
Non Convergene Result for Conformal Approximation of Variational ProblemsSubjet to a Convexity ConstraintPhilippe Chon�e1 and Herv�e V.J. Le Meur2Abstrat : In this artile, we are interested in the minimization of funtionals in the set ofonvex funtions. We investigate the disretization of the onvexity through various numerialmethods and �nd a geometrial obstrution on�rmed by numerial simulations. We provethat there exist some onvex funtions that annot be the limit of any onformal P1 FiniteElement sequene for a wide variety of re�ned meshes.Keywords : onvexity, �nite elements, interpolation, onformal approximation, minimiza-tionAMS Classi�ation Codes : 65K99, 49M40, 49M45, 49M99, 65M30, 65M60, 26B25, 52A41,90C20, 90C251 IntrodutionThis paper is devoted to the numerial approximation of variational problems subjet to aonvexity onstraint, namely problems of the form( inf J(u);u 2 K;where J is a funtional and K is a subset of the one of all onvex funtions on an open set 
in IRN . Suh problems appear in various ontexts, in partiular in physis and eonomis.One of the �rst problems in the alulus of variation, Newton's problem of minimal resis-tane, involves a onavity onstraint (see the original paper [9℄ and the historial survey [6℄).In this ontext, the funtional J and the set K are given byJ(u) = Z
 11 + jruj2dx; K = fu 2 W 1;1lo ; 0 � u �M;u onave g:Newton found the minimum of J over the set of radial funtionK 0 = fu 2 K; u is radial g;when 
 is a ball in IR2. The existene of a solution for a general onvex set 
 has been provedreently (see [4℄). In [3℄, the authors prove that, when 
 is a ball,0 < minK J(u) < minK0 J(u):In other words, Newton's solution does not minimize J over K. The minimizers of minJ overK are not radial and not unique.We now turn to a problem oming from an eonomi question, namely the design of anonlinear tari� by a regulated monopolist (see [10℄). In this ontext, the funtional J is givenby J(u) = Z
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where 0 � � � 1 and C is a positive de�nite (2,2) matrix. The set K is given byK = fu 2 H1(
); u � 0; ux � 0; uy � 0; u onvex g: (2)By ontrast with Newton's problem, the funtional J is onvex and oerive on K. It is easyto hek that there exists one unique minimizer of J over K.In [10℄, the authors fous on the ase � = 0 (unregulated monopolist) and C = Id. Theygive a suÆient ondition on the domain 
 for the onvexity onstraint to be ative. Typially,when 
 is a square [a; b℄2, there is an area where the range of the hessian matrix of u is 1 (seeFigure 1). In this last area, the funtion depends only on x + y whih varies from a + �0 anda+ �1. The value of �0 is given in setion 3.2.3.
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Figure 1: Solution if � = 0Note that, when � = 1, the problem degenerates: the solutions are given, up to an additiveonstant by ru(x) = C�1x) u(x) = x0C�1x=2� Cst: (3)In the problems desribed above, the onvexity onstraint is typially binding. It was evenproved in [8℄ that the minimum of the Newton problem is nowhere stritly onvex. Thereforeany numerial method of approximation must expliitely take into aount this onstraint.In this paper, we fous on onformal or internal approximations i.e. methods where theapproximating sequene uh belongs to the same set as u. The main result of the paper is anegative one: onformal P1 Finite Element (FE) methods annot onverge to the solution ofthe problem although a FE disretization of any H1 funtion u an be as lose to u as wanted.This is essentially due to geometrial obstrutions that we explain in details below. We provealso that natural extensions of the 1-D ase and P2 FE do have similar problems.Therefore we should now turn to non-onformal methods. A �rst attempt in this diretionan be found in [5℄, that states a onvergene result. The approximated problem, however,involves a very high number of onstraints (of order N2, where N is the number of verties inthe mesh).The paper is organized as follows. In setion 2, we study the onformal approximationthrough non-loal basis. We explain that we are not able to reover the one struture due toa geometri obstrution. In setion 3, we study the onformal P1 �nite-element approximation.We show that P1 and P2 Lagrange interpolation does not preserve onvexity and formulate thisresult in a preise fashion. Setion 4 presents some extensions (P2, Argyris) and onludes.We used the software Matlab for the minimization beause we aim at providing a \not tooompliate" solution to the eonomial problem, available for non-speialists.2 Approximation through onformal non-loal basisThe very �rst idea when one wants to disretize onvexity is to look for an approximate oneCh depending on h(h small), suh that Ch should be a subset of the one C. Also, we would like2



that this Ch ould be as lose as we want of C. In order to have the struture of one, Ch shouldbe the set of all linear ombinations of a �nite number of onvex funtions, with nonnegativeoeÆients. As a onsequene, the basis funtions are non-loal.In this setion, we will be interested in a spei� onformal approximation for whih thebasis funtions satisfy onvexity and not only the funtion.So as to test this approximation, we try it in one-dimension.2.1 One dimensional disretizationLet (xi)i=0::N be a general subdivision of [0; 1℄ where x0 = 0 and xN = 1. The basis we proposeis omposed of N + 1 funtions that satisfy the onstraint (here onvexity) and so, they arenon-loal. Their shape an be seen on Figure 2.
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0Figure 2: Shape of the 1-D basisThis basis assoiated to the grid on [0; 1℄ enables to state the following theorem whose proofis easy and only sheduled here so as to be referred to in the 2-D ase :THEOREM 1 Let f 2 C2([0; 1℄). Then, for all ", and N large enough ;k f(x)� f(0)	�1(x)� f 0(0)	0(x)� N�1X1 [f 0(i=N)� f 0((i� 1)=N)℄ 	i;N(x) kH1< "Idea of the proof of Theorem 1.So as to �nd the oeÆients, we write the system f 0(xi) = NXj=0�j	0j(x+i ), where 	0j(x+i ) is theright derivative of 	j at xi. Thanks to the hosen funtions, the matrix is triangular. Moreover,it is invertible and leads to the formulas for the oeÆients. Simple estimates omplete theproof.This theorem shows that it is possible to approximate a 1-D onvex funtion as losely aswanted, by a linear ombination with nonnegative oeÆients exept two terms. The two �rstterms may have arbitrary sign and we reover the one struture.The idea of this disretization is to lift the gradients as they grow. So onvexity is used,here, as a gradient inrease. In 1-D, the two properties are equivalent, but not in 2-D.Let us justify the present disretization. For that purpose, we denote C 0 = C \ fu 2W 1;1(
); sup(juj1; ju0j1) � 1g a setion of the one of onvex funtions. The set C 0 is onvexand ompat in H1(
).If 
 = [a; b℄, the extremal points of C 0 are the funtions  y, a � y � b, where  y(x) =sup(0; x � y). By the Krein-Milman theorem, C 0 oinides with the adherene in H1 of the3



onvex hull of the set f y; a � y � bg, whih gives another proof of Theorem 1 (the funtions	i;N of setion 2.1 are learly dense in this set).The two-dimensional ase is muh more ompliated sine we do not know the set of theextremal points of C 0.2.2 2-D basis-onformal disretizationOur goal is to approximate any onvex funtion as a ombination of onvex funtions (basis-onformal) with nonnegative oeÆients in a way similar to the one of the previous subsetion.We will restrit ourselves to retangle domains ([a; b℄2). We hoose a uniform disretization ofx : (xi = a + i(b� a)=N)i=0:::N�1 and of y : (yj = a + j(b� a)=N)j=0:::N�1.So as to generalize the 1-D basis, we have to oneive a family of funtions that should lift thetwo omponents of the gradients and whose oeÆients would be the nonnegative oeÆientsof the onvex hull of the extremal points of a setion of the one. We use the onvex pieewiselinear funtions : fi;j;1(x; y) = sup(0; os(�)(x� xi); sin(�)(y � yj)); (4)fi;j;2(x; y) = sup(0; sin(�)(x� xi); os(�)(y � yj)); (5)for � suÆiently small and (i; j) 2 [0; :::; N � 1℄. Small � (sin � < Æx=(b � a)) enable toretrieve uniqueness of the omponents, and to have the most natural extension of the 1-D ase.Indeed, � = 0 would make our family not to be free. The shape of these funtions is depitedin Figure 3 as the shape of their gradients.
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Figure 3: Shape of the 2-D basis and their gradientsIn a way similar to the 1-D ase, we expand :fN(x; y) = A�[a;b℄2 + Xi;j=0;::;N�1�i;jfi;j;1 + �i;jfi;j;2; (6)4



where A; �i;j; �i;j are onstants and �[a;b℄2 is the harateristi funtion of the set [a; b℄2.We denote � = ((�i;j)i=0;::N�1)j=0;::;N�1 to reorder the matrix into a vetor and use the sameordering for �. In order to mimi the proedure in 1-D, we de�ne the projetion fN of f by itsomponents A; �i;j; �i;j :8>>>>>><>>>>>>: f(a; a) = A;�f�x (x+i0 ; yj0) = Xi;j �i;j �fi;j;1�x (x+i0 ; yj0) + �i;j �fi;j;2�x (x+i0 ; yj0);�f�y (xi0 ; y+j0) = Xi;j �i;j �fi;j;1�y (xi0 ; y+j0) + �i;j �fi;j;2�y (xi0 ; y+j0); (7)where �f=�x(x+i0 ; yj0) is the right derivative of f with respet to x at (xi0 ; yj0). A theoremsimilar to Theorem 1 an be stated and extended to the following :THEOREM 2 Let f 2 C2([a; b℄2), � = o(�x) and �x � �y. Then there exist uniqueA; �ij; �ij given by (7) and they are suh that :k f � fN k! 0 inH1:Moreover, for positive j ; �ij = � �2f�x�y�y + o(�y):As a onsequene, no sign of �ij an be guaranteed even under the assumption that f isonvex.Proof of Theorem 2.Let us onsider the N �N;N2 �N2, and N2 �N2 matriesKN = 0BBBBB� 1 : : : : : : 10 . . . ...... . . . . . . ...0 : : : 0 1
1CCCCCA ; DN = 0BBBBB� KN LN : : : LN... . . . . . . ...... . . . LNKN : : : : : : KN

1CCCCCA ; EN = 0BB� KN 0 0... . . . 0KN : : : KN 1CCA ;where LN = KN � IN . With these notations, and if we order � = ((�ij)i=0;N�1)j=0;N�1, thesystem (7) may be written in an almost blok-diagonal way (for � small) : os �DN sin �ENsin �EN os �DN ! �� ! = 0BBBB�  �f�x!ij �f�y!ij 1CCCCA : (8)Then, it is a simple exerise of linear algebra to �nd
D�1N = 0BBBBBBBB� IN 0 : : : 0 �LNK�1N�IN . . . . . . 00 . . . . . . . . . ...... . . . . . . 00 : : : : : : �IN IN

1CCCCCCCCA ;and to get uniqueness of the omponents A; �ij; �ij thanks to the smallness of �. Then, theproof of onvergene is very similar to the one of 1-D. Last, a simple expansion gives that forj > 0 ; 5



�ij =  �f�x!ij �  �f�x!i;j�1 +O(�) =  �2f�x�y!ij �y + o(�x;�y):So we exhibit a sequene of funtions that tends to u, but there is no way of guarantingthat the sequene should remain onvex, even if u is stritly onvex. As the most natural 2-Dextension of the 1-D solution does not suit our requests on the struture of one, we have leftthe basis-onformal approximation and tried more lassial Finite Element for disretization.3 Conformal approximation through Finite Elements P1We hoose a triangular mesh and look for funtions whih are ontinuous and linear in eahtriangle. Namely we onsider Lagrange P1 Finite Elements (FE). More details an be found in[2℄, or [11℄.3.1 GeneralitiesA typial basis funtion �i(x) an be found in Figure 4. Its values are 1 at the node i, zero atthe other nodes, it is linear in eah triangle and ontinuous in 
.
iFigure 4: Shape of the funtion �i(x; y)The funtion f is disretized byfh(x) = Xi; node of the mesh fi�i(x);where fi is the omponent of fh and �i(x) is the FE basis. The overall method will be to lookfor a funtion fh (indeed for a �nite number of values fi) that ould minimize the funtional((1) with � = 1) and satisfy the onvexity ondition. In that sense, the approximation willbe onformal beause the funtions manipulated are supposed onvex, although they are linearombinations of non-onvex funtions. We have exat solutions to whih the omputed solutionis ompared : C =  1 �� 1 !) u(x) = 11� �2  x22 � �xy + y22 !� Cst: (9)We still need to have a haraterization of onvexity for P1 funtions. It is given by thefollowing lemma, whih proof is easy :LEMMA 3 A funtion fh, P1 in the retangle [a; b℄2, is onvex if and only if, for any pair ofadjaent triangles (q2 � q1):n12 � 0; (10)where q1 (resp. q2) is the (onstant) gradient of fh in triangle 1 (resp. 2) and n12 is the unitnormal pointing from triangle 1 to 2. 6



Proof of Lemma 3 Reall that a distribution v on 
 is a onvex funtion if and only if, forall nonnegative smooth funtion � with ompat support in 
, the bilinear symmetri map(h; k)!< �2v�h�k ; � >is semi-de�nite positive (for details, see [12℄). Assume v 2 P1 and notie that, by Green'sFormula < �2v�h�k ; � > = �XT < �v�h; ���k >= Xe (q2 � q1):n12)(n12:h)(n12:k) Ze �(s)ds;where the last summation is taken over all interior edges of the mesh. The result follows fromthe fat that the map (h; k)! (n12:h)(n12:k);is semi-de�nite positive for all vetor n12.Notie that although onvexity is a non-loal property, the disretization leads to loalharaterization. Moreover, the funtion will be known at the nodes of the mesh, but theonstraint makes sense only on the interior edges. The software MAPLE was used so as to haveoptimized symboli formulae depending on the degrees of freedom of the unknown �eld.3.2 Numerial resultsIn the present subsetion, we use the various strutured meshes depited in Figure 5 andompare the omputed results with the exat solution (3) (� = 1; � 2℄� 1; 1[).
mesh 1 mesh 2 mesh 3Figure 5: Three strutured meshes3.2.1 Mesh 1It happens that if � is positive, the results are satisfatory. We report the L2 norm as a funtionof the number N of sub-intervals in eah diretion and �nd a good onvergene on the square[4; 5℄2 (see Figure 6). Yet, for � = �0:1 (and more generally for all the non-positive �), we �ndno good onvergene as an be seen on Figure 6. Before onluding, we try the next mesh 2 inthe next subsubsetion.3.2.2 Mesh 2Here, we use mesh 2 (see Figure 5). Usually, the onvergene does not depend on the type ofthe triangles but on their size. Surprisingly, here, the results are opposite to those of mesh 1 :if � is negative, we reah a good onvergene, while if � is positive, the onvergene is very badas an be seen on Figure 7. This unusual behavior highlights the ruial role of the type of themesh on onvergene. 7
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3.2.3 Mesh 3As a onlusion of the two preeding tries, we use mesh 3 (see Figure 5) that seems to haveboth advantages of mesh 1 and mesh 2 : the diretion of the edges are in alternate diretionand so we hope to reover good onvergene for all �.Indeed, with that mesh, we have satisfatory results for both sign of � and even for � = 0as an be seen on Figure 8.
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Figure 8: L2 error for mesh 3Moreover, we hek the other properties based on the non-expliit solution (see [10℄) andthe agreement may look right :1. The trae at y = a for � = 0 should give the value �0 = a=3 +q4a2 + 6(b� a)2=3 (seeFigure 1 and [10℄). Here, we found numerially �0 2 [4:13; 4:16℄ (see Figure 9) while theexat value is 4:122.2. The shape of the gradient looks very muh like the one expeted (see Figure 9).3.2.4 Unstrutured meshesVarious unstrutured meshes were used and odd behaviour may be reported. CPU time maydepend on� reordering of the mesh : from 0 to 30 % more time for the same mesh,� parameter : for a given unstrutured mesh (� = 0:4, 170 nodes and 294 triangles), theCPU time appears to be errati without any explanation :� 0.94 0.92 0.90CPU time (s) 5 1053 10Moreover, the CPU time seems not to depend on the angles of the triangles (as is usualin most physial problem). In that ase, we moved a point along so as to have some anglesrossing 90o and the CPU time remained similar.Yet, at given number of triangles and nodes, whether the mesh is strutured or not, theCPU time may be 100 times greater for the unstrutured mesh ! The most striking example9
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0 � 
 suh that(n:h):(n:k) � 0 (11)for every vetor n unit normal to an edge of a triangle in the triangulation Th \ 
0. Then, forevery onvex and P1 funtion v, we have : �2v�h�k � 0 (12)in the sense of the Radon measures on the edges of Th \ 
010



Proof of Theorem 4 Let � be some nonnegative smooth funtion with ompat support in
. Summing up Green's Formula for a P1 funtion in every triangle yields< �2v�h�k ; � > = �XT < �v�h; ���k >= Xe ((q2 � q1):n12)(n12:h)(n12:k) Ze �(s)dswhere the last summation is taken over all interior edges of the mesh. The onlusion followsfrom the geometri property (11) of the mesh and the onvexity of v, whih writes: (q2 �q1):n12 � 0 (see Lemma 3).For instane, in the strutured mesh 3, the normal vetor are n1 = (0; 1), n2 = (1; 0),n3 = (1; 1) n4 = (1;�1). Hene we an hoose h = (1; 0) and k = (1;�1). Therefore, for allonvex and P1 funtion on mesh 3, (11) is satis�ed on all edges and so :vxx � vxy � 0: (13)Yet, this does not hold for every onvex funtion. If the solution u to the variational problemdoes not satisfy this onstraint, then if the mesh remains strutured, u annot be approximatedby a sequene of onvex P1 funtion (sine a limit of funtions satisfying (12) neessarily satis�es(12)). Hene we have proved the Corollary at least for strutured meshes :COROLLARY 5 There exist onvex funtions that annot be the limit of onvex P1 funtionsin the sense of distributions on a given family of strutured meshes.Inded, the property (11) may our also on a non strutured mesh, and so Corollary 5 istrue on a wide range of ouple (mesh, re�nement proess).Let 
0 be an open set in any given triangle T of Th. Assume the proess of re�nement bede�ned by dividing any triangle into four homotheti triangles (nodes are former nodes andmid-points). Then, the normals will not be enrihed, whatever might be the level of re�nement.Assume the three normals of the edges of T are (up to a hange of sign and hange ofoordinates) (1; 0); (os �1; sin �1); (os �2; sin �2) with 0 < �1 < �=4; 3�=4 < �2 < �. Then, forh = (os �1; sin �1); k = (sin �2;� os �2), the property (11) is satis�ed and the limit of uh willsatisfy an additional relation in T .Last, let us stress that the property (11) is loal and depends not so muh on the mesh thanon the re�nement proess.3.4 Numerial testsSo as to test the numerial validity of the preeding theorem, we use a matrix C and an exatsolution more general (still with � = 1) than (3) :C =  1 �� � ! ; u�;� = 1�� �2  �x22 � �xy + y22 !� Cst; (14)where Cst is a onstant suh that u�;�(a; a) = 0. Moreover, the onstraint that u�;� shouldbe onvex gives (� � �2) � 0. The onstraint that the gradient should be positive gives� � y=x � �=� if � > 0 and no ondition if � � 0.Theorem 4 (see (13)) implies that when � moves in suh a way that11



�2u�;��x�x � �2u�;��x�y = 1�� �2 (�+ �); (15)rosses zero, then onvergene should not be ahieved. This ould be found numeriallyby taking � = 0:1; � = 1. On Figure 10, we an see the jump in the slope of the L2 errorompared to the exat solution preisely at the value predited for N = 20. Moreover, this isnot a problem of auray beause we have the same results for more aurate omputationswith N = 28 as an be seen on Figure 10.
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Figure 10: Convergene results depending on � and N (� = 1; � = 0:1; [4; 5℄2)It an be onluded from Figure 10 that the onvergene is not ahieved for a lass of onvexfuntions.3.5 Convexity and Lagrange interpolationLet us onsider the following partition of the square 
 = [0; 1℄2 :
 = T l \ T u; with T l = f(x; y) 2 
; x + y � 1g and T u = f(x; y) 2 
; x + y � 1g:We denote by P 11 (respetively P 21 ) the Lagrange interpolation operators to P1 (resp. P2) FE.Let f be the onvex funtion de�ned by : f(x; y) = max(x; y) on 
. We set f 11 = P 11 f andf 21 = P 21 f . Then it is a simple exerise to prove the following Lemma.LEMMA 6 The funtions f 11 and f 21 are given byf 11 (x; y) = min(x + y; 1) = ( x + y in T l1 in T uand f 21 = ( x+ y � 2xy in T l2(x+ y)� 2xy � 1 in T u:Now we onsider the regular mesh with N2 verties like mesh 1 (see Figure 5), N � 1 and seth = 1=N . We onsider the Lagrange interpolation operators P 1N and P 2N and the interpolatedfuntions f 1N = P 1Nf and f 2N = P 2Nf . 12



Consider the squares of the mesh whose south west orners are (xk; yk), with xk = yk =kh; k = 0; :::N � 1. Then we have on those squaresf 1N = kh+ hf 11 (x� xkh ; y � ykh ) and f 2N = kh+ hf 21 (x� xkh ; y � ykh ):Outside those squares, it is lear that : f = f 1N = f 2N .Now we an ompute the seond derivatives D2f 1N and D2f 2N in the sense of the Radonmeasures. We denote by (D2f 1N)� and (D2f 2N)� the negative parts of these measures. Sine(D2f 1N)� = 0 inside the triangles, its norm is given byj(D2f 1N)�jM =Xe Ze(< q2 � q1; n12 >)�ds;where the sum is over the edges of the mesh.The support of (D2f 2N)� ontains some portions of edges and a surfai part. Its norm inthe sense of Radon measure is given byj(D2f 2N )�jM =Xe Ze(< q2 � q1; n12 >)� ds+XT ��(T )mes(T )where T is any triangle of the mesh, mes(T ) = h2=2 is its area, and ��(T ) is the negativeeigenvalue of the (onstant) matrix D2f 2N in the triangle T .The following proposition easily followsTHEOREM 7 The norms of the negative parts of the seond derivative of f 1N and f 2N arebounded away from zero. More preisely, we have:j(D2f 1N)�jM = 2 and j(D2f 2N )�jM = 4� 1N ;for all N � 1.The proof is left to the reader. We just mention that the support of (D2f 1N )� is the setof edges that interset the line x = y The support of the measure (D2f 2N)� is muh moreompliated, sine it has a surfai part (��(T ) = 1=h in the triangles along the line x = y)and a part supported by the edges.We may onlude that the Lagrange interpolate of a onvex funtion is not neessarilyonvex and the distane may remain �nite even asymptotially (when the size of the meshtends to zero).We have proved that C \ P1 is not dense in C (Corollary 5). We onjeture that the sameresult is true for C \ P2.3.6 Comment on the bibliographyDuring the preparation of the present work, we were informed of the artile of Kawohl andShwab [7℄ who apply the P1 FE to the Newton problem. In this artile, the authors laimthey have proved that \onforming approximations uN onverge .../... to a minimizer". Yet,as says Corollary 5 and as we heked numerially, there is no sequene of onvex P1 funtionsthat an onverge to some u.The error is in the proof of Lemma 2.1 where is laimed that the pieewise interpolant ofa onvex funtion u is onvex. The best ounter-example is the funtion (x; y) 7! sup(x; y) ona square [0; 1℄2 divided in two triangles by the segment x + y = 1. The P1 interpolant of thisfuntion is even onave. 13



This explains the error when the authors state that for every u onvex and bounded, thereexist a sequene of onvex and bounded P1 funtions that onverges to u inW 1;plo for 1 � p <1.Later this lemma is used in the step 2 of the proof of their main theorem.Moreover, their numerial results give a symmetri solution, while the solution may not besymmetri as there exist nonsymmetri funtions that derease the energy (see [3℄).Yet, the possibility to perform non-onformal approximation of onvex funtions remains agood idea. It was investigated by Carlier, Lahand-Robert and Maury [5℄ who proved onver-gene by the use of a lagrange multiplier and an Uzawa method. The problem lies in the sizeof the disretized onstraint.The reason for non-onvergene is that the surfai seond derivatives have presribed signsnot balaned by the volumi derivative. We ould hope that the P2 FE ould solve this problemas there is volumi seond derivative inside eah triangle, even if there is still a surfai seondderivative.4 ConlusionIn this artile, we proved that basis-onformal approximation does work in 1-D, but the mostnatural extension to 2-D does not. The overall idea behind this is the Krein-Milman theoremthat made us hope that we ould, through a disrete family of extremal funtions, approximateany onvex funtion with the onvex hull of a �nite sub-family. We have proved that it wasnot possible at least with the most natural extension of 1-D ase.Then, we tried onformal Finite Element (FE) method P1. Although some improvementsin the mesh improve the apparent numerial onvergene, we proved, both theoretially andnumerially, that this onformal method may not onverge for some limit funtion. We evenproved that for a given onvex funtion, the norm of the negative part of the seond derivativeremains �nite, whatever the auray of disretization.The last idea would be P2 FE, but the same argument as in P1 remains for P2 : thelinei derivative of the basis funtions along the edges of the mesh fores the limit funtion tosatisfy a non-natural property. One might hope to ounterbalane it with the non-zero seondderivative inside the triangles. On the other hand we have exhibited one onvex funtion fwhih P2 interpolate f 2N has a seond derivative with a negative part whih remains �nite,whatever N .Last, we point out an error in an artile.Although our results are negative, we believe they might be of some help, should they helponly to prevent researhers from using onformal P1 FE in minimization of funtionals underthe onstraint that the funtion should be onvex.Aknowledgements : The authors wish to thank a referee for giving helpfull omments thatsubstantially improved the manusript.Referenes[1℄ J.S. Arher, Consistent matrix formulations for strutural analysis using �nite-elementtehniques. AIAA J. 3, 1910-1918 (1965).[2℄ D. Braess, Finite Elements Cambridge University Press 1997[3℄ F. Brok, V. Ferone and B. Kawohl, A symmetry problem in the alulus of variations,Cal. Var. Partial Di�er. Equ. 4(6): 593-599, (1996)14
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