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Abstract. In this Technical Note, we numerically

study the regularity loss of the solutions of non-parametric

minimal surfaces with non-zero boundary conditions. As

expected from theoretical results when parts of the bound-

aries have non-positive mean curvature, the solutions

may or may not be regular close to the boundary. From

approximate solutions, we look for a process that will say

whether the exact solution is regular or not. We elabo-

rate this process inside an astroid to get a threshold value

of the constraint. More theoretical results are also given

on the approximation by a regularized solution. Last, we

check this process in the catenoid.
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1 Introduction

Almost two centuries and a half after Euler’s works on the catenoid,
the topic of minimal surfaces is still active. For instance the
Mathematical Sciences Research Institute (MSRI) hosted the
Clay Mathematics Institute Summer School on the Global The-
ory of Minimal Surfaces. The nature of the meeting made it
possible to give a panoramic view of this subject. An edited
book was published in 2005 [1].

The problem of non-parametric minimal surfaces consists in
finding a graph function u solution of the following minimization
problem :

min
u|Γ=Φ

∫

Ω

√

1 + |∇u|2 dx, (1)

for u defined inside Ω ⊂ R
N , Γ being the frontier of Ω and Φ

a given L∞ function.

Many works were concerned with the existence of a strong
solution for (1) in the case of boundaries of non-negative cur-
vature. See for instance [2], ... among many others. Since the
1970s, some papers proved the existence of weak solutions of
(1) called “generalized solutions” satisfying either u|Γ′ = Φ and
∂u/∂n(Γ′) < ∞ or u|Γ′ 6= Φ and ∂u/∂n(Γ′) = ∞, for Γ′ ⊂ Γ.
A “generalized solution” is defined as the limit of a regularized
solution to (2). Serrin [3] proved that if the domain’s boundary
Γ is not of non-negative mean curvature, the generalized solu-
tion may be non-regular (u 6= Φ at the frontier) even if Φ is C∞.
So the generalized solution develops a “vertical branch” and its
normal derivative becomes infinite near the boundary in the re-
gion where u = Φ is not satisfied.

2



Here, we are interested in the way one may know from com-
puted minimal surfaces whether the exact (generalized) solution
is regular or not. In this technical note, we justify a numeri-
cal process to characterize, from the computed minimal surface,
whether the exact (and unknown) solution is regular (u = Φ and
∂u/∂n|Γ < ∞) or non-regular (u 6= Φ and ∂u/∂n|Γ = ∞). Such
a process could be useful even outside optimization.

One of the author has studied in [4] the non-parametric catenoid
for which he exhibited an explicit value of the height above which
the solution is regular and below which it is non-regular. We will
check our process on this case.

In the Section 2 of the Note, we validate the numerical code
and set up a process for a minimal surface inside an astroid
with boundary conditions depending on a real parameter K. We
justify the existence of a threshold value of K above which the
solution is non-regular. This numerical study is completed by
some theoretical insights into the behavior of the regularized
solutions when ε → 0 (the boundary layer behavior). In Section
3, we apply the preceding method to the study on the catenoid.
We conclude in Section 4.

2 Investigations in the astroid

Theoretical papers mentionned above force us to take a domain
whose boundary is of non-negative curvature. A simple one is
the interior of an astroid (x(θ) = 4 cos3 θ, y(θ) = 4 sin3 θ). If K
is a positive real, the boundary condition Φ is either +K on the
part Γ1 of the frontier where xy > 0 or −K on the part Γ2 of
the frontier where xy > 0. Because of the symmetries we expect
the regularity loss to appear at I(

√
2,
√

2) ∈ Γ1 where we will
measure the normal slope.

We need to validate the program that will compute the ap-
proximate optimal solutions, then the process that will tell us
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whether the exact solution is regular or not.

2.1 The resolution

Because of the symmetries, we meshed a fourth of the astroid
with emc2 ([5]). Our meshes are exponentially refined close to
the point I(

√
2,
√

2) with 20, 50 and 80 nodes on Ω
⋂

(x = y) for
mesh1, mesh2 and mesh3 respectively.

We discretized functions with P1 finite elements and wrote
a program of evaluation of the functional. As it only depends
on the gradient and is highly non-linear, we created two more
arrays that stored the derivatives of the local basis functions.
They enable to speed up the evaluation.

The constraint is a simple Dirichlet condition u|∂Ω = Φ de-
pending only on a positive K.

We plug all this in DONLP2 (see [6, 7]) which is a free opti-
mization code written either in F77, F90 or C. It is available on
the internet. It uses a slightly modified version of the Pantoja-
Mayne update for the Hessian of the Lagrangian, variable dual
scaling and an improved Armijo-type stepsize algorithm.

By using two very different initial try, we could compute two
solutions for K = 10 where normal slopes at I(

√
2,
√

2) differ
only of 0.03 %. So the program does not depend on the initial
try.

Similarly, we checked that the result on our best mesh3 is
0.3% from the result on mesh2. Thanks to other tests, we could
validate our program.

2.2 Threshold value in the astroid

Theoretical results propose two ideas to prove the regularity loss
: either u|Γ 6= Φ or ∂u

∂n
|Γ = +∞ at I.

So as to catch the condition u|Γ 6= Φ of the exact solution,
we used in a first time extrapolations from the computed one.

4



It happens that the computed solution extrapolates (piecewise
either cubic Hermite or cubic spline) almost exactly to K. Only
its difference with K 7→ K seemed to show a kind of difference
at about 3. Since the flag is unclear, we abandonned this idea.

In a second time, still trying to catch the condition u|Γ 6= Φ,
we solved the optimization for K and K ′ = K + 1. From the
computed solutions, we drew |UK+1−UK |L2/|UK |L2 as a function
of K. Yet, no abrupt change appeared. So we abandonned this
idea.

In a third time, although measuring a slope is less accurate
(and more sensitive), we tried to catch the equivalent condition
∂u/∂n|Γ = +∞ at I by computing the normal slope of the com-
puted solution. As it can be expected at a finite and fixed space
step, the infinite is too close to 1. Even though the slope at
K = 10 is about 240, this is not a clear infinite. Yet, it appears
on Figure 1 that this slope depends drastically on the space step.
This remark led us to the next process.

0.0 5.0 10.0 15.0
K
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100.0

200.0

300.0

400.0

500.0

sl
op

e

mesh 1
mesh 2
mesh 3

Figure 1: Slopes versus K

In a fourth time, we tried to catch the condition ∂u/∂n|Γ =
+∞ at I by non-convergence. In other words, if the normal
slope increases with the local space step, we may guess that this
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is a sign of non-convergence and so of local non-regularity of the
exact solution. The results for our three meshes are drawn on
Figure 1. These results enable us to claim first that this process
gives a reasonable answer and next that there is very likely a
threshold value K0 between 2 and 4 such that if K > K0 the
exact solution to (1) in an astroid is no more regular close to I.

Zooming in the range K ∈ [0.1, 3] shows little discrepancy
between the results on the three meshes. Zooming in the range
K ∈ [2, 8] is less acurate than making a linear regression from
Figure 1 in the straight parts of the curves (almost exactly lin-
ear). All these lines cross at the same point whose abscissa is
3 ± 0.2.

An other numerical post-treatment after the resolution would
be to draw the difference of the normal slope on our two best
meshes. It provides the same value.

2.3 Dependence of the boundary layer on the

regularization

An asymptotic analysis enables us to guess the order of the
boundary layer from the optimal solution to the regularized prob-
lem :

min
u|Γ1

=K, u|Γ2
=−K

∫

Ω

ε|∇u|2/2 +
√

1 + |∇u|2 dx. (2)

First we need some preliminary results. Let the new coordi-
nates ; z = (x + y)/

√
2, t = (x − y)/

√
2 and v(z, t) = uε(x, y).

We may state the following theorem.

THEOREM 2.1 The solution v(z, t) of the regularized equa-
tion (2) inside an astroid has a trace along the axis of symmetry
t = 0 that satisfies for all ε :

ε
(∂2v

∂z2
+

∂2v

∂t2

)

(

1 + (
∂v

∂z
)2

)3/2

+
∂2v

∂z2
+

∂2v

∂t2

(

1+(
∂v

∂z
)2

)

= 0. (3)
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Moreover, at the point I(
√

2,
√

2), any solution of (2) is odd in
t and satisfies :

∂2v

∂t2
= −1/6

∂v

∂z
. (4)

Sketch of the proof
The proof of (3) is straightforward from the Euler’s equations

associated to (1).
Concerning the proof of (4), it suffices to make an expansion

of the function v(z, t) restricted to Γ1 where it is constant, and
use the fact that odd in t derivatives of v are zero along the
segment t = 0 by symmetry. An expansion in θ − π/4 of the
solution leads to (4). By pursuing the expansion, one might
even prove that at (z = 2, t = 0) ;

54
∂3v

∂z∂t2
+ 9/2

∂2v

∂z2
+ 54

∂4v

∂t4
− 30

∂2v

∂t2
− 13/4

∂v

∂z
= 0.

Let us assume the boundary layer is of size εα. Then if we let
z = εαZ and use this in (4), one sees that the second derivative
in t close to I will be negligible with respect to ∂2v/∂z2 which is
of order ε−2α. We find back a well-known result that in a bound-
ary layer the most important variation holds in the normal di-
rection (z direction in our case). But this negligibility is limited
as ∂2v/∂t2 = −ε−α/6 ∂v/∂Z and ∂2v/∂z2 = ε−2α∂2v/∂Z2.

Then the leading terms in the equation (3) are given by

ε1−5α ∂2v

∂Z2

(

∂v

∂Z

)3

+ ε−2α ∂2v

∂Z2
+ ε−2α ∂2v

∂t2
(
∂v

∂Z
)2 = 0, at t = 0,

(5)
sufficiently close to I (to have (4)). One must notice that

the equation (4) makes the third term dominate the second one.
By homogeneity we obtain 1 − 5α = −3α or α = 1/2. Had we
neglected all the t derivatives as usual in boundary layers’ liter-
ature, we would have been led to a different result. Of course
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here we just intend to get an order of magnitude of the bound-
ary layer and a complete study of this problem is postponed to
a subsequent work.

Now, we are going to numerically check the value found by
our simple asymptotic analysis. For this purpose, we look for
a discretized solution to (2), extract the slope at I and draw
its variation with the regularizing parameter ε in the left part
of Figure 2. This slope is finite because of the regularizing pa-
rameter ε in (2). The computations are done on mesh 3 and K
is set equal to 20 > K0. The normal slope as a function of ε
varies approximatively as ε−α with α ≃ 0.4 for mesh 3 (astroid).
This is compatible with what we expected from our asymptotic
analysis (α = 0.5).
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Figure 2: Dependence on ε of the normal slope in the astroid
(left-mesh 3) and the catenoid (right-mesh 4)

3 The case of the catenoid

In order to check our numerical process, we need a test case
where the exact value of the threshold can be known exactly.
This is the case for the (non-parametric) catenoid. As it is proved
in [4], the exact value of K0 is K0 = R1 ln ((R2+

√

R2
2 − R2

1)/R1)
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For R1 = 1, R2 = 2, it is about 1.32.

In order to find the catenoid, we meshed non-radially a fourth
of an annulus between R = 1 and R = 2 and solved (1) with
DONLP2 (cf. [6], [7]). Then we read the normal gradient along
a section radially uniformly meshed with 20, 30, 50 or 100 points.
The results are reported on Figure 3.
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Figure 3: Normal gradient on the interior circle (catenoid)

When one draws the four straight lines for each mesh after
the non-convergence, there is, like in the astroid case, only one
intersection. Its abscissa is K ≃ 1.3. This numerical value is
sufficiently close to the exact one (about 1.32) to give confidence.
A posteriori, it gives one more argument for the study in the
astroid.

Like in the astroid case, one may draw the difference of the
computed slopes as a function of K for the two best meshes.
Such a curve drives us to predict a value K ≃ 1.4 which is rea-
sonable too.

Let us notice that even if the meshes had increasing number
of points along one section, the rest of the meshes was not equally
refined. It proves that the accuracy in the vicinity of the point
of regularity loss is more important than elsewhere.

We also drew in Figure 2-right the slope of the regularized
catenoid as a function of the regularizing parameter ε. While
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the theoretical value of the slope is 1/3 (see [4]) we found a
reasonable value of 0.38.

4 Conclusion

Our numerical study enables us to claim that there exists no
regular solution to the problem (1) in an astroid for K above a
certain value K0. This is due to the curvature of the boundary.
An estimate for this threshold in an astroid is K0 = 3± 0.2. We
also described both theoretically and numerically how the regu-
larized solution converges to the generalized one. This measures
the boundary layer behavior.

All these computations are checked in the case of the catenoid
where one of the authors has computed the exact threshold K0

in [4].
Moreover, it appeared that some more “natural” approches

were less efficient in catching the regularity loss than our numeric-
based approch. Even outside the field of optimization, a numer-
ical attempt to characterize the regularity loss could use the
numerical process given in this article.
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