
Non Convergen
e Result for Conformal Approximation of Variational ProblemsSubje
t to a Convexity ConstraintPhilippe Chon�e1 and Herv�e V.J. Le Meur2Abstra
t : In this arti
le, we are interested in the minimization of fun
tionals in the set of
onvex fun
tions. We investigate the dis
retization of the 
onvexity through various numeri
almethods and �nd a geometri
al obstru
tion 
on�rmed by numeri
al simulations. We provethat there exist some 
onvex fun
tions that 
annot be the limit of any 
onformal P1 FiniteElement sequen
e for a wide variety of re�ned meshes.Keywords : 
onvexity, �nite elements, interpolation, 
onformal approximation, minimiza-tionAMS Classi�
ation Codes : 65K99, 49M40, 49M45, 49M99, 65M30, 65M60, 26B25, 52A41,90C20, 90C251 Introdu
tionThis paper is devoted to the numeri
al approximation of variational problems subje
t to a
onvexity 
onstraint, namely problems of the form( inf J(u);u 2 K;where J is a fun
tional and K is a subset of the 
one of all 
onvex fun
tions on an open set 
in IRN . Su
h problems appear in various 
ontexts, in parti
ular in physi
s and e
onomi
s.One of the �rst problems in the 
al
ulus of variation, Newton's problem of minimal resis-tan
e, involves a 
on
avity 
onstraint (see the original paper [9℄ and the histori
al survey [6℄).In this 
ontext, the fun
tional J and the set K are given byJ(u) = Z
 11 + jruj2dx; K = fu 2 W 1;1lo
 ; 0 � u �M;u 
on
ave g:Newton found the minimum of J over the set of radial fun
tionK 0 = fu 2 K; u is radial g;when 
 is a ball in IR2. The existen
e of a solution for a general 
onvex set 
 has been provedre
ently (see [4℄). In [3℄, the authors prove that, when 
 is a ball,0 < minK J(u) < minK0 J(u):In other words, Newton's solution does not minimize J over K. The minimizers of minJ overK are not radial and not unique.We now turn to a problem 
oming from an e
onomi
 question, namely the design of anonlinear tari� by a regulated monopolist (see [10℄). In this 
ontext, the fun
tional J is givenby J(u) = Z
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where 0 � � � 1 and C is a positive de�nite (2,2) matrix. The set K is given byK = fu 2 H1(
); u � 0; ux � 0; uy � 0; u 
onvex g: (2)By 
ontrast with Newton's problem, the fun
tional J is 
onvex and 
oer
ive on K. It is easyto 
he
k that there exists one unique minimizer of J over K.In [10℄, the authors fo
us on the 
ase � = 0 (unregulated monopolist) and C = Id. Theygive a suÆ
ient 
ondition on the domain 
 for the 
onvexity 
onstraint to be a
tive. Typi
ally,when 
 is a square [a; b℄2, there is an area where the range of the hessian matrix of u is 1 (seeFigure 1). In this last area, the fun
tion depends only on x + y whi
h varies from a + �0 anda+ �1. The value of �0 is given in se
tion 3.2.3.
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Figure 1: Solution if � = 0Note that, when � = 1, the problem degenerates: the solutions are given, up to an additive
onstant by ru(x) = C�1x) u(x) = x0C�1x=2� Cst: (3)In the problems des
ribed above, the 
onvexity 
onstraint is typi
ally binding. It was evenproved in [8℄ that the minimum of the Newton problem is nowhere stri
tly 
onvex. Thereforeany numeri
al method of approximation must expli
itely take into a

ount this 
onstraint.In this paper, we fo
us on 
onformal or internal approximations i.e. methods where theapproximating sequen
e uh belongs to the same set as u. The main result of the paper is anegative one: 
onformal P1 Finite Element (FE) methods 
annot 
onverge to the solution ofthe problem although a FE dis
retization of any H1 fun
tion u 
an be as 
lose to u as wanted.This is essentially due to geometri
al obstru
tions that we explain in details below. We provealso that natural extensions of the 1-D 
ase and P2 FE do have similar problems.Therefore we should now turn to non-
onformal methods. A �rst attempt in this dire
tion
an be found in [5℄, that states a 
onvergen
e result. The approximated problem, however,involves a very high number of 
onstraints (of order N2, where N is the number of verti
es inthe mesh).The paper is organized as follows. In se
tion 2, we study the 
onformal approximationthrough non-lo
al basis. We explain that we are not able to re
over the 
one stru
ture due toa geometri
 obstru
tion. In se
tion 3, we study the 
onformal P1 �nite-element approximation.We show that P1 and P2 Lagrange interpolation does not preserve 
onvexity and formulate thisresult in a pre
ise fashion. Se
tion 4 presents some extensions (P2, Argyris) and 
on
ludes.We used the software Matlab for the minimization be
ause we aim at providing a \not too
ompli
ate" solution to the e
onomi
al problem, available for non-spe
ialists.2 Approximation through 
onformal non-lo
al basisThe very �rst idea when one wants to dis
retize 
onvexity is to look for an approximate 
oneCh depending on h(h small), su
h that Ch should be a subset of the 
one C. Also, we would like2



that this Ch 
ould be as 
lose as we want of C. In order to have the stru
ture of 
one, Ch shouldbe the set of all linear 
ombinations of a �nite number of 
onvex fun
tions, with nonnegative
oeÆ
ients. As a 
onsequen
e, the basis fun
tions are non-lo
al.In this se
tion, we will be interested in a spe
i�
 
onformal approximation for whi
h thebasis fun
tions satisfy 
onvexity and not only the fun
tion.So as to test this approximation, we try it in one-dimension.2.1 One dimensional dis
retizationLet (xi)i=0::N be a general subdivision of [0; 1℄ where x0 = 0 and xN = 1. The basis we proposeis 
omposed of N + 1 fun
tions that satisfy the 
onstraint (here 
onvexity) and so, they arenon-lo
al. Their shape 
an be seen on Figure 2.
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iated to the grid on [0; 1℄ enables to state the following theorem whose proofis easy and only s
heduled here so as to be referred to in the 2-D 
ase :THEOREM 1 Let f 2 C2([0; 1℄). Then, for all ", and N large enough ;k f(x)� f(0)	�1(x)� f 0(0)	0(x)� N�1X1 [f 0(i=N)� f 0((i� 1)=N)℄ 	i;N(x) kH1< "Idea of the proof of Theorem 1.So as to �nd the 
oeÆ
ients, we write the system f 0(xi) = NXj=0�j	0j(x+i ), where 	0j(x+i ) is theright derivative of 	j at xi. Thanks to the 
hosen fun
tions, the matrix is triangular. Moreover,it is invertible and leads to the formulas for the 
oeÆ
ients. Simple estimates 
omplete theproof.This theorem shows that it is possible to approximate a 1-D 
onvex fun
tion as 
losely aswanted, by a linear 
ombination with nonnegative 
oeÆ
ients ex
ept two terms. The two �rstterms may have arbitrary sign and we re
over the 
one stru
ture.The idea of this dis
retization is to lift the gradients as they grow. So 
onvexity is used,here, as a gradient in
rease. In 1-D, the two properties are equivalent, but not in 2-D.Let us justify the present dis
retization. For that purpose, we denote C 0 = C \ fu 2W 1;1(
); sup(juj1; ju0j1) � 1g a se
tion of the 
one of 
onvex fun
tions. The set C 0 is 
onvexand 
ompa
t in H1(
).If 
 = [a; b℄, the extremal points of C 0 are the fun
tions  y, a � y � b, where  y(x) =sup(0; x � y). By the Krein-Milman theorem, C 0 
oin
ides with the adheren
e in H1 of the3




onvex hull of the set f y; a � y � bg, whi
h gives another proof of Theorem 1 (the fun
tions	i;N of se
tion 2.1 are 
learly dense in this set).The two-dimensional 
ase is mu
h more 
ompli
ated sin
e we do not know the set of theextremal points of C 0.2.2 2-D basis-
onformal dis
retizationOur goal is to approximate any 
onvex fun
tion as a 
ombination of 
onvex fun
tions (basis-
onformal) with nonnegative 
oeÆ
ients in a way similar to the one of the previous subse
tion.We will restri
t ourselves to re
tangle domains ([a; b℄2). We 
hoose a uniform dis
retization ofx : (xi = a + i(b� a)=N)i=0:::N�1 and of y : (yj = a + j(b� a)=N)j=0:::N�1.So as to generalize the 1-D basis, we have to 
on
eive a family of fun
tions that should lift thetwo 
omponents of the gradients and whose 
oeÆ
ients would be the nonnegative 
oeÆ
ientsof the 
onvex hull of the extremal points of a se
tion of the 
one. We use the 
onvex pie
ewiselinear fun
tions : fi;j;1(x; y) = sup(0; 
os(�)(x� xi); sin(�)(y � yj)); (4)fi;j;2(x; y) = sup(0; sin(�)(x� xi); 
os(�)(y � yj)); (5)for � suÆ
iently small and (i; j) 2 [0; :::; N � 1℄. Small � (sin � < Æx=(b � a)) enable toretrieve uniqueness of the 
omponents, and to have the most natural extension of the 1-D 
ase.Indeed, � = 0 would make our family not to be free. The shape of these fun
tions is depi
tedin Figure 3 as the shape of their gradients.
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Figure 3: Shape of the 2-D basis and their gradientsIn a way similar to the 1-D 
ase, we expand :fN(x; y) = A�[a;b℄2 + Xi;j=0;::;N�1�i;jfi;j;1 + �i;jfi;j;2; (6)4



where A; �i;j; �i;j are 
onstants and �[a;b℄2 is the 
hara
teristi
 fun
tion of the set [a; b℄2.We denote � = ((�i;j)i=0;::N�1)j=0;::;N�1 to reorder the matrix into a ve
tor and use the sameordering for �. In order to mimi
 the pro
edure in 1-D, we de�ne the proje
tion fN of f by its
omponents A; �i;j; �i;j :8>>>>>><>>>>>>: f(a; a) = A;�f�x (x+i0 ; yj0) = Xi;j �i;j �fi;j;1�x (x+i0 ; yj0) + �i;j �fi;j;2�x (x+i0 ; yj0);�f�y (xi0 ; y+j0) = Xi;j �i;j �fi;j;1�y (xi0 ; y+j0) + �i;j �fi;j;2�y (xi0 ; y+j0); (7)where �f=�x(x+i0 ; yj0) is the right derivative of f with respe
t to x at (xi0 ; yj0). A theoremsimilar to Theorem 1 
an be stated and extended to the following :THEOREM 2 Let f 2 C2([a; b℄2), � = o(�x) and �x � �y. Then there exist uniqueA; �ij; �ij given by (7) and they are su
h that :k f � fN k! 0 inH1:Moreover, for positive j ; �ij = � �2f�x�y�y + o(�y):As a 
onsequen
e, no sign of �ij 
an be guaranteed even under the assumption that f is
onvex.Proof of Theorem 2.Let us 
onsider the N �N;N2 �N2, and N2 �N2 matri
esKN = 0BBBBB� 1 : : : : : : 10 . . . ...... . . . . . . ...0 : : : 0 1
1CCCCCA ; DN = 0BBBBB� KN LN : : : LN... . . . . . . ...... . . . LNKN : : : : : : KN

1CCCCCA ; EN = 0BB� KN 0 0... . . . 0KN : : : KN 1CCA ;where LN = KN � IN . With these notations, and if we order � = ((�ij)i=0;N�1)j=0;N�1, thesystem (7) may be written in an almost blo
k-diagonal way (for � small) : 
os �DN sin �ENsin �EN 
os �DN ! �� ! = 0BBBB�  �f�x!ij �f�y!ij 1CCCCA : (8)Then, it is a simple exer
ise of linear algebra to �nd
D�1N = 0BBBBBBBB� IN 0 : : : 0 �LNK�1N�IN . . . . . . 00 . . . . . . . . . ...... . . . . . . 00 : : : : : : �IN IN

1CCCCCCCCA ;and to get uniqueness of the 
omponents A; �ij; �ij thanks to the smallness of �. Then, theproof of 
onvergen
e is very similar to the one of 1-D. Last, a simple expansion gives that forj > 0 ; 5



�ij =  �f�x!ij �  �f�x!i;j�1 +O(�) =  �2f�x�y!ij �y + o(�x;�y):So we exhibit a sequen
e of fun
tions that tends to u, but there is no way of guarantingthat the sequen
e should remain 
onvex, even if u is stri
tly 
onvex. As the most natural 2-Dextension of the 1-D solution does not suit our requests on the stru
ture of 
one, we have leftthe basis-
onformal approximation and tried more 
lassi
al Finite Element for dis
retization.3 Conformal approximation through Finite Elements P1We 
hoose a triangular mesh and look for fun
tions whi
h are 
ontinuous and linear in ea
htriangle. Namely we 
onsider Lagrange P1 Finite Elements (FE). More details 
an be found in[2℄, or [11℄.3.1 GeneralitiesA typi
al basis fun
tion �i(x) 
an be found in Figure 4. Its values are 1 at the node i, zero atthe other nodes, it is linear in ea
h triangle and 
ontinuous in 
.
iFigure 4: Shape of the fun
tion �i(x; y)The fun
tion f is dis
retized byfh(x) = Xi; node of the mesh fi�i(x);where fi is the 
omponent of fh and �i(x) is the FE basis. The overall method will be to lookfor a fun
tion fh (indeed for a �nite number of values fi) that 
ould minimize the fun
tional((1) with � = 1) and satisfy the 
onvexity 
ondition. In that sense, the approximation willbe 
onformal be
ause the fun
tions manipulated are supposed 
onvex, although they are linear
ombinations of non-
onvex fun
tions. We have exa
t solutions to whi
h the 
omputed solutionis 
ompared : C =  1 �� 1 !) u(x) = 11� �2  x22 � �xy + y22 !� Cst: (9)We still need to have a 
hara
terization of 
onvexity for P1 fun
tions. It is given by thefollowing lemma, whi
h proof is easy :LEMMA 3 A fun
tion fh, P1 in the re
tangle [a; b℄2, is 
onvex if and only if, for any pair ofadja
ent triangles (q2 � q1):n12 � 0; (10)where q1 (resp. q2) is the (
onstant) gradient of fh in triangle 1 (resp. 2) and n12 is the unitnormal pointing from triangle 1 to 2. 6



Proof of Lemma 3 Re
all that a distribution v on 
 is a 
onvex fun
tion if and only if, forall nonnegative smooth fun
tion � with 
ompa
t support in 
, the bilinear symmetri
 map(h; k)!< �2v�h�k ; � >is semi-de�nite positive (for details, see [12℄). Assume v 2 P1 and noti
e that, by Green'sFormula < �2v�h�k ; � > = �XT < �v�h; ���k >= Xe (q2 � q1):n12)(n12:h)(n12:k) Ze �(s)ds;where the last summation is taken over all interior edges of the mesh. The result follows fromthe fa
t that the map (h; k)! (n12:h)(n12:k);is semi-de�nite positive for all ve
tor n12.Noti
e that although 
onvexity is a non-lo
al property, the dis
retization leads to lo
al
hara
terization. Moreover, the fun
tion will be known at the nodes of the mesh, but the
onstraint makes sense only on the interior edges. The software MAPLE was used so as to haveoptimized symboli
 formulae depending on the degrees of freedom of the unknown �eld.3.2 Numeri
al resultsIn the present subse
tion, we use the various stru
tured meshes depi
ted in Figure 5 and
ompare the 
omputed results with the exa
t solution (3) (� = 1; � 2℄� 1; 1[).
mesh 1 mesh 2 mesh 3Figure 5: Three stru
tured meshes3.2.1 Mesh 1It happens that if � is positive, the results are satisfa
tory. We report the L2 norm as a fun
tionof the number N of sub-intervals in ea
h dire
tion and �nd a good 
onvergen
e on the square[4; 5℄2 (see Figure 6). Yet, for � = �0:1 (and more generally for all the non-positive �), we �ndno good 
onvergen
e as 
an be seen on Figure 6. Before 
on
luding, we try the next mesh 2 inthe next subsubse
tion.3.2.2 Mesh 2Here, we use mesh 2 (see Figure 5). Usually, the 
onvergen
e does not depend on the type ofthe triangles but on their size. Surprisingly, here, the results are opposite to those of mesh 1 :if � is negative, we rea
h a good 
onvergen
e, while if � is positive, the 
onvergen
e is very badas 
an be seen on Figure 7. This unusual behavior highlights the 
ru
ial role of the type of themesh on 
onvergen
e. 7
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3.2.3 Mesh 3As a 
on
lusion of the two pre
eding tries, we use mesh 3 (see Figure 5) that seems to haveboth advantages of mesh 1 and mesh 2 : the dire
tion of the edges are in alternate dire
tionand so we hope to re
over good 
onvergen
e for all �.Indeed, with that mesh, we have satisfa
tory results for both sign of � and even for � = 0as 
an be seen on Figure 8.
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Figure 8: L2 error for mesh 3Moreover, we 
he
k the other properties based on the non-expli
it solution (see [10℄) andthe agreement may look right :1. The tra
e at y = a for � = 0 should give the value �0 = a=3 +q4a2 + 6(b� a)2=3 (seeFigure 1 and [10℄). Here, we found numeri
ally �0 2 [4:13; 4:16℄ (see Figure 9) while theexa
t value is 4:122.2. The shape of the gradient looks very mu
h like the one expe
ted (see Figure 9).3.2.4 Unstru
tured meshesVarious unstru
tured meshes were used and odd behaviour may be reported. CPU time maydepend on� reordering of the mesh : from 0 to 30 % more time for the same mesh,� parameter : for a given unstru
tured mesh (� = 0:4, 170 nodes and 294 triangles), theCPU time appears to be errati
 without any explanation :� 0.94 0.92 0.90CPU time (s) 5 1053 10Moreover, the CPU time seems not to depend on the angles of the triangles (as is usualin most physi
al problem). In that 
ase, we moved a point along so as to have some angles
rossing 90o and the CPU time remained similar.Yet, at given number of triangles and nodes, whether the mesh is stru
tured or not, theCPU time may be 100 times greater for the unstru
tured mesh ! The most striking example9
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ontour and tra
e along y of the 
omputed uwas a stru
tured mesh to whi
h we added only one point. The CPU time got 50 times more.This last example indi
ates that the odd behaviour does not 
ome from the 
omputation 
ode,but from the topologi
al properties of the mesh.Last, the gradients are so bad that no information 
an be retrieved.The study of unstru
tured meshes 
ould be 
onsidered as meaningless as a stru
tured mesh,like mesh 1 or 2 (for whi
h P1 FE does not work), is only a parti
ular 
ase of more generalmeshes. But the diÆ
ulty is that for a minimization problem, a numeri
al 
ode will most oftengive a solution. Then, we have no other means than numeri
al analysis or good numeri
alexperiments to test the likelihood of the solution. Both approa
hs are helpful and we hope thatthe insight given by the unstru
tured study might be of some help to indi
ate a more generalobstru
tion.3.3 A geometri
al obstru
tionIn this se
tion, we show that the geometri
al stru
ture of the mesh imply many 
onstraintson P1 
onvex fun
tions. These 
onstraints in turn prevent the 
onformal P1 approximation to
onverge when the solution to the variational problem does not satisfy them and this limitationmay be lo
al.THEOREM 4 Assume that there are two dire
tions h and k in a subset 
0 � 
 su
h that(n:h):(n:k) � 0 (11)for every ve
tor n unit normal to an edge of a triangle in the triangulation Th \ 
0. Then, forevery 
onvex and P1 fun
tion v, we have : �2v�h�k � 0 (12)in the sense of the Radon measures on the edges of Th \ 
010



Proof of Theorem 4 Let � be some nonnegative smooth fun
tion with 
ompa
t support in
. Summing up Green's Formula for a P1 fun
tion in every triangle yields< �2v�h�k ; � > = �XT < �v�h; ���k >= Xe ((q2 � q1):n12)(n12:h)(n12:k) Ze �(s)dswhere the last summation is taken over all interior edges of the mesh. The 
on
lusion followsfrom the geometri
 property (11) of the mesh and the 
onvexity of v, whi
h writes: (q2 �q1):n12 � 0 (see Lemma 3).For instan
e, in the stru
tured mesh 3, the normal ve
tor are n1 = (0; 1), n2 = (1; 0),n3 = (1; 1) n4 = (1;�1). Hen
e we 
an 
hoose h = (1; 0) and k = (1;�1). Therefore, for all
onvex and P1 fun
tion on mesh 3, (11) is satis�ed on all edges and so :vxx � vxy � 0: (13)Yet, this does not hold for every 
onvex fun
tion. If the solution u to the variational problemdoes not satisfy this 
onstraint, then if the mesh remains stru
tured, u 
annot be approximatedby a sequen
e of 
onvex P1 fun
tion (sin
e a limit of fun
tions satisfying (12) ne
essarily satis�es(12)). Hen
e we have proved the Corollary at least for stru
tured meshes :COROLLARY 5 There exist 
onvex fun
tions that 
annot be the limit of 
onvex P1 fun
tionsin the sense of distributions on a given family of stru
tured meshes.Inded, the property (11) may o

ur also on a non stru
tured mesh, and so Corollary 5 istrue on a wide range of 
ouple (mesh, re�nement pro
ess).Let 
0 be an open set in any given triangle T of Th. Assume the pro
ess of re�nement bede�ned by dividing any triangle into four homotheti
 triangles (nodes are former nodes andmid-points). Then, the normals will not be enri
hed, whatever might be the level of re�nement.Assume the three normals of the edges of T are (up to a 
hange of sign and 
hange of
oordinates) (1; 0); (
os �1; sin �1); (
os �2; sin �2) with 0 < �1 < �=4; 3�=4 < �2 < �. Then, forh = (
os �1; sin �1); k = (sin �2;� 
os �2), the property (11) is satis�ed and the limit of uh willsatisfy an additional relation in T .Last, let us stress that the property (11) is lo
al and depends not so mu
h on the mesh thanon the re�nement pro
ess.3.4 Numeri
al testsSo as to test the numeri
al validity of the pre
eding theorem, we use a matrix C and an exa
tsolution more general (still with � = 1) than (3) :C =  1 �� � ! ; u�;� = 1�� �2  �x22 � �xy + y22 !� Cst; (14)where Cst is a 
onstant su
h that u�;�(a; a) = 0. Moreover, the 
onstraint that u�;� shouldbe 
onvex gives (� � �2) � 0. The 
onstraint that the gradient should be positive gives� � y=x � �=� if � > 0 and no 
ondition if � � 0.Theorem 4 (see (13)) implies that when � moves in su
h a way that11



�2u�;��x�x � �2u�;��x�y = 1�� �2 (�+ �); (15)
rosses zero, then 
onvergen
e should not be a
hieved. This 
ould be found numeri
allyby taking � = 0:1; � = 1. On Figure 10, we 
an see the jump in the slope of the L2 error
ompared to the exa
t solution pre
isely at the value predi
ted for N = 20. Moreover, this isnot a problem of a

ura
y be
ause we have the same results for more a

urate 
omputationswith N = 28 as 
an be seen on Figure 10.
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Figure 10: Convergen
e results depending on � and N (� = 1; � = 0:1; [4; 5℄2)It 
an be 
on
luded from Figure 10 that the 
onvergen
e is not a
hieved for a 
lass of 
onvexfun
tions.3.5 Convexity and Lagrange interpolationLet us 
onsider the following partition of the square 
 = [0; 1℄2 :
 = T l \ T u; with T l = f(x; y) 2 
; x + y � 1g and T u = f(x; y) 2 
; x + y � 1g:We denote by P 11 (respe
tively P 21 ) the Lagrange interpolation operators to P1 (resp. P2) FE.Let f be the 
onvex fun
tion de�ned by : f(x; y) = max(x; y) on 
. We set f 11 = P 11 f andf 21 = P 21 f . Then it is a simple exer
ise to prove the following Lemma.LEMMA 6 The fun
tions f 11 and f 21 are given byf 11 (x; y) = min(x + y; 1) = ( x + y in T l1 in T uand f 21 = ( x+ y � 2xy in T l2(x+ y)� 2xy � 1 in T u:Now we 
onsider the regular mesh with N2 verti
es like mesh 1 (see Figure 5), N � 1 and seth = 1=N . We 
onsider the Lagrange interpolation operators P 1N and P 2N and the interpolatedfun
tions f 1N = P 1Nf and f 2N = P 2Nf . 12



Consider the squares of the mesh whose south west 
orners are (xk; yk), with xk = yk =kh; k = 0; :::N � 1. Then we have on those squaresf 1N = kh+ hf 11 (x� xkh ; y � ykh ) and f 2N = kh+ hf 21 (x� xkh ; y � ykh ):Outside those squares, it is 
lear that : f = f 1N = f 2N .Now we 
an 
ompute the se
ond derivatives D2f 1N and D2f 2N in the sense of the Radonmeasures. We denote by (D2f 1N)� and (D2f 2N)� the negative parts of these measures. Sin
e(D2f 1N)� = 0 inside the triangles, its norm is given byj(D2f 1N)�jM =Xe Ze(< q2 � q1; n12 >)�ds;where the sum is over the edges of the mesh.The support of (D2f 2N)� 
ontains some portions of edges and a surfa
i
 part. Its norm inthe sense of Radon measure is given byj(D2f 2N )�jM =Xe Ze(< q2 � q1; n12 >)� ds+XT ��(T )mes(T )where T is any triangle of the mesh, mes(T ) = h2=2 is its area, and ��(T ) is the negativeeigenvalue of the (
onstant) matrix D2f 2N in the triangle T .The following proposition easily followsTHEOREM 7 The norms of the negative parts of the se
ond derivative of f 1N and f 2N arebounded away from zero. More pre
isely, we have:j(D2f 1N)�jM = 2 and j(D2f 2N )�jM = 4� 1N ;for all N � 1.The proof is left to the reader. We just mention that the support of (D2f 1N )� is the setof edges that interse
t the line x = y The support of the measure (D2f 2N)� is mu
h more
ompli
ated, sin
e it has a surfa
i
 part (��(T ) = 1=h in the triangles along the line x = y)and a part supported by the edges.We may 
on
lude that the Lagrange interpolate of a 
onvex fun
tion is not ne
essarily
onvex and the distan
e may remain �nite even asymptoti
ally (when the size of the meshtends to zero).We have proved that C \ P1 is not dense in C (Corollary 5). We 
onje
ture that the sameresult is true for C \ P2.3.6 Comment on the bibliographyDuring the preparation of the present work, we were informed of the arti
le of Kawohl andS
hwab [7℄ who apply the P1 FE to the Newton problem. In this arti
le, the authors 
laimthey have proved that \
onforming approximations uN 
onverge .../... to a minimizer". Yet,as says Corollary 5 and as we 
he
ked numeri
ally, there is no sequen
e of 
onvex P1 fun
tionsthat 
an 
onverge to some u.The error is in the proof of Lemma 2.1 where is 
laimed that the pie
ewise interpolant ofa 
onvex fun
tion u is 
onvex. The best 
ounter-example is the fun
tion (x; y) 7! sup(x; y) ona square [0; 1℄2 divided in two triangles by the segment x + y = 1. The P1 interpolant of thisfun
tion is even 
on
ave. 13



This explains the error when the authors state that for every u 
onvex and bounded, thereexist a sequen
e of 
onvex and bounded P1 fun
tions that 
onverges to u inW 1;plo
 for 1 � p <1.Later this lemma is used in the step 2 of the proof of their main theorem.Moreover, their numeri
al results give a symmetri
 solution, while the solution may not besymmetri
 as there exist nonsymmetri
 fun
tions that de
rease the energy (see [3℄).Yet, the possibility to perform non-
onformal approximation of 
onvex fun
tions remains agood idea. It was investigated by Carlier, La
hand-Robert and Maury [5℄ who proved 
onver-gen
e by the use of a lagrange multiplier and an Uzawa method. The problem lies in the sizeof the dis
retized 
onstraint.The reason for non-
onvergen
e is that the surfa
i
 se
ond derivatives have pres
ribed signsnot balan
ed by the volumi
 derivative. We 
ould hope that the P2 FE 
ould solve this problemas there is volumi
 se
ond derivative inside ea
h triangle, even if there is still a surfa
i
 se
ondderivative.4 Con
lusionIn this arti
le, we proved that basis-
onformal approximation does work in 1-D, but the mostnatural extension to 2-D does not. The overall idea behind this is the Krein-Milman theoremthat made us hope that we 
ould, through a dis
rete family of extremal fun
tions, approximateany 
onvex fun
tion with the 
onvex hull of a �nite sub-family. We have proved that it wasnot possible at least with the most natural extension of 1-D 
ase.Then, we tried 
onformal Finite Element (FE) method P1. Although some improvementsin the mesh improve the apparent numeri
al 
onvergen
e, we proved, both theoreti
ally andnumeri
ally, that this 
onformal method may not 
onverge for some limit fun
tion. We evenproved that for a given 
onvex fun
tion, the norm of the negative part of the se
ond derivativeremains �nite, whatever the a

ura
y of dis
retization.The last idea would be P2 FE, but the same argument as in P1 remains for P2 : thelinei
 derivative of the basis fun
tions along the edges of the mesh for
es the limit fun
tion tosatisfy a non-natural property. One might hope to 
ounterbalan
e it with the non-zero se
ondderivative inside the triangles. On the other hand we have exhibited one 
onvex fun
tion fwhi
h P2 interpolate f 2N has a se
ond derivative with a negative part whi
h remains �nite,whatever N .Last, we point out an error in an arti
le.Although our results are negative, we believe they might be of some help, should they helponly to prevent resear
hers from using 
onformal P1 FE in minimization of fun
tionals underthe 
onstraint that the fun
tion should be 
onvex.A
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