
Derivation of a visous Boussinesq system for surfaewater wavesHervé Le Meur∗26 mai 2013
Abstrat. In this artile, we derive a visous Boussinesq system for surfaewater waves from Navier-Stokes equations. So, we use neither the irrotationalityassumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we�nd the bottom shear stress, and also the deay rate for shallow (and not deep) water.In order to justify our derivation, we hek it by deriving the visous Korteweg-deVries equation from our visous Boussinesq system. We also extend the system tothe 3-D ase.Key words: water waves, shallow water, Boussinesq system, visosity, KdV equation.AMS Classi�ation Codes: 76N20, 74J15, 76M45

1 Introdution1.1 MotivationThe propagation of water waves over a �uid is a long run issue both of mathematis, �uidmehanis, hydrogeology, oastal engineering, ... In ase of an invisid �uid, the topistemmed many researh and even broadened with time. Various equations have beenproposed to model this propagation of water waves. The goal is to �nd redued (in size)models on simpli�ed domains with as little �elds as possible, should they be valid only inan asymptoti regime.This artile is a step forward in the diretion of a rigorous derivation of an asymptotisystem for surfae water waves in the so-alled Boussinesq regime, taking into aount the
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2visosity. While visous e�ets an be negleted for most oeani situations, they annotfor surfae waves in relatively shallow hannels.In the invisid potential ase, the omplete and rigorous justi�ation of most asymptotimodels for water waves has been reently arried out (see the book [15℄ and the bibliog-raphy therein). This inludes the proof of the onsisteny and stability of the models,the proof of the existene of solutions of the water waves systems and of the asymptotimodels on the relevant time sales and the proof of �optimal� error estimates between thetwo solutions. The urlfree assumption allows to use the Zakharov-Craig-Sulem formula-tion of the water waves system and failitates the rigorous derivation of the models, byexpanding the Dirihlet to Neumann operator with respet to suitable small parameters.Things are more deliate when visosity is taken into aount and a omplete justi�ationof the asymptoti models is still laking. The main di�ulties, for not only a derivationbut a rigorous proof, arise from the mathing between the boundary layer oming fromthe bottom and the "Euler" regime in the upper part of the �ow.In this artile, we derive an asymptoti system (Boussinesq system) for the visous �owin a �at hannel of water waves in the Boussinesq regime, that is in the long wave, smallamplitude regime with an ad ho balane between the two e�ets.1.2 The literatureWhen deriving models of water waves in a hannel, taking visosity into aount, numerousthings must be done in order to be rigorous.Sine there are various dimensionless parameters, a linear study must be done so as todetermine the most interesting regime between the parameters. One must also eitherassume linearized Navier-Stokes Equation (NSE), or justify that the nonlinear terms anbe dropped. This is not so obvious beause numerous authors extend the invisid theoryby assuming the veloity to be the sum of an invisid veloity and a visous one. Thenthey fore only one ondition (for instane the vanishing veloity on the bottom) to besatis�ed by the total veloity, one the invisid veloity is taken unhanged by visosity.This deserves to be juti�ed or assumed.At a ertain level, a heat-like equation arises. Most people solve it with a Fourier transformwhile the only physial problem is a Cauhy one, so with an initial ondition. The onlypossibility is to use either Laplae (in time) transform or a sine-transform (in the vertialdimension) with a omplete treatment of the initial ondition.One must also derive the bottom shear stress beause it is meaningful for the physiistwho deals with sediment transport.Last the order up to whih the expansion is done must be onsistent throughout theartile.To the best of our knowledge, no artile does all this. Yet various artiles have beenwritten on this topi. Let us review those that retained our attention and interest.



3The very �rst artile taking visosity into aount is from Boussinesq in 1895 [2℄. Lamb[14℄ derived the deay rate of the linear wave amplitude by a dissipation alulation(paragraph 348 of the sixth edition and done also in [2℄) and by a diret alulation basedon the linearized NSE (paragraph 349 of the sixth edition).Both of them use linearized NSE on deep-water, and ompute the dispersion relation.The imaginary part of the phase veloity gives the deay rate:
∂A

∂t
= −2νk2A, (1)where A is the amplitude of the wave, ν the kinemati visosity and k the wavenumber.In an artile [23℄, Ott and Sudan make a formal derivation (in nine lines) of a dissipativeKdV equation (di�erent from ours). They use the linear damping of shallow water wavesalready given by Landau-Lifshitz. This drives them to an additional term to KdV whihlooks like a half integral. They also �nd bak the damping in time of a solitary wave overa �nite depth as (1 + T )−4 (already found by [12℄, and later by [11℄, [21℄, [10℄ (p. 374)).J. Byatt-Smith studied the e�et of a laminar visosity (in the boundary layer where alaminar �ow takes plae) on the solution of an undular bore [3℄. He found the (almostexat) Boussinesq system of evolution with a half derivative but with no treatment of theinitial ondition. He did an error when providing the solution to the heat equation: hisonvolution in time is over (0,+∞).In 1975, Kakutani and Matsuuhi [11℄ �nd a minor error in the omputation of [23℄. Theystart from the NSE and perform a lean boundary layer analysis. First, they make a linearanalysis that gives the dispersion relation and, with some assumptions, the phase veloityas a funtion of both the wavenumber of the wave and the Reynold's number Re. Theydistinguish various regimes of Re as a funtion of the lassial small parameter of anyBoussinesq study. Then, they derive the orresponding visous KdV equation. We wantto stress that, at the level of the heat equation, they use a Fourier (in time) transform.As a onsequene, they may not have any initial ondition.In [20℄, one of the authors of the last artile tries to validate the equation they were led to.He shows that their model does not modify the number of rest found by an experimentalstudy and by a (non-visous) KdV simulation, but indues a shift in phase. Yet thenumerial treatment seems light beause the spae step is between some perent and 10%, the numerial relaxation is not very e�ient, and there is no numerial validation ofthe full algorithm. The author onludes that their �modi�ed K-dV equation an desribethe observed wave behaviours�. Yet, very fair, he adds that �the phase shift obtained bythe alulations is not on�rmed by [the℄ experiments�. Indeed, the regime is not theBoussinesq one (dispersion's oe�ient is about 0.002 and the visous oe�ient is 0.03).Moreover, the phase shift numerially measured has three digits while the spae step issome perent.In an artile of 1987, Khabakhpashev [13℄ extends the derivation of the visous KdV evo-lution equation to the derivation of a Boussinesq system, studies the dispersion relation



4and predits a reverse �ow in the bottom in ase of the propagation of a soliton wave.Yet, the equations are not made dimensionless, so the right regime is not disussed and anumerial method very ine�ient is used (Taylor series expansion is replaed in the onvo-lution term). The existene of solitary waves to the damped KdV equation is laimed, butnot justi�ed. He uses a Laplae transform (instead of Fourier as [11℄ did) with vanishinginitial onditions sine he assumes starting from rest. He pays attention to the justi�-ation of this assumption and stresses that �the time required for the boundary layer todevelop over the entire thikness of the �uid [is℄ muh greater than the harateristi timeof the wave proess�.In the book [10℄ (part 5 pp. 356�391), Johnson �nds the same dispersion relation as [11℄,studies the attenuation of the solitary wave by a multi-sales derivation, reahes a heatequation, but solves it only with vanishing initial ondition. He exhibits a onvolution witha square root integrated on (0,+∞) (like Byatt-Smith [3℄). Some numerial simulations(already partialy done by [3℄) enable him to reover the meanism of undular bore slightlydamped.Later, Liu and Or�la wrote a founding artile [19℄ (LO hereafter) in whih they study waterwaves in an in�nite hannel (so without menisus). They derive a Boussinesq system withan additionnal half integration (seen as a onvolution), and an initial ondition assumedto be vanishing, but impliitely added to the system when numerial simulation must bedone.More preisely, the authors take a linearized Navier-Stokes �uid, use the Helmholtz-Leraydeomposition and de�ne the parameters (index LO denotes their parameters):
α2
LO = ν/

(
l
√
gh0

)
,

εLO = A/h0,

µLO = h0/l,where the following notations will be used throughout the present artile: A is the hara-teristi amplitude of the wave, h0 is the mean height of the hannel, g is the gravitationalaeleration, l is the harateristi wavelength of the wave. They say they make expan-sions up to order αLO whih square is a kind of a Reynold's number inverse. They use thelassial Boussinesq approximation: εLO ≃ µ2
LO, but they set also the link between thevisosity and εLO by requiring O(αLO) ≃ O(ε2LO) ≃ O(µ4

LO) without further justi�ation.Although �the boundary layer thikness is of O(αLO)�, they streth the oordinates by alarger fator αLO/µLO ≃ µ3
LO (see their (2.9)). More important, and maybe linked, theykeep the αLOµLO terms (in their (2.8) or (2.21) for instane) and yet drop o(αLO) terms !This an explain why their �nal system (3.10-3.11) has a αLO/µLO = O(ε

3/2
LO) term beforethe half integration, while we will justify an O(εLO) term for our system.Let us stress that assuming α2

LO = ε4LO as do [19℄ amounts to Re = ε
−7/2
LO with our (furtherrede�ned) Reynold's number: Re= ν/(h0

√
gh0), while we prove below that the regime at



5whih gravity and visosity are both relevant is Re = ε
−5/2
LO . Our regime was also exhibitedby [11℄, [3℄, [10℄. So, [19℄ look at a regime di�erent from ours.Last, they laim the shear stress at the bottom is:

τbottom = − 1

2
√
π

∫ t

0

u(x, T )√
(t− T )3

dT,where u(x, T ) is the depth averaged horizontal veloity. Indeed this integral is in�nite asthey aknowledge in a later orrigendum where they laim the right formula to be:
τbottom = 1√

π
u(x,0)√

t
+ 1√

π

∫ t

0

u,T√
t−T

dT,but do not provide a justi�ation. Moreover, their solution (2.15) to the heat equation,omputed in [22℄ (pp. 153�159), assumes zero initial ondition. So the treatment of theinitial ondition is not done. One of our goal in the present artile is preisely to providea better treatment of this initial ondition.In this artile, they also raise the question of the eligible boundary ondition. Indeed,they remind us that for a laminar boundary layer, the phase shift between the bottomshear stress and the free stream veloities being π/4. So it prohibits any bottom onditionof the Navier type τxy = −kubottom as is usually assumed (and not derived).Although we presented some ritis, we aknowledge the modeling, derivation and expla-nations of this artile are lever and, last but not least, very well written. Yet our ritisapply to all subsequent artiles of the same vein.In [17℄, Liu et al. validate experimentaly LO's equations in the partiular ase of a solitarywave over a boundary layer. By Partile Image Veloimetry (PIV), they measure thehorizontal veloity in the boundary layer over whih the solitary wave runs and on�rmthe theory.In [18℄, Liu et al. extend the derivation of the visous Boussinesq system of [19℄ to the aseof an un�at bottom. They ompare the visous damping and shoaling of a solitary wavepropagating in a wave tank from the experimental and numerial point of view. Theyprovide a ondition on the slope of the bottom and pay attention to the (line) menisuson the sidewall of the retangular ross setion.In [16℄, Liu and Chan use the same proess to study the �ow of an invisid �uid over amud bed modeled by a very visous �uid. They also study the damping rate of progressivelinear waves and solitary waves. In [24℄, Park et al. validate this model with experiments.They also study the in�uene of the ratio of the �mud bed thikness and the wave-induedboundary-layer thikness in the mud bed�.In a very separate way, Wang and Joseph [25℄ �nd bak the Boussinesq-Lamb deay rate offree gravity waves of a visous �uid over an in�nite depth. They take linearized NSE anduse the Leray-Helmholtz deomposition. They determine a (visous) pressure orretion



6so as to balane the normal stress. Oddly, their visous veloity is url-free. Sine theyhave only a new pressure, they annot satisfy the full NSE. Suh a modeling is mainlymotivated by satisfying some equations, yet, it gives good results sine the authors anreprodue the deay rate of Boussinesq-Lamb over an in�nite depth �ow.In 2008, Dias et al. [6℄ take the (linearized) NSE of a deep water �ow with a free bound-ary and use the Leray-Helmholtz deomposition. Both Bernoulli's equation (through anirrotationnal pressure) and the kinemati boundary are modi�ed. Then, they make anad ho modeling for the nonlinear term. Starting from suh a model, they provide theevolution equation for the enveloppe A of a Stokes wavetrain whih, in ase of an invisid�uid is Non-Linear Shrödinger (NLS). The obtained equation happens to be a ommonlyused dissipative generalization of NLS.Although it was published earlier (2007), [8℄ is a further development of [6℄ to a �nite-depth �ow. In this artile, the authors still linearize NSE and generalize by inludingadditional nonlinearities.In a later artile [9℄, D. Dutykh linearizes NSE and works on dimensionned equations,onsidering the visosity ν to be small (in an absolute meaning). The author �generalizes�by �inluding nonlinear terms� and reahes a visous Boussinesq system (his (11-12)).Making this system dimensionless triggered very odd terms and its order zero was nomore the wave equation. He further derives a KdV equation by making a hange ofvariable in spae (but not the assoiated hange in time τ = εt). He also makes a study ofthe dispersion relation by plugging ei(kx−ωt) funtion but then he freezes the half derivativeterm. Indeed as is well known, plugging these exponentials amounts to making a Fourieror Laplae transform. Here, the Fourier/Laplae transform of the half derivative is verysimple :| ξ |1/2 and ould have been used instead of freezing this half derivative term.In [4℄, Chen et al. investigate the well-posedness and deay rate of solutions to a visousKdV equation whih has a nonloal term that is the same as Liu and Or�la's [19℄ and [9℄but not the same as [11℄ nor the same as ours. The theoretial proofs are made with nodispersive term (uxxx), but with a dissipative term (uxx). The tools are either theoretialby �nding the kernel and study its deay rate, or numerial. In the numerial study, theytake the dispersive term into aount. As expeted, they notie that the �loal dissipativeterm produes a bigger deay rate when ompared with the nonloal dissipative term�.In [5℄, the authors prove the global existene of solution to the visous KdV derived by [11℄(with the dispersive term) and investigate numerially the deay rate for various norms.In the following, we �rst make a linear study of NSE in our geometry (Setion 2). Wewill get the dispersion relation and state various asymptotis that give di�erent phaseveloities, and so the deay rate (in �nite depth). In Setion 3, we make the formalderivation of the visous Boussinesq system by splitting the upper domain and the bottomone (the boundary layer). The expliit shear stress at the bottom is omputed. The



7equations obtained are leaned of any dependene on z. In Setion 4, we give the 2-Dsystem, and ross-hek we get the right visous KdV equation.2 The linear theoryIn order to make a linear theory, we need �rst to get dimensionless equations. It is done inthe next subsetion. Then we investigate three asymptotis in the following subsetions.2.1 Dimensionless equationsLet us denote ũ = (ũ, w̃) the veloity of a �uid in a 2-D domain Ω̃ = {(x̃, z̃) / x̃ ∈ R, z̃ ∈
[−h, η̃(x̃, t̃)]}. So we assume the bottom is �at and the free surfae is haraterized by
z̃ = η̃(x̃, t̃) with η̃(x̃, t̃) > −h (the bottom does not get dry). The dimensionless Figure isdrawn in Figure 1. Let p̃ denote the pressure and D̃[ũ] the symmetri part of the veloitygradient.
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Figure 1: The dimensionless domainWe also denote ρ the density of the �uid, ν the visosity of the �uid, g the gravity onstant,
k the unit vertial vetor, n the outward unit normal to the upper frontier of Ω̃, p̃atm theatmospheri pressure. The original �simpli�ed� system reads:





ρ

(
∂ũ

∂t̃
+ ũ.∇̃ũ

)
− ν∆̃ũ+ ∇̃p̃ = −ρgk in Ω̃d̃iv ũ = 0 in Ω̃(

−p̃I+ 2νD̃[ũ]
)
.n = −p̃atmn on z̃ = η̃(x̃, t̃)

η̃t̃ + ũη̃x̃ − w̃ = 0 on z̃ = η̃(x̃, t̃)

ũ = 0 on z̃ = −h,

(2)
where we write with bold letters both the seond order tensors and the vetors. Of ourse,we need to add an initial ondition and onditions at in�nity.So as to get dimensionless �elds and variables, we need to hoose a harateristi horizontallength l whih is the wavelength (roughly the inverse of the wave vetor), a harateristivertial length h whih is the water's height, and the amplitude A of the propagating



8perturbation. Moreover, we denote U,W, P the harateristi horizontal veloity, vertialveloity and pressure respetively. We may then de�ne:
c0 =

√
gh, α =

A

h
, β =

h2

l2
, U = αc0, W =

Ul

h
=

c0α√
β
, P = ρgA, Re = ρc0h

ν
, (3)where c0 is the phase veloity. As a onsequene, one may make the �elds dimensionlessand unsaled:

ũ = Uu, w̃ = Ww, p̃ = p̃atm − ρgz̃ + Pp, η̃ = Aη, (4)and the variables:
x̃ = lx, z̃ = h(z − 1), t̃ = t l/c0. (5)With these de�nitions, the new system with the new �elds and variables writes in thenew domain Ωt = {(x, z), x ∈ R, z ∈ [0, 1 + αη(x, t)]}:





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re √β

uzz + px = 0 in Ωt,

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √

β
wzz + pz = 0 in Ωt,

βux + wz = 0 in Ωt,

(η − p)n+ 1Re ( 2ux

√
β uz + wx

uz + wx 2/
√
βwz

)
.n = 0 on z = 1 + αη,

ηt + αuηx − 1
β
w = 0 on z = 1 + αη,

u = 0 on z = 0.

(6)
Like Kakutani and Matsuuhi [11℄, we ould have eliminated η − p in the two equationsof stress ontinuity at the free boundary. After simpli�ation by 1 / Re, this would haveled us to the �simpli�ed� system:

{
η − p+ 1Re(−αηx(uz + wx)− 2ux

√
β) = 0,

(1− (αηx)
2)(uz + wx) = 4α

√
βηxux.Notie that the number of dynami onditions is linked to the laplaian's presene. If, ina subdomain, the �ow is invisid (Euler or Re → ∞), then one must not keep the twoabove equations. Yet, one we have simpli�ed the 1/ Re term above we might forget thatthe seond equation must be swept away as if there remained a 1/Re term before everyterm. So this �simpli�ation� an be misleading.Unlike us, the authors of [11℄ use the same harateristi length in the two spae diretionsand so, for them, h/l = 1. Our vertial veloity is not the same as in [11℄ beause we takedi�erent harateristi lengths in the x and z diretions. It su�es to set β = 1 in ourequations to get those of [11℄. Our hoie of sales in W raises some √

β terms that [11℄avoid. Although the authors make their system dimensionless, they did not really unsalethe �elds nor the variables. Our �elds are unsaled and so are of the order of unity.Our harateristi pressure is P = ρgA while [11℄ use ρgh. This explains that [11℄ havean α more before the pressure p in their equations.



92.2 The dispersion relationSeen our saling, we are looking for small �elds. So we linearize the system (6) and getin the new domain:




ut −
√
βRe uxx − 1Re √

β
uzz + px = 0 in R× [0, 1],

wt −
√
βRe wxx − 1Re √β

wzz + pz = 0 in R× [0, 1],

βux + wz = 0 in R× [0, 1],

η − p− 2
√
βuxRe = 0 on z = 1,

uz + wx = 0 on z = 1,

ηt − 1
β
w = 0 on z = 1,

u = 0 on z = 0.

(7)
First, we eliminate the pressure from (7)1 and (7)2:

uzt −
√
βRe uxxz −

1Re√β
uzzz − wxt +

√
βRe wxxx +

1Re√β
wxzz = 0.Then we eliminate u from the previous equation thanks to (7)3 by deriving with respetto x and some simpli�ations:

(∂2
z + β∂2

x)(∂
2
z + β∂2

x − Re√β∂t)w = 0. (8)If w is of the form A(z) exp ik(x− ct) with a non-negative k and a (omplex) phaseveloity c, we an de�ne a parameter with non-negative real part similar to the one usedby [11℄:
µ2 = βk2 −Re√βikc. (9)Thanks to this notation, the solutions of (8) are suh that

A(z) = C1 cosh
√

βk(z − 1) + C2 sinh
√

βk(z − 1) + C3 coshµ(z − 1) + C4 sinh µ(z − 1).(10)Up to now we have eliminated u and p only in the volumi equations. We still have touse the boundary onditions of (7) to �nd the onditions on the remaining �eld w.The �rst equation of (7)7 is u(0) = 0. After a di�erentiation with respet to x and (7)3,we get wz(0) = 0.The seond equation of (7)7 is w(0) = 0 and needs no treatment.The equation (7)5 an be di�erentiated with respet to x and, thanks to (7)3 leads to
wzz − βwxx = 0 at height z = 1.The equation (7)6 enables to ompute/eliminate η.The equation (7)4 must be di�erentiated with respet to t for η to be replaed. Then weget

w

β
− pt +

2Re√β
wzt = 0.



10We may di�erentiate the previous equation with respet to x so as to have a px term whihan be replaed thanks to (7)1 to have new u terms. It su�es then to di�erentiate thisequation and use the inompressibility (7)3 to get the last ondition. The full onditionson w are:
wz(0) = 0,

w(0) = 0,

wzz(1)− βwxx(1) = 0,

wxx(1)− wztt(1) +
3
√
βRe wxxzt(1) +

1Re√β
wzzzt(1) = 0.

(11)The solutions (10) will satisfy a homogeneous linear system in the onstants C1, C2, C3, C4.Its matrix is:



√
βk sinh (

√
βk) −

√
βk cosh (

√
βk) µ sinhµ −µ coshµ

cosh (
√
βk) − sinh (

√
βk) coshµ − sinhµ

2k2β 0 µ2 + βk2 0

−k2
√
βk3c2 + 2iβk4cRe −k2 2µ

√
βik3cRe


 . (12)It su�es to ompute its determinant to get the dispersion relation:

4βk2µ(βk2 + µ2) + 4µk3β3/2(µ sinh (k
√
β) sinh µ− k

√
β cosh (k

√
β) cosh µ)

−(βk2 + µ2)2(µ cosh (k
√
β) coshµ− k

√
β sinh (k

√
β) sinh µ)

−k
√
βRe2(µ sinh (k

√
β) sinhµ− k

√
β cosh (k

√
β) sinhµ) = 0.

(13)This relation is idential to the one of [11℄ exept that our non-dimensionnalizing makesa di�erene between x and z. So instead of k (for [11℄), we have k
√
β.2.3 Asymptoti of the phase veloity (very large Re)In this subsetion, we prove the following Proposition:Proposition 1. Under the assumptions

k
√

βRe c → +∞ (14)
k = O(1) (15)
β → 0 (16)Re → +∞ (17)
c = O(1) (and c bounded away from 0) (18)if there exists a omplex phase veloity c solution of (13), then it is suh that:

c =

√
tanh (k

√
β)

k
√
β

− eiπ/4Re−1/2(k
√
β)1/4

2 tanh3/4 (k
√
β)

+ o(β−1/4Re−1/2). (19)



11Moreover, the deay rate in our �nite-depth geometry, whih stems from visosity, is:Im(kc) =
−1

2
√
2

k5/4β1/8

√Re tanh3/4 (k
√
β)

+ o(β−1/4Re−1/2). (20)We denote o(f) (resp. O(f)) a funtion whih ratio with f tends to zero (resp. isbounded).Our deay rate is not the same as Boussinesq's or Lamb's one. The reason is that ourgeometry is not in�nite. This deay rate, in the regime Re= Rε−5/2 and β = b ε withonstant R, b gets:Im(kc) =
−
√
k

2
√
2
√Re√β

+ o(β−1/4Re−1/2) =
−
√
kε

2
√
2
√

R
√
b
+ o(ε) (21)Our Proposition is stated in [11℄ but not rigorously proved. Moreover, one must notiethat the visosity modi�es also the real part of the phase veloity at the same order.Proof. The de�nition of µ (ℜ(µ) ≥ 0) and assumptions (14, 15, 16) enable to state that

µ2 → ∞ and the k2β term tends to zero. So we have:
µ = e−iπ/4

√
k
√

βRe c+O(
β3/4Re ), (22)where the leading term tends to ∞ and its real part tends to +∞, while the error termtends to zero. As a onsequene, tanhµ = 1 +O(e−µ) and 1/ coshµ = O(e−µ). Dividing(13) by cosh µ and using a generi notation P (β, µ) for an unspei�ed polynomial in β, µ,we have:

O(P (β, µ)e−µ) + 4µk4β2

(
µ
sinh (k

√
β)

k
√
β

− cosh (k
√
β)

)
−

(k2β + µ2)2
(
µ cosh (k

√
β)− k

√
β sinh (k

√
β)
)
−

k2βRe2(µsinh (k√β)
k
√
β

− cosh (k
√
β)

)
= 0.

(23)The leading term of the seond monomial is 4k4β2µ2 sinh (k
√
β)/(k

√
β) while the leadingterm of the fourth (last) is −k2βRe2µ sinh (k

√
β)/(k

√
β). Seen the assumptions, theirratio is 4k2βµRe−2 = O(β5/4Re−3/2). Under the assumptions (16, 17), this ratio tends tozero. So, in a �rst step, we an neglet the seond monomial with respet to the fourth.If we look for a non-vanishing solution, we need to have a ompensation of the only tworemaining leading terms. One may then rewrite (23) as:

−(µ4 + hot)(µ cosh (k
√
β) + hot)− k2βRe2(µsinh (k√β)

k
√
β

+ hot

)
+ hot = 0.This reads after easy omputations:

c2 =
tanh (k

√
β)

k
√
β

+ hot. (24)



12Suh a relation is well-known. It on�rms the assumption (18). To pursue the expansionwe ome bak to (23) and expand its various monomials starting with the seond:
−4ik5β5/2Re csinh (k√β)

k
√
β

+O(β3) +O(β9/4Re1/2).Indeed, even the leading term of this seond monomial will be negligible in omparisonwith O(β7/4Re3/2) that we will have further. The third monomial of (23) is more omplexand we must keep:
+e−iπ/4

(
k
√

βRe c)5/2 cosh (k√β)− k3β3/2Re2c2 sinh (k√β) +O(β7/4Re3/2).The fourth monomial of (23) is expanded:
−k2βRe2(e−iπ/4

√
k
√

βRe csinh (k√β)

k
√
β

− cosh (k
√

β)

)
+O(β7/4Re3/2).Using these expansions, the equation (23) an be rewritten:

e−iπ/4
(
k
√
βRe)5/2 √c cosh (k

√
β)

[
c2 − tanh (k

√
β)

k
√
β

+ eiπ/4√
k
√
βRe√c

]
+

O(P (β, µ)e−µ)− k3β3/2Re2c2 sinh (k√β) +O(β3) +O(β7/4Re3/2) = 0.We would like to state that the term between square brakets vanishes. For that purpose,we must hek that the various other monomials are negligible in omparison with the thirdwritten between the square brakets whih expands in: O((
√
βRe)5/2[(√βRe)−1/2]) =

O(βRe2) if we assume (24). One it is heked, we an laim we proved:
c2 =

tanh (k
√
β)

k
√
β

− eiπ/4√
k
√
βRe c + o(β−1/4Re−1/2), (25)and the proof is omplete by omputing the square root of (25) and replaing the �rstorder of c in (25) whih leads to (19).We must stress that the omplex phase veloity (19) ontains two terms. The �rst isthe lassial gravitational term (√tanh (k

√
β)/(k

√
β)) whih may be expanded when βtends to zero: 1 − k2β/6 + O(β2). The seond is purely visous and an be expanded:

−
√
2(1 + i)/(4

√
k)(Re√β)−1/2 + o(Re√β)−1/2). So the dependenes of c both on thegravitational and on the visous e�ets are of the same order of magnitude when β and

(Re√β)−1/2 are of the same order. Then the dependene of Re on β is suh that:Re ≃ β−5/2. (26)



132.4 Seond asymptotis of the phase veloity (moderate Re)The de�nition of µ2 is µ2 = k2β − ik
√
βRe c and we assume a long-wave asymptotis(β → 0). So one term or the other dominates in µ2. The extremes are either µ2 → ∞(see above) or µ2 → 0.In the present subsetion, we investigate the latter ase and exhibit a more preise ex-pansion than the one justi�ed in [11℄. Indeed, we prove the following Proposition:Proposition 2. Under the assumptions

k is bounded from zero and in�nity, (27)
µ → 0 and so √βRe c → 0, (28)
β → 0 (long waves), (29)Re → +∞, (30)if there exists omplex phase veloities c solutions of (13), then one of them is suh that:

c = −ik
√
βRe
3

− 19ik3β3/2Re3
90

+ o(β3/2Re3), (31)and neessarily (28) implies: √
βRe → 0, (32)and so the phase veloity tends to zero.Notie that if we assume √

βRe → 0, the onlusion is the same and the proof muhsimpler.Proof. Sine µ → 0, we an expand all the funtions in (13). In this expansion, we payspeial attention to the fat that Re → +∞ and it may not be onsidered as a onstantparameter of an expansion in β (hidden in O(β2) as [11℄ did). After tedious expansions,there remains from (13):
O(βRe2c2µ5) +O(βRe2µ7) +O(β3/2Re cµ5) +O(β2µ5)+

O(β3Re2c2µ) +O(β7/2Re cµ) +O(β4Re2µ)+
+µRe2k2βc

[
(c+

ik
√
βRe
3 )− ik

√
βRe c2
2 +

4k2βRe2c
5 + 2k2βc+

+
8ik3β3/2Re

5 +
ik3β3/2Reµ2

3× 5!

]
= 0.

(33)
Thanks to the assumptions (27-28) we know that √βRec → 0. In a �rst step we assumethe terms denoted with O(...) are really negligible in omparison with the largest writtenwith square brakets O(µRe2k2βc[

√
βRe]) = O(µβ3/2Re3c). We will hek it afterwards.As a onsequene, we an look for solutions suh that the term inside the square brakets



14vanishes. After omparison of all the terms, there remains only two terms that mayompensate:
c = −ik

√
βRe
3

+ o(
√
βRe). (34)Sine we assume (28), we may write:

√
βRe c → 0 ⇒ βRe2 → 0, (35)whih implies (32) and so c → 0. Moreover, µ2 = −ik

√
βRe c(1 + ik

√
β/(Rec)), andbeause of (34) we an write:

µ2 ∼ −k2β Re2/3. (36)With suh properties, we an hek a posteriori that the assumptions are �lled. Indeed,all the �negligible� terms are of the type O(β9/2Re9), O(β9/2Re7), O(β9/2Re5), O(β9/2Re3),and O(β9/2Re2). Even the largest (and �rst in our list) is negligible in omparison with
O(β5/2Re5) whih is the order of magnitude of the main term inside the square brakets.So the assumption is onsistant with the other results.Before pursuing the expansion of c, we must hek that the already negleted terms anstill be negleted in omparison with the next order of the term inside the square brakets.Indeed, the terms inside the square brakets, one isolated, are of the order O(β5/2Re5),
O(β7/2Re7) (twie), O(β7/2Re5) (twie), or O(β9/2Re7) in the order where the terms arewritten. Sine the �negleted� terms are at most of the order O(β9/2Re9), we an usethe informations of the term between square brakets only until the order O(β7/2Re7)inluded:

c +
ik
√
β Re
3

− ik
√
βRe c2
2

+
4k2βRe2 c

5
= o(β3/2Re3)

⇔ c = −ik
√
β Re
3

− 19ik3β3/2Re3
90

+ o(β3/2Re3). (37)
3 Formal derivationWe are going to onsider the in�uene of visosity on the solution of the Navier-Stokesequations in the domain Ωt. On the basis of the linear theory of the previous setion, weassume Re ≃ β−5/2 (38)as justi�ed in (26) whih is the ase where visous and gravitationnal e�ets balane. Wefurther assume

α ∼ aε, β ∼ bε, (39)where ε is a ommon measure of smallness. So α/β ≃ 1 in the sense that it does notvanish nor tends to in�nity. Our main purpose here is to derive an asymptoti system of



15redued size from the global Navier-Stokes equations in the whole moving domain. In thenon-visous ase, we would derive the lassial Boussinesq system.In order to prove our main result, we proeed in the same way as [11℄ and distinguish twosubdomains: the upper part (z > ε) where visosity an be negleted, and the lower part(0 < z < ε) whih is a boundary layer at the bottom and where visosity must be takeninto aount. All the other geometrial harateristis have already been depited. Our�rst main Proposition is stated hereafter.Proposition 3. Let η(x, t) be the free boundary's height. Let ub,0(x, γ) for γ ∈ [0,+∞[(resp. uu,0(x, z) for z ∈ [0, 1 + εη(x, t)[) be the initial horizontal veloity in the boundarylayer (resp. in the upper part of the domain). The solution of the Navier-Stokes equationwith this given initial ondition, satis�es:




ut + ηx + αuux − βηxxx
(z2 − 1)

2 = O(ε2),

ηt + ux(x, z, t)− β
2 ηxxt(z

2 − 1
3
) + α(uη)x − ε√

πR
√
b
ux ∗ 1√

t
+

+ 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫

√

R
√

b
4t

γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(40)
where the onvolution is in time and the parameters α, β, Re have been de�ned above.If the initial veloity is a Euler �ow, then ub,0

x (x, γ′′) − uu,0
x (x, z = 0) = 0 (there is novisous �ow in the boundary layer) and the system writes:





ut + ηx + αuux − βηxxx
(z2 − 1)

2 = O(ε2),

ηt + ux(x, z, t)− β
2 ηxxt(z

2 − 1
3
) + α(uη)x − ε√

πR
√
b
ux ∗ 1√

t
= O(ε2),

(41)where the onvolution is still in time.Of ourse, the domain in the boundary layer γ ∈ [0,+∞[ is not physial. Indeed, it shouldbe onsidered as large with respet to ε but small with respet to 1. One ould set it to
z =

√
ε (or γ = 1/

√
ε) or to any value (between ε and 1) large with respet to ε but smallwith respet to 1 on whih our �nal result should not rely on. This would give the sameresult, as is lassial in boundary layer analysis.Remark 4. The double integral term in (40) is new and surprising. In the boundary layer,the initial �ow is monotoni and so ub,0

x (x, γ′′)−uu,0
x (x, z = 0) ≤ 0. As a onsequene thisterm vanishes only if the initial ondition in the boundary layer is a Euler one. In otherwords, it happens only if the �ow is suh that its evolution equations are visous, but itsinitial ondition non-visous ... This seems unphysial.One ould also wonder whether vanishing initial onditions suit. A physial question isthen to know whether the initial �ow in the boundary layer establishes fast or not. We



16laim that the harateristi time for the visous e�ets to appear is roughly TNSE = ρh2
0/νor TNSE = ρl2/ν. Its ratio with the harateristi time of the invisid gravity �ow (l/c0)is either Re √

β = ε−2 or Re /
√
β = ε−3. In any ase, it is large and the boundary layerdoes not establish fast enough. Khabakhpashev [13℄ already disussed it but started fromrest ! Our double integral term also happens to be negative, inreasing from a given valueto zero for large time (for whih the model is no more valid). Its derivative with respetto time is rather simple and ould be used in future numerial simulations.In the �rst subsetion 3.1 we treat the upper part where onvenient equations of (6) arekept. Then in subsetion 3.2 we solve in the boundary layer the equations extrated from(6) after a resaling. Those solutions need to math through a ontinuity ondition atthe boundary (z = ε) disussed in Subsetion 3.3. At this stage, the system obtained stilldepends on z. So Subsetion 3.4 is devoted to making expliit the dependene on z.3.1 Resolution in the upper partThe upper part is haraterized by ε < z < 1 + αη(x, t) and x, t ∈ R. We start fromthe system for the �elds in the upper part, written u, w, p instead of uu, wu, pu for sake ofsimpli�ation. The height of the perturbation η is only de�ned in the upper part and sowill always be denoted the same in the boundary layer. The system of PDE in the upperpart is extrated from (6):





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re√β

uzz + px = 0 for ε < z < 1 + αη,

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √β

wzz + pz = 0 for ε < z < 1 + αη,

βux + wz = 0 for ε < z < 1 + αη,

−αηx(η − p) + 1Re(−2α
√
βuxηx + (uz + wx)) = 0 on z = 1 + αη,

η − p+ 1Re(−αηx(uz + wx)− 2
√
βux) = 0 on z = 1 + αη,

ηt + αuηx − 1
β
w = 0 on z = 1 + αη.

(42)
Sine we assume Re ≃ ε−5/2, the terms √β/Re are of the order of ε3 and the terms Re√βof the order of ε−2. This simpli�es (42)1 and (42)2 and makes disappear the laplaian. Asa onsequene, we must not keep the two dynami onditions (42)4 and (42)5 sine theyare assoiated to a laplaian. We deide to drop (42)4.Alternatively, one an stress that (42)5 gives η − p = O(ε3) and so the lhs of (42)4is O(ε4) + O(ε5/2). Sine we expand until the order two, one may laim the equationredues to 0 = 0. But one ould also simplify by 1/Re (≃ ε5/2) and be driven to a newequation. This equation would provide one more ondition to the two equations for two�elds. It is not surprising to see that the �nal solution would then be u = 0. The erroris that we must drop one boundary ondition unless we have one additionnal ondition.The above argument to get rid of (42)4 is su�ient.



17On this topi, the literature uses the same equations as us but the argument for drop-ping is rarely expliited. In [11℄, Kakutani and Matsuuhi laim �the ondition [(42)4℄ isautomatially satis�ed� (p. 242 al. 3) whih is either wrong (the equation disappears) orinomplete (what if they simplify by ε5/2 ?).In [8℄, Dutykh and Dias solve the same problem as us and write two equations (their (3)and (4)) among whih they keep only one for the derivation without explaining this drop.The equation (42)3 gives w up to a onstant that an be found in (42)6:
w(x, z, t) = −β

∫ z

1+αη

ux(x, z
′, t) dz′ + β(ηt + αu(1 + αη)ηx), (43)and we stress that this equation is exat. For the expansions later, we need to expandthis equation up to the third order:

w(x, z, t) = β(ηt +

∫ 1

0

ux)− β

∫ z

0

ux + αβ(u(1)η)x +O(ε3). (44)The seond order of the previous equations su�es to determine p from (42)2 up to aonstant:
p(x, z, t) = p(x, 1+ αη, t)− β(ηtt +

∫ 1

0

uxt)(z− 1) + β

∫ z

1

∫ z′

0

uxt(x, z
′′, t) dz′′ dz′ +O(ε2).Thanks to (42)5 the onstant may be found (p(1 + αη) = η +O(ε3)) and so:

p(x, z, t) = η − β(ηtt +
∫ 1

0
uxt)(z − 1) + β

∫ z

1

∫ z′

0
uxt(x, z

′′, t) dz′′ dz′ +O(ε2)

= η − βηtt(z − 1) + β
∫ z

1

∫ z′

1
uxt(x, z

′′, t) dz′′ dz′ +O(ε2).
(45)Then the remaining �eld u satis�es (42)1 at the �rst order:

ut + ηx + αuux + αuz(ηt +

∫ 1

z

ux)− βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), (46)where we have replaed the uxxt by −ηxxx as usual.We still have to solve the equations in the lower part.3.2 Resolution in the boundary layerWe need �rst to reall some lassial properties of Laplae transforms.3.2.1 Some useful propertiesBefore solving the equations in the lower part, we list here some lassial properties ofthe Laplae transform. We start from the de�nition



18
L(f)(p) = f̂(p) =

∫

t∈R+

f(t)e−pt dt. (47)It is well-known that the Laplae transform of the derivative is given by
L(f ′)(p) = −f(0) + pL(f)(p), (48)and the produt of two funtions transforms into the onvolution of the Laplae trans-forms:

L(fg) = L(f) ∗ L(g). (49)Here and below, we use the following de�nition of the onvolution, linked to the Laplaetransform:
f1 ∗ f2(t) =

∫ t

0

f1(u)f2(t− u)du. (50)These formulas will be useful in the next subsetion.3.2.2 The �elds in the boundary layerThe lower part of the domain (0 < z < ε) is a boundary layer where the visous e�etsdominate. We start from the system for the bottom �elds, written u, w, p instead of
ub, wb, pb for sake of simpli�ation and extrated from (6):





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re √β

uzz + px = 0 for 0 < z < ε

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √

β
wzz + pz = 0 for 0 < z < ε

βux + wz = 0 for 0 < z < ε

u(z = 0) = 0 and w(z = 0) = 0.

(51)As is justi�ed in subsetion 2.3 and equation (26), the visous and gravitational e�etsbalane when Re ≃ β−5/2. So we remind the reader of our assumption Re = R ε−5/2,
α = aε and β = bε for onstant R, a, b. We are naturally led to hange the sale in z asin any boundary layer. Let us introdue a new vertial variable γ = z/ε. The new �eldsshould be denoted ũ(x, γ, t) = u(x, εγ, t) for instane. Nevertheless, we will not hangethem. The new system writes:





ut + αuux +
a
bε
wuγ −

√
b

R
ε3uxx − uγγ

R
√
b
+ px = 0,

wt + αuwx +
a
bε
wwγ −

√
b

R
ε3wxx − wγγ

R
√
b
+ pγ

ε
= 0,

εβux + wγ = 0,

u(γ = 0) = 0 and w(γ = 0) = 0.

(52)Like in the upper part we an �nd the vertial veloity from (52)3 and (52)4:
w(x, γ, t) = −εβ

∫ γ

0

ux(x, γ
′, t) dγ′. (53)



19Carrying bakward the previous equation in (52)2, one has pγ = O(ε3). So as to determine
p, we need to use the ontinuity relation for the pressure (p(x, γ = 1, t) = pu(x, z = ε, t))unless we annot go on. As we know the pressure in the upper part pu from (45), we anwrite:

p(x, γ, t) = p(x, γ = 1, t) +O(ε3) = pu(x, ε, t) +O(ε3) = η(x, t) +O(ε). (54)Using this equation and (53) in (52)1, we have at �rst order:
ut + ηx −

uγγ

R
√
b
= O(ε). (55)This equation must be ompleted with initial ondition

u(x, γ, t = 0) = ub,0(x, γ), (56)and boundary ondition:
{

u(x, γ = 0, t) = 0

u(x, γ → +∞, t) = uu(x, z = 0, t) (ontinuity ondition). (57)Notie that [11℄ does not take an initial ondition, and uses a time-Fourier transform.Sine we solve a Cauhy problem, we have an initial ondition and so we must replae theFourier transform by the Laplae one. In all his artiles, P.L. Liu (e.g. [19℄) quotes [22℄(pp. 153�159) in whih a sine-tranform (in γ) is used, but the initial ondition is set tozero. In a separate alulation, not reprodued here, we used the same sine-transform in
γ and paid attention to the initial ondition. We were led to the very same result.We solve the system (55-57) in the following Lemma.Lemma 5. If the initial onditions ub,0(x, γ) and uu,0(x, z = 0) are uniformly ontinuousin γ and satisfy ∫ ∞

0

| ub,0(x, γ)− uu,0(x, z = 0) | dγ < ∞,
∫ ∞

0

| ub,0
x (x, γ)− uu,0

x (x, z = 0) | dγ < ∞,
(58)then the solution of (55-57) is

u(x, γ, t) = uu(x, z = 0, t) +

√
R
√
b

2

∫ +∞
0

f0(x, γ
′) e

−
R
√

b(γ′−γ)2

4t√
πt

dγ′−

uu(x, 0, .) ∗ L−1(e−σγ)−
√

R
√
b

2

∫ +∞
0

f0(x, γ
′) e

−R
√
b(γ′+γ)2

4t√
πt

dγ′ +O(ε),

(59)where f0(x, γ) = ub,0(x, γ)− uu,0(x, z = 0), uu is the horizontal veloity in the upper part,given by (46) and σ is the only root with a positive real part of R√
b p:

σ = σ(p) =

√
R
√
bp. (60)where p is the dual variable of time t and the onvolution is in time.



20Remark 6. The solution of (55) may be known only up to any funtion of x. Theboundary ondition (57) enables to determine this funtion.Remark 7. The ompatibility of the onditions (56) and (57) fores to have, when γtends to +∞:
ub,0(x, γ) → uu,0(x, z = 0),and,when γ → 0:

ub,0(x, γ = 0) = 0.Meanwhile we also prove the following PropositionProposition 8. Under the same assumptions as in Lemma 5, the bottom shear stress is
τ b =

(
∂ub

∂γ

)

γ=0

=

√
R
√
buu(x, z = 0, 0)√

π
Pf

1√
t
+

√
R
√
b√

π

∫ t

0

uu
t (x, z = 0, t− s)√

s
ds, (61)where Pf denotes the prinipal value aording to the theory of distributions.First let us prove Proposition 8.Proof. The initial ondition f0 may not make any di�erene (it an be seen through anexpliit omputation), so the orrespondig term is taken o�. Then a simple derivativeand the following formula (See [7℄ p. 320)

L−1
(
e−a

√
p
)
=

a

2
√
πt3/2

e−
a2

4t ,applied to (59) for any a > 0 leads to
τ b = − d

dγ

(∫ t

0

uu(x, z = 0, t− s)
e−

R
√

bγ2

4s

√
R
√
bγ

2
√
πs3/2

ds

)
+O(ε),

= −
√

R
√
b

∫ t

0

uu(x, z = 0, t− s)

2
√
πs3/2

e−
R
√

bγ2

4s ds−
√

R
√
b

∫ t

0

uu(x, z = 0, t− s)√
πs1/2

(
−R

√
bγ2

4s2
e−

R
√

bγ2

4s

)
ds+O(ε).The seond term may be integrated by parts to get

−
√

R
√
b√

π

(
uu(x, z = 0, 0)√

t
e−

R
√

bγ2

4t −
∫ t

0

(
−uu

t (x, z = 0, t− s)√
s

− uu(x, z = 0, t− s)

2s3/2

)
e−

R
√

bγ2

4s ds

)
,whih simpli�es partially with the �rst term. At the end, there remains only

√
R
√
b√

π

uu(x, z = 0, 0)√
t

e−
R
√

bγ2

4t +

√
R
√
b√

π

∫ t

0

uu
t (x, z = 0, t− s)√

s
e−

R
√

bγ2

4s ds.This justi�es the formula.



21The sheme of the proof of Lemma 5 is to solve (55) up to two unknown funtions, thento determine these funtions so as to satisfy the initial and boundary onditions. Thisprovides a neessary formula. We hek in Appendix A the solution satis�es the boundaryand initial onditions. Let us prove Lemma 5.Proof. Let us denote
f(x, γ, t) = u(x, γ, t)− uu(x, z = 0, t). (62)Sine ft = ut + ηx +O(ε) (thanks to (46)) and fγ = uγ, the equation (55) writes:

ft − fγγ/(R
√
b) = O(ε). (63)The initial ondition is

f(x, γ, t = 0) = ub,0(x, γ)− uu,0(x, z = 0) =: f0(x, γ), (64)and the boundary onditions read
f(x, γ = 0, t) = −uu(x, 0, t),

limγ→+∞ limε→0 fε(x, γ, t) = 0 (ontinuity ondition). (65)So we are driven to a heat equation in a half spae with vanishing ondition at in�nity, andnon-homogeneous initial and bottom onditions. Through a Laplae in time transform,(63) beomes
−f0(x, γ) + pf̂(p)− f̂γγ

R
√
b
= O(ε). (66)In order to solve this non-homogeneous ODE, we start with the homogeneous one andreall that we de�ne σ as the only root with a positive real part of R√

bp in (60). Itssolutions are
f̂(x, γ, ξ) = C1(x, p)e

+σγ + C2(x, p)e
−σγ +O(ε).By applying the method of parameters variation, we look for C1(x, γ, p), C2(x, γ, p) suhthat:

−C1,γσe
σγ + C2,γσe

−σγ = R
√
bf0(x, γ) +O(ε),and solving (66) amounts to solving the system of two equations with two unknownfuntions C1 and C2: {

C1,γe
σγ + C2,γe

−σγ = 0

−C1,γe
σγ + C2,γe

−σγ = R
√
b

σ f0,whih solution is (thanks to assumption (58)):




C1(x, γ, p) = −R
√
b

2σ

∫ γ

+∞
f0(x, γ

′)e−σγ′
dγ′ + C̃1(x, p)

C2(x, γ, p) = +R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′ + C̃2(x, p).



22The full solution is so
f̂(x, γ, p) = −R

√
b

2σ

∫ γ

+∞
f0(x, γ

′)e−σγ′
dγ′e+σγ + C̃1(x, p)e

+σγ+

R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′e−σγ + C̃2(x, p)e

−σγ′
+O(ε).We look for C̃1 �rst. Sine f0 is bounded, simple bounds prove that the �rst, third andfourth terms are bounded. So

C̃1(x, p) = 0.The unknown funtion C̃2(x, p) is then given by the boundary ondition (65)1 at thebottom:
C̃2(x, p) = −uu(x, z = 0, p)− R

√
b

2σ

∫ +∞

0

f0(x, γ
′)e−σγ′

dγ′.In a neessary way,
f̂(x, γ, p) = +R

√
b

2σ

∫ +∞

γ

f0(x, γ
′)e−σγ′

dγ′e+σγ +
R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′e−σγ−

(
ûu(x, z = 0, p) + R

√
b

2σ

∫ +∞

0

f0(x, γ
′)e−σγ′

dγ′
)
e−σγ +O(ε).

(67)From the de�nition of f and the existene of an inverse Laplae transform, one knowsthat:
f(x, γ, t) = R

√
b

2

∫ +∞

γ

f0(x, γ
′)L−1

(
e−σ(γ′−γ)

σ

)
dγ′+

R
√
b

2

∫ γ

0

f0(x, γ
′)L−1

(
eσ(γ

′−γ)

σ

)
dγ′ + f(x, z = 0, .) ∗ L−1

(
e−σγ

)
−

R
√
b

2

∫ +∞

0

f0(x, γ
′)L−1

(
e−σ(γ′+γ)

σ

)
dγ′ +O(ε).Owing to formula (see [7℄):

L−1

(
e−ã

√
p

√
p

)
=

1√
πt

e−
ã2

4t ,if ã > 0, one may justify the expliit form of u given in (59). Until the end of this artile,we denote the funtion of time t:
A = A(t) =

√
R
√
b

4t
. (68)We still have to hek that the initial ondition (64) and remaining of the boundaryonditions (65)2 are satis�ed by u given by (59). This is ompleted in Appendix A.So we ompleted the proof of the whole Lemma 5.



23From (53) and (59), we an then ompute the vertial veloity
wb(x, γ, t) = −εβ

∫ γ

0
ub
x(x, γ

′, t)dγ′

= −εβuu
x(x, 0, t)γ + εβuu

x(x, 0, .) ∗ L−1
(
e−σγ − 1

−σ

)
−

εβ
A(t)√

π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2 dγ′′dγ′+

εβ
A(t)√

π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2 dγ′′dγ′.

(69)
We still have to satisfy the ontinuity onditions of all the �elds u, w, p.
3.3 The ontinuity onditionsIn the present subsetion, we need to write expliitly the supersripts u and b for theupper part and bottom regions respetively. We write the omputed �elds at the sameheight ε that is the ommon frontier of both subdomains.We already used the ontinuity of pressure that led us to (54).Regarding the horizontal veloity, we must notie that the limit when γ → +∞ of
limε→0(u

b(x, γ, t)− uu(x, εγ, t)) = f(x, γ, t) has already been omputed as vanishing (seeAppendix A). So the boundary ondition (65)2 is already satis�ed and the horizontalveloity is ontinuous.Notie that, should we have swithed the limits in ε and γ, the limit would be meaningless.Furthemore, it seems more realisti to onsider the boundary layer ε to be very small andthen put its height to one order of magnitude more than ε. This is the meaning of thelimits order.Conerning the vertial veloity, we an use the veloity in the upper part wu from (44)expanded in ε:
wu(x, εγ, t) = β(ηt +

∫ 1

0
uu
x)− β

∫ εγ

0
uu
x + αβ(uu(1)η)x +O(ε3)

= β(ηt +
∫ 1

0
uu
x)− βεγuu

x(z = 0) + αβ(uu(1)η)x +O(ε3).The veloity in the bottom wb is given in (69). The di�erene wu − wb an be expanded



24in ε:
wu(x, εγ, t)− wb(x, γ, t) = β(ηt +

∫ 1

0

uu
x)− βεγuu

x(z = 0) + αβ(uu(1)η)x +O(ε3)

+εβuu
x(x, z = 0, t)γ − εβuu

x(x, 0, .) ∗ L−1

(
e−σγ − 1

−σ

)
+

+εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ −

εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′ +O(ε3)

= β(ηt +

∫ 1

0

uu
x) + αβ(uu(1)η)x − εβuu

x(x, 0, .) ∗ L−1

(
1

σ

)
+

+εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ − (70)

εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′ +O(ε3),up to funtions that tend exponentially to zero when γ → +∞.We still must simplify the two last double integrals. This is made in the following LemmaLemma 9. If A = A(t) =

√
R
√
b

4t
, γ is positive, f0(x, γ) is uniformly ontinuous in γ andsatis�es (58), then

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ −

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′tends to ∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′dγ′′, (71)when γ → +∞.In the proof we apply Fubini's theorem and hanges of variables to the two integrals.Proof. Let us apply the Fubini theorem to the two integrals whih rewrite then:

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ

γ′=0

e−A2(γ′′−γ′)2dγ′dγ′′ −
∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ

γ′=0

e−A2(γ′′+γ′)2dγ′dγ′′.Simple hanges of variables for eah of these integrals give
∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ−γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′dγ′′ −

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ+γ′′

γ′′′=γ′′

e−A2γ′′′2
dγ′′′dγ′′

=

∫ +∞

γ′′=0

f0,x(x, γ
′′)

(∫ +γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′ −

∫ γ+γ′′

γ′′′=γ−γ′′

e−A2γ′′′2
dγ′′′

)
dγ′′.



25The �rst of these integrals gives rise to the announed term in (71). So only the seondintegral (see Figure 2 left) needs to be proved to vanish when γ tends to +∞. One mayapply again the Fubini's theorem to the seond integral whih rewrites as a sum of twointegrals (see Figure 2 right):
−
∫ γ

γ′′′=−∞

∫ +∞

γ′′=γ−γ′′′

f0,x(x, γ
′′)e−A2γ′′′2

dγ′′′dγ′′ −
∫ +∞

γ′′′=γ

∫ +∞

γ′′=γ′′′−γ

f0,x(x, γ
′′)e−A2γ′′′2

dγ′′′dγ′′

= −
∫ 0

γ′′′′=−∞

∫ +∞

γ′′=−γ′′′′

f0,x(x, γ
′′)e−A2(γ+γ′′′′)2dγ′′′′dγ′′ −

∫ +∞

γ′′′′=0

∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)e−A2(γ+γ′′′′)2dγ′′′′dγ′′

= −
∫ +∞

γ′′′′=0

e−A2(γ−γ′′′′)2
∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′dγ′′′′ −

∫ +∞

γ′′′′=0

e−A2(γ+γ′′′′)2
∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′dγ′′′′

= −
∫ +∞

γ′′′′=0

e−A2(γ−γ′′′′)2R(γ′′′′)dγ′′′′ −
∫ +∞

γ′′′′=0

e−A2(γ+γ′′′′)2R(γ′′′′)dγ′′′′, (72)where
R(γ′′′′) =

∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′ → 0 when γ′′′′ → +∞.
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Figure 2: piture of the integrations (right and left)



26In the equation (72), we disuss suessively the �rst and seond integral in order to provethey vanish. Sine we do know that R tends to 0 when γ′′′′ tends to +∞,
∀ǫ > 0 ∃Γ / γ′′′′ > Γ ⇒| R(γ′′′′) |< ǫ.Consequently, we an bound the modulus of the �rst integral of (72) with

∫ Γ

γ′′′′=0

e−A2(γ−γ′′′′)2 | R(γ′′′′) | dγ′′′′ + ǫ

∫ +∞

γ′′′′=Γ

e−A2(γ−γ′′′′)2dγ′′′′

≤ sup
γ>0

| R(γ) |
∫ Γ

γ′′′′=0

e−A2(γ−γ′′′′)2dγ′′′′ + ǫ

[∫ 0

Γ−γ

e−A2γ(5)2

dγ(5) +

∫ +∞

0

e−A2γ(5)2

dγ(5)

]
.In the previous formula, the �rst integral rewrites ∫ γ

γ(5)=γ−Γ
e−A2γ(5)2

dγ(5) whih learlyvanishes when γ tends to +∞. The seond term with a square braket an be boundedby ǫ up to a multipliative onstant (for given t and Γ). So the �rst integral in (72) is assmall as wanted when γ is large enough.Similarly, the seond integral of (72) an be bounded by two terms:
sup
γ>0

| R(γ) |
∫ Γ

γ′′′′=0

e−A2(γ+γ′′′′)2dγ′′′′ + ǫ

∫ +∞

γ′′′′=Γ

e−A2(γ+γ′′′′)2dγ′′′′.The �rst of the two terms learly tends to zero when γ tends to +∞ (for given Γ, t) andthe seond an be bounded by a onstant times ǫ. So the seond integral also is as smallas wanted when γ is large enough and we ompleted the proof of Lemma 9.After simpli�ation of β, the ontinuity of the vertial veloity (70) reads after making
γ → +∞ thanks to Lemma 9:

ηt +
∫ 1

0
uu
x + α(uu(1)η)x − ε√

πR
√
b
uu
x(x, 0, t) ∗ 1√

t
+

+ 2ε√
π

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(73)where the onvolution is in time t and the formula L−1
(

1√
p

)
= 1/

√
πt [7℄ is used.3.4 The dependene on z of the �eldsAt this stage, we have redued the equations but not as muh as in the Euler ase whihleads to a Boussinesq system in 1+1 dimension. We still have derived only a 2+1 di-mension problem although we have eliminated w and p. The major di�erene with theBoussinesq derivation omes from the assumption of irrotationnality of Euler �ows. Thisassumption provides uz = O(ε). Suh a ondition would annihilate the dependene on zand greatly simplify the above omputation.



27Yet irrotationality and its orollary of a potential �ow is inompatible with the number ofonditions we set at the bottom, whih are needed by the dissipativity of the Navier-Stokesequations.We are going to determine the dependene on z of u to have a more tratable system.Starting from now, we drop the u supersripts for the �elds in the upper part but keepthe supersripts for the boundary layer.In summary, in ase Re ≃ ε−5/2, we are in the ase of the �rst asymptoti depited in thesubsetion 2.3. Then the redued equations are olleted from (46) and (73):
ut + ηx + αuux + αuz(ηt +

∫ 1

z

ux)− βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), ∀z (74)
ηt +

∫ 1

0

ux(z) dz + α(u(z = 1)η)x −
ε√

πR
√
b
ux(x, z = 0, t) ∗ 1√

t
+

+
2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2). (75)The equation (74) an be rewritten thanks to the order 0 of (75):

ut + ηx + αuux − αuz

∫ z

0

ux − βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), ∀z. (76)Notie that the ηxxx term omes from an integral of the shape ∫ z

1

∫ z′

1
uxxt. As an interme-diate result one may see very easily that ηxx = ηtt +O(ε).We intend to prove the following Lemma:Lemma 10. A loalized solution of (75), (76) is suh that

∫ 1

0

u = u(x, z, t)− βηxt
z2 − 1/3

2
+O(ε2), (77)

u(x, 0, t) = u(x, z, t)− βηxt
z2

2
+O(ε2), (78)

u(x, 1, t) = u(x, z, t) + βηxt
1− z2

2
+O(ε2). (79)Proof. In a preliminary step, we prove

uz(x, z, t) = β ηxt(x, t) z +O(ε2). (80)To that end, we di�erentiate (76) with respet to z, so as to have:
uzt + αu uxz − αuzz

∫ z

0

ux − βηxtt − βηxxx(z − 1) = O(ε2),and we an integrate this equation in time using that ηxx = ηtt +O(ε):
uz + α

∫ t

t0

(u uxz)− α

∫ t

t0

(uzz

∫ z

0

ux)− βηxt − βηxt(z − 1) = C3(x, z) +O(ε2), (81)



28where C3 is a funtion of x, z but it does not depend on t. Sine the solution is loalizedfor any x, z, there exists a time t0 at whih uz = 0 = ηxt, we have
C3(x, z) = O(ε),in a �rst attempt to determine C3. But then the equation (81) implies uz = O(ε) andso the quadrati terms are all of seond order in (81) sine they ontain at least one uz.Hene

uz(x, z, t)− βηxt z = C4(x, z) +O(ε2).Again sine for all (x, z) there exists a time at whih u = 0 and η = 0, then C4(x, z) =

O(ε2) and this ompletes the proof of (80). We an then go further by integrating between
z′ and z:

u(x, z, t) = u(x, z′, t) + βηxt
z2 − z′2

2
+O(ε2),and then, integrating in z′ between z′ = 0 and z′ = 1, we an state (77). Setting z′ = 0we obtain (78) and setting z′ = 1 gets (79).So the system (75, 76) an be rewritten thanks to (77-79), the formula L−1

(
1√
p

)
= 1/

√
πt[7℄, and the fat that, as in the Euler ase ηxx = ηtt +O(ε):

ut + ηx + αuux − βηxxx
(z2 − 1)

2
= O(ε2), (82)

ηt + ux(x, z, t)−
β

2
ηxxt(z

2 − 1

3
) + α(uη)x −

ε√
πR

√
b
ux ∗

1√
t
+

+
2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2), (83)where all the �elds u are evaluated at (x, z, t) and the onvolution is in time. This is thesystem stated in Proposition 3 and the proof is omplete.4 Generalization and hekingsIn a �rst subsetion, we state the 2-D Boussinesq system and hek we may derive thelassial Boussinesq systems in the invisid ase. Then, in Subsetion 4.2 we derive rigor-ously the visous KdV equation and disuss its ompatibility with the equation derivedby Kakutani and Matsuuhi in [11℄, by Liu and Or�la in [19℄, and by Dutykh in [9℄.



294.1 The full 2-D Boussinesq systems familyOne may start from the 3-D Navier-Stokes equations and derive in a way very similar toabove a generalization of (82,83):




ut + ηx + αuux + αvuy − β(ηxxx + ηxyy)
(z2 − 1)

2 = O(ε2),

vt + ηy + αuvx + αvvy − β(ηyxx + ηyyy)
(z2 − 1)

2 = O(ε2),

ηt + ux + vy − β
2 (ηxxt + ηyyt)(z

2 − 1
3
)+

+α(uη)x + α(vη)y − ε√
πR

√
b
ηt ∗

(
1√
t

)
+

+ 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(84)
In ase of a Euler initial ondition, the last integral term vanishes. It is well-known thanksto [1℄ that there is a family of Boussinesq systems, indexed by three free parameters. Allthese systems are equivalent in the sense that up ot order 1, they an be derived one fromthe other by using their own O(ε0) part and by replaing partially ηt, ηx and ηy by ux, ut.We are going to prove the same for our system. Namely, the order 0 of (84) enables tointerpolate with aint, bint, cint:





ηx = aintηx − (1− aint)ut +O(ε),

ηy = bintηy − (1− bint)vt +O(ε),

ηt = cintηt − (1− cint)(ux + vy) +O(ε).These formulas are reported in the full 2D system (84), where we drop the onvolutionterm and the integral on the initial ondition:




ut + ηx + αuux + αvuy − aintβ∆ηx
(z2 − 1)

2 + (1− aint)β∆ut
(z2 − 1)

2 = O(ε2),

vt + ηy + αuvx + αvvy − bintβ∆ηy
(z2 − 1)

2 + (1− bint)β∆vt
(z2 − 1)

2 = O(ε2),

ηt + ux + vy − cint
β
2∆ηt(z

2 − 1
3
) + (1− cint)

β
2∆(ux + vy)(z

2 − 1
3
)+

+α(uη)x + α(vη)y = O(ε2),(85)where we denote ∆ the x, y laplaian.This is the general Boussinesq system as an be seen in [1℄ (p. 285 equation (1.6)). Indeedif we denote aBCS , bBCS, cBCS and dBCS the interpolation parameters of this artile, wean identify the 1D version of our interpolated (85) with
aBCS = β

2
(1− cint)(z

2 − 1
3
) bBCS = β

2
cint(z

2 − 1
3
),

cBCS = −βaint
z2−1
2

dBCS = −β(1− aint)
z2−1
2

.The meaning of our height z is the same as the θ of [1℄ and the relation between
aBCS, bBCS , cBCS and dBCS (see (1.8) of this artile) is satis�ed.



304.2 About the KdV-like equationVarious authors have derived either a visous Boussinesq system or a visous KdV equa-tion.One may wonder what is the visous KdV equation derived from our visous Boussinesqsystem and ompare it with what may be found in the literature. First, we state andprove the following Proposition.Proposition 11. If the initial �ow is loalized, the KdV hange of variables applied tothe system (82, 83) leads to
2η̃τ + 3aη̃η̃ξ +

b

3
η̃ξξξ −

1√
πR

√
b

∫ τ/ε

ξ′=0

η̃ξ(ξ + ξ′, τ)√
ξ′

dξ′ = O(ε), (86)for not too small times τ , where we set α = aε, Re= Rε−5/2 and β = bε.In formula (86), sine it has been proved in [15℄ that KdV is a good approximation ofEuler for times up to 1/ε2, and that the veloity is loalized, we ould replae the integralterm by
− 1√

πR
√
b

∫ +∞

ξ′=0

η̃ξ(ξ + ξ′, τ)√
ξ′

dξ′.This is the term found in [11℄. Indeed, if we had not raised the question of the initial on-dition, we ould have used a Fourier transform as [11℄. Then, the remaining onvolutionterm would be a lear onvolution in ξ over all spae.Proof. We start from the most general form of (40) and use the KdV hange of variables
(ξ = x− t, τ = εt) ⇔ (x = ξ + τ/ε, t = τ/ε), (87)and hange of �elds

Φ(x, z, t) = Φ̃(x− t, z, εt) ⇒ Φt = −Φ̃ξ + εΦ̃τ (x− t, z, εt), (88)where the generi �eld Φ is tilded when it depends on the (ξ, τ) variables.There are only two di�ult terms in the system (82, 83) (equivalent to (40)). The �rst isthe onvolution whih we denote T1:
T1(x, z, t) = − ε√

πR
√
b

∫ t

t′=0

ux(x, z, t− t′)√
t′

dt′

= − ε√
πR

√
b

∫ t

t′=0

ũξ(x− t+ t′, z, εt− εt′)√
t′

dt′,beause of (87). But then it su�es to reognize the funtion of (x− t, εt) = (ξ, τ) in thelast equation to have the term after the KdV hange of variables:
T̃1(ξ, z, τ) = − ε√

πR
√
b

∫ τ/ε

t′=0

ũξ(ξ + t′, z, τ − εt′)√
t′

dt′,

= − ε√
πR

√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ +O(ε2).

(89)



31Sine the t′ variable is in plae of a ξ, we hanged the notation to ξ′. This term is oddbeause it has an integration variable (ξ′) that has a physial meaning and yet stems froma time (t′). We will disuss it below.The seond di�ult term is the one that keeps the initial onditions.
T2(x, z, t) = + 2ε√

π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫

√

R
√

b
4t

γ′′

γ′=0

e−γ′2
dγ′dγ′′

T̃2(ξ, z, τ) = + 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (ξ +

τ

ε
, γ′′)− uu,0

x (ξ +
τ

ε
, z = 0)

)∫
√

R
√

b ε
4τ

γ′′

γ′=0

e−γ′2
dγ′dγ′′.If the initial boundary layer is loalized (or even if it vanishes), for τ not too small,

ub,0
x (ξ + τ

ε
, γ′′) − uu,0

x (ξ + τ
ε
, z = 0) will be small and T̃2 will be negligible in omparisonwith ε and so an be dropped.We an then laim that the Boussinessq system after the KdV hange of variables and�elds is





−ũξ + εũτ + η̃ξ + αũũξ − βη̃ξξξ

(
z2 − 1

2

)
= O(ε2),

−η̃ξ + εη̃τ + ũξ +
β
2 η̃ξξξ

(
z2 − 1

3

)
+ α(ũη̃)ξ − ε√

πR
√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ = O(ε2).(90)We may notie that at the �rst order, and as in the derivation of the KdV equation,
ũξ = η̃ξ +O(ε) ⇒ ũ = η̃ +O(ε),thanks to a simple and lassial integration. But then the sum of the two equations of(90) gives:

εũτ + εη̃τ + αũũξ + α(ũη̃)ξ +
β
3 η̃ξξξ −

ε√
πR

√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ = O(ε2).Using now the fat that ũ = η̃+O(ε), dividing by ε, one states exatly the equation (86).The onvolution that used to be on time is now on ξ′ and the proof is omplete.What an be found in the literature ?As stated in the introdution, various authors already derived either a visous Boussinesqsystem or a visous KdV equation. Yet, none of them have the very same equation as us.We must larify why there are suh di�erenes.The �rst artile is [23℄ whih proposed
−α3

∫ +∞

ξ′=−∞

ũξ(ξ
′, τ) sgn(ξ′ − ξ)√

| ξ′ − ξ |
dξ′.but Ott and Sudan made an error in their visous KdV orreted by [11℄.Later, Kakutani and Matsuuhi [11℄ derive rather rigorously the KdV equation fromNavier-Stokes and set the same regime as us. Yet, they do not raise the problem of



32the initial ondition. As a onsequene, they use a Fourier (in time) transform to solvethe heat-like equation. They may not have the same equation as us sine they model adi�erent reality. Yet, they have the same prinipal part of the evolution operator (half aderivative). They propose:
− 1

4
√
πR

∫ +∞

ξ′=−∞

η̃ξ(ξ
′, τ)(1− sgn(ξ − ξ′))√

| ξ − ξ′ |
dξ′.Liu and Or�la in [19℄ (and subsequent artiles) derive a Boussinesq system for a regimedi�erent from ours (Re=Rε−7/2). They solve their heat equation with a sine-transformin the vertial oordinate by quoting [21℄ where is assumed vanishing initial onditions.Given their regime, their Boussinesq system is right. But when they derive a KdV equation(see [19℄ p. 89), they do not make expliit their hange of variables in the T1 term. Withthe hange of variable ξLO = x − t, τLO = (αLO/µLO)t, they exhibit (see their (3.19) or(3.21)):

− 1

2
√
π

∫ t

0

ηξLO√
t− T

dT,where there remains the former variable t inside the integral and in the bounds. Moreover,the dependene of ηξLO
on the variables (t, τLO, ... ?) is not written. This explains thatthey do not see that the time onvolution transforms into a spae one.Dutykh derives a Boussinesq system by a Leray-Helmholtz deomposition from a Lin-earized Navier-Stokes [9℄. In order to derive the assoiated KdV (see Se. 3.2), he assumes

u = η + εP + βQ + ... and �nds P and Q. In this proess, he uses only the assumptionthat waves go right (ηt + ηx = O(ε)). So he does not use the hange of time (τ = εt) andwrites a formula with unsaled time t (his (14)):
−
√

ν

π

g

h

∫ t

0

ηx√
t− τ

dτ.5 ConlusionIn this artile, we derive the visous Boussinesq system for surfae waves from Navier-Stokes equations with non-vanishing initial onditions (see Proposition 3). One of ourby-produt is the bottom shear stress as a funtion of the veloity (f. Proposition 8)and the deay rate for shallow water (see Proposition 1). We also state the system in 3-Dase in (84), and derive the visous KdV equation from our visous Boussinesq system(f. Proposition 11). The di�erenes of our visous KdV with other equations alreadyderived in the literature are highlighted and explained.AknowledgementThe author wants to thank Professor Jean-Claude Saut for initiating and following thisresearh.



33A Boundary and initial onditions in Lemma 5As is said in the proof of Lemma 5, we must hek that u, given by the neessary equation(59), satis�es the initial ondition (64) and the remaining of the boundary onditions (65)2.Conerning the initial ondition (64). We try to �nd the limit when t tends to 0+ and so
A = A(t) tends to +∞. Sine one assumes below γ > 0, the term −uu(x, 0, .) ∗L−1(e−σγ)tends to zero. Then, one an ome bak to the formula of f and make one hange ofvariables in every integral:
f(x, γ, t) =

A√
π

∫ +∞

−γ

f0(x,Γ
′ + γ)e−A2Γ′2

dΓ′ − A√
π

∫ +∞

γ

f0(x,Γ
′ − γ)e−A2Γ′2

dΓ′ +O(ε),up to an exponentially tending to zero funtion when t tends to 0. This an be rewritten
f(x, γ, t) = A√
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π
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dΓ′ +O(ε)The �rst integral may be bounded by
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e−A2Γ′2
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≤ 2
π sup
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| f0(x, γ) |

∫ +∞

Aγ

e−Γ′′2
dΓ′′,whih learly tends to zero when t tends to zero thanks to A(t).For the seond integral denoted I2, one may ompute a similar integral where the inte-gration variable of f0 is frozen:
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A√
π
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dΓ′

= f0(x, γ)
1√
π

∫ Aγ

−Aγ

e−Γ′′2
dΓ′′,whih learly tends to f0(x, γ) if γ > 0 when t → 0+. So one may make the di�erene ofthe seond integral with the previous integral (whih tends to f0(x, γ)) and �nd:

I2 − I ′2 =
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(f0(x,Γ
′ + γ)− f0(x, γ)) e

−A2Γ′2
dΓ′ + ot→0+(1).Here we must use the assumption of uniform ontinuity of the initial data:

∀ǫ > 0 ∃δ > 0 / | γ′ − γ |< δ ⇒| f0(x, γ′)− f0(x, γ) |< ǫ.Then, for any ǫ > 0, there exists a δ suh that I2 − I ′2 an be splitted into two parts andbounded by
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34So we have proved that the f given by (67) or u given by (59 satis�es the initial ondition.Conerning the boundary ondition (65)2). Now we look for the limit when γ tends to
+∞. The formula (67) an be written:
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√
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′
dγ′e−σγ ,up to exponentially tending to zero funtions of γ. In this formula, the �rst integral isbounded by
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b

2σ2 sup
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| f0(x, γ′) |,whih learly tends to zero when γ tends to +∞ beause f0(x, γ) tends to zero when γtends to +∞.For the seond integral, one needs to ut it at a value Γ given by the de�nition of f0 → 0when γ tends to +∞ (∀ǫ > 0 ∃Γ > 0 / | γ |> Γ ⇒| f0 |< ǫ). We an bound it with:
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′
dγ′e−σγ .Sine the �rst term tends to zero when γ tends to +∞ (Γ �xed) and the seond term isless than R

√
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