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Abstract In this article, conceived for physicists and mathematicians, we describe

various Orr-Sommerfeld Equations (OSE) and stress their di�erences, both in

modeling, justi�cation and in the results. These equations are derived from the

Poiseuille ow of two viscoelastic or Newtonian uids. The literature proposes a link

between computation and experiment which is modeled by two di�erent equations. We

reinvestigate it and stress a hidden assumption. Then, we study extensively the long

wave asymptotic stability of the ow of two viscoelastic uids and exhibit a formula for

characterization of loss of stability in a new case. Some waves are found through an

OSE and cannot be found through the other. We give their growth rate implicitely for

some of them. Last, we prove a theorem that says whether such a wave could be

unstable or not.
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1. Introduction

The stability of various experimental problems can be investigated through the stability

of mathematical models. Yet, they are often nonlinear and the study of their stability is

very di�cult. A weak de�nition of stability involves the stability of the linearized model

and a good literature has been devoted to it ([6], ...) and to the links between linear and

nonlinear stability ([12], ...).

Once the linearized equations are derived, the Orr-Sommerfeld Equations (OSE) are

often used to test linear stability. They are derived after testing for various exponentials.

These equations correspond to di�erent experiments, and di�erent geometries. The (ex-

isting) justi�cation for derivation is scarcely presented. The most used OSE corresponds

to an experiment rarely performed. So when calculations are associated to experiments,

one chooses sometimes the \wrong" OSE.

So, we can wonder to what extent the various OSEs will yield the same unstable

modes and also the same stable ones. The answer is clear for intermediate waves and

some OSEs, but is not investigated for short waves. This article deals with these ques-

tions in the general case of two ViscoElastic Fluids (VEF).

After submission, our attention was drawn to absolute and convective instabilities.

These notions seem to give a more precise prediction of instability (see [11] and [4]). We

have not investigated them in this article.

In section 2, we present the various OSEs, recall the mathematical justi�cation for

their derivation, stress their possible di�erences and discuss the modeling and aims of

these equations. We end with some comments on the literature on this topic. Section 3
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is devoted to the study of the long wave asymptotic study of two VEF. We stress a con-

dition needed to ensure the equivalence of two OSE and give new results more accurate

than those of [14]. Finally, section 4 gives the proof of the main theorem that states the

di�erences between two OSEs for the case of this speci�c ow.

2. Di�erent ways of deriving di�erent equations

2.1 The physical experiment

It appears, through the literature, that two main types of experiments could be used to

test the stability of the ow of two uids under in�nitesimal perturbance.

In the �rst one, one tests the ampli�cation in Space (S). Namely, a ribbon is kept

vibrating at the entrance of a box where enter the two uids. The stationary interface

is said to be stable if, when perturbed (see Figure 1a), its amplitude remains bounded

up to the exit which is supposed su�ciently far. If the amplitude of the variation of

the interface grows with x, the ow is said to be unstable (see Figure 1b). So, the

characterization of instability is manageable.

fluid 1

fluid 2

fluid 2

fluid 1

 a) stable

b) unstable

Figure 1: Ampli�cation in space

In the second one, one tests the ampli�cation in Time (T ). The source of the instabil-

ity cannot be at any entry point, but in the initial condition. For that reason, one starts

with an initial interface having a sine shape with a su�ciently small amplitude and lets

the system evolve. This shape is said to be unstable if the amplitude grows with time

(see Figure 2). The major con of this experiment is that it is very di�cult to design an

experimental apparatus enabling such a �ne control of the initial shape of the interface

and this instability is almost never investigated.

2.2 Deriving the Orr-Sommerfeld Equations

As we are mainly interested in the theoretical aspects linked to the Orr-Sommerfeld

Equations (OSE) for the ow of two VEF, we will start from dimensionless equations in

dimensionless geometries. The details of how to derive these equations can be found in

[13] for example but are meaningless here.

First, let us state part of the geometry, bounded between "

2

(= �") and "

1

(= 1) in y.

The stationary interface of the Poiseuille ow of the two uids is at y = 0 (see Figure 3).

Then, let us state the VEF equations. The parameters, velocities (u), pressure (p),

and extra stress (� ) are indiced by k = 1; 2 which denotes the index of the uid k that

ows in 


k

(see Figure 3). Vectors are underlined once while matrices are underlined

twice. For the present paper, we will focus our attention on the classical Oldroyd-B

model for which the constitutive law is written:
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Figure 2: Ampli�cation in time
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Figure 3: Overall geometry
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where We

k

is the Weissenberg number, �

k

is the polymeric viscosity, m

k

is the total

viscosity and

D:

Dt

is the Oldroyd derivative :

D�

Dt

=

@�

@t

+ u:r� �ru � � � ru

T

:

The conservation of momentum and incompressibility are more usual:

r

k

Re

�

@u

k

@t

+ (u

k

: r) u

k

�

+rp

k

� m

k

(1� �

k

) �u

k

=

div �

p;k

+ r

k

Re F

�2

k;

r:u

k

= 0;

(2)

where Re is the Reynolds number (common to the two uids), r

k

is the dimensionless

density, F is the Froude number and k is the unit vector vertical. Non-dimensionalizing

is done with respect to the quantities of uid 1, so that m

1

= 1; r

1

= 1; "

1

= 1. We

close the equations with classical boundary and interface conditions, including the e�ect

of surface tension (measured by the coe�cient S) and with [[:]] = (:)

1

� (:)

2

the jump at

the interface :

[[�pI + 2m(1 � �)(ru+ru

T

)=2 + � ]]:n = �2H S n and [[u]]:n = 0;
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where n is a unit vector normal to the interface. The goal of the Orr-Sommerfeld

methods is to study stability under in�nitesimal perturbations. So, we restrict our at-

tention to equations (1-2) linearized around the basic Poiseuille state (see [14]). This

linearization being an easy calculation, we will not reproduce it here. Su�ce it to say

that the linear equations have the shape :

P (@

x

; @

y

)U = @

t

Q(@

x

; @

y

)U;(3)

where @ are derivation operators, P and Q are matrices applied to U , vector of the

unknown �elds of the uids and the height of the interface.

As the equations are linear, a principle of superposition applies and so, one may

assume that the unknown �elds are waves. At that point of derivation, we meet three

possibilities.

A �rst one consists in looking for the waves that can be represented as varying in x

and t as

U

0

exp(�x� ict));(4)

where � 2 lC , c 2 IR and U

0

is the constant amplitude (see [9] and [20]). An other

possibility is to look for waves like

U

0

exp(iq(x� ct));(5)

where q 2 IR and c 2 lC (see for instance [7], [21], [8]). Its meaning of a wave with

constant velocity appears clearly.

An other way is to introduce �elds varying as :

U

0

exp(iqx + st);(6)

where q 2 IR and s 2 lC and U

0

is the amplitude (see [16], [1] for instance).

In both assumptions, it seems natural to consider that we are looking for \pertur-

bation quantities that have an exponential time and periodic spatial dependence" (as is

said for instance in [22] p. 318). We will discuss this point of view in subsection 2.4.

Whether one chooses one representation or another, one is led to solve the Orr-

Sommerfeld Equations (OSEs) respectively for (4), (5) and (6) :

P (�; @

y

)U

0

(y) = �ic Q(�; @

y

)U

0

(y);(7)

P (iq; @

y

)U

0

(y) = �iqc Q(iq; @

y

)U

0

(y);(8)

P (iq; @

y

)U

0

(y) = s Q(iq; @

y

)U

0

(y):(9)

These are, somehow, eigenvalue problems. As can be seen from these three systems,

the equivalence of their solutions is not totally obvious and will be discussed in detail

hereafter. The point would be here to make sure that these methods will detect the same

unstable ows.

2.3 Another way to derive some OSE

In the precedent derivation, we linearized around a basic ow and also around its ge-

ometry (see [19] for justi�cation) in a preliminary phase. As a consequence, these new

equations are applied in a straight geometry.

As a consequence, if the problem is ampli�cation in time (cf. Figure 2), the geometry

is such that one may make a Fourier transform in x (the domain is in�nite in x and the
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transform is onto). In the same way, one may make a Laplace transform in time (onto)

and be led to the equation (9) rigorously.

In a very similar way, if the experiment deals with ampli�cation in space (cf. Figure

1), the geometry enables a Laplace transform in x and a Fourier transform in t. This

proves (7) in this con�guration.

At that level, an assumption must be clearly stated. We could derive (7) or (9)

rigorously because we assumed implicitely, that

(A1)

�

The initial �elds in Laplace/Fourier transforms are zero, or

one order of magnitude less than the linear �elds.

2.4 Preliminary discussion

It can be seen from the mathematical derivation, that (A1) is assumed in deriving (9)

or (7). This condition is often satis�ed in experiments, but rarely stressed.

It is also obvious that the two equations correspond to di�erent experiments. Very

few are the articles that stress this di�erence. Yet, we can quote [22] (p.325) who uses

[9] (commented hereafter) to transform time instability into space instability.

Also it can be seen that no evidence can be given of the possibility to derive OSE rig-

orously in more complex geometries (4:1 contraction or entry ow for instance) because

of the non-locality of the transforms. If such a generalization gave good results, it would

mean that one may localize the Fourier transform, which is a non-obvious assumption.

The �rst positive result is that one may prove the derivation of (7) or (9), from the

linear equations, under the assumption of the geometry (Figure 1 or 2 respectively). So,

these equations appear to model very di�erent experiments. Space instability is modeled

by (7) while time instability by (9).

Moreover, as one knows that Fourier and Laplace transforms are onto, it can be

claimed that solving (7) or (9) is equivalent to solving (3) in the right geometry and in

a very general functional space (say L

2

). As a consequence, any discrepancy between

an experiment and the corresponding OSE cannot come from the assumption that \dis-

turbances were periodic" in space or time (cf. [22] p. 318 or [20] p. 212) because this

assumption appears only in an unclear derivation using exponentials and disappears when

the Laplace and Fourier transforms are used.

Mathematical modeling also justi�es that, if the spectrum of (7) or (9) is discrete, the

back transformed function will be exponentially increasing or decreasing in the variable

associated to the Laplace variable and sine-varying in the Fourier variable. This behavior

is experimentally found in most cases. Yet some polynomial increases are reported in

[23] and could be attributed to the continuous spectrum.

One of the clearest conclusions of the preceeding is that experimentations of ampli�-

cation in x (most common) cannot be, a priori investigated rigorously only through (9)

(see [9] though and comments below).

Last, (8) and (9) would be the same if one might set (both s and c are complex here):

s = �iqc:
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In the case of intermediate waves, it is clearly possible and was argued already in [20].

Concerning the longwave studies, it will be possible if and only if the 0th order term of

the expansion of s in powers of q is zero (s = s

0

+ q s

1

+ q

2

s

2

:::):

(A2) s

0

= 0:

The sequel will be devoted to discussing this assumption (A2).

2.5 Comments on the literature

In [9], M. Gaster investigated some relations between (7) and (9). To that purpose, he

denoted the general disturbance as varying in exp (i(�x � �t)) with � = �

r

+ i�

i

; � =

�

r

+ i�

i

complex and (�

r

; �

i

; �

r

; �

i

) real. Then, time ampli�cation (T ) was characterized

by �

i

6= 0 and �

i

= 0 while space ampli�cation (S) by �

i

6= 0 and �

i

= 0. Gaster

assumed that there exists an analytic function �(�) between (T ) and (S) states, that �

r

is constant and also :

1.

@�

i

@�

r

and

@�

i

@�

r

small (of order 10

�3

),

2. �

i

small (of order 10

�3

).

These assumptions are experimentally argued in [18]. Then, through the use of the

Cauchy-Riemann equations, he proved that :

�

r

(T ) = �

r

(S);

�

r

(T ) = �

r

(S);

�

i

(T )

�

i

(S)

= �

@�

r

@�

r

:(10)

The Gaster relation (10) enables to link time ampli�cation (T) and space ampli�cation

(S). Yet, one may pursue the proof and integrate the Cauchy-Riemann relation (5) of [9]

(@�

r

=@�

r

= @�

i

=@�

i

because �(�) is analytic) in �

r

between (S) and (T ) states. So we

have :

�

i

(T ) � �

i

(S) = �

i

(T ) =

Z

T

S

@�

r

@�

i

d�

r

:

But since �

r

is assumed to be constant, and as @�

r

=@�

i

is analytic, the integral must

vanish exactly and �

i

(T ) be identically zero (no ampli�cation in time). This is a contra-

diction.

If we still assume analyticity, one may �nd a more straightforward justi�cation, as

(10) is a mere Finite Di�erence approximation of one of the Cauchy-Riemann relations :

@�

r

@�

r

=

@�

i

@�

i

=

�

i

(T )� �

i

(S)

�

i

(T )� �

i

(S)

= �

�

i

(T )

�

i

(S)

;

and does not require so many assumptions rarely satis�ed. With this relation, and

as one may measure @�

r

=@�

r

(through a simple FD approximation), we can relate the

growth rate of the theoretical ampli�cation in time (T ) to the one of the experimental

ampli�cation in space (S).

In [3] Brevdo already stressed that the assumption \ that there exists a continuous

contour (the contour of integration), connecting state (T) with state (S)" is only an
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assumption. Still in [3], the author proves even more. With an exotic but authorized

dispersion relation, he proves that there may not exist any contour of integration if �

r

is constant.

The main hypothesis in what precedes is that the function �(�) should be analytic.

We do not see any justi�cation for this. For instance, let us look for a�ne functions

� = A(� � �(S)) + �(S) that would interpolate the values of �(�) at �(S) and �(T ).

Then, for all C, one may �nd a matrix A for which @�

r

=@�

r

= C@�

i

=@�

i

! So even the

Cauchy-Riemann relations do not seem physically meaningfull as analytic functions are

not the only one in nature and �(�) could be anything if any ...

Moreover, normal modes are quite criticized since the introduction of absolute and

convective instabilities in uids by Monkewitz and Huerre (see [10], [11]). For instance,

Brevdo and Bridges [5] give examples where normal modes for a local analysis give false

results on model equations and a good review is in [17].

So the justi�cation of these equations seems very weak. Yet it gives good results (see

[21], [22]) but also bad results predicted and partially explained (see [4] for instance).

To summarize, we have no de�nitive justi�cation for the Gaster relation that appears

to have been already criticized. Moreover, there are interesting tracks in the literature on

other tools than Gaster relations and normal modes that we did not investigate (absolute

and convective instabilities [11], [17] and pseudo-spectra [15]).

After having revisited the links between (7) and (9), we come back to the longwave

analysis so as to show some di�erences between (8) and (9) and pave the way for the

main Theorem 2.

3. Long wave stability of two VEF

3.1 Conditional equivalence of two OSE

Starting from the whole system algebraically denoted by (9), one has to expand all

the amplitudes of �elds and functions : X(q) = X

0

+ qX

1

+ q

2

X

2

+ :::, where the

superscript on X

i

denotes the order of the coe�cient in the expansion. We also expand

s = s

0

+q s

1

+q

2

s

2

::: and assume s

0

6= 0. We denote u = (u; v) and � =

�

� �

� 

�

. The

subscript 0 denotes the basic ow around which we linearize (Poiseuille ow found in [14]).

The other notations were given in section 2 except for the Froude number F = U

�

=

p

gd

1

(with characteristic dimensioned quantities and g = 9:8 in standard units) that measures

the e�ect of gravity. So we are led to :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

r

k

Re

�

s

0

�

u

0

v

0

�

+

�

u

0

0

v

0

0

��

+

�

0

p

0

0

�

=

�

(1� �

k

)m

k

u

0

00

+ �

0

0

(1� �

k

)m

k

v

0

00

+ 

0

0

�

;

v

0

0

= 0;

�

0

(1 +We

k

s

0

) +We

k

�

�

0

0

v

0

� 2u

0

0

�

0

� 2�

0

u

0

0

�

= 0;

�

0

(1 +We

k

s

0

) +We

k

�

�

0

0

v

0

� u

0

0



0

�

= �

k

m

k

u

0

0

;



0

(1 +We

k

s

0

) = 2�

k

m

k

v

0

0

(= 0);

v

0

(0) = s

0

h

0

; u

0

k

("

k

) = 0 = v

0

k

("

k

);

[[u

0

0

]]h

0

+ [[u

0

]] = 0; [[v

0

]] = 0;

[[(1� �

k

)m

k

(u

0

0

+ u

00

0

h

0

) + �

k

m

k

u

00

0

h

0

+ �

0

]] = 0;

[[�p

0

+ 2(1� �

k

)m

k

v

0

0

+ 

0

]] = �[[r

k

]]ReF

�2

h

0

:

(11)

It is easily seen that the zeroth order vertical velocity (v

0

) is zero. If (A2) is false

(s

0

6= 0), then one deduces h

0

= 0 (so the perturbation is rather volumic and not carried
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by an interfacial mode).

If s

0

= �1=We

k

(stable wave) for both k, then one may see that there exist eigenvec-

tors for any �

0

. Moreover, the set of eigenvectors is such that

1. if 1 � 2�

k

= 0 for one k, then the components of uid k (other than �

0

k

) in the

vector X

0

are zero.

2. if 1� 2�

k

6= 0 for both k, let :

!

k

=

s

r

k

Re s

0

(1 � 2�

k

)m

k

;

then the system reads, for both k :

8

>

>

<

>

>

:

u

0

k

00

(y) = !

2

k

u

0

k

(y);

[[u

0

]] = 0;

[[(1� 2�

k

)m

k

u

0

k

0

]] = 0;

u

0

1

(1) = 0 = u

0

2

(�");

(12)

and has non-zero solutions if and only if (!

k

is given above in the present case) :

th (!

k

"

k

)

th (!

k

0

"

k

0

)

=

(1� 2�

k

)m

k

!

k

(1� 2�

k

0

)m

k

0

!

k

0

for k 6= k

0

2 f1; 2g;(13)

where k; k

0

are supposed to be di�erent in f1; 2g and such that s

0

= �1=We

k

=

�1=We

k

0

.

The most general case requires the following de�nition :

De�nition 1 : For any k 2 f1; 2g, we de�ne :

X

k

=

�

�

�

�

�

�

k

m

k

1 +We

k

s

0

if 1 +We

k

s

0

6= 0

��

k

m

k

if 1 +We

k

s

0

= 0

;(14)

and

!

k

=

s

r

k

Re s

0

(1� �

k

)m

k

+X

k

if (1� �

k

)m

k

+X

k

6= 0:(15)

With that de�nition, straightforward investigations that mimic the particular case

studied above (s

0

= �1=We

k

for both k) prove the following theorem :

Theorem 1. Let s

0

6= 0; X

k

; !

k

de�ned in De�nition 1.

If (1��

k

)m

k

+X

k

= 0 there is no non-trivial solution to (11) except if s

0

= �1=We

k

=

�1=We

k

0

.

Else if s

0

= �1=We

k

for a k 2 f1; 2g, there is a non-trivial eigenvector such that �

0

k

6= 0.

If s

0

6= �1=We

k

for any k 2 f1; 2g, there will be an eigenvector to (11) if and only if its

growth rate s

0

satis�es :

th (!

k

"

k

)

th (!

k

0

"

k

0

)

=

((1� �

k

)m

k

+X

k

)!

k

(s

0

)

((1� �

k

0

)m

k

0

+X

k

0

)!

k

0

(s

0

)

(16)
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for k; k

0

di�erent in f1; 2g.

It appears that the modes corresponding to these eigenvectors would not be found

through (8) (they satisfy s

0

6= 0) and appear in a precise investigation of (9) in the long

wave limit. There are still only two cases that enable such mode. The �rst (s

0

= �1=We

k

)

gives a stable mode while the second (see (16)) will be investigated in section 4 to see

whether there could exist an s

0

of positive real part, solution to (16).

3.2 Characterization of the stability of long waves

We have seen, in the last subsection, that the assumption s

0

6= 0 may lead to one stable

mode more and to a possibly unstable one. Yet, for the present subsection, we will as-

sume (A2) and so s = �iqc. By this, we intend also to cope with the literature. Here

we will study, thoroughly and carefully, the asymptotic stability and we will neglect the

e�ect of the gravity by assuming F =1.

When one writes the full system (11) with s = �iqc, one sees that the zeroth order

of v and  are zero. So we set v = iqw and  = iq� and the new system is written

(s = �iqc) with dimensionless surface tension S :

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

r

k

Re

�

(�c+ u

0

(y))

�

iqu

�q

2

w

�

+

�

iqu

0

0

w

0

��

+

�

iqp

p

0

�

=

(1� �

k

)m

k

�

u

00

� q

2

u

iq(w

00

� q

2

w)

�

+

�

iq� + �

0

iq� + iq�

0

�

u+ w

0

= 0

� +We

k

(iq(�c + u

0

)� + iqw�

0

0

� 2u

0

0

� � 2iq�

0

u� 2�

0

u

0

) = 2iq�

k

m

k

u

� +We

k

iq ((�c + u

0

)� + �

0

0

w � u

0

0

� � iq�

0

w) = �

k

m

k

(u

0

� q

2

w)

� +We

k

((�c + u

0

)iq� � 2iq�

0

w) = 2�

k

m

k

w

0

w = (�c + u

0

(0))h at y = 0

u

k

("

k

) = 0 = w

k

("

k

) with "

1

= 1 "

2

= �"

[[u

0

0

]]h+ [[u]] = 0 and [[w]] = 0

[[(1� �

k

)m

k

(u

0

� q

2

w) � iq�

0

h+ � ]] = 0

[[�p+ 2iq(1� �

k

)m

k

w

0

+ iq�]] = q

2

Sh:

(17)

We expand the �elds X = X

0

+ (iq)X

1

+ (iq)

2

X

2

+ : : :, where X is any �eld

u

k

; w

k

; �

k

; �

k

; �

k

; p

k

; h or c, and keep the notations of subsection 3.1. If, classicaly, we

keep the �rst order term, we split the discussion in two cases.

1. [[u

0

0

]] = 0

To compute the �rst relevant terms in c

i

, we have two sub-cases :

(a) h

0

6= 0(, c

0

= 1). Then we have to write down the system at order 1. Then,

two sub-sub-cases are to be dealt with :

i. If [[�

0

]] = 0 we have to write the system till order 3, and we get the e�ect

of the surface tension. After tedious but straightforward calculations,

we �nd :

c

3

= �S

"

3

(2m

2

+ 3"

3

+ 5")

3(m

2

2

+ 4m

2

" + 6m

2

"

2

+ 4m

2

"

3

+ "

4

)

:

c

0

= 1; c

1

= 0 = c

2

(18)

So, the ow will be stable if and only if the real part of the growth rate is

negative <(iq((iq)

3

c

3

)) = <(q

4

c

3

) < 0. As we see on (18), this is always

true (but at order 3 !).
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ii. If [[�

0

]] 6= 0, after some calculations, one �nds the amplitude of oscilla-

tions of the interface :

h

0

= �a

m

2

2

+ 4m

2

"+ 6m

2

"

2

+ 4m

2

"

3

+ "

4

6m

2

"(1 + ")[[�

0

]]

;

with a a free parameter (the equations are linear). Then, we �nd :

c

1

= �

"

2

[[�

0

]](m

2

� "

2

)

2(m

2

2

+ 4m

2

" + 6m

2

"

2

+ 4m

2

"

3

+ "

4

)

:(19)

Yet, [[u

0

0

]] =

(m

2

� "

2

)(m

2

� 1)

"(1 + ")m

2

= 0 in the present case. So, unless we

are still at the frontier between stability and unstability (m

2

= "

2

and

c

1

= 0), we have m

2

= 1 (same viscosity) and (19) transforms into a

condition which only involves the jump of elasticity. The ow will be

stable if and only if :

(1� "

2

)[[�

k

We

k

]] > 0:(20)

(b) if h

0

= 0, all the components vanish.

2. [[u

0

0

]] 6= 0 (general case) : The calculation is tedious, but thanks to a software of

symbolic calculation (we used MAPLE), we got the formula which has already

been published in [14].

The formula for the general case is already published in [14]. The particular case

Re= 0, We6= 0, m

2

= 1 is envisaged in [14] and is similar to our 1,(a) ii. But our present

formula (20) is more general as it does not depend on Re and the physical meaning

appears much more easily than in the function J

5

from [14]. Why this particular case

[[u

0

0

]] = 0 and [[�

0

]] 6= 0 (1,(a) ii) should it be interesting ? It happens that one may

experimentally act on the viscosity through temperature and �x it up to some percents.

So, reaching the \particular case" can be experimentally achieved. In the very precise

case of the stability of two VEF, one would have to make the viscosities equal and to act

on the jump of the normal stress of the basic ow to cross the line of marginal asymptotic

long wave stability given by (20) to test the model (and the process of linearization).

After having studied the precise long wave stability and stated Theorem 1, we come

back to the di�erence between (8) and (9) to state the main Theorem 2.

4. Quasi equivalence of two OSE

The present section deals with the alledged equivalence of (9) and (8). We proved above

that it is equivalent to the fact that s(q) should be zero and derivable at q = 0 (assump-

tion A2). We already proved that this is false by exhibiting waves that do not satisfy

this condition, but these waves were stable.

It remains to see whether (9) could give rise to unstable waves, not found by (8).

Their growth rate is given by Theorem 1 and their existence is denied by the following

theorem :

Theorem 2 Let k 2 f1; 2g, the parameters �

k

;We

k

;Re; r

k

;m

k

be real nonnegative,

�

k

2 [0; 1]; X

k

and !

k

de�ned by (14-15), "

1

= 1;m

1

= 1; r

1

= 1; "

2

= �" < 0.

There is no s

0

complex with nonnegative real part such that (16) be satis�ed.

Notice that if any of the !

k

, for k 2 f1; 2g, is not de�ned, there is no s

0

solution.

Corollary 3 In the long wave asymptotic stability study of the ow of two VEF, (8)

and (9) give the same unstable modes, although they give di�erent stable waves.
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Remark : The case �

k

= 0 = �

k

0

gives the case of two Newtonian uids.

Proof of Theorem 2.

We need to de�ne two sets depending on �;R; � and

^

�;

^

R (cf. Figure 4):




�;R;�

= fz = re

i�

=� < r < R;�� < � < �g

O

^

�;

^

R

= fz = re

i�

=

^

� < r <

^

R;��=2 < � < �=2g:

θ

R

R

R1

2

Γ
1

R

O O

O

 β, 

β

β,   , θ

^ ^

^

β^

Ω

Figure 4: Complex domains

First, we check that !

k

, given by (15), is well de�ned for s

0

2 O

^

�;

^

R

. After this easy

examination, we prove the following lemma (easy too) :

Lemma 4 Let (

^

�;

^

R) be given with 0 <

^

� <

^

R. Then there exists (�;R; �) in IR

+�

�

IR

+�

� [0; �=2[ with � < R such that !

k

(s

0

) 2 


�;R;�

for all s

0

2 O

^

�;

^

R

.

This lemma ensures that for any s

0

2 O

^

�;

^

R

, there will be no pole for the hyperbolic

tangent th. Then we see easily that the function

f(s

0

) = r

k

th (!

k

0

(s

0

)"

k

0

)!

k

0

� r

k

0

th (!

k

(s

0

)"

k

)!

k

(s

0

);

is analytic on O

^

�;

^

R

. We de�ne O

1

as the y > 0 part of O

^

�;

^

R

, O

2

as the y < 0 part of

O

^

�;

^

R

and �

1

as the y = 0 part (see Figure 4). T. Bousch [2] suggested us to look for the

su�cient condition (k

0

= 1; k = 2) :

8

>

>

>

<

>

>

>

:

Im s

0

> 0) Im f(s

0

) > 0 in O

1

;(21)

f is nonzero on �

1

;(22)

Im s

0

< 0) Im f(s

0

) < 0 in O

2

;(23)

where Im denotes the imaginary part of a complex. It appears that conditions (21)

and (23) have the prose to be additive. Then, it is su�cient that f satis�es (22), and

the function s

0

7! th (!

2

(s

0

)"

2

)!

2

(s

0

)" satisfy the conditions (21) and (23) to retrieve
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the property for f . We stress that "

2

= �" < 0.

As the real part of s

0

is nonnegative and s

0

6= 0, it su�ces to prove :

Im (s

0

) > 0) 9"

0

=

�

Im (!

k

) > 0

<(!

k

) � "

0

> 0

(24)

and

�

Im (!) > 0

<(!) � "

0

> 0

) Im (!th (!)) > 0;(25)

to have (21). To prove (24), one studies the sign of the imaginary part of !

k

and

Lemma 4 gives the property on the real part of !

k

thanks to a compactness argument.

A carefull study of ! 7! !th ! proves (25). The proof about O

2

is very similar. Finally,

a simple but tedious calculation on �

1

enables to prove (22). This completes the proof.

ut

5. Conclusion

In this article, we described the two types of instabilities for the 1D ow of two VEF.

Then, rigorous derivation of the corresponding OSE enabled us to stress the applicability

of the various OSE to experiments. Also, we discussed the Gaster relation that links two

of them ((7) and (9)) and proved that it is not justi�ed although it is commonly used

in comparisons between experiments and computations. We gave some hints of deeper

understandings through absolute and convective instabilities [11] [17], but also through

pseudo-spectra [15].

We proved that the OSE (9) under long wave perturbations could trigger stable modes

not found by (8). On the opposite, we proved that detection of unstable modes by (8)

or (9) in the long wave limit are equivalent. Moreover, we gave a precise discussion of

the study of long wave asymptotic stability of two VEF that might be of interest for

experiments.

Acknowledgements : The author wishes to thank a referee for drawing his attention on

the papers on absolute and convective instabilities.
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