s1s2 + as1s

−1
2 + as−11 s2 − a3s−11 s−12 + a−1s2s1 − as2s−11 − as

−1
2 s1 + a3s−12 s−11

+a2s−11 s−12 s1 − a2s1s−12 s−11 + s1s2s
−1
1

so, in particular, s−11 s2s1 ≡ s1s2s−11 + a2(s−11 s−12 s1 − s1s−12 s−11 ) mod V0, that is
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Table 5. B0 : 3-braids with at most 2 crossings.

, , , , , ,

Table 6. The 6 + 1 braid words added to B0 to form B

≡ +a2 −a2

We also have

s1s2s1 =
(
−ab− ac− bc− a2

)
s2 +

(
a2bc+ a3b+ a3c+ a4

)
s−12 + (a+ b+ c) s1s2

+
(
−a2b− a2c− a3

)
s1s
−1
2 + (abc) s−11 s2 +

(
−a3bc

)
s−11 s−12 + (a) s2s1

+
(
abc+ a2b+ a2c

)
s2s
−1
1 +

(
−a3

)
s−12 s1 +

(
−a3bc− a4b− a4c

)
s−12 s−11

+
(
a4bc

)
s−11 s−12 s−11 +

(
−a2bc

)
s−11 s2s

−1
1 +

(
a3b+ a3c

)
s1s
−1
2 s−11

+
(
a2
)
s1s
−1
2 s1 + (−ab− ac) s1s2s −11

hence

s1s2s1 ≡ a3(abc)s−11 s−12 s−11 −a(abc)s−11 s2s
−1
1 +a3(b+c)s1s

−1
2 s−11 +a2s1s

−1
2 s1−a(b+c)s1s2s

−1
1 mod V0

6.2. Case n = 4 : new relations over 4 crossings. We denote B(4)0 the set of 1 + 2 ×
3 + 22 × 5 = 27 braids with at most 2 crossings, which correspond to the patterns described

in table 7 (plus the trivial braid, with 0 crossings), B(4)1 the set of braids with 3 crossings
described by the patterns of table 8. Because of the study of LG3 and of the cubic relation, the
image in LG4 of every braid with at most 3 crossings can be written as a linear combination

of B(4)0 t B(4)1 . We check that these 8 × 4 + 2 × 7 + 27 = 73 elements are indeed linearly
independent in LG4, and we let V3 denote the subspace they span.
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Table 7. Patterns for 1 and 2 crossings, on 4 strands

The box represents arbitrary elements of B(3) \ B(3)0 .

Table 8. Patterns for 3 crossings, on 4 strands.

The box represents arbitrary elements of B(3) \ B(3)0 .

Table 9. Patterns for 4 crossings, on 4 strands.
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We denote B(4)2 the set of 24 + 7× 2× 4 = 72 braids with 4 crossings, which correspond to
the patterns described in table 9. Their images in LG4 are linearly independent, that is they
span a subspace V4 of dimension 72. We get dim(V3 + V4) = 141 < 145 = 72 + 73.

Among these 145 words in si and s−1i , only 5 of them contain a pattern s±3 s
±
2 s
±
3 . Besides

s−13 s2s
−1
3 , they are the A(4)

3,U = {sε1s
−1
3 s2s

−1
3 | ε ∈ {−1, 1}} and A(4)

3,D = {s−13 s2s
−1
3 sε1 | ε ∈

{−1, 1}}.
Let B(4)3 = (B(4)0 tB

(4)
1 tB

(4)
2 )\ (A(4)

3,D ∪A
(4)
3,U ), and V

(0)
4 the subspace of LG4 spanned by its

image. We let B(4)3,D = B(4)3 tA
(4)
3,D, B(4)3,U = B(4)3 tA

(4)
3,U , and V

(D)
4 , V

(U)
4 the subspace spanned

by their images, respectively.

We have |B(4)3 | = 141 and dimV
(0)
4 = 139. Moreover, we get dimV

(D)
4 = dimV

(U)
4 = 141

hence V
(D)
4 = V

(U)
4 = V3 + V4. We choose for basis of this subspace a rather arbitrary subset

of B(4)3,D of size 141, namely B(4)4 = B(4)3,D \ {s
−1
1 s−12 s−13 s−12 , s1s

−1
2 s−13 s−12 }, which we check to be

linearly independent.
In terms of the combinatorics of words, this enables one to pass a s±1 from over to under a

pattern s±3 s
±
2 s
±
3 , modulo terms containing no more than one s±3 .

More precisely, by explicitely computing in this basis of V3 + V4, we get the following

s−11 (s−13 s2s
−1
3 ) ≡ (s−13 s2s

−1
3 )s−11 mod LG3s3LG3 + LG3s

−1
3 LG3 + LG3

s1(s
−1
3 s2s

−1
3 ) ≡ (s−13 s2s

−1
3 )s1 mod LG3s3LG3 + LG3s

−1
3 LG3 + LG3

We let F± ∈ H4 denote the image in H4 of the expression of s±1 (s−13 s2s
−1
3 )−(s−13 s2s

−1
3 )s±1 −

L± with L+, L− are the only linear combinations of the words of B(4)4 such that F+, F− 7→ 0
in LG4. We claim that LG4 = H4/(r2, F

+, F−), but we actually prove more. Indeed, we
check that both these elements are non-zero exactly in all the irreducible representations of
H4 which do not factorize through LG4. This has for immediate consequence the following

Proposition 6.1. LG4 = H4/(F
+) = H4/(F

−).

We denote r3 the lifting in KB4 of one of the relations F+ and F−, so that LG4 =
KB4/(r1, r2, r3) = KB4/(r1, r3).
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Figure 4. Patterns with 5 crossings

Figure 5. Pattern with 6 crossings

6.3. Case n = 4 : a spanning set suitable for induction. We start again from the

collection B(4)3 , from which we remove the words {s−11 s−12 s−13 s−12 , s1s
−1
2 s−13 s−12 }, and thus get

a family B(4)3,0 of 139 elements. Their image in LG4 is linearly independent. The words

contained in B(4)3,0 all contain at most one crossing s±3 between the third and fourth strand,

except for the word s−13 s2s
−1
3 . We want to expand this family into a basis of LG4 which has

the same property. For this, we add braids with 5 and 6 crossings.

We first add the 48 words corresponding to the patterns sα1 s
β
2s
γ
1s
δ
3s
ε
2 and sδ2s

ε
3s
α
1 s
β
2s
γ
1 with

α, β, γ, δ, ε ∈ {−1, 1}, which are described in figure 4, with the additional property that we

avoid the subwords sα1 s
β
2s
γ
1 ∈ {s1s2s1, s

−1
1 s2s1}. This means that the subwords sα1 s

β
2s
γ
1 must

belong to the image of B(3) ; in other words, we avoid the patterns s1s2s1 and s−11 s2s1. This
indeed provides 2× 22 × 6 = 48 new words.

We thus get a family B(4)5 of size 139+48 = 187 > 175 = dimLG4. The linear span of B(4)5 ,
which we denote V5, actually has dimension 168. We first look for braids with 6 crossings
which complete the previous family into a spanning set of LG4. We consider the pattern
described in figure 5. We are looking for a set of 7 braids whose image complete the spanning
of LG4. A suitable set is given by the following family

A(4)
6 = { s1s

−1
2 s1s

−1
3 s2s1, s1s

−1
2 s1s3s

−1
2 s1, s1s2s1s

−1
3 s−12 s1, s1s2s1s

−1
3 s2s1, s1s2s1s3s

−1
2 s1,

s−11 s2s
−1
1 s−13 s2s

−1
1 , s−11 s2s

−1
1 s3s

−1
2 s−11 }
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We now select a suitable subset of the already chosen 48 words which correspond to the
patterns described in figure 4. We keep all the braids corresponding to the pattern on the
right-hand side of figure 4 but the words

D(4)
5,R = {s2s3s−11 s−12 s−11 , s2s3s

−1
1 s−12 s1, s2s3s1s

−1
2 s−11 , s2s3s1s2s

−1
1 }.

We denote A(4)
5,R the corresponding set of 24 − 4 = 20 words. Finally, among the 24 words

corresponding to the pattern on the left-hand side of figure 4, we keep only the 9 words

A(4)
5,L = {s−11 s−12 s−11 s3s2, s

−1
1 s−12 s1s3s2, s

−1
1 s2s

−1
1 s3s2, s1s

−1
2 s−11 s3s2, s1s

−1
2 s1s3s2,

s1s2s
−1
1 s3s2, s

−1
1 s−12 s−11 s3s

−1
2 , s−11 s2s

−1
1 s3s

−1
2 , s1s

−1
2 s−11 s3s

−1
2 }.

The final collection B(4)6 = B(4)3,0 t A
(4)
5,L t A

(4)
5,R t A

(4)
6 has cardinality 175. By computer

calculation one can then check the following.

Proposition 6.2. The collection B(4)6 is a basis for LG4. The collection of the b1s
r
3b1 for

b1, b2 ∈ B(3) and r ∈ {−1, 0, 1} spans in LG4 a subset of dimension 174 = dimLG4 − 1. In
particular, we have

LG4 =

 ∑
r∈{−1,0,1}

LG3s
r
3LG3

⊕Ks−13 s2s
−1
3

6.4. LGn+1 as LGn-bimodule.

Lemma 6.3.

(i) LGn−1s
−1
n−1sn−2s

−1
n−1LGn−1 ⊂

∑
r LGn−1s

r
n−1LGn−1 + LGn−3s

−1
n−1sn−2s

−1
n−1

(ii) LGn−1s
−1
n−1sn−2s

−1
n−1LGn−1s

±1
n−1 ⊂

∑
r LGn−1s

r
n−1LGn−1s

±1
n−1 +LGn−3s

−1
n−1sn−2s

−1
n−1

Proof. Part (ii) is a straightforward consequence of (i) and of the choice of basis for LG3.
We prove part (i). When n = 4 this is a consequence of our choice of basis. Let A =∑

r LGn−1s
r
n−1LGn−1 + LGn−3s

−1
n−1sn−2s

−1
n−1 ⊂ LGn. Since s−1n−1sn−2s

−1
n−1 ∈ A, we only

need to prove that A is a LGn−1-submodule on both sides. Because LGn−3 commutes with
s−1n−1sn−2s

−1
n−1 this amounts to saying that A is stable by multiplication on both sides by s±1n−2

and s±1n−3, that is s±1n−2(s
−1
n−1sn−2s

−1
n−1) ∈ A, s±1n−3(s

−1
n−1sn−2s

−1
n−1) ∈ A, (s−1n−1sn−2s

−1
n−1)s

±1
n−2 ∈

A, (s−1n−1sn−2s
−1
n−1)s

±1
n−3 ∈ A. These eight braids are conjugates of braids whose image lie in

LG4 and we can use the result for n = 4 and n = 3, that we obtained above, in order to
conclude the proof.
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�

Theorem 6.4. For n ≥ 3 we have

(i) LGn = LGn−1s
±1
n−1LGn−1 +

∑
k+`=n LGkLGl

(ii) LGn =
∑

r LGn−1s
r
n−1LGn−1 + LGn−3(s

−1
n−1sn−2s

−1
n−1)

Proof. (second formula). By induction on n, the cases n = 3 and n = 4 being already
done. Let A =

∑
r LGn−1s

r
n−1LGn−1 + LGn−3(s

−1
n−1sn−2s

−1
n−1) ⊂ LGn. Since 1 ∈ A, we

only need to prove that s±1k A ⊂ A for k ∈ {n − 1, n − 2, n − 3}. For k < n − 1 this is
a straightforward consequence of lemma 6.3 (i), so we can assume k = n − 1. We have,
for some u, s±1n−1LGn−3(s

−1
n−1sn−2s

−1
n−1) = LGn−3(s

u
n−1sn−2s

−1
n−1) ⊂ LGn−3s

−1
n−1sn−2s

−1
n−1 +∑

r LGn−1s
r
n−1LGn−1 ⊂ A because of the chosen basis for LG3. We then only need to prove

s±n−1LGn−1s
r
n−1LGn−1 ⊂ A. We use the induction assumption LGn−1 ⊂

∑
r′ LGn−2s

r′
n−2LGn−2+

LGn−4(s
−1
n−2sn−3s

−1
n−2) hence

s±1n−1LGn−1s
r
n−1LGn−1 ⊂

∑
r′ s
±1
n−1LGn−2s

r′
n−2LGn−2s

r
n−1LGn−1

+s±1n−1LGn−4(s
−1
n−2sn−3s

−1
n−2)s

r
n−1LGn−1

⊂
∑

r′ LGn−2s
±1
n−1s

r′
n−2s

r
n−1LGn−2LGn−1

+LGn−4s
±1
n−1(s

−1
n−2sn−3s

−1
n−2)s

r
n−1LGn−1

and, by the case n = 3, s±1n−1s
r′
n−2s

r
n−1 ∈

∑
u LGn−1s

u
n−1LGn−1 +LGn−1s

−1
n−1sn−2s

−1
n−1LGn−1,

hence LGn−1s
±1
n−1s

r′
n−2s

r
n−1LGn−1. Moreover, s±1n−1(s

−1
n−2sn−3s

−1
n−2)s

r
n−1 ∈

∑
u LGn−1s

u
n−1LGn−1+

LGn−1s
−1
n−1sn−2s

−1
n−1LGn−1 because of the chosen basis in LG4, hence

s±1n−1LGn−1s
r
n−1LGn−1 ⊂

∑
u

LGn−1s
u
n−1LGn−1 + LGn−1s

−1
n−1sn−2s

−1
n−1LGn−1 ⊂ A

by lemma 6.3. �
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7. Markov traces

Using the careful analysis of the previous section, we define a quotient An of the braid
group algebra KBn of n strands by a cubical relation r1 as well as one relation r2 on three
strands and one relation r3 on four strands. Notice that we conjecture (see conjecture 1.4)
that this algebra is isomorphic for all n to the centralizer algebra LGn.

Since A4 ' LG4, the proof of theorem 6.4 can be adapted immediately to yield the following
statement.

Theorem 7.1. For all n ≥ 3,

An+1 = An +AnsnAn +Ans
−1
n An +An−2s

−1
n−1sns

−1
n−1.

This implies immediately that An is finite dimensional for all n. The precise dimension of
An is the content of conjecture 1.5.

Using the methods of section 5.4, the character table of Γ5 and the fact (see [M5]) that H5

is a flat deformation of KΓ5 enable us to get the list of irreducible representations of H5 which
factor through H5. This yields dimA5 = 1764 = dimLG5, whence the following evidence for
conjecture 1.4.

Theorem 7.2. A5 ' LG5.

The main result of this section is that the tower of algebras (An)n≥1 can be endowed with
a unique trace Trn which computes the Links-Gould invariant. In addition we prove that the
relations r1, r2 and r3 are a complete set of relations for the Links-Gould invariant, i.e. one
can recursively compute the Links-Gould invariant using this relations.

Given an integer n ≥ 1, consider the natural embedding of Bn into Bn+1. Denote by φn
its extension to an homomorphism from An to An+1.

Theorem 7.3. For z ∈ K, there exists a family of traces Trn : An → K, n ≥ 1, such that

• Trn+1(φn(β)) = zTrn(β) for all β ∈ An.
• Trn(αβ) = Trn(βα) for all α, β ∈ An.
• Trn+1(φn(β)s±1n ) = Trn(β) for all β ∈ An (‘Markov property’).
• Tr1 = 1

if and only if z = 0. If z = 0, this family is unique. The same statements hold with (An)
replaced by (LGn).

Proof. First we prove that if the trace exists then z is equal to zero. Since A4 is semi-simple,
it is isomorphic to a direct sum of ten matrix algebras and therefore a trace on A4 is a linear
combination of matrix traces. By using the Markov properties above, we get that the value
of Tr4 on the family F = (s3, s1s3, s

−1
1 s3, s2s3, s

−1
2 s3, s1s2s3, s1s

−1
2 s3, s

−1
1 s2s3, s

−1
1 s−12 s3, s

−1
3 )

is (z2, z, z, z, z, 1, 1, 1, 1, z2). On the other hand, we check by computer that the values of the
10 matrix traces on this family provide an invertible 10 × 10 matrix. As a consequence, the
values of Tr4 on this family determines its value on arbitrary elements of B4, as polynomial
functions of z. This enables us to compute the value of Tr4 on s−11 s−13 and s−12 s−13 . Since its
value has to be z in both cases by the Markov property, we get two equations on z, which
have the form α′z(z−α) = 0 and β′z(z−β) = 0 for some α, α′, β, β′ ∈ K×, with α 6= β. This
clearly implies z = 0.

Existence follows from the existence of the Links-Gould invariant and unicity from the

careful analysis of the previous section. In more details, define Tn by Tn(β) = LG(β̂) for all
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β and n ≥ 1. First Tn is well defined on An since the relations r1, r2 and r3 are satisfied
by the Links-Gould invariant. In addition since the Links-Gould invariant vanishes on split
links, it implies that Tn(β) = 0 for all β ∈ Im(φn−1) and T1 = 1 is by the normalization of
the Links-Gould invariant (one on the unknot). We have also Tn+1(βs

±1
n ) = Tn(β) for all

β ∈ Im(φn), since the Links-Gould invariant is invariant under the first Reidemeister move.
It remains to say that Tn(βα) = Tn(αβ) is satisfied because the Links-Gould invariant is
trully an invariant of links, it does in particular not depend on where you open the link to
compute it (see Remark 5.1 in [GP]). Given two braids α and β consider the topological
partial closure of the braids αβ and βα decribed in Figure 6. It can be easily seen that these
are two different openings of the topological closure of αβ (which is of course isotopic to the
topological closure of βα.) This finishes the proof of the existence of Trn.

α

α

β

β

α

β

Figure 6. Partial closure of αβ and βα and closure of αβ.

The algebra A3 and A4 are respectively isomorphic to the algebras LG3 and LG4.
We use the bimodule decomposition afforded by theorem 7.1. Suppose by induction that

Trk is unique for k ≤ n. Let γ be an element of in An+1 = Ans
r
nAn + An−2s

−1
n sn−1s

−1
n

(r ∈ {−1, 0,+1}) we can suppose that either γ = α1s
r
nα2 or γ = βs−1n sn−1s

−1
n with α1, α2

∈ An and β ∈ An−2. In the first case if r = 0 we have Trn+1(γ) = 0 and if r = ±1 we
have Trn+1(γ) = Trn(α1α2). In the second case we have Trn+1(γ) = Trn+1(βs

−2
n sn−1) =

Trn+1(sn−1βs
−2
n ). By applying the cubic relation r1 to the factor s−2n we reduce to the

previous case. Hence Trn+1 is unique. It is direct computation given the basis for A1, A2

and A3 to prove the trace is unique for these algebras. This finishes the proof of unicity.
The case of LGn is similar, since LG4 = A4. �

Remark 7.4. Given an integer n ≥ 1, for all 1 ≤ k ≤ n consider the natural embedding of
Bk × Bn−k into Bn (see Figure (7)). Denote by φk its extension to an homomorphism from
Ak ⊗ An−k to An. Define In the subvector space of An generated by the images of the φk
(1 ≤ k ≤ n).

The fact that z is equal to zero and an induction argument shows that the unique trace Trn
on An vanishes on In. This implies that the Links-Gould invariant vanishes on split links
(see [I1] for a different proof).
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Bn−kBk

Figure 7. Injection of Bk ×Bn−k into Bn.

Corollary 7.5. The relations r1, r2 and r3 are a complete set of skein relations for the
Links-Gould invariant.

Proof. It is an immediate consequence of Theorem 7.3. �

Remark 7.6. Notice first that the relations r1, r2 and r3 are sufficient to compute the Links-
Gould invariant. In addition using the representations of section 5, one can deduce relations
expressing the elements s±3 s

−1
2 s1s

−1
2 s±3 , in the chosen basis of A4 which could in pratice sim-

plify a recursive computation. All these relations are of course consequences of r1, r2 and
r3

As noticed in the proof of the theorem, the Markov trace on A4 is a linear combination of
the matrix traces on the irreducible representations of A4, namely

Tr4 =
10∑
i=1

aχitrχi

where i ∈ {1, . . . , 10}, aχi ∈ K, and χi is the i-th irreducible representation of A4, following
the order chosen at the end of section 5. For comparaison with other traces factoring through
H4, we provide these coefficients in table 10.

8. On the image and kernel of Bn → LGn(α)×

We recall that LGn(α) has been defined in section 4 as the Lie subalgebra of End(V (0, α)⊗n)
generated by the Ω′ijs.

8.1. Structure of LGn(α) and Zariski closure of Bn inside LGn(α)×. The proof of the
following proposition is parallel to its analogue for BMW (see [M4] prop. 5.1), the algebra
LGn(α) playing the role of the Birman-Wenzl-Murakami algebra thanks to theorem 4.1.

Proposition 8.1. For generic values of α, the Lie algebra LGn(α) is reductive with center
kTn.

For λ = [a, k]r we let ρλ : LGn(α) → gld(λ)(k) denote the corresponding representation of

LGn(α), and ρ′λ its restriction to the derived Lie algebra LG′n(α). The proof of the following
proposition is parallel to propositions 5.5 and 5.6 of [M4].

Proposition 8.2. For generic α, ρ′λ1 is isomorphic to ρ′λ2 if and only if λ1 = λ2 or d(λ1) =
d(λ2) = 1. If d(λ1), d(λ2) > 1, then the dual representation of ρλ2 cannot be isomorphic to
ρλ1.

Proof. As in [M4], LG′n is generated by the t′ij = tij−2Tn/n(n−1) with Tn =
∑

1≤r,s≤n trs and

Tn acts by a scalar on a given irreducible representation. For ρ′λ1 and ρ′λ2 to be isomorphic,

ρ′λ1(t′12) and ρ′λ2(t′12) should be conjugate, hence (ρλ1(Tn) − ρλ2(Tn))/n(n − 1) should then

belong to X−X, where X = {−2α2,−2(α+1)2,−2α(α+1)} is the set of possible eigenvalues
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aχ1 =
c2a4b2 + a4bc+ a4 − c2a3b3 − a3c3b2 + b3c3a2 − a2c2b2 + ac2b3 + ac3b2 + b2c2

a (a− b) (a− c) (a2 + c2) (b2 + a2)

aχ2 = −
(ab+ 1)

(
a3b− ca2b− ab+ c2

)
c2

(a− c) (b− c) (a2 + c2) (ba2 − c3)
, aχ3 =

(ac+ 1)
(
a3c− ca2b− ac+ b2

)
b2

(a− b) (b− c) (b2 + a2) (−b3 + ca2)

aχ4 = −
(ac+ 1)

(
ca2 − cab− a− c

)
b2

a (a− b) (b− c) (b+ c) (b2 + a2)

aχ5 = −
(ab+ 1)

(
a4bc− bc2a3 + a3b− a3c− b3a2c+ a2c2b2 − ca2b+ ac2b3 − ac3b2 + b2ac+ cb3 − b2c2

)
c

a (a− c) (b− c) (a2 + c2) (−b3 + ca2)

aχ6 =
(ab+ 1)

(
ba2 − cab− a− b

)
c2

a (a− c) (b− c) (b+ c) (a2 + c2)

aχ7 =
(ac+ 1)

(
a4bc− ca3b2 + a3c− a3b− a2c3b+ a2c2b2 − ca2b+ ac3b2 + ac2b− ac2b3 − b2c2 + c3b

)
b

a (a− b) (b− c) (b2 + a2) (ba2 − c3)

aχ8 =
c2b (ac+ 1) (ab+ 1)

a (b− c) (b+ c) (ba2 − c3)
, aχ9 = − b2c (ac+ 1) (ab+ 1)

a (b− c) (b+ c) (−b3 + ca2)

aχ10 =
cb (ac+ 1) (ab+ 1)

(
bc+ a2

)
a (ba2 − c3) (−b3 + ca2)

Table 10. Coefficients of the unique Markov trace on A4 = LG4.

for ρλ1(tij) and ρλ2(tij). For generic α the set X + (−X) = {0} t (−2) × {2α + 1, α +
1, α,−α,−α−1,−2α−1} has cardinality 7. This implies that either (ρλ1(Tn)−ρλ2(Tn))/n(n−
1) = 0, or both ρλ1(t12) and ρλ2(t12) have a single eigenvalue (as, for x, y ∈ X, x − y then
determines x and y when x − y 6= 0). By semisimplicity of the action of t12 this implies
that the images of the tij ’s are scalars in both ρλ1 and ρλ2 . By irreducibility this implies
that dim ρλ1 = dim ρλ2 = 1. The case of the dual representations is similar, using that,
for x ∈ X, 2x ∈ X=

+ = (−2) × {2α2, 2α2 + 2α, 2α2 + 4α + 1} and, for x, y ∈ X with x 6= y,

x+y ∈ X 6=+ = (−2)×{2α2+2α+1, 2α2+α, 2α2+3α+1} ; again, for generic α, X 6=+ ∩X=
+ = ∅,

X 6=+ = 3, and we get a contradiction unless dim ρλ1 = dim ρλ2 = 1.
�

We let V[a,k]r denote the [a, k]r-component of LGn.

Theorem 8.3. For generic α, the image of LG′n(α) inside LGn(α) =
⊕

End(V[a,k]r) is⊕
sl(V[a,k]r).

Proof. The proof is by induction on r, and follows the same general pattern as in [M4]. We
will use freely the Lie-theoretic results of [M3]. Assuming the result known for r− 1 (and the
cases r ≤ 2 being trivial), we only need to check that, for λ = [a, k]r, ρλ(LGn) = sl(V[a,k]r),
by the same argument as in [M4, M2]. By abuse, we denote λ = ρλ, Resi the restriction
from LGr to LGi for i ≤ r, and Res = Resr−1. First note that, if Resλ has s irreducible
components µ1, . . . , µs occuring with multiplicity one, then by the induction assumption the
rank of ρλ(LGr−1) is (

∑
dimµj) − s = dimVλ − s, hence the rank of ρλ(LGr−1) is at least
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dimVλ−s > (dimVλ)/2 as soon as dimVλ > 2s. By [M3] lemma 3.1 this implies the conclusion
ρλ(LGr−1).

We will show that this assumption is almost always satisfied, and we will check separately
the remaining cases. First note that the restriction is always multiplicity free, and that the
number of components is at most 4. More precisely, for a ≤ r−1 and k ≤ r−a−1, Res[a, k]r
contains

(i) [a+ 1, k − 1]r−1 if a ≤ r − 3 and 1 ≤ k ≤ r − a− 2
(ii) [a, k]r−1 if a ≤ r − 2 and k ≤ r − a− 2
(iii) [a, k − 1]r−1 if a ≤ r − 2 and 1 ≤ k
(iv) [a− 1, k]r−1 if a ≥ 1

Moreover we notice that the assumptions of lemma 3.3 (I) of [M3] are satisfied as soon as
dimλ < (1 + rkh)2 : under this condition, this lemma implies that g is simple.

We first deal with a few special cases. For a given λ, we denote g the image of LG′r and h
the image of LG′r−1.

The cases [a, 0]r, [r − 2, 1]r and [1, r − 2]r.
The 1-dimensional cases [0, 0]r and [r − 1, 0]r are trivial. We have Res[1, 0]r = [0, 0]r−1 +
[1, 0]r−1, which implies dim[1, 0]r = r − 1. Let λ = [1, 0]3. Since dimλ = 2, g ⊂ sl2 and
g is semisimple hence g = sl2. Let λ = [1, 0]4. Then h = sl2 ⊂ g ⊂ sl3. If g has rank
2 > 3/2 then g = sl3 by [M3] lemma 3.1 ; otherwise g has rank 1, that is g ' sl2. But the
only 3-dimensional irreducible representation of sl2 is selfdual, which excludes this case. Let
λ = [1, 0]5. Then h = sl3 ⊂ g ⊂ sl4. If rkg > 2 then g = sl4 by [M3] lemma 3.1 ; otherwise
g has rank 2; since 4 < (2 + 1)2, by lemma 3.3 of [M3] g is simple. Since the 4-dimensional
representations of so5 and sp4 are selfdual, this implies g = sl4. Let now λ = [1, 0]r for r > 5.
Then rkh = r − 3 > (r − 1)/2 = (dimλ)/2 and g = slr−1, which concludes the case of [1, 0]r.
The case of [r − 2, 0]r is similar.

Let now λ = [a, 0]r for a > 1 and a < r − 2, which implies r ≥ 5. Then Resλ =
[a − 1, 0]r−1 + [a, 0]r−1 hence we need to show that dimλ > 4 in order to apply lemma 3.1
of [M3]. It is easily checked that Res4[a, 0]r always contains [1, 0]4 + [2, 0]4, of dimension
3 + 3 = 6, and this concludes the case of the [a, 0]r.

The same arguments provide the case of the [r − 2, 1]r and of the [1, r − 2]r.

The cases of [0, 1]3, [0, 1]4, [0, 2]4.
Let λ = [0, 1]3, of dimension 3. Then g ⊂ sl3 ; if rkg = 1 then g ' sl2 ' so3, but the
3-dimensional irreducible representation of g is selfdual, a contradiction. Thus rkg = 2 > 3/2
and g ' sl3 by lemma 3.1 of [M3].

Let λ = [0, 1]4, of dimension 6. We have Resλ = [0, 0]3 + [0, 1]3 + [1, 0]3 hence h ' sl3 × sl2
and rkg ≥ 3. If rkg > 3 = 6/2 we are done, so we need to exclude the case rkg = 3. In that
case, by [M3] lemma 3.3, we get that g is simple, and by [M3] lemma 3.4 g ' sl4 and λ is
selfdual, a contradiction. The case of λ = [0, 2]4 is similar to [0, 1]4.

The case of [a, r − a− 1]r for 1 ≤ a ≤ r − 3.
This case implies r ≥ 4. Let λ = [a, r−a−1]r. Then Resλ = [a, r−a−2]r−1+[a−1, r−a−1]r−1,
and we have the conclusion as soon as dimλ > 4. Note that if a ≤ r − 4 (resp. a ≥ 2) then
[a, r − a − 2]r−1 belongs to the case under study for r − 1 : by induction this shows that
dimλ > 4 for r ≥ 6, as [1, 4]6, [2, 3]6, [3, 2]6 have for dimensions 5, 10 and 19. There remains
to study the cases of [1, 2]4 and [1, 3]5, since dim[2, 2]5 = 6 > 4. For λ = [1, 2]4 we have
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dimλ = 3 and the case is similar to the one of [0, 1]3 above. For λ = [1, 3]5 we have dimλ = 4
and the case is similar to the one of [1, 0]5 above. This concludes these cases.

Since the case k = 0 has been done, we can assume k ≥ 1. If a = r− 1, this implies k = 0,
so we can also assume a ≤ r− 2. If a = r− 2, then k ≤ 1 hence k = 1, and this is the case of
the [1, r − 2]r, which is also done. Thus a ≤ r − 3, k ≥ 1.

Assume for a while a = 0. Then k ≤ r − 1 ; the 1-dimensional case [0, r − 1]r is trivial
hence we can assume k ≤ r − 2 = r − a − 2. Then Resλ has 3 simple components (1), (2)
and (3), hence we are done if we know that dimλ > 6. For r ≥ 6, it is easily checked that
Res5[0, k]5 contains one of the [0, l]5 for 1 ≤ l ≤ 3, which have dimension > 6. The remaining
cases are [0, 1]3, [0, 1]4, [0, 2]4, which have already been tackled.

We can now assume 1 ≤ a ≤ r−3 and k ≥ 1. Since the case k = r−a−1 has been tackled
we can assume k ≤ r − a− 2. In that case, Resλ admits the 4 components (1)-(4), so we are
done if dimλ > 8. Note that, under our conditions 1 ≤ a ≤ r − 3 and 1 ≤ k ≤ r − a− 2, for
r ≥ 5, at least one of the components (2),(3) and (4) fulfills the same conditions for r − 1.
Since dim[1, 1]5 = dim[1, 2]5 = 20 and dim[2, 1]5 = 15, this shows by induction that dimλ > 8
for r ≥ 5. The only remaining case is for λ = [1, 1]4. We have rkh = 4 hence rkg ≥ 4. If
rkg > 4 = (dimλ)/2 we are done, so we need to exclude the case rkg = 4. By lemma 3.3 (I)
of [M3] we know that g is simple, and by lemma 3.4 of [M3] the fact that λ is not selfdual
provides a contradiction. This concludes the proof of the theorem. �

Theorem 8.3 implies the ‘Zariski-closure’ part of theorem 1.7 of the introduction, as in [M4]
for the BMW-algebra and [M2] for the Hecke algebra. The remaining part of the theorem is
proved in the section below.

8.2. Faithfulness of Bn → LGn(α)×. Here we assume that K is a field of characteristic
0 and a, b, c ∈ K× three algebraically independent elements. For convenience we moreover
assume that −1, a and b admit square roots in K. We let Sn denote the 1-dimensional KBn
module defined by si 7→ a, Un denote the (n − 1)-dimensional KBn module afforded by the
reduced Burau representation (convention : the image of si has eigenvalues a with multiplicity
(n − 2) and b with multiplicity 1). Recall that the Krammer representation Krn defined in
[Kr] is a n(n − 1)/2-dimensional irreducible representation of Bn over Q(q, t), such that the
image of si has 3 eigenvalues 1,−q, tq2. This provides a faithful representation of Bn. Up to
renormalization (si 7→ λsi) and change of parameter we can assume instead that the three
eigenvalues are a, b, c and that this representation is defined over K, without affecting the
faithfulness property.

This representation factors through the BMW-algebra. Usually this algebra is defined over
the field Q(s, α) of rational fractions (see e.g. [M4]), however under the same renormalization
process si 7→ λsi one can define it over K in such a way that the image of s1 has eigenvalues
a, b, c (explicitely, a = λs, b = −λs−1, c = −λα−1, and conversely λ =

√
−ab, s =

√
−a/b, α =

−c−1
√
−ab, whence our assumptions on K). The algebra BMWn is semisimple, with irre-

ducible representations parametrized by partitions of m for 0 ≤ m ≤ n and n −m an even
integer. For n = 2, the empty partition ∅ of m = 0 corresponds to s1 7→ c while [2] and [1, 1]
correspond to s1 7→ a and s1 7→ b, respectively. Under this convention, Krn is the irreducible
component labelled by the partition [n− 2], and the reduced Burau representation is labelled
by [n− 1, 1].
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It thus has the property that Kr2 is s1 7→ c and the restriction of Krn+1 to Bn ⊂ Bn+1 is
Sn + Un +Krn. In diagrammatic terms, Krn has a Bratteli diagram of the form

Krn

Krn−1 Un−1 Sn−1

Krn−2 Un−2 Sn−2

. . . . . . . . .

We prove that this property characterizes the Krammer representation.

Proposition 8.4. Let Krn for n ≥ 2 denote a family of irreducible KBn-modules, with the
property that the restriction of Krn+1 to KBn ⊂ KBn+1 is Sn+Un+Krn, and that Kr2 is the
1-dimensional KB2-module si 7→ c. Then Krn is isomorphic to the Krammer representation.

Proof. When n = 2 there is nothing to prove, and for n = 3 we know from the description of
H3 that there is up to isomorphism only one irreducible 3-dimensional representation of B3

where s1 has 3 distinct eigenvalues a, b, c, so we can assume n ≥ 4. Then the restriction of
Kn to B3 is a direct sum of irreductible representations which factorize through the Birman-
Wenzl-Murakami algebra (up to a change of parameters and renormalization), and it thus
needs to factorize through the BMW-algebra ; since the relations for the BMW-algebra are
generated by relations in B3 this proves that Kn itself factorizes through the BMW-algebra.
It is then a simple combinatorial task to check that the only irreducible representations of the
BMW-algebra for n ≥ 4 with this Bratteli diagram corresponds to the partition [n− 2]. �

Corollary 8.5. For n ≥ 2, the Krammer representation factorizes through LGn.

Proof. The KBn-module V[0,n−2]n obviously satisfies the assumption, and factors through
LGn. �

Corollary 8.6. For n ≥ 2, the morphism Bn → LG×n is into.

Proof. Immediate consequence of the faithfulness of the Krammer representation. �
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