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Abstract

The goal of this study is to propose an efficient numerical model for the predictions of cap-
illary adsorption phenomena in porous material. The Scharfetter–Gummel numerical scheme
is proposed to solve an advection-diffusion equation with gravity flux. Its advantages such
as accuracy, relaxed stability condition and reduced computational cost are discussed along
with the study of linear and nonlinear cases. The reliability of the numerical model is evalu-
ated by comparing the numerical predictions with experimental observations of liquid uptake
in bricks. A parameter estimation problem is solved to adjust the uncertain coefficients of
moisture diffusivity and the hydraulic conductivity.

keywords: water uptake process; porous material; Scharfetter–Gummel numerical
scheme; parameter estimation problem; advection–diffusion equation with gravity flux

1 Introduction
Nowadays efficient energy consumption of buildings is one of the most challenging tasks. In

case of the historical buildings this problem has to deal not only with the energy performance,
but also with the building protection itself [1, 2]. The study of moisture’s amount in the
building walls takes the largest part for energy reduction, since it may increase the heat loss
through the walls. The increase of moisture quantity may occur due to different reasons as
wind driven rain, rising damp or simply vapour diffusion [3].

Among all the potential sources of moisture, rising damp is an important issue since it is an
important source of liquid water. It may strongly impact the building structure by modifying
the mechanical behaviour of the wall. Moreover, the water from the ground brings dissolved
salts. During evaporation process these salts precipitate and crystals appear that deteriorate
the material [4, 5]. Some examples of such deterioration can be found in [6] or [7].

Thus, one understands the importance of studying the physical phenomena occurring in
rising damp. As mentioned by Franzoni in [8], the main challenges related to the rising
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damp problem is to find accurate, fast and cheap methods to characterize the moisture content
during the water uptake of a material or a wall. Several methods to characterize the amount
of moisture already exist and can be divided in two main groups: (i) invasive (traditional
like weighting–drying, chromatography) and (ii) non-invasive (dielectric, microwave) [9]. But
usually, these approaches are very complex procedures requiring extensive technical support.
Moreover, the obtained results do not describe an exact situation of the whole building. Thus,
as underlined in [2], it is worth investigating other approaches by proposing numerical models
to perform simulations and obtain quantitative results.

Several models were proposed in the literature for the simulation of liquid water uptake
in porous material. A first approach is to propose analytical solutions of the problem as for
instance in [10, 11]. However, the main drawback is that these solutions work only for ideal-
ized conditions. As an example, in [11] a step–function is used for the diffusivity coefficient,
neglecting its nonlinear variation with the fields. This assumption is not valid for practical
case study. Other approaches are based on standard numerical methods in [12–15]. However,
these approaches also have important drawback. When using explicit Euler approach, the
standard stability conditions must be respected implying very small values of discretisation
time grids due to the high nonlinearity of the problem. Thus these numerical models have a
high computational cost. These works promote the use of implicit schemes for their uncondi-
tional stability properties. However, they require a large number of sub–iterations during the
computation to treat nonlinearities, which also lead to increase the computational cost of the
numerical models. It is of major importance to propose efficient numerical models to represent
the physical phenomena of capillary adsorption in porous material.

When proposing efficient numerical models, one important point is its reliability to rep-
resent the physical phenomena. For this, the numerical predictions need to be confronted to
experimental observations. In the case of rising damp, there are several material properties
involved in the definition of the physical model. To have an accurate numerical prediction,
the moisture diffusivity and the hydraulic conductivity must be known precisely. As men-
tioned in [13], there is a lack of data in literature for these material properties. Thus, when
comparing the numerical predictions to experimental observation, the material properties may
be estimated to calibrate the numerical model. This procedure requires solving parameter
estimation problem. The solution of inverse problem require the computation of the so-called
direct problem several timed. Thus, since current numerical models have high computational
cost, the estimation of material properties becomes an obstacle.

Therefore, the objective of this article is twofold. First, an innovative numerical model is
proposed for capillary adsorption phenomena in porous material. It is based on the Schar-
fetter–Gummel numerical scheme. This approach is particularly efficient for so–called
advection–diffusion equations as highlighted from a mathematical point of view in [16] and
illustrated in [17, 18] for the case of heat and moisture transfer in building porous materi-
als. In our work, the proposed numerical model is compared to the standard methods in the
context of capillary adsorption phenomena. The issue is to prove its reliability, accuracy and
smaller computational cost. Then, the numerical model is compared to experimental data to
evaluate its accuracy to represent the physical phenomena. To calibrate the model, a parame-
ter estimation problem is solved in a good time to determine the material properties of a brick
using observed data of water uptake.

The paper is organized in the following way. In Section 2, the physical model is described.
Following Section 3 presents the Scharfetter–Gummel scheme. Its accuracy and advan-
tages are compared to classical methods on numerical case studies. Section 4 describes the
experimental facility used to generate observation of water uptake. Section 5 aims at com-
paring the numerical predictions and the experimental observations, as well as estimating the
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material properties of the brick to calibrate the model.

2 Physical model
2.1 Liquid transfer

Let us present the physical model of liquid water uptake process in a porous material. The
physical model is inspired by the one proposed by Philipp and De Vries in 1957 [19]. Since
the problem deals with high moisture content, the exchange between vapor and liquid water
is supposed negligible. Moreover, it is assumed that no chemical reaction occurs. Thus, the
liquid water conservation equation is given by:

∂θ

∂t
= −∇ · j ,

where θ
[
m 3/m 3 ] is the volume basis of liquid water content in the material and

∣∣∣∣∣∣−→j ∣∣∣∣∣∣ [ kg/(m 2.s)
]

is the liquid flow through the capillaries. The liquid flow is driven by diffusion, advection due
to air pressure difference and gravity forces [20]:

j = j d + j a + j g .

The diffusion liquid transfer flux is expressed as:

j d = D θ∇θ + DT ∇T ,

where D θ

[
m 2/s

]
is the liquid transport coefficient under a water content gradient and

DT

[
m 2/(s.K)

]
is the liquid transport coefficient associated to a temperature gradient. Both

depend on water content θ . Since the experiments are conducted under isothermal conditions,
the liquid diffusion under temperature gradient is assumed negligible. Thus, we have:

j d = D θ∇θ .

The transfer is also driven by gravity forces described by the following expression:

j g = K i ,

whereK
[
m/s

]
is the hydraulic conductivity depending on θ , and i is taken as pointing upward

as illustrated in Figure 1. To take into account the motion due to the gradient pressure, an
advection flux is introduced. It represents liquid water transfer induced by the filtration of
dry air:

j a = Π θ v ,

where v
[
m/s

]
is the mass average velocity and Π the porosity of the material. Since the

filtration of dry air only influences the water front at x = H , the mass average velocity is
expressed as:

v = ( 1 − H

L
) v 0 ,

where H is the water height in the brick, calculated as the total moisture content at the current
instant t :

H( t ) =
∫ L

0

θ (x, t )
θ sat

dx ,
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where θ sat – saturation moisture content.
Let us define coefficient a 0 and approximate it using Darcy’s law as:

a 0 = Π v 0 ≈ Π k a
µ

∆P
L

,

where k a
[
m 2 ] is the intrinsic permeability of the material, and µ

[
Pa · s

]
is the dynamic

viscosity of the fluid.
Finally, the 1−dimensional liquid transfer equation is expressed as:

∂θ

∂t
= ∂

∂x

(
D θ

∂θ

∂x
− a 0 ( 1 − H ) θ i − K i

)
. (1)

In the physical model, Dirichlet boundary conditions are set since the surface convective
transfer coefficients are unknown. At the boundary where liquid uptakes, the water content
is set to saturation. At the top of the brick, the water content remains equals to the initial
condition where no liquid is present in the brick. Thus, the boundary and initial conditions
are defined as:

θ (x = 0 , t ) =

0 , t = 0

θ sat , t > 0
, θ (x = L , t ) = 0 , θ (x , t = 0) = 0 .

Figure 1. Illustration of the problem of water uptake in the brick.

2.2 Dimensionless formulation
For numerical analysis it is very useful to work with the unitless formulation of the model.

The first reason is the computional accuracy. Scaling the problem to the appropriate order,
many terms will have the same order, so the effects of numerical errors are minimized when
computing the residual. The second reason is that many useful relationships exist between
dimensionless numbers, which show how specific things influence the whole system.

The following dimensionless variables for the moisture content, the time and space domains
are defined:

u = θ

θ sat
, x ? = x

L
, t ? = t

t ref
,
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where θ sat – saturation moisture content, L – length of the brick, t ref – set to one hour.
Then all the material properties are modified considering a reference value:

d ? (u ) = D θ( θ )
D ref

, a ?0 = a 0
a ref

, k ? (u ) = K( θ )
k ref

.

The Fourier number measures the relative importance of the heat and mass transfers
through the material:

Fo = t ref D ref
L 2 .

The Péclet number demonstrates the relative importance of the advection against the diffu-
sion transfer:

Pe = a ref L

D ref
.

The importance of the gravity forces with the respect to the diffusion is quantified by the
Bond number:

Bo = k ref L

θ satD ref
.

Finally, the following dimensionless equation of liquid transfer is obtained :

∂u

∂t ?
= Fo ∂

∂x ?

(
d ? (u ) ∂u

∂x ?
− Pe a ?0

(
1 − H ?

)
u − Bo k ? (u )

)
, (2)

where the dimensionless water front height is given by:

H ? =
∫ 1

0
u (x ? , t ? ) dx ? . (3)

Further in article, for the sake of clarity the upper script ? is omitted, and Eq. (2) transforms
into:

∂u

∂t
= Fo ∂

∂x

(
d (u ) ∂u

∂x
− Pe a (u )u − Bo k (u )

)
, (4)

with the following boundary and initial conditions:

u(x = 0 , t) =

0 , t = 0

1 , t > 0
, u(x = 1 , t) = 0 , u(x , t = 0) = 0 .

Next section will introduce how to solve the retrieved equation effectively.

3 Numerical method
The issue is now to propose an efficient numerical model to compute an accurate solution

with a reduced computational cost. For this, the Scharfetter–Gummel numerical scheme
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for an advection–diffusion equation with gravity flux is introduced. Its mathematical properties
are discussed. For the sake of simplicity, the following differential equation is considered:

∂u

∂t
= ∂

∂x

(
d
∂u

∂x
− a u − k (u)

)
, t > 0 , x ∈

[
0 , 1

]
, (5)

where a , d are constants and coefficient k (u) depends on u . Dirichlet boundary conditions
are taken as

u ( 0, t ) = uL( t ) , u ( 1, t ) = uR( t ) .

A brief demonstration of the uniqueness of the solution of Eq. (5) is provided for the lin-
earized equation in Appendix A. It can be remarked that the uniqueness of advection–diffusion
equation has been demonstrated in [21] considering a nonlinear advective term and a linear
diffusive one with Dirichlet–type boundary conditions. Some demonstrations have been
made for multi-dimensional systems of advection–diffusion equations also with Dirichlet–
type boundary conditions. In [22], the problem considered is linear. In [23], it is quasi linear
since the diffusion coefficients depend on space and time whereas the advective and source
terms are nonlinear. Some proofs have been also produced for a system of diffusion equations
with diffusion coefficients depending on the fields and Neumann–type boundary conditions in
[24].

Let us discretize uniformly the space and time intervals, with the parameters ∆x and ∆t,
respectively. The discrete values of function u(x, t) are defined as unj ≡ u (xj , tn ) , where
j ∈ { 1, . . . , N } and n ∈ { 1, . . . , Nt }.

3.1 The Scharfetter–Gummel numerical scheme
The flux J is denoted by the following expression:

J = d
∂u

∂x
− a u − k (u) . (6)

For the cell C = x ∈
[
x
j−1

2
, x

j+ 1
2

]
illustrated in Figure 2, the semi-discretisation of the

equation (5) results as:
du j
d t = 1

∆x

(
J n
j+ 1

2
− J n

j− 1
2

)
. (7)

Within the Scharfetter–Gummel approach, the assumption is that the flux J is constant
on the dual cell C ? =

[
x j , x j+1

]
. The following boundary value problem can be written:

J n
j+ 1

2
= d

∂u

∂x
− a u − kn

j+ 1
2
, ∀x ∈ [ x j , x j+1 ] , (8a)

u = unj , x = x j , (8b)
u = unj+1 , x = x j+1 . (8c)

where k n
j+ 1

2
is approximated by:

k n
j+ 1

2
= k

(
1
2
(
unj + unj+1

))
.
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It is important to note that problem (8) has two unknowns u (x , t ) and J n
j+ 1

2
with two

constrains at x = x j and x = x j+1 . Therefore, one can obtain the exact solution of Eq. (8)
as:

J n
j+ 1

2
= − a

(
unj+1 − unj e

a ∆x
d

)
1 − e

a ∆x
d

− kn
j+ 1

2
. (9)

Applying expression (9) to Eq. (7), and using an Euler explicit approach, we obtain the
expression to compute un+1

j :

un+1
j = unj + ∆t

∆x

[
− a

(
unj+1 + unj−1 e

a ∆x
d

)
1 − e

a ∆x
d

+ a

(
1 + e

a ∆x
d

)
1 − e

a ∆x
d

unj − kn
j+ 1

2
+ kn

j− 1
2

]
.

In this work, several approaches are used for the temporal discretization. As presented above
Euler explicit approach can be applied. Additionaly, the solution is computed with adaptive
time step the Adams–Bashforth–Moulton algorithm, using MatlabTM function ODE113 [25].

Figure 2. Stencil of the Scharfetter-Gummel numerical scheme

3.2 Properties of Scharfetter–Gummel scheme
The main advantage of the Scharfetter–Gummel numerical scheme is its explicit for-

mulation of the solution. Thus, the nonlinearities are handled without costly sub–iterations
at each time steps as it is the case with implicit approaches. Another significant point,
the scheme is well–balanced as well as asymptotically preserving [16]. The Scharfetter–
Gummel scheme has first order accuracy over the time and space O(∆x+∆t) [26]. Moreover,
the flux is also approximated to the first order O( ∆x ) .

For Eq. (5), the Courant–Friedrichs–Lewy (CFL) stability condition for the Schar-
fetter–Gummel numerical scheme combined with an Euler explicit approach, is calculated
with the expressions from [16]:

∆t max
j

[(
a + dk

du
(
u
(
x
j+ 1

2

) ))
tanh

((
a + dk

du
(
u
(
x
j+ 1

2

) )) ∆x
2 d

)−1 ]
6 ∆x . (10)

Through this condition, a nonlinear relation stands between ∆t and ∆x . But if large space
discretisation ∆x is taken, time and space grid become proportional to each other ∆t '
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∆x . Thus, the stability condition is relaxed compared to the classical central finite–difference
scheme combined with Euler explicit approach ∆t ' ∆x2 .

As mentioned before, Eq (8) has two unknowns u (x , t ) and J n
j+ 1

2
. The solution J n

j+ 1
2
is

given by Eq. (8). The exact expression of solution u can be computed for x ∈ C ? :

un(x ) =
unj e

a ∆x
d − unj+1

e
a ∆x

d − 1
+

unj+1 − unj

e
a ∆x

d − 1
e

(a (x − xj)
d

)
, x ∈

[
x j , x j+1

]
. (11)

3.3 Extension for the nonlinear case
In case where the coefficients a, d and k of Eq. (5) all depend on u , we approximate them

by using the frozen coefficients assumption on the dual cell
[
x j , x j+1

]
. Thus, the solution

of the boundary-value problem (8) is written as:

J n
j+ 1

2
= − an

j+ 1
2

(
unj+1 − unj e

θ n

j+ 1
2
)

1 − e
θ n

j+ 1
2

− k n
j+ 1

2
, (12)

where

θ n
j+ 1

2
=

an
j+ 1

2
∆x

dn
j+ 1

2

, (13)

and

an
j+ 1

2
= a

( 1
2
(
unj + unj+1

))
, dn

j+ 1
2

= d

( 1
2
(
unj + unj+1

))
, k n

j+ 1
2

= k

( 1
2
(
unj + unj+1

))
.

(14)

For the nonlinear case the CFL stability condition for the Scharfetter–Gummel numerical
scheme is is calculated with the expressions from [16]:

∆t max
j

d j max
j

[
p j+ 1

2

d j+ 1
2

tanh
(
p j+ 1

2
∆x

2 d j+ 1
2

)−1 ]
6 ∆x ,

where

p j+ 1
2

= a j+ 1
2

+ u j+ 1
2

da
du
(
u
(
x
j+ 1

2

) )
+ dk

du
(
u
(
x
j+ 1

2

) )
.

3.4 Comparing numerical models
In order to validate the numerical model, the error between the solution unum(x, t) and a

reference one uref(x, t) is evaluated as a function of x according to the formula:

ε2(x) ≡

√√√√√ 1
Nt

Nt∑
j=1

(
u num(x , t j ) − u ref(x, t j )

)2

,

where Nt is the number of temporal steps.
The local uniform error is defined as the maximum value of ε2(x) :

ε∞ ≡ max
x∈ [ 0 ,Lx ]

ε2(x) .
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The significant correct digits (scd) of the solution is calculated according to [27]:

scd(u) ≡ − log10

∥∥∥∥∥u(x, t end ) − u ref(x, t end )
u ref(x, t end )

∥∥∥∥∥
∞
.

The reference function uref(x, t ) is given by a numerical solution of the differential equation
based on the Chebyshev polynomial and adaptive spectral methods and obtained using the
function pde23t from the MatlabTM open source package Chebfun [28].

3.5 Numerical validation
In this Section, the purpose is to perform numerical computations to validate the pro-

posed model. Thus, only dimensionless quantities are considered with no necessary physical
meanings.

3.5.1 Linear case

First, we study a case with constant functions d (u ), a (u ) and a linear function of k (u ):

d (u ) = d 0 = 0.05 , a (u ) = a 0 = 0.02 , k (u ) = k 1 u ,

with k 1 = 0.5 . It should be noted that the dimensionless numbers are set to unity in Eq. (4).
The following boundary and initial conditions are set.

u ( 0 , t ) = 0.2
(

1 − cos (π t ) 2
)
, u ( 1 , t ) = 0.3 sin(π t ) 2 , u (x , 0 ) = 0 .

The time domain is defined as t ∈
[
0 , 3

]
. According to Equation (10), the Scharfetter–

Gummel scheme CFL condition is given in this case by:

∆t 6
tanh

( (
a 0 + k 1

)
∆x

2 d 0

)
a 0 + k 1

∆x .

First, the problem is solved by implementing an adaptive in time approach, using MatlabTM

function ODE113 with absolute and relative tolerances set to 10−4. The space discretization
parameter is set ∆x = 10−2. Given the numerical value of the parameter, the CFL condition
is ∆t 6 10−3 .

Figure 3 shows the variations of the solution u (x , t ) as a function of space and time. It
demonstrates a satisfactory agreement between the Scharfetter–Gummel numerical solu-
tion and the reference one. Figure 4 highlights the L 2 error value ε2 (x ) at the order of 10−4 ,
which validates the numerical model for this case. This result is consistent with the value of
the discretisation parameter and the tolerances set in the ODE solver.

An analysis of the numerical error is performed by varying one of the discretisation pa-
rameters ∆x and ∆t values, while the others parameters remain constant. Different numerical
schemes are compared for the computation of the solution of problem (5). The Scharfet-
ter–Gummel scheme is implemented with (i) the adaptive time step approach using ODE113
solver and a tolerance set to 10−4 and (ii) the Euler explicit approach. For comparison, a
central finite–difference scheme using the Euler explicit method is also used.

Figure 5(a) shows the variation of the error ε 2 as a function of ∆x with a fixed time
discretisation parameter ∆t = 10−4. The CFL condition ∆t 6 2.5 · 10−4 is respected until
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Figure 3. Variation of the field u as a function of (a) space and (b) and time t .

x(−)
0 0.2 0.4 0.6 0.8 1

ε
2
(−

)

10
-5

10
-4

10
-3

Figure 4. Error ε 2 as a function of space.

∆x = 5 · 10−3 . Beyond this limit, the numerical model cannot provide a bounded solution.
These results also confirm a higher accuracy of the numerical model using the Scharfetter–
Gummel scheme. Moreover, the Scharfetter–Gummel numerical scheme seems to have a
second-order accuracy in space O( ∆x 2 ) which is better than the theoretical results mentioned
in Section 3.2. The variations of the computational time with the requested level of accuracy
is shown in Figure 5(b). For the accuracy ε∞ = O ( 10−3 ) , the finite–difference is ten-time
slower than the Scharfetter–Gummel approach combined with the Euler explicit method.
It can be noted that the Scharfetter–Gummel scheme with the adaptive time step is the
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SG ODE

SG Euler
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(c)

Figure 5. (a) Variation of the error ε∞ as a function of ∆x . (b) Variation of the error ε∞ as a function
of the CPU time of the numerical model. (c) Variation of the accuracy digits value scd as a function of
the CPU time of the numerical model.

fastest one thanks to the nonlinearity of the stability condition and addaptive time step. The
computational time can be reduced by hundred times. Figure 5(c) displays the variation of
the significant correct digits with the computational time. In order to reach scd = O( 1.5 ) ,
the finite–difference scheme requires ten times larger CPU time than the Scharfetter–
Gummel scheme with Euler explicit approach. The latter is ten times slower than the one
with adaptive approach.

Figure 6(a) presents another error study conducted by varying ∆t while the space discreti-
sation is fixed to ∆x = 10−2 . For the given parameters, the CFL condition is ∆t 6 10−3 .
As noticed in Figure 6(a), a bounded solution can be computed until this condition is re-
spected. It can also be noted that the Scharfetter–Gummel scheme with Euler explicit
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Figure 6. Variation of the error ε∞ as a function of ∆t .

approach has a greater degree of accuracy. Moreover, the scheme is first order accurate in time
O ( t ) as mentioned by the theoretical results.

3.5.2 Nonlinear case

The previous validation is performed for a linear case in order to verify the theoretical
results and advantages of the Scharfetter–Gummel numerical scheme. Since, the param-
eter estimation problem to be solved in Section 5 considers nonlinear coefficients, this Section
aims at validating the numerical model for such cases. We consider the problem (4) with the
following nonlinear coefficients:

a (u ) = 0.02 + 0.01u 2 , d (u ) = 0.05 + 0.03u 2 , k (u ) = 0.05u 2 .

The dimensionless numbers are set to unity. The initial and boundary conditions are:

u (x , 0 ) = 0 ,

u ( 0 , t ) = 0.8 sin
(
π t / 3

)
+ 0.2 sin

(
π t / 5

)
,

u ( 1 , t ) = 0.5 sin
(
π t / 4

)
+ 0.3 sin

(
π t / 7

)
.

The solution of this problem is computed for the time horizon t ∈
[
0 , 15

]
. The Scharfet-

ter–Gummel numerical scheme is used with a space discretization step ∆x = 0.01 and an
adaptive time step with error tolerances set to 10−4.

As shown in Figure 7, the profiles of the solution shows a very satisfactory agreement
between the Scharfetter–Gummel solution and the reference one. It validates the pro-
posed numerical model. The computational time of the numerical model is compared to
three other ones: (i) the Scharfetter–Gummel scheme with Euler explicit approach,
(ii) the central finite–differences approach with Euler explicit and (iii) the central finite–
differences with adapting time step. As noticed in Table 1, the Scharfetter–Gummel with
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adaptive time step scheme is the faster than Scharfetter–Gummel with Euler explicit
approach. The computational time is of the same order between the two adaptive in time
approaches (Scharfetter–Gummel and central finite–differences). However, the Schar-
fetter–Gummel with adaptive time step approach is ten timed more accurate than central
finite–difference with adaptive time step.

Table 1. Computational time required to compute the solution of the nonlinear case with the different
numerical models.

Numerical model CPU time [ s ] CPU time [ % ] ε∞

Scharfetter–Gummel with adaptive time step 105 42 1.9 · 10−4

Scharfetter–Gummel with Euler explicit approach 249 100 5.8 · 10−5

Central Finite-differences with adaptive time step 101 40 1.1 · 10−3

Central Finite-differences with Euler explicit approach 230 92 2.1 · 10−2

As mentioned in Section 3.3, the numerical model requires the computation of the coef-
ficients d

j+ 1
2
, a

j+ 1
2

and k
j+ 1

2
at the interface of the dual cell

[
x j , x j+1

]
. According to

Eq. (14), these coefficients are interpolated using the mean values of u j and u j+1 . The
accuracy of this interpolation is tested by using different expressions in the computation of
the solution u . The coefficients d

j+ 1
2
, a

j+ 1
2

and k
j+ 1

2
are calculated by one the following

expressions:

k
j+ 1

2
= k

(
u j + u j+1

2

)
, (15a)

k
j+ 1

2
= 1

2

(
k
(
u j
)

+ k
(
u j+1

) )
, (15b)

k
j+ 1

2
=

2 k
(
u j
)
k
(
u j+1

)
k
(
u j
)

+ k
(
u j+1

) , (15c)

k
j+ 1

2
= 1

3

(
k
(
u j
)

+
√
k
(
u j
)
k
(
u j+1

)
+ k

(
u j+1

) )
, (15d)

k
j+ 1

2
=
√
k
(
u j
)
k
(
u j+1

)
, (15e)

k
j+ 1

2
=
(

1
2

(
k
(
u j
) 3 + k

(
u j+1

) 3
)) 1

3

, (15f)

k
j+ 1

2
=
√

1
2

(
k
(
u j
) 2 + k

(
u j+1

) 2
)
. (15g)

For each interpolation expression, the CPU time to compute the solution and the error
with the reference solution are analyzed. The results are synthesized in Table 2 and Figure 8.
All interpolation expressions have similar order of accuracy. Nevertheless, it highlights that
the approach using the arithmetic mean between u j and u j+1 to compute the coefficients
d
j+ 1

2
, a

j+ 1
2

and k
j+ 1

2
is slightly faster for this particular case.
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Table 2. Variation of the error of the solution and of the CPU time of the numerical models according to
the interpolation formulas Eq. (15) of the coefficients d (u ) , a (u ) and k (u ).

Interpolation formula (a) (b) (c) (d) (f) (e) (g)

ε∞ 2 · 10−3 1.9 · 10−3 2 · 10−3 1.9 · 10−3 2 · 10−3 1.9 · 10−3 1.7 · 10−3

CPU time [ s ] 21.29 25.47 33.77 25.44 34.52 27.48 25.79

Percentage [ % ] 61 74 98 74 100 80 75
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Figure 7. Variation of the field u as a function of x (a) and t (b) with nonlinear coefficients

This section examined and analyzed the Scharfetter–Gummel scheme applying to the
diffusion–advection equation with linear and nonlinear coefficients. These results demonstrate
significant reduction of the computational cost without losing the accuracy while using the
Scharfetter–Gummel scheme with an adaptive time step approach. Therefore, in further
sections, the solutions are computed with the Scharfetter–Gummel combined with an
adaptive time step approach. Since the numerical model is validated, next section introduces
the experimental facility employed to obtain the observations used in the parameter estimation
problem.

4 Experimental facility
This section presents the facility to produce the experimental observations that will be

compared to the numerical predictions of the model to compare its reliability to represent the
physical phenomena.
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Figure 8. Variation of the error ε 2 with space according to the interpolation formulas Eq. (15) of the
coefficients d(u ) , a(u ) and k(u ).

4.1 Experimental observations
To perform the liquid water uptake tests, a refractory brick measuring 11 × 22 × 5 cm is

used. The brick is initially sanded allowing a better visualization of the rise of the water. The
vertical faces are then taped to be airtight and watertight. As illustrated in Figure 9, a tray is
filled with distilled water and maintained at a constant level thanks to a bottle returned with
a pierced cap. The brick is placed vertically on a support at the surface of the water. The
experiment begins at the moment when the underside of the brick is in contact with the water
and lasts at least 7 h . The rising damp is observed on one of the faces 11 × 22 cm. For this,
a camera is placed at 1 m to take a picture of the brick every 3 min . The experiment occurs
in an box opaque to the light to control the luminosity as well as to minimize the convective
and radiative exchanges. Some LED lamps provide a constant lighting in the box.

At the top of the brick, two different boundary conditions are imposed. For the first set
of experiments, the top of the brick is in contact with the open air at atmospheric pressure.
For the second set, a relative pressure of − 50 Pa is applied thanks to a chamber with a fan.
An illustration of the design is shown in Figure 10(a). With this device, the air velocity in the
brick is assumed as constant in time. Experiment is taken at the constant room temperature
T = 293 K.

The height of the water front is taken in the middle of the brick from the pictures of each
experiment every 30 min . As shown in Figure 10(b), graph paper is attached to the brick
in order to measure the height front. With this setting, the uncertainty measurement of the
height scales with σh = 0.5 cm .

For the case when the brick is exposed to ambient air pressure, the experiment takes
tmax = 15 h . For the other experiment, with a pressure difference, it lasts tmax = 7 h .
Figure 11 shows the obtained experimental data for both cases.

To verify that the liquid front is homogeneous inside the brick and not occurring only at
the interfaces where the picture are taken, a complementary experiment is performed. The
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brick is preliminary cut in the middle and then fulfilled with silicone to avoid the liquid uptage
in this area. The liquid uptake experiment is performed. At the end of the experiments, the
cut enables to rapidly break the brick without perturbing the liquid front. As illustrated in
Figure 12, it is confirmed that the liquid front is homogeneous inside the brick. The white
silicone that fulfill the cut in the middle of the brick can be noticed.

(a) (b)

Figure 9. Illustrations of the experimental facility. It should be noted that the opaque box has been
removed to take the pictures and that the light brick is not the one considered for the present studies.

4.2 Defining the material properties
The physical model representing the liquid water uptake test is described in Section 2. Now,

it is important to define the material properties involved in the definition of the diffusion,
gravity and advection fluxes for the brick used in the experiments. These properties are
uncertain [13] and will be determined in the next Section using the experimental data obtained
with the facility.

Data from literature are used to define the dependency of these properties on the mois-
ture content. The data is projected on the polynomial functions, using the cftool from the
MatlabTM environment, and polynomials with the highest root mean square error R − square
(the square of the correlation between the response values and the predicted response values)
are selected. These measurements provide a priori values of the polynomials coefficients, which
act as initial guess when solving the parameter estimation problem. The polynomial functions
have been chosen for the material properties to fit the data from the literature. Another set of
functions can be applied, and the same steps of parameter estimation are utilized. It should
be noticed that data fitting is performed only for the liquid water content.

The reference parameters used for computations are L = 0.22 m , tref = 1 h , D ref =
10−6 m 2/s , k ref = 10−10 m/s and a ref = 10−9 m/s . The saturated volumetric moisture
content θ sat , introduced in [29], equals θsat = 0.3065 m 3/m 3. It induces the following
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(a) (b)

Figure 10. (a) Illustrations of the brick submitted to a relative pressure of − 50 Pa linking the top of the
brick to a fan. (b) Measurement of the water front height using the graph paper.
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Figure 11. Obtained experimental values of water height for cases without and under pressure. Values are
dimensionless, using reference parameters (length of the brick L and tref)

dimensionless numbers:

Fo = 0.074 , Pe = 2.2 · 10−4 , Bo = 0.7 .

With given reference values, dimensionless representation d (u ) of the liquid transport coeffi-
cient is:

d (u ) = d 4 u
4 + d 1 u + d 0 ,
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Figure 12. Verification of the uniformity of liquid front inside the brick.

where d 4 = 0.6 , d 1 = −0.04 and d 0 = 0.0067 . The dimensionless function a (u ) of the
advection part:

a (u ) = a 0
(

1 − H
)
,

where a 0 = 0.7 , and H =
∫ 1

0 u (x , t ) dx . Last, the dimensionless function k (u ) of the
liquid conductivity part:

k (u ) = k 3 u
3 ,

where k 3 = 0.8 .
Let us discuss which coefficient of d 0 , d 1 or d 4 contributes the most in the context of

liquid uptake or specifically u = O( 1 ) . For this purpose, the normalized derivative d i ∂d (u )
∂d i

relative to each coefficient is taken and compared with each other.

d i
∂d (u )
∂d i

= { d 4 u
4 ; d 1 u ; d 0 } .

The results are presented in Figure 13. One may conclude that coefficient d 4 has more influence
on the value of function d (u ), when liquid uptake occurs u = O( 1 ) . Therefore, in this article
only coefficient d 4 is estimated.

5 Comparison of the numerical predictions with ex-
perimental data

The efficiency of the proposed numerical model is demonstrated in Section 3.5 by com-
parison to reference solution. Now, the purpose is to assess the reliability of the numerical
model to predict the physical phenomena. For this, the experimental observations described
in previous section are used for comparison with the numerical predictions. With the given
parametrization in Section 4.2, Eq.(4) writes as:

∂u

∂t
= Fo ∂

∂x

(
d (u ) ∂u

∂x
− Pe a (u )u − Bo k (u )

)
, (16)
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Figure 13. The normalized derivative of d (u ) relative to each coefficient d 0 , d 1 and d 4

where

d (u ) = d 4 u
4 + d 1 u + d 0 , a (u ) = a 0

(
1 −

∫ 1

0
u (x , t ) dx

)
, k (u ) = k 3 u

3 .

Since literature lacks of consistent data [13], the material properties, represented by functions
k (u ) , d (u ) and a (u ) , are uncertain. Thus, parameter estimation problem are solved to
determine the uncertain parameters and calibrate the numerical model with the experimental
data. Within the procedure of parameter estimation, first we demonstrate the structural and
practical identifiability of the three unknown parameters

(
a 0 , k 3 , d 4

)
. Then, the parameter

estimation problem is solved and the reliability of the numerical model is discussed.

5.1 Structural Identifiability
The aim of this section is to demonstrate the formal identifiability of the unknown param-

eters. The set of unknown parameters is defined as:

P ≡ {P i } = { a 0 , k 3 , d 4 } .

We assume here, u (x , t ) is the only observable field.
A parameter P i ∈ P is Structurally Globally Identifiable (SGI), if the following condition

is satisfied [30]:

∀t , u ( P ) = u ( P ? ) ⇒ P i = P ?
i .

In the case of our model, if u (x , t ) ≡ u ? (x , t ), then ∂u

∂t
≡ ∂u ?

∂t
and ∂u

∂x
≡ ∂u ?

∂x
,

therefore,

Fo ∂

∂x

(
d(u ) ∂u

∂x
− Pe a(u )u − Bo k(u )

)
≡ (17)

Fo ∂

∂x

(
d ?(u ) ∂u

∂x
− Pe a ?(u )u ? − Bo k ?(u )

)
.
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In addition, straightforward replacements in the Eq. (16) shows us the following:

∂u

∂t
= Fo

((
4 d 4 u

3 + d 1
)∂u
∂x

+
(
d 4 u

4 + d 1 u + d 0
) ∂ 2u

∂x 2 − Pe a 0
(

1 −
∫ 1

0
u dx

) ∂u
∂x

− 3 Bo k 3 u
2 ∂u

∂x

)
,

which shows that Equality (17) becomes:

Fo
((

4 d 4 u
3 + d 1

) ∂u
∂x

+
(
d 4 u

4 + d 1 u + d 0
) ∂ 2u

∂x 2 − Pe a 0
(

1 −
∫ 1

0
udx

) ∂u
∂x

− 3 Bo k 3 u
2 ∂u

∂x

)
≡ Fo

((
4 d,?

4 u
3 + d 1

)∂u
∂x

+
(
d ?4 u

4 + d 1 u + d 0
) ∂ 2u

∂x 2

− Pe a?0
(

1 −
∫ 1

0
udx

) ∂u
∂x
− 3 Bo k ?3 u 2 ∂u

∂x

)
,

and the final expression is((
d 4 − d,?

4

) (
4u 3 + u 4 ∂

2u

∂x 2

)
− Pe

(
a 0 − a,?

0

) (
1 −

∫ 1

0
u dx

) ∂u
∂x
−

3 Bo
(
k 3 − k,?

3

)
u 2 ∂u

∂x

)
≡ 0

Since that
{(

4u 3 + u 4 ∂ 2u
∂x 2

)
,
(

1 −
∫ 1

0 udx
)
∂u
∂x , u

2 ∂u
∂x

}
are independent, then d 4 ,

k 3 and a 0 are SGI [31].

5.2 Practical Identifiability
As demonstrated in previous Section, the three unknown parameters d 4 , k 3 and a 0 are

globally identifiable. This result remains theoretical. Before solving the parameter estimation
problem, it is of major importance to study the sensitivity coefficients of the parameters
to demonstrate the practical identifiability. If the sensitivity coefficients are either small or
correlated, the estimation problem is difficult and very sensitive to measurement errors. The
sensitivity coefficient is defined as the first derivative of the (numerical) observations with
respect to an unknown parameter [32, 33]:

YP i ( t ) = σ p
σH

∂H
∂P i

= σ p
σH

∫ 1

0
XP idx , XP i = ∂u

∂P i
,

where σH and σ p are scaling factors. In this case, σH corresponds to the uncertainty on the
experimental observations. The quantity σ p is set to unity since all unknown parameter have
the same uncertainty on the a priori values.

To compute the sensitivity coefficients, Equation (16) is differentiated with respect to
each unknown parameter. Three differential equations are obtained enabling to compute the
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sensitivity coefficients. For the parameter k 3 , we define X k 3
def:= ∂u

∂k 3
obtained by solving the

following equation:

∂X k 3

∂t
= Fo ∂

∂x

(
d (u ) ∂X k 3

∂x
+
(
d̃ (u ) ∂u

∂x
− Pe a (u ) − Bo k̃ (u )

)
X k 3

− Bou 3 + Pe a 0

∫ 1

0
X k 3 dx

)
,

where

d̃ (u ) = 4 d4 u
3 + d1 , k̃ (u ) = 3 k3 u

2 .

For the parameter d 4 , we define X d 4
def:= ∂u

∂d 4
obtained by solving the following equation:

∂X d 4

∂t
= Fo ∂

∂x

(
d (u ) ∂X d 4

∂x
+
(
d̃ (u ) ∂u

∂x
− Pe a (u ) − Bo k̃ (u )

)
X d 4

+ u 4 ∂u

∂x
+ Pe a 0

∫ 1

0
X d 4 dx

)
.

And last, for the parameter a 0 , we define X a 0
def:= ∂u

∂a 0
obtained by solving the following

equation:

∂X a 0

∂t
= Fo ∂

∂x

(
d (u ) ∂X a 0

∂x
+
(
d̃ (u ) ∂u

∂x
− Pe a (u ) − Bo k̃ (u )

)
X a 0

− Pe
(

1 −
∫ 1

0
u(x , t ) dx − a 0

∫ 1

0
X a 0 dx

)
u

)
.

The boundary and initial conditions are the same for each coefficient XP i :

XP i (x = 0 , t ) = 0 , XP i (x = 1 , t ) = 0 , XP i (x , t = 0 ) = 0 .

The three differential equations are solved with Scharfetter–Gummel numerical scheme.
For the investigation of the practical identifiability, the a priori parameters values are used.
The time values of Y k 3

def:= ∂h

∂k 3
and Y d 4

def:= ∂h

∂d 4
are shown in Figure 14(a). One may

conclude that the estimation of the parameters k 3 and d 4 will likely have a good result since
their sensitivity coefficients have large magnitudes and they are not correlated with each other.
On the other hand, the time variation of the third coefficient Y a 0 is given in Figure 14(b).
It is not correlated with other coefficients, demonstrating that it is possible to estimate it.
However, its magnitudes are very small showing that its estimation with satisfactory accuracy
is a difficult task. One can argue that these observations are due to the a priori values for the
coefficient a 0. However, as noticed in Figure 14(b), even multiplying by 15 or 100 times the a
priori value of a 0 , the magnitude of the sensitivity coefficient almost doesn’t change.
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Figure 14. Time variation of the sensitivity coefficients (a) Y k 3 , Y d 4 and (b) Y a 0 .

5.3 Estimation and comparison with the experimental obser-
vations

Since the formal and practical identifiability of the three unknown parameters d 4 , a 0
and k 3 have been demonstrated, the aim is now to estimate them using the experimental
observations obtained with the facility. First, the methodology to solve the inverse problem is
briefly described. Then, the results are presented and the reliability of the numerical model
predictions are discussed.

5.3.1 Methodology to solve the parameter estimation problem

The parameter estimation problem is solved by minimizing the following cost function by
the least squares method:

J
(
d 4 , k 3 , a 0

)
: =

∣∣∣∣∣∣H( d 4 , k 3 , a 0
)
− H exp

∣∣∣∣∣∣
2
. (18)

The value of H results from the solution of the direct problem (16) for a given set of parameters(
d 4 , k 3 , a 0

)
. The value of H exp is given by the measurements from the experimental facility

and interpolated on the time grid of the numerical scheme.
The cost function J is minimized using function fmincon from the MatlabTM environment.

This method uses the interior-point algorithm with constraints on the unknown parameters.
Here, the upper and lower boundary constraints for the parameters are defined based on the
preliminary calculations:

d 4 ∈
[
0, 2

]
, k 3 ∈

[
0, 2

]
, a 0 ∈

[
0, 2

]
.

To estimate the quality of the solution of parameter estimation problem, the normalized
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Fisher matrix is defined according to [34, 35]:

F =
[

F ij

]
, ∀

(
i, j

)
∈ { 1, ..., Np } , F ij = 1

σ 2
H

∫ tmax

0
YP i YP j dt ,

where YP i is the sensitivity coefficient of the solution related to the parameter P i, σH the
measurement uncertainty and N p the number of parameters. The matrix F measures the total
sensitivity of the system for the measurements to variations of the entire set of parameters P.
Under some assumptions detailed in [33], the inverse of the Fisher matrix is the matrix of
variance of the parameters considered as random variables of the given observable fields. In
other words, it summarizes the quality of the information obtained in the parameter identifi-
cation process. Thus, the inverse matrix of F is used to assess the estimation uncertainty by
computing an error estimator for the parameter P i :

η i =
√(

F−1
)
i i
.

High values of η i indicate a possible high error during the parameter identification process.

5.3.2 Results and discussion

The estimation process is performed with the following discretisation parameters ∆x ? =
0.05 , ∆ t ? = 10−2 , using the Scharfetter–Gummel numerical scheme and the Adams–
Bashforth–Moulton time adaptive algorithm. The solution of the optimization problem
requires the computation of the solution u of Eq. (4) for each set of the parameters ( d 4, k 3, a 0 ).
During the optimization process for the case without pressure, the direct problem Eq. (4) is
solved 114 times. Each iteration requires approximately 100 s to solve the direct problem.
It results in a overall performance of 3 h . Considering the results from previous section and
particularly Table 1, the same process using the standard finite–difference scheme and Euler
approach would last for about 7.5 h . For the experimental data with pressure, the calculation
of solution u of Eq. (4) is computed almost 270 times. The estimation takes about 7.5 h .
This value is comparatively small to the 17.5 h required with the model based on standard
approach. The results highlights that the Scharfetter–Gummel numerical scheme, apply-
ing to parameter estimation problem, save important computational efforts compared to the
standard approach with finite–difference scheme.

Figure 15 shows the time variation of the water height for both experiments with pressure
and without pressure. It compares the solution computed using the estimated values of the
parameters and the experimental data. The results demonstrate a good agreement with the
experimental observations, while the solution with the a priori values cannot approximate the
experimental data well. One may say that the calibrated numerical model has a satisfactory
reliability to represent the physical phenomena of liquid water uptake. Similar conclusions can
be noted for the experiments with pressure.

As a result of the optimization process, the estimated values, the residuals of the cost
function and the error estimators are reported in the Table 3. The error estimator is small
for parameters k 3 and d 4 , proving that the accuracy of estimation is decent. However, the
high values of the error estimator of parameter a 0 indicate an unsatisfactory estimation with
a very high uncertainty. These results are consistent with ones obtained when analyzing the
sensitivity coefficient with a priori values in Section 5.2. In addition, as noticed in Table 3,
there is no significant difference between the a priori and estimated values for parameters. It
validated the investigations on practical identifiability carried in Section 5.2, since it is eligible
in the local area of a priori values.
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Figure 16 displays the volume of liquid water relative to space and time when the brick is
exposed to the open air or to a pressure difference of − 50 Pa . The propagation of the water
front through the brick seems faster in the case of pressure difference. As noted in Figure 15,
the experimental data with pressure show that the velocity of water uptake is faster since, the
same height of water is achieved twice faster than with the experiment without pressure. One
may conclude that the pressure influences the velocity of water uptake. However, as reported in
Table 3, results from the optimization problem gives different values for the set of parameters
( d 4 , k 3 , a 0 ) with and without pressure. Particularly, values for parameters d 4 and k 3 vary
from one case to another. It may indicate that material properties may be different between
the two bricks used during the experiments. Moreover, the error estimators of the advection
coefficients is really poor indicating that for the given value of pressure difference, it has a
minor influence on the water uptake. It should also be noted that the sensitivity coefficients
of parameter a 0 has really low magnitudes of variations as shown in Figure 14(b).

Table 3. A priori and estimated values of dimensionless coefficients

Parameters A priori No pressure With pressure
values Estimated values Error estimator ηi Estimated values Error estimator ηi

a ?
0 0.7 0.0052 ± 14 0.55 ± 206

k ?
3 0.8 0.8257 ± 0.01 1.3 ± 0.21
d ?

4 0.6 1.0 ± 0.002 1.72 ± 0.02

Residual ε 2 1 0.05 0.0087

In Figure 15, it can be noticed that the full length of the brick is not reached, validating the
chosen physical model with Dirichlet boundary conditions presented in Section 2. One may
argue that other types of boundary conditions could have been chosen at the top of the brick
x = 1 . The Robin boundary condition is avoided. Indeed the boundary flow is proportional
to the ambient and surface conditions:(
d (u ) ∂u

∂x
− Pe a 0

(
1 −

∫ 1

0
u (x , t ) dx

)
u − Bo k (u )

)
= Bi

(
u − u∞

)
, x = 1 ,

where Bi is a dimensionless surface transfer coefficient and u∞ are the ambient conditions in
the facility. It implies to estimate this coefficient Bi which is rather difficult experimentally. It
can be estimated by adding the coefficient Bi in the inverse problem, at the price of additional
computational costs. In addition, the expected values of the surface coefficient are slow and
the boundary conditions can be modified into a homogeneous Neumann one:(

d (u ) ∂u
∂x
− Pe a 0

(
1 −

∫ 1

0
u (x , t ) dx

)
u − Bo k (u )

)
= 0 , x = 1 , (19)

To investigate the importance of modifying the definition of the boundary conditions at x = 1 ,
additional computation are performed considering the problem Eq. (16) with the estimated
parameters ( d 4 , k 3 , a 0 ) and the boundary condition Eq. (19). The boundary condition at
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Figure 15. Water uptake level in the brick respective to the time for case without pressure (a) and (b)
case with pressure. Figure displays experimental data with uncertainty σh = 0.5 cm and its
interpolation, a priori data and results with the estimated parameters with residual ε 2 = 0.05 for (a)
case and ε 2 = 0.0087 for (b) case.

x = 0 and the initial condition are unchanged:

u(x = 0 , t) =

0 , t = 0

1 , t > 0
, u(x , t = 0) = 0 .

Figure 17 displays the difference between the solutions computed with Dirichlet and Neu-
mann boundary conditions. The error ε 2 is lower than 10−4 and one may conclude that the
boundary conditions do not change significantly the solution of the numerical model. These
results are consistent when analyzing Figures 16(c) and 16(a). It can be observed that the
flow at x = 1 remains null.

Another open question is the definition of the liquid height. Previously, the height is defined
by the integral of u over the space domain. An alternative definition is to the height of the
water front in the brick using a threshold:

H = max
{
x̂ : u ( x̂ , t ) ≥ û

}
, (20)

where û is a chosen value of the amount of liquid. Figure 18 compares the numerical solution
according to the definition of H with Eq. (3) or (20). The numerical predictions are varying
with the definition. On one hand, the integral definition is a more general approach but it as-
sumes that the water vapor is negligible in the material. On the other hand, the definition (20)
requires to determine the value of the threshold. For these reasons, the definition of the liquid
height in the brick according remains an open question.
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Figure 16. Variation of the dimensionless amount of liquid water u in case with and without pressure.
Figures (a) and (b) displays case without pressure, relative to the height with t ∈ { 2 , 4 , 6 , 8 , 10 , 12 } ,
and time with x ∈ { 0.2 , 0.4 , 0.6 , 0.8 } respectively. Figures (c) and (d) displays case with pressure,
relative to the height with time t ∈ { 2 , 4 , 6 , 7 } , and time with x ∈ { 0.2 , 0.4 , 0.6 , 0.8 } respectively.

6 Conclusion
The moisture in the walls greatly affect the overall building performance. Such process as

rising damp has a strong impact on the energy consumption of the building. In this work,
the physical model represents the water uptake process in a single brick, based on diffusion,
advection and gravity fluxes. To investigate these physical phenomena it is important to have
efficient numerical models in terms of computational cost and accuracy. These models require
also to have a good reliability to represent the physical phenomena. To answer this issue, an
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Figure 17. Error ε 2 between solutions with Dirichlet and homogeneous Neumann boundary condition
at x = 1 .
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Figure 18. Influence of the definition of the water front height of the brick on the numerical predictions.

innovative approach is proposed based on the Scharfetter–Gummel numerical scheme. The
first part of the paper studies the properties of the numerical model such as accuracy, stability
conditions and computational time with a reference solution for both linear and nonlinear cases
in Section 3.5. The investigations show that the Scharfetter–Gummel numerical model is
more accurate and faster than standard approach based on finite–differences ans Euler explicit
scheme. The Scharfetter–Gummel numerical model has an explicit formulation avoiding
costly sub-iterations at each time step. Since its stability condition is nonlinear and scales
with ∆t ' ∆x for large space discretisation, the Scharfetter–Gummel numerical scheme
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combined with an adaptive time step approach is particularly efficient to save computational
efforts.

Along with numerical methods, the reliability of the proposed numerical model is analyzed
by comparing the numerical predictions to experimental observations. The experimental facil-
ity is presented in Section 4. Empirical data are gathered through a set of two experiments.
First, the height of the rising front is obtained for a brick under normal conditions. Then,
the height front is measured in another brick submitted to a pressure of − 50 Pa . Then, the
comparison between numerical simulations and the experimental observations of the height of
the rising front is carried out in Section 5. Since the literature lacks of consistent data for
the material properties [13], the uncertain parameters are determined by solving a parameter
estimation problems. Before solving the parameter estimation problem, the structural and
practical identifiability of the three unknown parameters are demonstrated in Sections 5.1 and
5.2, respectively. The results of the parameter estimation problem shows that the diffusivity
and liquid conductivity are estimated with satisfactory accuracy. The advection coefficient
cannot be estimated with accuracy even with a pressure difference of − 50 Pa at the top of
the brick. The sensitivity of the numerical solution with respect to this parameter is much
smaller compared to the diffusivity and liquid conductivity. With the estimated parameters,
there is a satisfactory agreement between the numerical predictions and the experimental ob-
servations, highlighting a good reliability of the model. Important computational efforts are
saved thanks to the efficiency of the numerical model. The Scharfetter–Gummel numerical
scheme enables to save by 50% the computational cost compared to standard approach.

Even if this work enhances the efficiency of the Scharfetter–Gummel numerical scheme
for the solution of advection–diffusion equation with gravity flux, the rising damp problem
require simulation of the physical phenomena in 2-dimensions. Thus, further research should
be conducted to extend the numerical model in this way.
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A Demonstration of uniqueness of the solution
This section proposes to demonstrate the uniqueness of the solution of liquid uptake in

porous media.
Since u (x , t ) > 0 at t > 0 , equation (5) can be transformed as

∂u

∂t
= ∂

∂x

(
d
∂u

∂x
− u

(
a + k(u )

u

))
,
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then regularized into a general advection–diffusion equation:

∂u

∂t
= ∂

∂x

(
d
∂u

∂x
− ã u

)
, x ∈ Ω =

[
0 , 1

]
, t > 0 , (21)

where ã (u ) def:=
(
a + k (u )

u

)
.

Further in the Section, we assume the linearized representation ã of ã (u ) around u 0.

ã = a + k(u 0 )
u 0

,

where u 0 is a given function of (x , t ) .
The following boundary and initial conditions are considered:

u ( 0 , t ) = uLinf ( t ) , u ( 1 , t ) = uRinf ( t ) , u (x , 0 ) = 0 . (22)

In order to study the uniqueness of the solution, we use the so-called energy method [36]. For
that purpose, we assume that two solutions u 1 (x , t ) and u 2 (x , t ) satisfy Eqs (21) and (22).
We define w(x , t ) as:

w (x , t ) def:= u 1 (x , t ) − u 2 (x , t ) ,

solution of the equation:

∂w

∂t
= ∂

∂x

(
d
∂w

∂x
− ã w

)
, (23)

with the boundary and initial conditions:

w ( 1 , t ) = 0 , w ( 0 , t ) = 0 , w (x , 0 ) = 0 . (24)

If the energy E ( t ) def:=
∫

Ω
w 2 (x , t ) dx is decreasing and E ( 0 ) = 0, then the solution

of Eqs (21) and (22) is unique :

dE
dt 6 0 .

To study the validity of this condition, both sides of Eq. (23) are multiplied by w and integrated
over Ω : ∫

Ω
w
∂w

∂t
dx =

∫
Ω
w

∂

∂x

(
d
∂w

∂x
− ã w

)
dx ,

which by differentiating under the integral becomes:

1
2

dE
dt =

∫
Ω
w

∂

∂x

(
d
∂w

∂x
− ã w

)
dx ,

By performing an integration by parts, we obtain:

1
2

dE
dt =

[
w

(
d
∂w

∂x
− ã w

)]x = 1

x = 0

−
∫

Ω

(
d
∂w

∂x
− ã w

)
∂w

∂x
dx ,
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which becomes using the boundary conditions (24):

1
2

dE
dt = −

∫
Ω
d

(
∂w

∂x

) 2
+
∫

Ω
ã w

∂w

∂x
dx . (25)

The Cauchy–Schwartz inequality writes:

∣∣∣∣∣
∫

Ω
f g

∣∣∣∣∣ 6
(∫

Ω
f 2 dx

) 1
2 (∫

Ω
g 2 dx

) 1
2
,

for f and g square–integrable realx–value functions. Thus, the inequality (25) yields to:

1
2

dE
dt 6 −

∫
Ω
d

(
∂w

∂x

) 2
+ ã

(∫
Ω
w 2dx

) 1
2 (∫

Ω

(
∂w

∂x

) 2
dx
) 1

2
. (26)

For u ∈ W 1 , p
0 , the Poincaré inequality states:∣∣∣∣∣∣u ∣∣∣∣∣∣

L p ( Ω )
6 CΩ

∣∣∣∣∣∣∇u
∣∣∣∣∣∣
L p ( Ω )

,

where CΩ is a constant depending on p and Ω only. Thus, for a one-dimensional problem and
for p = 2 , the inequality (26) becomes:

1
2

dE
dt 6 −

∫
Ω
d

(
∂w

∂x

) 2
+ ã CΩ

∫
Ω

(
∂w

∂x

) 2
dx ,

which can be re-written as:

1
2

dE
dt 6 −

(
d − ã CΩ

) ∫
Ω

(
∂w

∂x

) 2
.

Therefore, we have uniqueness of the solution of Eqs (21) and (22) if k − ã CΩ > 0 . In other
terms, the generalized advection coefficient has to be small compared to the diffusion one to
have unique solution.
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