
PROOF OF THE BMR CONJECTURE FOR G20 AND G21

IVAN MARIN

Abstract. We prove two new cases of the Broué-Malle-Rouquier freeness conjecture for
the Hecke algebras associated to complex reflection groups, using methods inspired by non-
commutative Gröbner bases. These two cases are the complex reflection groups of rank 2
called G20 and G21 in the Shephard and Todd classification. This reduces the number of
remaining unproven cases to 3.

1. Introduction

Two decades ago, M. Broué, G. Malle and R. Rouquier conjectured in [3] that the gener-
alized Hecke algebras that they attached to an arbitrary complex reflection group satisfy the
crucial structural property of the ordinary (Iwahori-)Hecke algebras attached to any finite
Coxeter group, namely that they are free modules of rank equal to the order of the group.
This is known as the BMR freeness conjecture, and it can be easily reduced to the case where
the complex reflection group W is irreducible. We refer to [13] for a general exposition of this
conjecture and standard results about it.

The Shephard-Todd classification of irreducible complex reflection groups defines an infinite
family G(de, e, n) of such groups, for which the conjecture was already known to hold by work
of Ariki and Ariki-Koike (see [1, 2]), and a long list of exceptional groups. Subsequent works
have proved it for most of the exceptional groups, notably all the ones of rank at least 3 (see
[13, 11, 14]), and most of the ones of rank 2 (see [4, 6, 7]). In rank 2, the 5 remaining ones
are named, in Shephard-Todd notation, G17, G18, G19, G20 and G21. Here we prove the cases
of G20 and G21, by a method of a different nature. This reduces the list of remaining cases
to the groups G17, G18 and G19, for which it appears difficult to apply readily the methods
of this paper.

In section 2 we recall the main definitions, and prove a technical property that will enable
us to work over rings of definitions which are polynomial rings, instead of the usual Laurent
polynomial rings. In section 3 we explain the general method : how we find a potential basis
for the Hecke algebras and how we find a list of rewriting rules. The first idea is to build
on some heuristic input coming from a software for computing (non-commutative) Gröbner
bases over a field (here GBNP) applied to specializations of our Hecke algebras, in order to
get a list of leading terms that should be simplifiable using the defining relations. Secondly,
to write down an (easy) algorithm that deduces a list of rewriting rules for the leading terms
we already have, as a linear combination of positive words, from some rewriting rules with
signed words, that is words in the generators and their inverses. Finally, to check by standard
algorithms that this rewriting system provides a spanning set of the right size.
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Of course, there is one crucial piece missing in this description, which is the main mathe-
matical content : a list of convenient rewriting rules with signed words. We provide the one
we found (‘by hand’) in sections 4 and 5 for the groups G20 and G21, respectively. Applying
these rules then yields a convenient basis for these algebras, which has the nice property
to originate from positive elements of the corresponding braid groups (which happen to be
dihedral Artin groups in these two cases). This proves the BMR freeness conjecture for G20

and G21.

The GAP4 programs used for G21 can be found on my webpage http://www.lamfa.

u-picardie.fr/marin/G20G21code-en.html.

Acknowledgements. I thank G. Pfeiffer for improving (optimizing) my original programs.

2. Definitions and preliminaries

Let W be a finite complex (pseudo-)reflection group. We let B denote the braid group of
W , as defined in [3] §2 B, and recall that a (pseudo-)reflection s ∈ W is called distinguished
if its only nontrivial eigenvalue is exp(2πi/o(s)), where i ∈ C is the chosen square root of −1
and o(s) denotes the order of s ∈W .

We let R = Z[as,i, a
−1
s,0, 0 ≤ i ≤ o(s)− 1] where s runs over the distinguished reflections in

W and o(s) is the order of s in W , with the convention as,i = as′,i if s, s′ are conjugates in
W . For the standard notion of a braided reflection associated to s we refer to [3], where they
are described as ‘generators-of-the-monodromy’ around the divisors of the orbit space. The
definition of the Hecke algebra associated to W reads as follows.

Definition 2.1. The generic Hecke algebra is the quotient of the group algebra RB by the
relations σo(s) − as,o(s)−1σ

o(s)−1 − · · · − as,0 = 0 for each braided reflection σ associated to s.

Actually, it is enough to choose one such relation per conjugacy class of distinguished
reflection, as all the corresponding braided reflections are conjugates in B. Although we are
not going to use this result in our proof, we mention that it was already known by work of
Etingof and Rains (see [9]) that the Hecke algebras of the groups considered here are modules
of finite type. Our main result can now be stated as follows.

Theorem 2.2. When W is a complex reflection group of Shephard-Todd type G20 or G21,
then the generic Hecke algebra of W is a free R-module of rank |W |.

Let R0 = Z[bs,i, 1 ≤ i ≤ o(s)] where s runs over the distinguished reflections, with the
convention bs,i = bs′,i if s, s′ are conjugates in W , and define H0 as the quotient of R0B by
the relations

σo(s) − bs,o(s)−1σ
o(s)−1 − · · · − bs,1σ − 1 = 0

for each braided reflection σ associated to s. Again, it is enough to choose one such relation
per conjugacy class of distinguished reflection. We let H denote the usual Hecke algebra,
defined over R, as in definition 2.1.

The next proposition is useful in order to reduce the number of parameters involved in the
computations, and in order to replace Laurent polynomials with ordinary polynomials.

Proposition 2.3.

(i) H0 is spanned by |W | elements as a R0-module iff it is a free R0-module of rank |W |.
(ii) H is a free R-module of rank |W | iff H0 is a free R0-module of rank |W |.
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Proof. The proof of (i) is the same as the one of [13], proposition 2.4. We prove (ii). We have a
ring morphism φ1 : R→ R0 defined by as,i 7→ bs,i if i ≥ 1, as,0 7→ 1, for which H0 = H⊗φ1R0.

Therefore, if H is a free R-module of rank |W |, we get the H0 ' R|W | ⊗φ1 R0 ' R|W |0 is also
free of rank |W |. We prove the converse. Assume that H0 is R0-free of rank |W |. Let
A = Z[xs, x

−1
s ] where s runs among the distinguished reflections of W with xs = xs′ if

s, s′ are conjugates in W . We have an injective ring morphism R → A ⊗Z R0 defined by

as,0 7→ x
o(s)
s = x

o(s)
s ⊗ 1, and as,i 7→ bs,ix

o(s)−i
s = x

o(s)−i
s ⊗ bs,i for i ≥ 1. We first note that

A⊗R0 is a free R-module of finite rank, since it is easily checked that

A⊗R0 =
⊕
s∈S

⊕
0≤i<o(s)

xisR

where S is a system of representatives of the conjugacy classes of distinguished reflections.
We denote Ȟ0 the quotient of the group algebra (A ⊗Z R0)B of B over A ⊗Z R0 by the

relations (xsσ)o(s)− bs,o(s)−1xs(xsσ)o(s)−1− · · · − bs,1xo(s)−1
s (xsσ)− xo(s)s = 0 for each braided

reflection σ associated to s. We consider the composite map

AB
∆
// (AB)⊗A (AB)

Id⊗Ab
// (AB)⊗A (ABab)

Id⊗(s 7→xs)
// (AB)⊗A A '

// AB

where ∆ is the usual coproduct of the Hopf algebra AB, Ab : B → Bab the abelianization
morphism and, by abuse of notations, the associated linear map AB → ABab, and ‘s 7→ xs’
denotes the map Bab → A defined as follows. It is known (see e.g. [3]) that Bab is a
free Z-module admitting a natural basis indexed by the conjugacy classes of distinguished
reflections. The map is defined by mapping the basis element associated to (a conjugacy class
of) distinguished reflection s to the scalar xs ∈ A.

The composite map is easily checked to be an A-algebra isomorphism. Its natural extension
(A⊗R0)B → (A⊗R0)B induces an isomorphism Ȟ0 = H ⊗R (A⊗Z R0).

Now, if H0 is R0-free of rank |W |, then Ȟ0 = H0 ⊗R0 A is A⊗R0-free of rank |W |. Since
A ⊗ R0 is a free R-module of finite rank, this implies that Ȟ0 is a free R-module of finite
rank, and also that, since Ȟ0 = H ⊗R (A ⊗Z R0), that the R-module H is a direct factor of
Ȟ0. Therefore H is projective as a R-module and this implies that H is free of rank |W | by
[13], proposition 2.5.

�

The groups we hare interested in are the ones denoted G20 and G21 in the Shephard-Todd
notation. They admit presentations symbolized by the following diagrams

3 3
5

2 3
10

that is G20 = 〈s1, s2 | s1s2s1s2s1 = s2s1s2s1s2, s
3
1 = s3

2 = 1〉 and G21 = 〈s1, s2 | (s1s2)5 =
(s2s1)5, s2

1 = s3
2 = 1〉, respectively. In these presentations, s1, s2 are distinguished reflections,

and every distinguished reflection is a conjugate of one of them. Moreover, s1 and s2 are
conjugates in G20, as is readily deduced from the presentation itself. The corresponding
braid groups admit the same presentations, with the order relations removed (see [3]).

We use the above proposition to define the Hecke algebras of G20 and G21 over R0, where
R0 = Z[a, b] for G20 and R0 = Z[a, b, q] for G21, with relations

G20 : s3
1 = as2

1 + bs1 + 1 G21 : s2
1 = qs1 + 1

s3
2 = as2

2 + bs2 + 1 s3
2 = as2

2 + bs2 + 1
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In the subsequent section we prove these Hecke algebras are spanned by the ‘right’ number
of elements, and this proves theorem 2.2 by proposition 2.3.

3. General method

In this section we describe the general method we used to prove the conjecture in these
cases. It proceeds in several steps.

(i) Heuristics/Experimentation
(ii) Incremental determination of computational rules
(iii) Right multiplication table

3.1. Heuristics/Experimentation. The first element is of heuristic nature, provided by a
software able to compute non-commutative Gröbner basis for finitely presented associative
Q-algebras. We used the GAP4 package GBNP (see [8]) with the standard (‘deglex’) order-
ing for monomials, taking as input the presentations of [3], where we specialized the Hecke
algebras at more or less random parameters. For G20 and G21 it finished in reasonable time
for all the specializations we tried, while for G18 and G19 it was not able to complete the
computation after several months of running time, except for the simple case of the group
algebra specialization, that is the presentation of W viewed as a presentation of the Hecke
algebra at very special parameters. For all the groups of the so-called icosahedral series of
complex reflection groups of rank 2, numeroted from G16 to G22, GBNP nevertheless finds a
Gröbner basis of the rational group algebra of W .

It turns out that most if not all the specializations we tried for G20 and G21 (including the
group algebra specialization) provided the same number of elements for the Gröbner basis.
As an indication of the complexity of this heuristic data, we provide table 1, were #W is the
order of W and #gb is the number of elements in the Gröbner basis. The groups whose name
appears in bold fonts are the ones for which the BMR freeness conjecture is now proved, after
work of Chavli for G16 (see [4, 5]), of Marin-Pfeiffer for G22 (see [14]), and by the present
work for G20 and G21.

The output of GBNP we are interested in is the collection G of leading monomials of the
Gröbner basis. In case we had computed the Gröbner basis for several specializations this
collection turned out to be independent of the specialization. From this one computes easily
the set B of all words avoiding the patterns which belong to G. As expected, it has cardinality
|W | and provides for these specializations a basis of the Hecke algebra.

We provide an example of our use of the GBNP package of GAP4. It concerns the rational
specialisation of the Hecke algebra for G20 at a = −2 and b = −3. The following computation
lasted less than 10 minutes on a (not particularly fast) laptop.

gap> LoadPackage("GBNP");;

?????????????????????????????????????????????????????????????????????????????

Loading GBNP 1.0.3 (Non-commutative Gröbner bases)

by A.M. Cohen (http://www.win.tue.nl/~amc) and

J.W. Knopper (J.W.Knopper@tue.nl).

Homepage: http://mathdox.org/products/gbnp/

?????????????????????????????????????????????????????????????????????????????

gap> g1 := [[[1,2,1,2,1],[2, 1, 2, 1, 2 ]],[1,-1]];;

gap> g2 := [[[1,1,1],[1,1],[1],[]],[1,2,3,-1]];

[gap> g3 := [[[2,2,2],[2,2],[2],[]],[1,2,3,-1]];; KI := [g1,g2,g3];;
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W #W #gb W #W #gb

G16 600 44 G20 360 36
G17 1200 49 G21 720 30
G18 1800 138 G22 240 66
G19 3600 558

Table 1. Summary of GBNP’s heuristics for the icosahedral series

Num. Word Num. Word Num. Word

1 111 13 2112122121 25 2112112212211
2 222 14 212212211 26 2112122122122
3 21212 15 211221122 27 2112211211221
4 2112121 16 221122112 28 2112212212212
5 2121122 17 2112112211 29 2122122122122
6 22122121 18 221121121 30 2212212212212
7 2211212 19 21221121122 31 21121121121121
8 21211211 20 21122121121 32 21121121121122
9 212112122 21 22112112212 33 21121121122122
10 221211212 22 211211211212 34 21122122112112
11 21221122 23 211211212212 35 211211221221221
12 22112212 24 211212211211 36 2112112112212112

Table 2. Dominant terms of the Gröbner basis for G20

gap> GI := Grobner(KI);; time;

464612

Length(GI); GG := List(GI,y->y[1][1]);;

gap> Maximum(List(GI,y->Length(y[2])));

193

The variable GG is what we are interested in. It provides the list G of table 2. In the case of
G21 the list is given in table 5. The runtime in case of G21 is about 4 hours on a standard
PC.

We insist that this part (that uses GBNP) is used for heuristics only. In particular, it does
not play a role in the logical part of the proof, that could start now from just providing tables
2 and 5 pretending they come out of nowhere.

A last piece of information that we would like to mention is provided by the following
command

gap> Maximum(List(GI,y->Length(y[2])));

193

It says that, in the Gröbner basis provided by GBNP, already in this specialized case, the
linear combinations involved there can have as many as 193 terms. Therefore the rewriting
rules corresponding to this Gröbner basis, which involves only positive words in the generators,
may certainly not be found by hand, already in the case of G20.
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3.2. Incremental determination of computational rules. It so happens that all defining
relations are included in the Gröbner bases provided by GBNP. We view these as the first step
in the construction of an ordered list L of rewriting rules of the form w  cw where w ∈ G and
cw is a R0-linear combination of elements of B, with the property that the equality w = cw
holds inside the Hecke algebra H0. More precisely, the defining relations of the braid groups
of the form b1 = b2 are included under the form b1  b2 for b1 > b2. One checks that b1 ∈ G
and b2 ∈ B in all cases. The defining relations the form σm = bs,m−1σ

m−1 + · · ·+bs,1σ+1, are
also included under the form σm  bs,m−1σ

m−1 + · · ·+ bs,1σ + 1. We denote L0 the ordered
list of leading terms w ∈ G of the rules in L.

The incremental process aims at enlarging L so that L contains at the end as many elements
as G, with the set of elements inside L0 being equal to G.

The way we enlarge L uses two algorithms.
The first one is an algorithm for computing a given word as a R0-linear combination of

words, using as additional input an ordered list L of rewriting rules of the form v  cv, where
the cv are linear combinations of signed words (that is a word in the generators and their
inverses), while the list L0 = (v)(v 7→cv)∈L is formed of positive words. The output is either a
linear combination of positive words, or fail. It is a straightforward rewriting algorithm.

Algorithm 1

• Input : a word w in the generators and their inverses together with the list L
• If w contains the inverse of a generator, replace w by a linear combination

∑
m∈E λmm,

λm ∈ R0 of positive words, by applying the rewriting rules σ−1  σm−1−bs,m−2σ
m−1−

· · ·−bs,1 as many times as needed, and apply the present algorithm to these words m
(and the same list L). This provides a collection (r(m))m∈E of linear combinations
of (positive) words. Then return

∑
m λmr(m).

• If w ∈ B, then return w.
• If not, then look for the first element in L0 which appear as a subword in w. If there

is none, return fail. If there is one v, with w = avb, then replace it with the linear
combination acvb, where v  cv belongs to L. Write the linear combination acvb
as

∑
m∈E λmm, λm ∈ R0, and apply the algorithm to each (signed) monomial m

(and the same list L). It provides a collection (r(m))m∈E of linear combinations of
(positive) words. Then return

∑
m λmr(m).

Note that the list L given as input is not changed by algorithm 1. It is clear that, if the
algorithm 1 terminates for a given word w, producing a R0-linear combination bw, then the
equality w = bw holds inside H0. Adding more elements in L will not change the result if the
input is one for which the algorithm already terminated, but instead potentially increases the
number of words for which it does provide a result.

We denote G = (w1, w2, . . . ). Our strategy is then to establish a number of equalities inside
H0 of the form wi = bwi , where wi ∈ G and bwi is a linear combination of words with possibly
negative powers. This part does not follows from an algorithm. In the case of G20 we will
establish these equalities completely by hand, while for G21 we will use a linear combination
of handwritten computations and automatic expansions (see section 5).

Once this list is built, it is not suitable for our previous algorithm because the bw are linear
combinations of signed words, while positive words are needed in order to apply algorithm
1. We build a suitable list L incrementally as follows. We first define L to originally contain
the first rewriting rules w1  cw1 , . . . , wn0  cwn0

originating from the defining relations.
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By definition the cwi , i ≤ n0 are linear combinations of positive words. We then complete L
incrementally as follows.

Algorithm 2

• If L = (w1  cw1 , . . . , wn  cwn) with n smaller than the length of G, then write
bwn+1 as

∑
m∈E λmm with λm ∈ R0 and E a collection of signed words. Apply

algorithm 1 to each m ∈ E and get a linear combination r(m) of positive words.
Set cwn+1 =

∑
m∈E λmr(m), and add to L the rule wn+1  cwn+1 .

• If the length of L is equal to the length of G, then return L. Otherwise start again
algorithm 2 with the new L as input.

For the first group (G20) we are interested in, we managed to produce a convenient list of
rewriting rules wi  bwi completely by hand (see section 4). For the group G21 the production
of this list had to be partly automatized, too (see section 5). Note that this algorithm looks
really dependent on the ordering of the list bw1 , bw2 , . . . . It is actually so : we checked that
interchanging two lines in the list of rewriting rules provided below sometimes makes this
algorithm fail. As an indication of running time, algorithm 2 for G21 and the list given below
lasted about 5 minutes on a standard laptop.

3.3. Right multiplication table. Completing the (right)multiplication table is then merely
a way to check that H0 is indeed spanned by the elements of B. It is sufficient to calculate,
using algorithm 1, each word ws where w ∈ B and s a generator, as a R0-linear combination
of the words in B. The fact that these algorithms complete provides a proof of the conjecture,
because we already checked that B has cardinality #W . It also provides a concrete way to
calculate in these algebras. In the case of G21 the computation of the whole table lasted only
a few minutes.

4. Rules for G20

We first provide the list w  bw of (signed) rewriting rules, and subsequently justify that
they indeed hold inside H0. We use for compactness the notation 1 = s1, 2 = s2, 1̄ = s−1

1 ,

2̄ = s−1
2 , and ∅ denotes the emptyword.

(1) 111  a.11 + b.1 + ∅
(2) 222  a.22 + b.2 + ∅
(3) 21212  12121
(4) 2112121  1212112
(5) 2121122  1122121 + a.212112− a.122121− b.22121 + b.21211
(6) 22122121  12122122 + a.2122121− a.1212212 + b.122121− b.121221
(7) 2211212  1212211 + a.211212− a.121221− b.12122 + b.11212
(8) 21211211  11211212 + a.2121121− a.1211212 + b.212112− b.211212
(9) 212112122  112122121 + a.21211212− a.12122121− b.2122121 + b.2121121
(10) 221211212  121221211 + a.21211212− a.12122121− b.1212212 + b.1211212
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(11) 21221122  a.2121122 + b.211122 + a.212̄122 + b.212 + a.212̄1̄2 + b.212̄1̄ + 1̄2̄1̄21
(12) 22112212  a.2112212 + b.112212 + a.2̄12212 + b.212 + a.2̄1̄212 + b.∅+ 121̄2̄1̄
(13) 2112122121  a.22121221212̄ + b.2212121212̄ + 221211212̄
(14) 212212211  a.21221221 + b.2122122 + a.2122121̄ + b.2122 + 2121̄2̄1̄212
(15) 211221122  a.21122112 + b.2112211 + a.2112212̄ + b.2112 + a.21121̄2̄ + b.212̄

+a.212̄1̄2̄ + b.1̄2̄ + 1̄2̄1̄2̄1
(16) 221122112  a.21122112 + b.1122112 + a.2̄122112 + b.2112 + a.2̄1̄2112

+b.2̄12 + a.2̄1̄2̄12 + b.2̄1̄ + 12̄1̄2̄1̄
(17) 2112112211  a.211212211 + b.21122211 + a.21121̄211 + b.21121

+a.21121̄2̄1 + b.21121̄2̄ + 212̄1̄2̄12
(18) 221121121  a.21121121 + b.1121121 + a.2̄121121 + b.1121 + 1212̄1̄2̄121
(19) 21221121122  a.2122112122 + b.212211222 + a.21221121̄2

+b.21221121̄ + 2121̄2̄1̄21121
(20) 21122121121  a.2122121121 + b.222121121 + a.21̄2121121

+b.221121 + 22122121̄2̄

(21) 22112112212  a.2211212212 + b.221122212 + a.221121̄212
+b.221122 + 221122121̄2̄1̄

(22) 211211211212  21122121222121̄
(23) 211211212212  21121212121̄212
(24) 211212211211  212̄12121211211
(25) 2112112212211  a.211211221211 + b.21121122111 + a.2112112212̄1

+b.2112112212̄ + 212̄1̄2112212
(26) 2112122122122  21212121̄2122122
(27) 2112211211221  a.212211211221 + b.22211211221 + a.21̄211211221

+b.21211221 + a.21̄2̄1211221 + b.21221 + 22112212̄1̄2̄
(28) 2112212212212  a.212212212212 + b.22212212212 + a.21̄212212212

+b.22212212 + 22121̄2̄1̄212212
(29) 2122122122122  1̄212121̄2122122122
(30) 2212212212212  22122122121̄212121̄

(31) 21121121121121  211211211212̄121212̄
(32) 21121121121122  a.2112112112122 + b.211211211222

+a.21121121121̄2 + b.21121121121̄ + 211211212̄1̄2̄121
(33) 21121121122122  212̄121212̄121122122
(34) 21122122112112  21121̄212121̄2112112
(35) 211211221221221  212̄121212̄1221221221
(36) 2112112112212112  2112112112121212̄12

We now justify each one of the above rules. We first notice that the braid relation may
appear under the following different guises

21212 = 12121, 2̄1̄2̄12 = 121̄2̄1̄, 212̄1̄2̄ = 1̄2̄1̄21, 2̄1̄2̄1̄2 = 12̄1̄2̄1̄, 1̄2̄1̄2̄1 = 21̄2̄1̄2̄, 1̄2̄121 = 2121̄2̄

and the the other relations imply 1̄ = 11 − a.1 − b.∅, 2̄ = 22 − a.2 − b.∅. In order to clarify
the computations, we underline the subwords to which one of these defining relations or their
obvious variants are applied.

(i) defining relation.
(ii) defining relation.
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(iii) defining relation.
(iv) follows from 2112121 = 2121212 = 1212112.
(v) we have

2121122 = 1̄12121122
= 1̄21212122
= 1̄22121222
= a.1̄2212122 + b.1̄221212 + 1̄22121
= a.1̄2121212 + b.1̄212121 + (11− a.1− b.∅)22121
= a.1̄1212112 + b.1̄121211 + 1122121− a.122121− b.22121
= a.212112 + b.21211 + 1122121− a.122121− b.22121

(vi) We have 22122121 = 2212212122̄ = 2212121212̄ = 2121211212̄ = 1212111212̄ hence

22122121 = 1212(a.11 + b.1 + ∅)212̄
= a.121211212̄ + b.12121212̄ + 1212212̄
= a.212121212̄ + b.12212122̄ + 1212212̄
= a.212212122̄ + b.122121 + 121221(22− a.2− b∅)
= a.2122121 + b.122121 + 12122122− a.1212212− b.121221

(vii) We have 2211212 = 221121211̄ = 221212121̄ = 222121221̄ hence

2211212 = (a.22 + b.2 + ∅)121221̄
= a.22121221̄ + b.2121221̄ + 121221̄
= a.21212121̄ + b.1212121̄ + 1212211− a.121221− b.12122
= a.21121211̄ + b.1121211̄ + 1212211− a.121221− b.12122
= a.211212 + b.11212 + 1212211− a.121221− b.12122

(viii) We have 21211211 = 1̄121211211 = 1̄212121211 = 1̄211212111 hence

21211211 = 1̄211212(a.11 + b.1 + ∅)
= a1̄21121211 + b1̄2112121 + 1̄211212
= a1̄21212121 + b1̄2121212 + (11− a.1− b.∅)211212
= a1̄12121121 + b1̄1212112 + 11211212− a.1211212− b.211212
= a2121121 + b212112 + 11211212− a.1211212− b.211212

(ix) Similarly, we have 212112122 = 1̄1212112122 = 1̄2121212122 = 1̄2122121222 hence

212112122 = 1̄2122121(a.22 + b.2 + ∅)
= a.1̄212212122 + b.1̄21221212 + 1̄2122121
= a.1̄212121212 + b.1̄21212121 + (11− a.1− b)2122121
= a.1̄121211212 + b.1̄12121121 + 112122121− a.12122121− b.2122121
= a.21211212 + b.2121121 + 112122121− a.12122121− b.2122121

(x) Finally we have 221211212 = 22121121211̄ = 22121212121̄ = 22212122121̄ hence

221211212 = (a.22 + b.2 + ∅)12122121̄
= a.2212122121̄ + b.212122121̄ + 12122121̄
= a.2121212121̄ + b.121212121̄ + 1212212(11− a.1− b)
= a.2121121211̄ + b.121121211̄ + 121221211− a.12122121− b.1212212
= a.21211212 + b.1211212 + 121221211− a.12122121− b.1212212
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(xi) We have 21221122 = a.2121122 + b.211122 + 212̄1122 and 212̄1122 = a.212̄122 +
b.212̄22 + 212̄1̄22 = a.212̄122 + b.212 + 212̄1̄22. Then, 212̄1̄22 = a.212̄1̄2 + b.212̄1̄ +
212̄1̄2̄. Since 212̄1̄2̄ = 1̄2̄1̄21 this establishes the rule.

(xii) We have 22112212 = a.2112212 + b.112212 + 2̄112212, then 2̄112212 = a.2̄12212 +
b.2̄2212 + 2̄1̄2212 and 2̄1̄2212 = a.2̄1̄212 + b2̄1̄12 + 2̄1̄2̄12. Finally, 2̄1̄2̄12 = 121̄2̄1̄ and
this establishes the rule.

(xiii) We have 2112122121 = 211212212122̄ = 211212121212̄ = 212121221212̄ which is
equal to 221212221212̄ = a.22121221212̄ + b.2212121212̄ + 221211212̄

(xiv) We have 212212211 = a.21221221+b.2122122+21221221̄, and 21221221̄ = a.2122121̄+
b.212211̄ + 212212̄1̄. Now, 212212̄1̄ = 212212̄1̄2̄2 = 2121̄2̄1̄212 and this establishes
the rule.

(xv) We expand 2(11)(22)(11)(22) by using four times the relation x2 = a.x+ b+ x−1 for
x ∈ {1, 2} at the four places between parenthesis we get 211221122 = a.21122112 +
b.2112211 + a.2112212̄ + b.2112 + a.21121̄2̄ + b.212̄ + a.212̄1̄2̄ + b.1̄2̄ + 21̄2̄1̄2̄. Now
1̄2̄1̄2̄1 = 21̄2̄1̄2̄ and this establishes the rule.

(xvi) Rule #16 is similar to rule #15 : we expand (22)(11)(22)(11)2 and use 12̄1̄2̄1̄ = 2̄1̄2̄1̄2.
(xvii) Rule #17 is similar to rules #15 and #16 : expand 2112(11)(22)(11) and use

21121̄2̄1̄ = 21121̄2̄1̄2̄2 = 2111̄2̄1̄2̄12 = 212̄1̄2̄12.
(xviii) By expanding (22)(11)21121 we get 221121121 = a.21121121+b.1121121+a.2̄121121+

b.1121 + 2̄1̄21121. Since 2̄1̄21121 = 11̄2̄1̄21121 = 1212̄1̄2̄121 this establishes the rule.
(xix) By expanding 2122112(11)(22) we get 21221121122 = a.2122112122 + b.212211222 +

a.21221121̄2+b.21221121̄+21221121̄2̄ and 21221121̄2̄ = 21221121̄2̄1̄1 = 212212̄1̄2̄121 =
2121̄2̄1̄21121 establishes the rule.

(xx) By expanding 2(11)(22)121121 we get 21122121121 = a.2122121121 + b.222121121 +
a.21̄2121121+b.221121+21̄2̄121121 and 21̄2̄121121 = 22121̄2̄121 = 22122121̄2̄ which
establishes the rule.

(xxi) By expanding 22112(11)(22)12 we get 22112112212 = a.2211212212 + b.221122212 +
a.221121̄212 + b.221122 + 221121̄2̄12 and 221121̄2̄12 = 221121̄2̄1211̄ = 221122121̄2̄1̄
establishes the rule.

(xxii) We have 211211211212 = 21121121121211̄ = 21121121212121̄ = 21121212122121̄ =
21122121222121̄ and this establishes the rule.

(xxiii) We have 211211212212 = 21121121211̄212 = 21121212121̄212 and this establishes
the rule.

(xxiv) We have 211212211211 = 212̄21212211211 = 212̄12121211211 and this establishes
the rule.

(xxv) We expand 211211221(22)(11) and get

2112112212211 = a.211211221211 + b.21121122111 + a.2112112212̄1
+b.2112112212̄ + 2112112212̄1̄

and since 2112112212̄1̄ = 2112112212̄1̄2̄2 = 21121121̄2̄1̄212 = 211212̄1̄2̄12212 =
2111̄2̄1̄2112212 = 212̄1̄2112212 this establishes the rule.

(xxvi) We have 2112122122122 = 21121211̄2122122 = 21212121̄2122122 and this establishes
the rule.

(xxvii) By expanding 2(11)(22)(11)211221 we get 2112211211221 = a.212211211221+b.22211211221+
a.21̄211211221+b.21211221+a.21̄2̄1211221+b.21221+21̄2̄1̄211221 and 21̄2̄1̄211221 =
2212̄1̄2̄1221 = 221121̄2̄1̄21 = 22112212̄1̄2̄ and this establishes the rule.
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(xxviii) By expanding 2(11)(22)12212212 we get

2112212212212 = a.212212212212 + b.22212212212 + a.21̄212212212
+b.22212212 + 21̄2̄12212212

and 21̄2̄12212212 = 21̄2̄1211̄212212 = 22121̄2̄1̄212212 and this establishes the rule.
(xxix) We have 2122122122122 = 1̄121211̄2122122122 = 1̄212121̄2122122122 and this estab-

lishes the rule.
(xxx) We have 2212212212212 = 22122122121̄121211̄ = 22122122121̄212121̄ and this estab-

lishes the rule.
(xxxi) We have 21121121121121 = 211211211212̄212122̄ = 211211211212̄121212̄ and this

establishes the rule.
(xxxii) By expanding 2112112112(11)(22) we get 21121121121122 = a.2112112112122 +

b.211211211222+a.21121121121̄2+b.21121121121̄+21121121121̄2̄, and 21121121121̄2̄ =
21121121121̄2̄1̄1 = 211211212̄1̄2̄121, which establishes the rule.

(xxxiii) We have 21121121122122 = 212̄212122̄121122122 = 212̄121212̄121122122 which es-
tablishes the rule.

(xxxiv) We have 21122122112112 = 21121̄121211̄2112112 = 21121̄212121̄2112112 which es-
tablishes the rule.

(xxxv) We have 211211221221221 = 212̄212122̄1221221221 = 212̄121212̄1221221221 which
establishes the rule.

(xxxvi) We have 2112112112212112 = 2112112112212122̄12 = 2112112112121212̄12 which
establishes the rule.

5. Rules for G21

5.1. Semi-manual procedures. Recall that the Hecke algebra in this case is defined over
R0 = Z[a, b, q]. Let Y be the alphabet {1, 2, 1̄, 2̄}, M(Y ) the free monoid over Y , and F (Y ) ⊂
M(Y ) the subset of freely reduced words, that is the set of natural representatives of the free
group on {1, 2} viewed as a quotient of M(Y ). We denote M+(Y ) = M({1, 2}) ⊂ M(Y )
the submonoid of positive words. We let red : M(Y ) → F (Y ) denote the usual reduction
procedure, and red : R0M(Y )→ R0F (Y ) its natural linear extension, where we let R0M(Y )
denote the monoid algebra over R0 and R0F (Y ) the (free) submodule spanned by F (Y ).

A more complicated procedure which we describe now is what we call expansion. By
convention we set ȳ = y for all y ∈ {1, 2}. For I ⊂ N∗, let us first define the I-inversion map
invI : M(Y ) → M(Y ) as follows. If y = y1y2y3 . . . yn ∈ M(Y ) is a word in n letters, with
yk ∈ Y , invI(y) = y′ = y′1y

′
2y
′
3 . . . y

′
n ∈ M(Y ) is defined by y′k = ȳk if k ∈ I, y′k = yk if k 6∈ I.

We now define the partially defined expansion map expI : M(Y ) 99K M(Y ) with respect to
I by induction on the cardinality of I. If I = ∅, then exp∅ is the identity map. If not, let
i0 = min(I), and let J such that I = J t {i0}. If y = y1y2y3 . . . yn ∈ M(Y ) is a word in n
letters, with yk ∈ Y , then expI(y) is defined if n ≥ i0 and if

• either yi0 = 1, in which case expI(y) = q.y′+ z with y′ = y′1y
′
2 . . . y

′
n−1 where y′k = yk

for k < i0, y′k = yk+1 for k ≥ i0, and z = expJ̌(inv{i0}(y)) with J̌ = J , if it is defined.
• either yi0 = yi0 + 1 = 2, in which case expI(y) = a.y′ + b.y′′ + z with

– y′′ = y′′1y
′′
2 . . . y

′′
n−2 where y′′k = yk for k < i0, y′′k = yk+2 for k ≥ i0

– y′ = y′1y
′
2 . . . y

′
n−1 where y′k = yk for k < i0, y′i0 = yi0 = 2, y′k = yk+1 for

k ≥ i0 + 1.
– z = expJ̌(inv{i0}(y

′′)) with J̌ = J − 1 = {x− 1;x ∈ J}, if it is defined.
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I headI(1221) expI(1221)
∅ 1221 1221
{1} 1̄221 q.221 + 1̄221
{2} 12̄1 a.121 + b.11 + 12̄1
{1, 2} 1̄2̄1 q.221 + exp{2}(1̄221)

= q.221 + a.1̄21 + b.1̄1 + 1̄2̄1
{4} 1221̄ q.122 + 1221̄
{1, 4} 1̄221̄ q.221 + exp{4}(1̄221)

= q.221 + q.1̄22 + 1̄221̄
{2, 4} 12̄1̄ a.121 + b.11 + exp{3}(12̄1)

= a.121 + b.11 + q.12̄ + 12̄1̄
{1, 2, 4} 1̄2̄1̄ q.221 + exp{2,4}(1̄221)

= q.221 + a.1̄21 + b.1̄1 + exp{3}(1̄2̄1)

= q.221 + a.1̄21 + b.1̄1 + q.1̄2̄ + 1̄2̄1̄

Table 3. Example : partial expansions of the word 1221.

It is easily checked that, when defined, expI(y) can be written as expI(y) = tailI(y)+headI(y)
with headI(y) ∈ M(Y ) being characterized, with the above notations, by head{i0}tJ(y) =
headJ̌(z), and head∅(y) = y.

In table 3 we provide as an example all the partial expansions of the word w = 1221. Of
course, the definitions of expI and red are made in such a way that the images of any two
words of M(Y ) under one of these maps yield the same element under the natural algebra
morphism R0M(Y )→ H0.

5.2. Rules. We can now give the set of rules for G21, the justification that they correspond
to genuine relations inside its Hecke algebra easily relying on the properties of expI and tailI
established in the above section. Indeed, most of them are of the form w  red(tailI(a∗w∗b)+
w′), where ∗ denotes the concatenation of two words, a, b ∈M(Y ) satisfy red(a) = red(b) = ∅,
and w′ is a word deduced from headI(a ∗w ∗ b) using braid relations. Some more complicated
ones have the form red(tailI(a∗w∗b)+tailJ(w′)+w′′) where w′ is deduced from headI(a∗w∗b)
and w′′ is deduced from tailJ(w′), etc.

(1) 11  (q).1 + ∅
(2) 222  a.22 + b.2 + ∅
(3) 2121212121  1212121212
(4) 21212121221  red(tail11(1̄1 ∗ w) + 1̄2̄1212121211)
(5) 221221212121  red(tail1,3,4(w) + 12121212̄1̄2̄)
(6) 212121221221  red(tail7,9,10,12(212121221221) + 1212121212)
(7) 2121221221221  red(tail5,7,8,10,11,13(2121221221221) + 1212121212)
(8) 2212212212121  red(tail1,3,4,6,7(2212212212121) + 121212̄1̄2̄1̄2̄)
(9) 212122121221221  red(tail10,12,13,15(w ∗ 2̄1̄12) + 1̄2̄1̄2̄1̄2121121212)
(10) 22121221212121  red(tail5,6,8(w ∗ 22̄) + 221221212121̄2̄1̄2̄)
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(11) 21212122121221  red(tail11,13(1̄2̄21 ∗ w) + tail12,14,15(w′) + w′′)
w′ = 1̄2̄1̄2̄1212121221221
w′′ = 1̄2̄1̄2̄2̄1̄2̄12121211

(12) 21221221221221  red(tail3,5,6,8,9,11,12,14(w) + 1̄2̄1̄2̄1̄2̄1̄2̄12)
(13) 22122122122121  red(tail1,3,4,6,7,9,10,12(w) + 121̄2̄1̄2̄1̄2̄1̄2̄)
(14) 2121212212121221  red(tail14,16(w ∗ 2̄1̄12) + 21212121̄2̄1̄2̄12121212)
(15) 221221212212121  red(tail8,9(w ∗ 2122̄1̄2̄) + 2212212212121212̄1̄2̄1̄2̄)
(16) 2212121221212121  red(tail7,8(w ∗ 22̄) + 221212212121212̄1̄2̄)
(17) 2212212212122121  red(tail3,5,6,8,9(11̄ ∗ w) + 121212̄1̄2̄1̄2̄1̄2121)
(18) 22122121212212121  red(tail3,5,6(11̄ ∗ w) + 12121212̄1̄2̄1̄212121)
(19) 212122122121221221  red(tail12,13,15,16,18(w ∗ 2̄1̄12) + 1̄2̄1̄2̄1̄21221221212)
(20) 221221212212212121  red(tail8,9,11,12(w ∗ 22̄) + 22122122121212̄1̄2̄1̄2̄)

(21) 2212122121212212121  red(tail5,6(ŵ) + 2212212121212̄1̄2̄1̄212121)
ŵ = 2212122121212122̄1̄212121

(22) 2212212212122122121  red(tail3,5,6,8,9(11̄ ∗ w) + 121212̄1̄2̄1̄2̄1̄2122121)
(23) 22121221221212122121  red(tail5,6,8,9(w) + tail5,7,8(w′)) + w′′

w′ = 122̄1̄22122121212̄1̄2̄1̄2121
w′′ = 12121212̄1̄2̄1̄2̄2̄1̄2̄1̄2121

(24) 22122121221212212121  red(tail13,14(w ∗ 2122̄1̄2̄) + 221221212212212121212̄1̄2̄1̄2̄)
(25) 221221212212212122121  red(tail7,9,10,12(1211̄2̄1̄ ∗ w) + 1212122122121̄2̄1̄2̄1̄2121)
(26) 2121221212212122121221  red(tail20,22(w ∗ 2̄1̄2̄1̄1212) + 212121̄2̄1̄2̄1̄21212212112121212)
(27) 22121221221212212122121  red(tail5,6,8,9(ŵ) + 22122121211212212121̄2̄1̄2̄1̄2̄)

ŵ = 22121221221212122̄1̄212122121
(28) 22122121221212212122121  red(tail7,9,10(1211̄2̄1̄ ∗ w) + 121212112121̄2̄1̄2̄1̄212122121)
(29) 2212122121221212212121  red(tail15,16(w ∗ 2122̄1̄2̄) + tail10,11,13,14(w′) + w′′)

w′ = 22121221212212212121212̄1̄2̄1̄2̄
w′′ = 2212122122121212̄1̄2̄2̄1̄2̄1̄2̄

(30) 2212122121221212122121  red(tail14,15(ŵ) + tail5,6,8,9(w′) + tail5,7,8(w′′) + w′′′)
ŵ = 221212212211̄2̄1221212122121
w′ = 221212212212121212̄1̄2̄1̄2121
w′′ = 122̄1̄22122121212̄1̄2̄2̄1̄2̄1̄2121
w′′′ = 12121212̄1̄2̄1̄2̄2̄1̄2̄2̄1̄2̄1̄2121
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∅ 112122 2112212 21221121 211212212 2112112122 12211211221 121122122122 2112112112212
1 112211 2121121 21221211 211221121 2112112212 12212211211 121221221221 2112112122112
2 112212 2122112 21221221 211221211 2112122112 12212212212 122122112112 2112112212112

11 121121 2122121 22112112 211221221 2112122122 21121121121 122122122122 2112112212212
12 121122 2122122 22112211 212211211 2112211211 21121121122 211211211211 2112212211211
21 121211 2211211 22121121 212212112 2112212112 21121121221 211211211221 11211211211211
22 121221 2211221 22122112 212212212 2112212211 21121122121 211211212211 11211211211221

112 122112 2212112 22122122 221121122 2112212212 21121122122 211211221211 11211211212211
121 122121 2212211 112112112 221221121 2122112112 21121221121 211211221221 11211211221211
122 122122 2212212 112112122 221221221 2122121121 21121221221 211212212212 11211211221221
211 211211 11211211 112112211 1121121121 2122122122 21122112112 211221121122 11211212212212
212 211212 11211212 112112212 1121121122 2211211221 21122122112 211221221121 11211221121122
221 211221 11211221 112121121 1121121221 2212211211 21122122122 211221221221 11211221221121

1121 212112 11212112 112122112 1121122112 2212212212 21221221221 212212212212 11211221221221
1122 212211 11212211 112122121 1121122121 11211211211 22122112112 221221221221 11212212212212
1211 212212 11212212 112122122 1121122122 11211211212 22122122122 1121121121121 11221221221221
1212 221121 11221121 112211211 1121211212 11211211221 112112112112 1121121121122 12112112112112
1221 221122 11221122 112211221 1121221121 11211212211 112112112122 1121121121221 12112112112212
2112 221211 11221211 112212112 1121221211 11211212212 112112112212 1121121122121 12112112122112
2121 221221 11221221 112212211 1121221221 11211221121 112112122112 1121121122122 12112112212112
2122 1121121 12112112 112212212 1122112112 11211221211 112112122122 1121121221121 12112112212212
2211 1121122 12112122 121121121 1122112211 11211221221 112112211211 1121121221221 12112212211211
2212 1121211 12112211 121121122 1122121121 11212211211 112112212112 1121122112112 21121121122121

11211 1121221 12112212 121121221 1122122112 11212212112 112112212211 1121122122112 21121121221121
11212 1122112 12121121 121122112 1122122122 11212212212 112112212212 1121122122122 21121122122122
11221 1122121 12122112 121122121 1211211211 11221121122 112122112112 1121221221221 112112112112112
12112 1122122 12122121 121122122 1211211212 11221221121 112122121121 1122122112112 112112112112212
12121 1211211 12122122 121211212 1211211221 11221221221 112122122122 1122122122122 112112112122112
12122 1211212 12211211 121221121 1211212211 12112112112 112211211221 1211211211211 112112112212112
12211 1211221 12211221 121221211 1211212212 12112112122 112212211211 1211211211221 112112112212212
12212 1212112 12212112 121221221 1211221121 12112112212 112212212212 1211211212211 112112212211211
21121 1212211 12212211 122112112 1211221211 12112122112 121121121121 1211211221211 121121121122121
21122 1212212 12212212 122112211 1211221221 12112122122 121121121122 1211211221221 121121121221121
21211 1221121 21121121 122121121 1212211211 12112211211 121121121221 1211212212212 121121122122122
21221 1221122 21121122 122122112 1212212112 12112212112 121121122121 1211221121122 211211211221211
22112 1221211 21121221 122122122 1212212212 12112212211 121121122122 1211221221121 1121121121122121
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Num. Word Num. Word
1 11 16 2212121221212121
2 222 17 2212212212122121
3 2121212121 18 22122121212212121
4 21212121221 19 212122122121221221
5 221221212121 20 221221212212212121
6 212121221221 21 2212122121212212121
7 2121221221221 22 2212212212122122121
8 2212212212121 23 22121221221212122121
9 212122121221221 24 22122121221212212121
10 22121221212121 25 221221212212212122121
11 21212122121221 26 2121221212212122121221
12 21221221221221 27 22121221221212212122121
13 22122122122121 28 22122121221212212122121
14 2121212212121221 29 2212122121221212212121
15 221221212212121 30 2212122121221212122121

Table 5. Dominant terms of the Gröbner basis for G21
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