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Abstra
t. In this arti
le, we derive a vis
ous Boussinesq system for surfa
ewater waves from Navier-Stokes equations. So, we use neither the irrotationalityassumption, nor the Zakharov-Craig-Sulem formulation. During the derivation, we�nd the bottom shear stress, and also the de
ay rate for shallow (and not deep) water.In order to justify our derivation, we 
he
k it by deriving the vis
ous Korteweg-deVries equation from our vis
ous Boussinesq system. We also extend the system tothe 3-D 
ase.Key words: water waves, shallow water, Boussinesq system, vis
osity, KdV equation.AMS Classi�
ation Codes: 76N20, 74J15, 76M45

1 Introdu
tion1.1 MotivationThe propagation of water waves over a �uid is a long run issue both of mathemati
s, �uidme
hani
s, hydrogeology, 
oastal engineering, ... In 
ase of an invis
id �uid, the topi
stemmed many resear
h and even broadened with time. Various equations have beenproposed to model this propagation of water waves. The goal is to �nd redu
ed (in size)models on simpli�ed domains with as little �elds as possible, should they be valid only inan asymptoti
 regime.This arti
le is a step forward in the dire
tion of a rigorous derivation of an asymptoti
system for surfa
e water waves in the so-
alled Boussinesq regime, taking into a

ount the
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2vis
osity. While vis
ous e�e
ts 
an be negle
ted for most o
eani
 situations, they 
annotfor surfa
e waves in relatively shallow 
hannels.In the invis
id potential 
ase, the 
omplete and rigorous justi�
ation of most asymptoti
models for water waves has been re
ently 
arried out (see the book [15℄ and the bibliog-raphy therein). This in
ludes the proof of the 
onsisten
y and stability of the models,the proof of the existen
e of solutions of the water waves systems and of the asymptoti
models on the relevant time s
ales and the proof of �optimal� error estimates between thetwo solutions. The 
urlfree assumption allows to use the Zakharov-Craig-Sulem formula-tion of the water waves system and fa
ilitates the rigorous derivation of the models, byexpanding the Diri
hlet to Neumann operator with respe
t to suitable small parameters.Things are more deli
ate when vis
osity is taken into a

ount and a 
omplete justi�
ationof the asymptoti
 models is still la
king. The main di�
ulties, for not only a derivationbut a rigorous proof, arise from the mat
hing between the boundary layer 
oming fromthe bottom and the "Euler" regime in the upper part of the �ow.In this arti
le, we derive an asymptoti
 system (Boussinesq system) for the vis
ous �owin a �at 
hannel of water waves in the Boussinesq regime, that is in the long wave, smallamplitude regime with an ad ho
 balan
e between the two e�e
ts.1.2 The literatureWhen deriving models of water waves in a 
hannel, taking vis
osity into a

ount, numerousthings must be done in order to be rigorous.Sin
e there are various dimensionless parameters, a linear study must be done so as todetermine the most interesting regime between the parameters. One must also eitherassume linearized Navier-Stokes Equation (NSE), or justify that the nonlinear terms 
anbe dropped. This is not so obvious be
ause numerous authors extend the invis
id theoryby assuming the velo
ity to be the sum of an invis
id velo
ity and a vis
ous one. Thenthey for
e only one 
ondition (for instan
e the vanishing velo
ity on the bottom) to besatis�ed by the total velo
ity, on
e the invis
id velo
ity is taken un
hanged by vis
osity.This deserves to be juti�ed or assumed.At a 
ertain level, a heat-like equation arises. Most people solve it with a Fourier transformwhile the only physi
al problem is a Cau
hy one, so with an initial 
ondition. The onlypossibility is to use either Lapla
e (in time) transform or a sine-transform (in the verti
aldimension) with a 
omplete treatment of the initial 
ondition.One must also derive the bottom shear stress be
ause it is meaningful for the physi
istwho deals with sediment transport.Last the order up to whi
h the expansion is done must be 
onsistent throughout thearti
le.To the best of our knowledge, no arti
le does all this. Yet various arti
les have beenwritten on this topi
. Let us review those that retained our attention and interest.



3The very �rst arti
le taking vis
osity into a

ount is from Boussinesq in 1895 [2℄. Lamb[14℄ derived the de
ay rate of the linear wave amplitude by a dissipation 
al
ulation(paragraph 348 of the sixth edition and done also in [2℄) and by a dire
t 
al
ulation basedon the linearized NSE (paragraph 349 of the sixth edition).Both of them use linearized NSE on deep-water, and 
ompute the dispersion relation.The imaginary part of the phase velo
ity gives the de
ay rate:
∂A

∂t
= −2νk2A, (1)where A is the amplitude of the wave, ν the kinemati
 vis
osity and k the wavenumber.In an arti
le [23℄, Ott and Sudan make a formal derivation (in nine lines) of a dissipativeKdV equation (di�erent from ours). They use the linear damping of shallow water wavesalready given by Landau-Lifs
hitz. This drives them to an additional term to KdV whi
hlooks like a half integral. They also �nd ba
k the damping in time of a solitary wave overa �nite depth as (1 + T )−4 (already found by [12℄, and later by [11℄, [21℄, [10℄ (p. 374)).J. Byatt-Smith studied the e�e
t of a laminar vis
osity (in the boundary layer where alaminar �ow takes pla
e) on the solution of an undular bore [3℄. He found the (almostexa
t) Boussinesq system of evolution with a half derivative but with no treatment of theinitial 
ondition. He did an error when providing the solution to the heat equation: his
onvolution in time is over (0,+∞).In 1975, Kakutani and Matsuu
hi [11℄ �nd a minor error in the 
omputation of [23℄. Theystart from the NSE and perform a 
lean boundary layer analysis. First, they make a linearanalysis that gives the dispersion relation and, with some assumptions, the phase velo
ityas a fun
tion of both the wavenumber of the wave and the Reynold's number Re. Theydistinguish various regimes of Re as a fun
tion of the 
lassi
al small parameter of anyBoussinesq study. Then, they derive the 
orresponding vis
ous KdV equation. We wantto stress that, at the level of the heat equation, they use a Fourier (in time) transform.As a 
onsequen
e, they may not have any initial 
ondition.In [20℄, one of the authors of the last arti
le tries to validate the equation they were led to.He shows that their model does not modify the number of 
rest found by an experimentalstudy and by a (non-vis
ous) KdV simulation, but indu
es a shift in phase. Yet thenumeri
al treatment seems light be
ause the spa
e step is between some per
ent and 10%, the numeri
al relaxation is not very e�
ient, and there is no numeri
al validation ofthe full algorithm. The author 
on
ludes that their �modi�ed K-dV equation 
an des
ribethe observed wave behaviours�. Yet, very fair, he adds that �the phase shift obtained bythe 
al
ulations is not 
on�rmed by [the℄ experiments�. Indeed, the regime is not theBoussinesq one (dispersion's 
oe�
ient is about 0.002 and the vis
ous 
oe�
ient is 0.03).Moreover, the phase shift numeri
ally measured has three digits while the spa
e step issome per
ent.In an arti
le of 1987, Khabakhpashev [13℄ extends the derivation of the vis
ous KdV evo-lution equation to the derivation of a Boussinesq system, studies the dispersion relation



4and predi
ts a reverse �ow in the bottom in 
ase of the propagation of a soliton wave.Yet, the equations are not made dimensionless, so the right regime is not dis
ussed and anumeri
al method very ine�
ient is used (Taylor series expansion is repla
ed in the 
onvo-lution term). The existen
e of solitary waves to the damped KdV equation is 
laimed, butnot justi�ed. He uses a Lapla
e transform (instead of Fourier as [11℄ did) with vanishinginitial 
onditions sin
e he assumes starting from rest. He pays attention to the justi�-
ation of this assumption and stresses that �the time required for the boundary layer todevelop over the entire thi
kness of the �uid [is℄ mu
h greater than the 
hara
teristi
 timeof the wave pro
ess�.In the book [10℄ (part 5 pp. 356�391), Johnson �nds the same dispersion relation as [11℄,studies the attenuation of the solitary wave by a multi-s
ales derivation, rea
hes a heatequation, but solves it only with vanishing initial 
ondition. He exhibits a 
onvolution witha square root integrated on (0,+∞) (like Byatt-Smith [3℄). Some numeri
al simulations(already partialy done by [3℄) enable him to re
over the me
anism of undular bore slightlydamped.Later, Liu and Or�la wrote a founding arti
le [19℄ (LO hereafter) in whi
h they study waterwaves in an in�nite 
hannel (so without menis
us). They derive a Boussinesq system withan additionnal half integration (seen as a 
onvolution), and an initial 
ondition assumedto be vanishing, but impli
itely added to the system when numeri
al simulation must bedone.More pre
isely, the authors take a linearized Navier-Stokes �uid, use the Helmholtz-Lerayde
omposition and de�ne the parameters (index LO denotes their parameters):
α2
LO = ν/

(
l
√
gh0

)
,

εLO = A/h0,

µLO = h0/l,where the following notations will be used throughout the present arti
le: A is the 
hara
-teristi
 amplitude of the wave, h0 is the mean height of the 
hannel, g is the gravitationala

eleration, l is the 
hara
teristi
 wavelength of the wave. They say they make expan-sions up to order αLO whi
h square is a kind of a Reynold's number inverse. They use the
lassi
al Boussinesq approximation: εLO ≃ µ2
LO, but they set also the link between thevis
osity and εLO by requiring O(αLO) ≃ O(ε2LO) ≃ O(µ4

LO) without further justi�
ation.Although �the boundary layer thi
kness is of O(αLO)�, they stret
h the 
oordinates by alarger fa
tor αLO/µLO ≃ µ3
LO (see their (2.9)). More important, and maybe linked, theykeep the αLOµLO terms (in their (2.8) or (2.21) for instan
e) and yet drop o(αLO) terms !This 
an explain why their �nal system (3.10-3.11) has a αLO/µLO = O(ε

3/2
LO) term beforethe half integration, while we will justify an O(εLO) term for our system.Let us stress that assuming α2

LO = ε4LO as do [19℄ amounts to Re = ε
−7/2
LO with our (furtherrede�ned) Reynold's number: Re= ν/(h0

√
gh0), while we prove below that the regime at



5whi
h gravity and vis
osity are both relevant is Re = ε
−5/2
LO . Our regime was also exhibitedby [11℄, [3℄, [10℄. So, [19℄ look at a regime di�erent from ours.Last, they 
laim the shear stress at the bottom is:

τbottom = − 1

2
√
π

∫ t

0

u(x, T )√
(t− T )3

dT,where u(x, T ) is the depth averaged horizontal velo
ity. Indeed this integral is in�nite asthey a
knowledge in a later 
orrigendum where they 
laim the right formula to be:
τbottom = 1√

π
u(x,0)√

t
+ 1√

π

∫ t

0

u,T√
t−T

dT,but do not provide a justi�
ation. Moreover, their solution (2.15) to the heat equation,
omputed in [22℄ (pp. 153�159), assumes zero initial 
ondition. So the treatment of theinitial 
ondition is not done. One of our goal in the present arti
le is pre
isely to providea better treatment of this initial 
ondition.In this arti
le, they also raise the question of the eligible boundary 
ondition. Indeed,they remind us that for a laminar boundary layer, the phase shift between the bottomshear stress and the free stream velo
ities being π/4. So it prohibits any bottom 
onditionof the Navier type τxy = −kubottom as is usually assumed (and not derived).Although we presented some 
riti
s, we a
knowledge the modeling, derivation and expla-nations of this arti
le are 
lever and, last but not least, very well written. Yet our 
riti
sapply to all subsequent arti
les of the same vein.In [17℄, Liu et al. validate experimentaly LO's equations in the parti
ular 
ase of a solitarywave over a boundary layer. By Parti
le Image Velo
imetry (PIV), they measure thehorizontal velo
ity in the boundary layer over whi
h the solitary wave runs and 
on�rmthe theory.In [18℄, Liu et al. extend the derivation of the vis
ous Boussinesq system of [19℄ to the 
aseof an un�at bottom. They 
ompare the vis
ous damping and shoaling of a solitary wavepropagating in a wave tank from the experimental and numeri
al point of view. Theyprovide a 
ondition on the slope of the bottom and pay attention to the (line) menis
uson the sidewall of the re
tangular 
ross se
tion.In [16℄, Liu and Chan use the same pro
ess to study the �ow of an invis
id �uid over amud bed modeled by a very vis
ous �uid. They also study the damping rate of progressivelinear waves and solitary waves. In [24℄, Park et al. validate this model with experiments.They also study the in�uen
e of the ratio of the �mud bed thi
kness and the wave-indu
edboundary-layer thi
kness in the mud bed�.In a very separate way, Wang and Joseph [25℄ �nd ba
k the Boussinesq-Lamb de
ay rate offree gravity waves of a vis
ous �uid over an in�nite depth. They take linearized NSE anduse the Leray-Helmholtz de
omposition. They determine a (vis
ous) pressure 
orre
tion



6so as to balan
e the normal stress. Oddly, their vis
ous velo
ity is 
url-free. Sin
e theyhave only a new pressure, they 
annot satisfy the full NSE. Su
h a modeling is mainlymotivated by satisfying some equations, yet, it gives good results sin
e the authors 
anreprodu
e the de
ay rate of Boussinesq-Lamb over an in�nite depth �ow.In 2008, Dias et al. [6℄ take the (linearized) NSE of a deep water �ow with a free bound-ary and use the Leray-Helmholtz de
omposition. Both Bernoulli's equation (through anirrotationnal pressure) and the kinemati
 boundary are modi�ed. Then, they make anad ho
 modeling for the nonlinear term. Starting from su
h a model, they provide theevolution equation for the enveloppe A of a Stokes wavetrain whi
h, in 
ase of an invis
id�uid is Non-Linear S
hrödinger (NLS). The obtained equation happens to be a 
ommonlyused dissipative generalization of NLS.Although it was published earlier (2007), [8℄ is a further development of [6℄ to a �nite-depth �ow. In this arti
le, the authors still linearize NSE and generalize by in
ludingadditional nonlinearities.In a later arti
le [9℄, D. Dutykh linearizes NSE and works on dimensionned equations,
onsidering the vis
osity ν to be small (in an absolute meaning). The author �generalizes�by �in
luding nonlinear terms� and rea
hes a vis
ous Boussinesq system (his (11-12)).Making this system dimensionless triggered very odd terms and its order zero was nomore the wave equation. He further derives a KdV equation by making a 
hange ofvariable in spa
e (but not the asso
iated 
hange in time τ = εt). He also makes a study ofthe dispersion relation by plugging ei(kx−ωt) fun
tion but then he freezes the half derivativeterm. Indeed as is well known, plugging these exponentials amounts to making a Fourieror Lapla
e transform. Here, the Fourier/Lapla
e transform of the half derivative is verysimple :| ξ |1/2 and 
ould have been used instead of freezing this half derivative term.In [4℄, Chen et al. investigate the well-posedness and de
ay rate of solutions to a vis
ousKdV equation whi
h has a nonlo
al term that is the same as Liu and Or�la's [19℄ and [9℄but not the same as [11℄ nor the same as ours. The theoreti
al proofs are made with nodispersive term (uxxx), but with a dissipative term (uxx). The tools are either theoreti
alby �nding the kernel and study its de
ay rate, or numeri
al. In the numeri
al study, theytake the dispersive term into a

ount. As expe
ted, they noti
e that the �lo
al dissipativeterm produ
es a bigger de
ay rate when 
ompared with the nonlo
al dissipative term�.In [5℄, the authors prove the global existen
e of solution to the vis
ous KdV derived by [11℄(with the dispersive term) and investigate numeri
ally the de
ay rate for various norms.In the following, we �rst make a linear study of NSE in our geometry (Se
tion 2). Wewill get the dispersion relation and state various asymptoti
s that give di�erent phasevelo
ities, and so the de
ay rate (in �nite depth). In Se
tion 3, we make the formalderivation of the vis
ous Boussinesq system by splitting the upper domain and the bottomone (the boundary layer). The expli
it shear stress at the bottom is 
omputed. The



7equations obtained are 
leaned of any dependen
e on z. In Se
tion 4, we give the 2-Dsystem, and 
ross-
he
k we get the right vis
ous KdV equation.2 The linear theoryIn order to make a linear theory, we need �rst to get dimensionless equations. It is done inthe next subse
tion. Then we investigate three asymptoti
s in the following subse
tions.2.1 Dimensionless equationsLet us denote ũ = (ũ, w̃) the velo
ity of a �uid in a 2-D domain Ω̃ = {(x̃, z̃) / x̃ ∈ R, z̃ ∈
[−h, η̃(x̃, t̃)]}. So we assume the bottom is �at and the free surfa
e is 
hara
terized by
z̃ = η̃(x̃, t̃) with η̃(x̃, t̃) > −h (the bottom does not get dry). The dimensionless Figure isdrawn in Figure 1. Let p̃ denote the pressure and D̃[ũ] the symmetri
 part of the velo
itygradient.

z

x

η (t,x)

1

0

ε

Boundary layer (lower part)

Upper part

Figure 1: The dimensionless domainWe also denote ρ the density of the �uid, ν the vis
osity of the �uid, g the gravity 
onstant,
k the unit verti
al ve
tor, n the outward unit normal to the upper frontier of Ω̃, p̃atm theatmospheri
 pressure. The original �simpli�ed� system reads:





ρ

(
∂ũ

∂t̃
+ ũ.∇̃ũ

)
− ν∆̃ũ+ ∇̃p̃ = −ρgk in Ω̃d̃iv ũ = 0 in Ω̃(

−p̃I+ 2νD̃[ũ]
)
.n = −p̃atmn on z̃ = η̃(x̃, t̃)

η̃t̃ + ũη̃x̃ − w̃ = 0 on z̃ = η̃(x̃, t̃)

ũ = 0 on z̃ = −h,

(2)
where we write with bold letters both the se
ond order tensors and the ve
tors. Of 
ourse,we need to add an initial 
ondition and 
onditions at in�nity.So as to get dimensionless �elds and variables, we need to 
hoose a 
hara
teristi
 horizontallength l whi
h is the wavelength (roughly the inverse of the wave ve
tor), a 
hara
teristi
verti
al length h whi
h is the water's height, and the amplitude A of the propagating



8perturbation. Moreover, we denote U,W, P the 
hara
teristi
 horizontal velo
ity, verti
alvelo
ity and pressure respe
tively. We may then de�ne:
c0 =

√
gh, α =

A

h
, β =

h2

l2
, U = αc0, W =

Ul

h
=

c0α√
β
, P = ρgA, Re = ρc0h

ν
, (3)where c0 is the phase velo
ity. As a 
onsequen
e, one may make the �elds dimensionlessand uns
aled:

ũ = Uu, w̃ = Ww, p̃ = p̃atm − ρgz̃ + Pp, η̃ = Aη, (4)and the variables:
x̃ = lx, z̃ = h(z − 1), t̃ = t l/c0. (5)With these de�nitions, the new system with the new �elds and variables writes in thenew domain Ωt = {(x, z), x ∈ R, z ∈ [0, 1 + αη(x, t)]}:





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re √β

uzz + px = 0 in Ωt,

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √

β
wzz + pz = 0 in Ωt,

βux + wz = 0 in Ωt,

(η − p)n+ 1Re ( 2ux

√
β uz + wx

uz + wx 2/
√
βwz

)
.n = 0 on z = 1 + αη,

ηt + αuηx − 1
β
w = 0 on z = 1 + αη,

u = 0 on z = 0.

(6)
Like Kakutani and Matsuu
hi [11℄, we 
ould have eliminated η − p in the two equationsof stress 
ontinuity at the free boundary. After simpli�
ation by 1 / Re, this would haveled us to the �simpli�ed� system:

{
η − p+ 1Re(−αηx(uz + wx)− 2ux

√
β) = 0,

(1− (αηx)
2)(uz + wx) = 4α

√
βηxux.Noti
e that the number of dynami
 
onditions is linked to the lapla
ian's presen
e. If, ina subdomain, the �ow is invis
id (Euler or Re → ∞), then one must not keep the twoabove equations. Yet, on
e we have simpli�ed the 1/ Re term above we might forget thatthe se
ond equation must be swept away as if there remained a 1/Re term before everyterm. So this �simpli�
ation� 
an be misleading.Unlike us, the authors of [11℄ use the same 
hara
teristi
 length in the two spa
e dire
tionsand so, for them, h/l = 1. Our verti
al velo
ity is not the same as in [11℄ be
ause we takedi�erent 
hara
teristi
 lengths in the x and z dire
tions. It su�
es to set β = 1 in ourequations to get those of [11℄. Our 
hoi
e of s
ales in W raises some √

β terms that [11℄avoid. Although the authors make their system dimensionless, they did not really uns
alethe �elds nor the variables. Our �elds are uns
aled and so are of the order of unity.Our 
hara
teristi
 pressure is P = ρgA while [11℄ use ρgh. This explains that [11℄ havean α more before the pressure p in their equations.



92.2 The dispersion relationSeen our s
aling, we are looking for small �elds. So we linearize the system (6) and getin the new domain:




ut −
√
βRe uxx − 1Re √

β
uzz + px = 0 in R× [0, 1],

wt −
√
βRe wxx − 1Re √β

wzz + pz = 0 in R× [0, 1],

βux + wz = 0 in R× [0, 1],

η − p− 2
√
βuxRe = 0 on z = 1,

uz + wx = 0 on z = 1,

ηt − 1
β
w = 0 on z = 1,

u = 0 on z = 0.

(7)
First, we eliminate the pressure from (7)1 and (7)2:

uzt −
√
βRe uxxz −

1Re√β
uzzz − wxt +

√
βRe wxxx +

1Re√β
wxzz = 0.Then we eliminate u from the previous equation thanks to (7)3 by deriving with respe
tto x and some simpli�
ations:

(∂2
z + β∂2

x)(∂
2
z + β∂2

x − Re√β∂t)w = 0. (8)If w is of the form A(z) exp ik(x− ct) with a non-negative k and a (
omplex) phasevelo
ity c, we 
an de�ne a parameter with non-negative real part similar to the one usedby [11℄:
µ2 = βk2 −Re√βikc. (9)Thanks to this notation, the solutions of (8) are su
h that

A(z) = C1 cosh
√

βk(z − 1) + C2 sinh
√

βk(z − 1) + C3 coshµ(z − 1) + C4 sinh µ(z − 1).(10)Up to now we have eliminated u and p only in the volumi
 equations. We still have touse the boundary 
onditions of (7) to �nd the 
onditions on the remaining �eld w.The �rst equation of (7)7 is u(0) = 0. After a di�erentiation with respe
t to x and (7)3,we get wz(0) = 0.The se
ond equation of (7)7 is w(0) = 0 and needs no treatment.The equation (7)5 
an be di�erentiated with respe
t to x and, thanks to (7)3 leads to
wzz − βwxx = 0 at height z = 1.The equation (7)6 enables to 
ompute/eliminate η.The equation (7)4 must be di�erentiated with respe
t to t for η to be repla
ed. Then weget

w

β
− pt +

2Re√β
wzt = 0.



10We may di�erentiate the previous equation with respe
t to x so as to have a px term whi
h
an be repla
ed thanks to (7)1 to have new u terms. It su�
es then to di�erentiate thisequation and use the in
ompressibility (7)3 to get the last 
ondition. The full 
onditionson w are:
wz(0) = 0,

w(0) = 0,

wzz(1)− βwxx(1) = 0,

wxx(1)− wztt(1) +
3
√
βRe wxxzt(1) +

1Re√β
wzzzt(1) = 0.

(11)The solutions (10) will satisfy a homogeneous linear system in the 
onstants C1, C2, C3, C4.Its matrix is:



√
βk sinh (

√
βk) −

√
βk cosh (

√
βk) µ sinhµ −µ coshµ

cosh (
√
βk) − sinh (

√
βk) coshµ − sinhµ

2k2β 0 µ2 + βk2 0

−k2
√
βk3c2 + 2iβk4cRe −k2 2µ

√
βik3cRe


 . (12)It su�
es to 
ompute its determinant to get the dispersion relation:

4βk2µ(βk2 + µ2) + 4µk3β3/2(µ sinh (k
√
β) sinh µ− k

√
β cosh (k

√
β) cosh µ)

−(βk2 + µ2)2(µ cosh (k
√
β) coshµ− k

√
β sinh (k

√
β) sinh µ)

−k
√
βRe2(µ sinh (k

√
β) sinhµ− k

√
β cosh (k

√
β) sinhµ) = 0.

(13)This relation is identi
al to the one of [11℄ ex
ept that our non-dimensionnalizing makesa di�eren
e between x and z. So instead of k (for [11℄), we have k
√
β.2.3 Asymptoti
 of the phase velo
ity (very large Re)In this subse
tion, we prove the following Proposition:Proposition 1. Under the assumptions

k
√

βRe c → +∞ (14)
k = O(1) (15)
β → 0 (16)Re → +∞ (17)
c = O(1) (and c bounded away from 0) (18)if there exists a 
omplex phase velo
ity c solution of (13), then it is su
h that:

c =

√
tanh (k

√
β)

k
√
β

− eiπ/4Re−1/2(k
√
β)1/4

2 tanh3/4 (k
√
β)

+ o(β−1/4Re−1/2). (19)



11Moreover, the de
ay rate in our �nite-depth geometry, whi
h stems from vis
osity, is:Im(kc) =
−1

2
√
2

k5/4β1/8

√Re tanh3/4 (k
√
β)

+ o(β−1/4Re−1/2). (20)We denote o(f) (resp. O(f)) a fun
tion whi
h ratio with f tends to zero (resp. isbounded).Our de
ay rate is not the same as Boussinesq's or Lamb's one. The reason is that ourgeometry is not in�nite. This de
ay rate, in the regime Re= Rε−5/2 and β = b ε with
onstant R, b gets:Im(kc) =
−
√
k

2
√
2
√Re√β

+ o(β−1/4Re−1/2) =
−
√
kε

2
√
2
√

R
√
b
+ o(ε) (21)Our Proposition is stated in [11℄ but not rigorously proved. Moreover, one must noti
ethat the vis
osity modi�es also the real part of the phase velo
ity at the same order.Proof. The de�nition of µ (ℜ(µ) ≥ 0) and assumptions (14, 15, 16) enable to state that

µ2 → ∞ and the k2β term tends to zero. So we have:
µ = e−iπ/4

√
k
√

βRe c+O(
β3/4Re ), (22)where the leading term tends to ∞ and its real part tends to +∞, while the error termtends to zero. As a 
onsequen
e, tanhµ = 1 +O(e−µ) and 1/ coshµ = O(e−µ). Dividing(13) by cosh µ and using a generi
 notation P (β, µ) for an unspe
i�ed polynomial in β, µ,we have:

O(P (β, µ)e−µ) + 4µk4β2

(
µ
sinh (k

√
β)

k
√
β

− cosh (k
√
β)

)
−

(k2β + µ2)2
(
µ cosh (k

√
β)− k

√
β sinh (k

√
β)
)
−

k2βRe2(µsinh (k√β)
k
√
β

− cosh (k
√
β)

)
= 0.

(23)The leading term of the se
ond monomial is 4k4β2µ2 sinh (k
√
β)/(k

√
β) while the leadingterm of the fourth (last) is −k2βRe2µ sinh (k

√
β)/(k

√
β). Seen the assumptions, theirratio is 4k2βµRe−2 = O(β5/4Re−3/2). Under the assumptions (16, 17), this ratio tends tozero. So, in a �rst step, we 
an negle
t the se
ond monomial with respe
t to the fourth.If we look for a non-vanishing solution, we need to have a 
ompensation of the only tworemaining leading terms. One may then rewrite (23) as:

−(µ4 + hot)(µ cosh (k
√
β) + hot)− k2βRe2(µsinh (k√β)

k
√
β

+ hot

)
+ hot = 0.This reads after easy 
omputations:

c2 =
tanh (k

√
β)

k
√
β

+ hot. (24)



12Su
h a relation is well-known. It 
on�rms the assumption (18). To pursue the expansionwe 
ome ba
k to (23) and expand its various monomials starting with the se
ond:
−4ik5β5/2Re csinh (k√β)

k
√
β

+O(β3) +O(β9/4Re1/2).Indeed, even the leading term of this se
ond monomial will be negligible in 
omparisonwith O(β7/4Re3/2) that we will have further. The third monomial of (23) is more 
omplexand we must keep:
+e−iπ/4

(
k
√

βRe c)5/2 cosh (k√β)− k3β3/2Re2c2 sinh (k√β) +O(β7/4Re3/2).The fourth monomial of (23) is expanded:
−k2βRe2(e−iπ/4

√
k
√

βRe csinh (k√β)

k
√
β

− cosh (k
√

β)

)
+O(β7/4Re3/2).Using these expansions, the equation (23) 
an be rewritten:

e−iπ/4
(
k
√
βRe)5/2 √c cosh (k

√
β)

[
c2 − tanh (k

√
β)

k
√
β

+ eiπ/4√
k
√
βRe√c

]
+

O(P (β, µ)e−µ)− k3β3/2Re2c2 sinh (k√β) +O(β3) +O(β7/4Re3/2) = 0.We would like to state that the term between square bra
kets vanishes. For that purpose,we must 
he
k that the various other monomials are negligible in 
omparison with the thirdwritten between the square bra
kets whi
h expands in: O((
√
βRe)5/2[(√βRe)−1/2]) =

O(βRe2) if we assume (24). On
e it is 
he
ked, we 
an 
laim we proved:
c2 =

tanh (k
√
β)

k
√
β

− eiπ/4√
k
√
βRe c + o(β−1/4Re−1/2), (25)and the proof is 
omplete by 
omputing the square root of (25) and repla
ing the �rstorder of c in (25) whi
h leads to (19).We must stress that the 
omplex phase velo
ity (19) 
ontains two terms. The �rst isthe 
lassi
al gravitational term (√tanh (k

√
β)/(k

√
β)) whi
h may be expanded when βtends to zero: 1 − k2β/6 + O(β2). The se
ond is purely vis
ous and 
an be expanded:

−
√
2(1 + i)/(4

√
k)(Re√β)−1/2 + o(Re√β)−1/2). So the dependen
es of c both on thegravitational and on the vis
ous e�e
ts are of the same order of magnitude when β and

(Re√β)−1/2 are of the same order. Then the dependen
e of Re on β is su
h that:Re ≃ β−5/2. (26)



132.4 Se
ond asymptoti
s of the phase velo
ity (moderate Re)The de�nition of µ2 is µ2 = k2β − ik
√
βRe c and we assume a long-wave asymptoti
s(β → 0). So one term or the other dominates in µ2. The extremes are either µ2 → ∞(see above) or µ2 → 0.In the present subse
tion, we investigate the latter 
ase and exhibit a more pre
ise ex-pansion than the one justi�ed in [11℄. Indeed, we prove the following Proposition:Proposition 2. Under the assumptions

k is bounded from zero and in�nity, (27)
µ → 0 and so √βRe c → 0, (28)
β → 0 (long waves), (29)Re → +∞, (30)if there exists 
omplex phase velo
ities c solutions of (13), then one of them is su
h that:

c = −ik
√
βRe
3

− 19ik3β3/2Re3
90

+ o(β3/2Re3), (31)and ne
essarily (28) implies: √
βRe → 0, (32)and so the phase velo
ity tends to zero.Noti
e that if we assume √

βRe → 0, the 
on
lusion is the same and the proof mu
hsimpler.Proof. Sin
e µ → 0, we 
an expand all the fun
tions in (13). In this expansion, we payspe
ial attention to the fa
t that Re → +∞ and it may not be 
onsidered as a 
onstantparameter of an expansion in β (hidden in O(β2) as [11℄ did). After tedious expansions,there remains from (13):
O(βRe2c2µ5) +O(βRe2µ7) +O(β3/2Re cµ5) +O(β2µ5)+

O(β3Re2c2µ) +O(β7/2Re cµ) +O(β4Re2µ)+
+µRe2k2βc

[
(c+

ik
√
βRe
3 )− ik

√
βRe c2
2 +

4k2βRe2c
5 + 2k2βc+

+
8ik3β3/2Re

5 +
ik3β3/2Reµ2

3× 5!

]
= 0.

(33)
Thanks to the assumptions (27-28) we know that √βRec → 0. In a �rst step we assumethe terms denoted with O(...) are really negligible in 
omparison with the largest writtenwith square bra
kets O(µRe2k2βc[

√
βRe]) = O(µβ3/2Re3c). We will 
he
k it afterwards.As a 
onsequen
e, we 
an look for solutions su
h that the term inside the square bra
kets



14vanishes. After 
omparison of all the terms, there remains only two terms that may
ompensate:
c = −ik

√
βRe
3

+ o(
√
βRe). (34)Sin
e we assume (28), we may write:

√
βRe c → 0 ⇒ βRe2 → 0, (35)whi
h implies (32) and so c → 0. Moreover, µ2 = −ik

√
βRe c(1 + ik

√
β/(Rec)), andbe
ause of (34) we 
an write:

µ2 ∼ −k2β Re2/3. (36)With su
h properties, we 
an 
he
k a posteriori that the assumptions are �lled. Indeed,all the �negligible� terms are of the type O(β9/2Re9), O(β9/2Re7), O(β9/2Re5), O(β9/2Re3),and O(β9/2Re2). Even the largest (and �rst in our list) is negligible in 
omparison with
O(β5/2Re5) whi
h is the order of magnitude of the main term inside the square bra
kets.So the assumption is 
onsistant with the other results.Before pursuing the expansion of c, we must 
he
k that the already negle
ted terms 
anstill be negle
ted in 
omparison with the next order of the term inside the square bra
kets.Indeed, the terms inside the square bra
kets, on
e isolated, are of the order O(β5/2Re5),
O(β7/2Re7) (twi
e), O(β7/2Re5) (twi
e), or O(β9/2Re7) in the order where the terms arewritten. Sin
e the �negle
ted� terms are at most of the order O(β9/2Re9), we 
an usethe informations of the term between square bra
kets only until the order O(β7/2Re7)in
luded:

c +
ik
√
β Re
3

− ik
√
βRe c2
2

+
4k2βRe2 c

5
= o(β3/2Re3)

⇔ c = −ik
√
β Re
3

− 19ik3β3/2Re3
90

+ o(β3/2Re3). (37)
3 Formal derivationWe are going to 
onsider the in�uen
e of vis
osity on the solution of the Navier-Stokesequations in the domain Ωt. On the basis of the linear theory of the previous se
tion, weassume Re ≃ β−5/2 (38)as justi�ed in (26) whi
h is the 
ase where vis
ous and gravitationnal e�e
ts balan
e. Wefurther assume

α ∼ aε, β ∼ bε, (39)where ε is a 
ommon measure of smallness. So α/β ≃ 1 in the sense that it does notvanish nor tends to in�nity. Our main purpose here is to derive an asymptoti
 system of



15redu
ed size from the global Navier-Stokes equations in the whole moving domain. In thenon-vis
ous 
ase, we would derive the 
lassi
al Boussinesq system.In order to prove our main result, we pro
eed in the same way as [11℄ and distinguish twosubdomains: the upper part (z > ε) where vis
osity 
an be negle
ted, and the lower part(0 < z < ε) whi
h is a boundary layer at the bottom and where vis
osity must be takeninto a

ount. All the other geometri
al 
hara
teristi
s have already been depi
ted. Our�rst main Proposition is stated hereafter.Proposition 3. Let η(x, t) be the free boundary's height. Let ub,0(x, γ) for γ ∈ [0,+∞[(resp. uu,0(x, z) for z ∈ [0, 1 + εη(x, t)[) be the initial horizontal velo
ity in the boundarylayer (resp. in the upper part of the domain). The solution of the Navier-Stokes equationwith this given initial 
ondition, satis�es:




ut + ηx + αuux − βηxxx
(z2 − 1)

2 = O(ε2),

ηt + ux(x, z, t)− β
2 ηxxt(z

2 − 1
3
) + α(uη)x − ε√

πR
√
b
ux ∗ 1√

t
+

+ 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫

√

R
√

b
4t

γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(40)
where the 
onvolution is in time and the parameters α, β, Re have been de�ned above.If the initial velo
ity is a Euler �ow, then ub,0

x (x, γ′′) − uu,0
x (x, z = 0) = 0 (there is novis
ous �ow in the boundary layer) and the system writes:





ut + ηx + αuux − βηxxx
(z2 − 1)

2 = O(ε2),

ηt + ux(x, z, t)− β
2 ηxxt(z

2 − 1
3
) + α(uη)x − ε√

πR
√
b
ux ∗ 1√

t
= O(ε2),

(41)where the 
onvolution is still in time.Of 
ourse, the domain in the boundary layer γ ∈ [0,+∞[ is not physi
al. Indeed, it shouldbe 
onsidered as large with respe
t to ε but small with respe
t to 1. One 
ould set it to
z =

√
ε (or γ = 1/

√
ε) or to any value (between ε and 1) large with respe
t to ε but smallwith respe
t to 1 on whi
h our �nal result should not rely on. This would give the sameresult, as is 
lassi
al in boundary layer analysis.Remark 4. The double integral term in (40) is new and surprising. In the boundary layer,the initial �ow is monotoni
 and so ub,0

x (x, γ′′)−uu,0
x (x, z = 0) ≤ 0. As a 
onsequen
e thisterm vanishes only if the initial 
ondition in the boundary layer is a Euler one. In otherwords, it happens only if the �ow is su
h that its evolution equations are vis
ous, but itsinitial 
ondition non-vis
ous ... This seems unphysi
al.One 
ould also wonder whether vanishing initial 
onditions suit. A physi
al question isthen to know whether the initial �ow in the boundary layer establishes fast or not. We
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laim that the 
hara
teristi
 time for the vis
ous e�e
ts to appear is roughly TNSE = ρh2
0/νor TNSE = ρl2/ν. Its ratio with the 
hara
teristi
 time of the invis
id gravity �ow (l/c0)is either Re √

β = ε−2 or Re /
√
β = ε−3. In any 
ase, it is large and the boundary layerdoes not establish fast enough. Khabakhpashev [13℄ already dis
ussed it but started fromrest ! Our double integral term also happens to be negative, in
reasing from a given valueto zero for large time (for whi
h the model is no more valid). Its derivative with respe
tto time is rather simple and 
ould be used in future numeri
al simulations.In the �rst subse
tion 3.1 we treat the upper part where 
onvenient equations of (6) arekept. Then in subse
tion 3.2 we solve in the boundary layer the equations extra
ted from(6) after a res
aling. Those solutions need to mat
h through a 
ontinuity 
ondition atthe boundary (z = ε) dis
ussed in Subse
tion 3.3. At this stage, the system obtained stilldepends on z. So Subse
tion 3.4 is devoted to making expli
it the dependen
e on z.3.1 Resolution in the upper partThe upper part is 
hara
terized by ε < z < 1 + αη(x, t) and x, t ∈ R. We start fromthe system for the �elds in the upper part, written u, w, p instead of uu, wu, pu for sake ofsimpli�
ation. The height of the perturbation η is only de�ned in the upper part and sowill always be denoted the same in the boundary layer. The system of PDE in the upperpart is extra
ted from (6):





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re√β

uzz + px = 0 for ε < z < 1 + αη,

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √β

wzz + pz = 0 for ε < z < 1 + αη,

βux + wz = 0 for ε < z < 1 + αη,

−αηx(η − p) + 1Re(−2α
√
βuxηx + (uz + wx)) = 0 on z = 1 + αη,

η − p+ 1Re(−αηx(uz + wx)− 2
√
βux) = 0 on z = 1 + αη,

ηt + αuηx − 1
β
w = 0 on z = 1 + αη.

(42)
Sin
e we assume Re ≃ ε−5/2, the terms √β/Re are of the order of ε3 and the terms Re√βof the order of ε−2. This simpli�es (42)1 and (42)2 and makes disappear the lapla
ian. Asa 
onsequen
e, we must not keep the two dynami
 
onditions (42)4 and (42)5 sin
e theyare asso
iated to a lapla
ian. We de
ide to drop (42)4.Alternatively, one 
an stress that (42)5 gives η − p = O(ε3) and so the lhs of (42)4is O(ε4) + O(ε5/2). Sin
e we expand until the order two, one may 
laim the equationredu
es to 0 = 0. But one 
ould also simplify by 1/Re (≃ ε5/2) and be driven to a newequation. This equation would provide one more 
ondition to the two equations for two�elds. It is not surprising to see that the �nal solution would then be u = 0. The erroris that we must drop one boundary 
ondition unless we have one additionnal 
ondition.The above argument to get rid of (42)4 is su�
ient.



17On this topi
, the literature uses the same equations as us but the argument for drop-ping is rarely expli
ited. In [11℄, Kakutani and Matsuu
hi 
laim �the 
ondition [(42)4℄ isautomati
ally satis�ed� (p. 242 al. 3) whi
h is either wrong (the equation disappears) orin
omplete (what if they simplify by ε5/2 ?).In [8℄, Dutykh and Dias solve the same problem as us and write two equations (their (3)and (4)) among whi
h they keep only one for the derivation without explaining this drop.The equation (42)3 gives w up to a 
onstant that 
an be found in (42)6:
w(x, z, t) = −β

∫ z

1+αη

ux(x, z
′, t) dz′ + β(ηt + αu(1 + αη)ηx), (43)and we stress that this equation is exa
t. For the expansions later, we need to expandthis equation up to the third order:

w(x, z, t) = β(ηt +

∫ 1

0

ux)− β

∫ z

0

ux + αβ(u(1)η)x +O(ε3). (44)The se
ond order of the previous equations su�
es to determine p from (42)2 up to a
onstant:
p(x, z, t) = p(x, 1+ αη, t)− β(ηtt +

∫ 1

0

uxt)(z− 1) + β

∫ z

1

∫ z′

0

uxt(x, z
′′, t) dz′′ dz′ +O(ε2).Thanks to (42)5 the 
onstant may be found (p(1 + αη) = η +O(ε3)) and so:

p(x, z, t) = η − β(ηtt +
∫ 1

0
uxt)(z − 1) + β

∫ z

1

∫ z′

0
uxt(x, z

′′, t) dz′′ dz′ +O(ε2)

= η − βηtt(z − 1) + β
∫ z

1

∫ z′

1
uxt(x, z

′′, t) dz′′ dz′ +O(ε2).
(45)Then the remaining �eld u satis�es (42)1 at the �rst order:

ut + ηx + αuux + αuz(ηt +

∫ 1

z

ux)− βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), (46)where we have repla
ed the uxxt by −ηxxx as usual.We still have to solve the equations in the lower part.3.2 Resolution in the boundary layerWe need �rst to re
all some 
lassi
al properties of Lapla
e transforms.3.2.1 Some useful propertiesBefore solving the equations in the lower part, we list here some 
lassi
al properties ofthe Lapla
e transform. We start from the de�nition
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L(f)(p) = f̂(p) =

∫

t∈R+

f(t)e−pt dt. (47)It is well-known that the Lapla
e transform of the derivative is given by
L(f ′)(p) = −f(0) + pL(f)(p), (48)and the produ
t of two fun
tions transforms into the 
onvolution of the Lapla
e trans-forms:

L(fg) = L(f) ∗ L(g). (49)Here and below, we use the following de�nition of the 
onvolution, linked to the Lapla
etransform:
f1 ∗ f2(t) =

∫ t

0

f1(u)f2(t− u)du. (50)These formulas will be useful in the next subse
tion.3.2.2 The �elds in the boundary layerThe lower part of the domain (0 < z < ε) is a boundary layer where the vis
ous e�e
tsdominate. We start from the system for the bottom �elds, written u, w, p instead of
ub, wb, pb for sake of simpli�
ation and extra
ted from (6):





ut + αuux +
α
β
wuz −

√
βRe uxx − 1Re √β

uzz + px = 0 for 0 < z < ε

wt + αuwx +
α
β
wwz −

√
βRe wxx − 1Re √

β
wzz + pz = 0 for 0 < z < ε

βux + wz = 0 for 0 < z < ε

u(z = 0) = 0 and w(z = 0) = 0.

(51)As is justi�ed in subse
tion 2.3 and equation (26), the vis
ous and gravitational e�e
tsbalan
e when Re ≃ β−5/2. So we remind the reader of our assumption Re = R ε−5/2,
α = aε and β = bε for 
onstant R, a, b. We are naturally led to 
hange the s
ale in z asin any boundary layer. Let us introdu
e a new verti
al variable γ = z/ε. The new �eldsshould be denoted ũ(x, γ, t) = u(x, εγ, t) for instan
e. Nevertheless, we will not 
hangethem. The new system writes:





ut + αuux +
a
bε
wuγ −

√
b

R
ε3uxx − uγγ

R
√
b
+ px = 0,

wt + αuwx +
a
bε
wwγ −

√
b

R
ε3wxx − wγγ

R
√
b
+ pγ

ε
= 0,

εβux + wγ = 0,

u(γ = 0) = 0 and w(γ = 0) = 0.

(52)Like in the upper part we 
an �nd the verti
al velo
ity from (52)3 and (52)4:
w(x, γ, t) = −εβ

∫ γ

0

ux(x, γ
′, t) dγ′. (53)



19Carrying ba
kward the previous equation in (52)2, one has pγ = O(ε3). So as to determine
p, we need to use the 
ontinuity relation for the pressure (p(x, γ = 1, t) = pu(x, z = ε, t))unless we 
annot go on. As we know the pressure in the upper part pu from (45), we 
anwrite:

p(x, γ, t) = p(x, γ = 1, t) +O(ε3) = pu(x, ε, t) +O(ε3) = η(x, t) +O(ε). (54)Using this equation and (53) in (52)1, we have at �rst order:
ut + ηx −

uγγ

R
√
b
= O(ε). (55)This equation must be 
ompleted with initial 
ondition

u(x, γ, t = 0) = ub,0(x, γ), (56)and boundary 
ondition:
{

u(x, γ = 0, t) = 0

u(x, γ → +∞, t) = uu(x, z = 0, t) (
ontinuity 
ondition). (57)Noti
e that [11℄ does not take an initial 
ondition, and uses a time-Fourier transform.Sin
e we solve a Cau
hy problem, we have an initial 
ondition and so we must repla
e theFourier transform by the Lapla
e one. In all his arti
les, P.L. Liu (e.g. [19℄) quotes [22℄(pp. 153�159) in whi
h a sine-tranform (in γ) is used, but the initial 
ondition is set tozero. In a separate 
al
ulation, not reprodu
ed here, we used the same sine-transform in
γ and paid attention to the initial 
ondition. We were led to the very same result.We solve the system (55-57) in the following Lemma.Lemma 5. If the initial 
onditions ub,0(x, γ) and uu,0(x, z = 0) are uniformly 
ontinuousin γ and satisfy ∫ ∞

0

| ub,0(x, γ)− uu,0(x, z = 0) | dγ < ∞,
∫ ∞

0

| ub,0
x (x, γ)− uu,0

x (x, z = 0) | dγ < ∞,
(58)then the solution of (55-57) is

u(x, γ, t) = uu(x, z = 0, t) +

√
R
√
b

2

∫ +∞
0

f0(x, γ
′) e

−
R
√

b(γ′−γ)2

4t√
πt

dγ′−

uu(x, 0, .) ∗ L−1(e−σγ)−
√

R
√
b

2

∫ +∞
0

f0(x, γ
′) e

−R
√
b(γ′+γ)2

4t√
πt

dγ′ +O(ε),

(59)where f0(x, γ) = ub,0(x, γ)− uu,0(x, z = 0), uu is the horizontal velo
ity in the upper part,given by (46) and σ is the only root with a positive real part of R√
b p:

σ = σ(p) =

√
R
√
bp. (60)where p is the dual variable of time t and the 
onvolution is in time.



20Remark 6. The solution of (55) may be known only up to any fun
tion of x. Theboundary 
ondition (57) enables to determine this fun
tion.Remark 7. The 
ompatibility of the 
onditions (56) and (57) for
es to have, when γtends to +∞:
ub,0(x, γ) → uu,0(x, z = 0),and,when γ → 0:

ub,0(x, γ = 0) = 0.Meanwhile we also prove the following PropositionProposition 8. Under the same assumptions as in Lemma 5, the bottom shear stress is
τ b =

(
∂ub

∂γ

)

γ=0

=

√
R
√
buu(x, z = 0, 0)√

π
Pf

1√
t
+

√
R
√
b√

π

∫ t

0

uu
t (x, z = 0, t− s)√

s
ds, (61)where Pf denotes the prin
ipal value a

ording to the theory of distributions.First let us prove Proposition 8.Proof. The initial 
ondition f0 may not make any di�eren
e (it 
an be seen through anexpli
it 
omputation), so the 
orrespondig term is taken o�. Then a simple derivativeand the following formula (See [7℄ p. 320)

L−1
(
e−a

√
p
)
=

a

2
√
πt3/2

e−
a2

4t ,applied to (59) for any a > 0 leads to
τ b = − d

dγ

(∫ t

0

uu(x, z = 0, t− s)
e−

R
√

bγ2

4s

√
R
√
bγ

2
√
πs3/2

ds

)
+O(ε),

= −
√

R
√
b

∫ t

0

uu(x, z = 0, t− s)

2
√
πs3/2

e−
R
√

bγ2

4s ds−
√

R
√
b

∫ t

0

uu(x, z = 0, t− s)√
πs1/2

(
−R

√
bγ2

4s2
e−

R
√

bγ2

4s

)
ds+O(ε).The se
ond term may be integrated by parts to get

−
√

R
√
b√

π

(
uu(x, z = 0, 0)√

t
e−

R
√

bγ2

4t −
∫ t

0

(
−uu

t (x, z = 0, t− s)√
s

− uu(x, z = 0, t− s)

2s3/2

)
e−

R
√

bγ2

4s ds

)
,whi
h simpli�es partially with the �rst term. At the end, there remains only

√
R
√
b√

π

uu(x, z = 0, 0)√
t

e−
R
√

bγ2

4t +

√
R
√
b√

π

∫ t

0

uu
t (x, z = 0, t− s)√

s
e−

R
√

bγ2

4s ds.This justi�es the formula.



21The s
heme of the proof of Lemma 5 is to solve (55) up to two unknown fun
tions, thento determine these fun
tions so as to satisfy the initial and boundary 
onditions. Thisprovides a ne
essary formula. We 
he
k in Appendix A the solution satis�es the boundaryand initial 
onditions. Let us prove Lemma 5.Proof. Let us denote
f(x, γ, t) = u(x, γ, t)− uu(x, z = 0, t). (62)Sin
e ft = ut + ηx +O(ε) (thanks to (46)) and fγ = uγ, the equation (55) writes:

ft − fγγ/(R
√
b) = O(ε). (63)The initial 
ondition is

f(x, γ, t = 0) = ub,0(x, γ)− uu,0(x, z = 0) =: f0(x, γ), (64)and the boundary 
onditions read
f(x, γ = 0, t) = −uu(x, 0, t),

limγ→+∞ limε→0 fε(x, γ, t) = 0 (
ontinuity 
ondition). (65)So we are driven to a heat equation in a half spa
e with vanishing 
ondition at in�nity, andnon-homogeneous initial and bottom 
onditions. Through a Lapla
e in time transform,(63) be
omes
−f0(x, γ) + pf̂(p)− f̂γγ

R
√
b
= O(ε). (66)In order to solve this non-homogeneous ODE, we start with the homogeneous one andre
all that we de�ne σ as the only root with a positive real part of R√

bp in (60). Itssolutions are
f̂(x, γ, ξ) = C1(x, p)e

+σγ + C2(x, p)e
−σγ +O(ε).By applying the method of parameters variation, we look for C1(x, γ, p), C2(x, γ, p) su
hthat:

−C1,γσe
σγ + C2,γσe

−σγ = R
√
bf0(x, γ) +O(ε),and solving (66) amounts to solving the system of two equations with two unknownfun
tions C1 and C2: {

C1,γe
σγ + C2,γe

−σγ = 0

−C1,γe
σγ + C2,γe

−σγ = R
√
b

σ f0,whi
h solution is (thanks to assumption (58)):




C1(x, γ, p) = −R
√
b

2σ

∫ γ

+∞
f0(x, γ

′)e−σγ′
dγ′ + C̃1(x, p)

C2(x, γ, p) = +R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′ + C̃2(x, p).



22The full solution is so
f̂(x, γ, p) = −R

√
b

2σ

∫ γ

+∞
f0(x, γ

′)e−σγ′
dγ′e+σγ + C̃1(x, p)e

+σγ+

R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′e−σγ + C̃2(x, p)e

−σγ′
+O(ε).We look for C̃1 �rst. Sin
e f0 is bounded, simple bounds prove that the �rst, third andfourth terms are bounded. So

C̃1(x, p) = 0.The unknown fun
tion C̃2(x, p) is then given by the boundary 
ondition (65)1 at thebottom:
C̃2(x, p) = −uu(x, z = 0, p)− R

√
b

2σ

∫ +∞

0

f0(x, γ
′)e−σγ′

dγ′.In a ne
essary way,
f̂(x, γ, p) = +R

√
b

2σ

∫ +∞

γ

f0(x, γ
′)e−σγ′

dγ′e+σγ +
R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′e−σγ−

(
ûu(x, z = 0, p) + R

√
b

2σ

∫ +∞

0

f0(x, γ
′)e−σγ′

dγ′
)
e−σγ +O(ε).

(67)From the de�nition of f and the existen
e of an inverse Lapla
e transform, one knowsthat:
f(x, γ, t) = R

√
b

2

∫ +∞

γ

f0(x, γ
′)L−1

(
e−σ(γ′−γ)

σ

)
dγ′+

R
√
b

2

∫ γ

0

f0(x, γ
′)L−1

(
eσ(γ

′−γ)

σ

)
dγ′ + f(x, z = 0, .) ∗ L−1

(
e−σγ

)
−

R
√
b

2

∫ +∞

0

f0(x, γ
′)L−1

(
e−σ(γ′+γ)

σ

)
dγ′ +O(ε).Owing to formula (see [7℄):

L−1

(
e−ã

√
p

√
p

)
=

1√
πt

e−
ã2

4t ,if ã > 0, one may justify the expli
it form of u given in (59). Until the end of this arti
le,we denote the fun
tion of time t:
A = A(t) =

√
R
√
b

4t
. (68)We still have to 
he
k that the initial 
ondition (64) and remaining of the boundary
onditions (65)2 are satis�ed by u given by (59). This is 
ompleted in Appendix A.So we 
ompleted the proof of the whole Lemma 5.



23From (53) and (59), we 
an then 
ompute the verti
al velo
ity
wb(x, γ, t) = −εβ

∫ γ

0
ub
x(x, γ

′, t)dγ′

= −εβuu
x(x, 0, t)γ + εβuu

x(x, 0, .) ∗ L−1
(
e−σγ − 1

−σ

)
−

εβ
A(t)√

π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2 dγ′′dγ′+

εβ
A(t)√

π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2 dγ′′dγ′.

(69)
We still have to satisfy the 
ontinuity 
onditions of all the �elds u, w, p.
3.3 The 
ontinuity 
onditionsIn the present subse
tion, we need to write expli
itly the supers
ripts u and b for theupper part and bottom regions respe
tively. We write the 
omputed �elds at the sameheight ε that is the 
ommon frontier of both subdomains.We already used the 
ontinuity of pressure that led us to (54).Regarding the horizontal velo
ity, we must noti
e that the limit when γ → +∞ of
limε→0(u

b(x, γ, t)− uu(x, εγ, t)) = f(x, γ, t) has already been 
omputed as vanishing (seeAppendix A). So the boundary 
ondition (65)2 is already satis�ed and the horizontalvelo
ity is 
ontinuous.Noti
e that, should we have swit
hed the limits in ε and γ, the limit would be meaningless.Furthemore, it seems more realisti
 to 
onsider the boundary layer ε to be very small andthen put its height to one order of magnitude more than ε. This is the meaning of thelimits order.Con
erning the verti
al velo
ity, we 
an use the velo
ity in the upper part wu from (44)expanded in ε:
wu(x, εγ, t) = β(ηt +

∫ 1

0
uu
x)− β

∫ εγ

0
uu
x + αβ(uu(1)η)x +O(ε3)

= β(ηt +
∫ 1

0
uu
x)− βεγuu

x(z = 0) + αβ(uu(1)η)x +O(ε3).The velo
ity in the bottom wb is given in (69). The di�eren
e wu − wb 
an be expanded



24in ε:
wu(x, εγ, t)− wb(x, γ, t) = β(ηt +

∫ 1

0

uu
x)− βεγuu

x(z = 0) + αβ(uu(1)η)x +O(ε3)

+εβuu
x(x, z = 0, t)γ − εβuu

x(x, 0, .) ∗ L−1

(
e−σγ − 1

−σ

)
+

+εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ −

εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′ +O(ε3)

= β(ηt +

∫ 1

0

uu
x) + αβ(uu(1)η)x − εβuu

x(x, 0, .) ∗ L−1

(
1

σ

)
+

+εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ − (70)

εβ
A√
π

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′ +O(ε3),up to fun
tions that tend exponentially to zero when γ → +∞.We still must simplify the two last double integrals. This is made in the following LemmaLemma 9. If A = A(t) =

√
R
√
b

4t
, γ is positive, f0(x, γ) is uniformly 
ontinuous in γ andsatis�es (58), then

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′−γ′)2dγ′′dγ′ −

∫ γ

γ′=0

∫ +∞

γ′′=0

f0,x(x, γ
′′)e−A2(γ′′+γ′)2dγ′′dγ′tends to ∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′dγ′′, (71)when γ → +∞.In the proof we apply Fubini's theorem and 
hanges of variables to the two integrals.Proof. Let us apply the Fubini theorem to the two integrals whi
h rewrite then:

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ

γ′=0

e−A2(γ′′−γ′)2dγ′dγ′′ −
∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ

γ′=0

e−A2(γ′′+γ′)2dγ′dγ′′.Simple 
hanges of variables for ea
h of these integrals give
∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ−γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′dγ′′ −

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ γ+γ′′

γ′′′=γ′′

e−A2γ′′′2
dγ′′′dγ′′

=

∫ +∞

γ′′=0

f0,x(x, γ
′′)

(∫ +γ′′

γ′′′=−γ′′

e−A2γ′′′2
dγ′′′ −

∫ γ+γ′′

γ′′′=γ−γ′′

e−A2γ′′′2
dγ′′′

)
dγ′′.



25The �rst of these integrals gives rise to the announ
ed term in (71). So only the se
ondintegral (see Figure 2 left) needs to be proved to vanish when γ tends to +∞. One mayapply again the Fubini's theorem to the se
ond integral whi
h rewrites as a sum of twointegrals (see Figure 2 right):
−
∫ γ

γ′′′=−∞

∫ +∞

γ′′=γ−γ′′′

f0,x(x, γ
′′)e−A2γ′′′2

dγ′′′dγ′′ −
∫ +∞

γ′′′=γ

∫ +∞

γ′′=γ′′′−γ

f0,x(x, γ
′′)e−A2γ′′′2

dγ′′′dγ′′

= −
∫ 0

γ′′′′=−∞

∫ +∞

γ′′=−γ′′′′

f0,x(x, γ
′′)e−A2(γ+γ′′′′)2dγ′′′′dγ′′ −

∫ +∞

γ′′′′=0

∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)e−A2(γ+γ′′′′)2dγ′′′′dγ′′

= −
∫ +∞

γ′′′′=0

e−A2(γ−γ′′′′)2
∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′dγ′′′′ −

∫ +∞

γ′′′′=0

e−A2(γ+γ′′′′)2
∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′dγ′′′′

= −
∫ +∞

γ′′′′=0

e−A2(γ−γ′′′′)2R(γ′′′′)dγ′′′′ −
∫ +∞

γ′′′′=0

e−A2(γ+γ′′′′)2R(γ′′′′)dγ′′′′, (72)where
R(γ′′′′) =

∫ +∞

γ′′=γ′′′′

f0,x(x, γ
′′)dγ′′ → 0 when γ′′′′ → +∞.
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Figure 2: pi
ture of the integrations (right and left)



26In the equation (72), we dis
uss su

essively the �rst and se
ond integral in order to provethey vanish. Sin
e we do know that R tends to 0 when γ′′′′ tends to +∞,
∀ǫ > 0 ∃Γ / γ′′′′ > Γ ⇒| R(γ′′′′) |< ǫ.Consequently, we 
an bound the modulus of the �rst integral of (72) with

∫ Γ

γ′′′′=0

e−A2(γ−γ′′′′)2 | R(γ′′′′) | dγ′′′′ + ǫ

∫ +∞

γ′′′′=Γ

e−A2(γ−γ′′′′)2dγ′′′′

≤ sup
γ>0

| R(γ) |
∫ Γ

γ′′′′=0

e−A2(γ−γ′′′′)2dγ′′′′ + ǫ

[∫ 0

Γ−γ

e−A2γ(5)2

dγ(5) +

∫ +∞

0

e−A2γ(5)2

dγ(5)

]
.In the previous formula, the �rst integral rewrites ∫ γ

γ(5)=γ−Γ
e−A2γ(5)2

dγ(5) whi
h 
learlyvanishes when γ tends to +∞. The se
ond term with a square bra
ket 
an be boundedby ǫ up to a multipli
ative 
onstant (for given t and Γ). So the �rst integral in (72) is assmall as wanted when γ is large enough.Similarly, the se
ond integral of (72) 
an be bounded by two terms:
sup
γ>0

| R(γ) |
∫ Γ

γ′′′′=0

e−A2(γ+γ′′′′)2dγ′′′′ + ǫ

∫ +∞

γ′′′′=Γ

e−A2(γ+γ′′′′)2dγ′′′′.The �rst of the two terms 
learly tends to zero when γ tends to +∞ (for given Γ, t) andthe se
ond 
an be bounded by a 
onstant times ǫ. So the se
ond integral also is as smallas wanted when γ is large enough and we 
ompleted the proof of Lemma 9.After simpli�
ation of β, the 
ontinuity of the verti
al velo
ity (70) reads after making
γ → +∞ thanks to Lemma 9:

ηt +
∫ 1

0
uu
x + α(uu(1)η)x − ε√

πR
√
b
uu
x(x, 0, t) ∗ 1√

t
+

+ 2ε√
π

∫ +∞

γ′′=0

f0,x(x, γ
′′)

∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(73)where the 
onvolution is in time t and the formula L−1
(

1√
p

)
= 1/

√
πt [7℄ is used.3.4 The dependen
e on z of the �eldsAt this stage, we have redu
ed the equations but not as mu
h as in the Euler 
ase whi
hleads to a Boussinesq system in 1+1 dimension. We still have derived only a 2+1 di-mension problem although we have eliminated w and p. The major di�eren
e with theBoussinesq derivation 
omes from the assumption of irrotationnality of Euler �ows. Thisassumption provides uz = O(ε). Su
h a 
ondition would annihilate the dependen
e on zand greatly simplify the above 
omputation.



27Yet irrotationality and its 
orollary of a potential �ow is in
ompatible with the number of
onditions we set at the bottom, whi
h are needed by the dissipativity of the Navier-Stokesequations.We are going to determine the dependen
e on z of u to have a more tra
table system.Starting from now, we drop the u supers
ripts for the �elds in the upper part but keepthe supers
ripts for the boundary layer.In summary, in 
ase Re ≃ ε−5/2, we are in the 
ase of the �rst asymptoti
 depi
ted in thesubse
tion 2.3. Then the redu
ed equations are 
olle
ted from (46) and (73):
ut + ηx + αuux + αuz(ηt +

∫ 1

z

ux)− βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), ∀z (74)
ηt +

∫ 1

0

ux(z) dz + α(u(z = 1)η)x −
ε√

πR
√
b
ux(x, z = 0, t) ∗ 1√

t
+

+
2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2). (75)The equation (74) 
an be rewritten thanks to the order 0 of (75):

ut + ηx + αuux − αuz

∫ z

0

ux − βηxtt(z − 1)− βηxxx(z − 1)2/2 = O(ε2), ∀z. (76)Noti
e that the ηxxx term 
omes from an integral of the shape ∫ z

1

∫ z′

1
uxxt. As an interme-diate result one may see very easily that ηxx = ηtt +O(ε).We intend to prove the following Lemma:Lemma 10. A lo
alized solution of (75), (76) is su
h that

∫ 1

0

u = u(x, z, t)− βηxt
z2 − 1/3

2
+O(ε2), (77)

u(x, 0, t) = u(x, z, t)− βηxt
z2

2
+O(ε2), (78)

u(x, 1, t) = u(x, z, t) + βηxt
1− z2

2
+O(ε2). (79)Proof. In a preliminary step, we prove

uz(x, z, t) = β ηxt(x, t) z +O(ε2). (80)To that end, we di�erentiate (76) with respe
t to z, so as to have:
uzt + αu uxz − αuzz

∫ z

0

ux − βηxtt − βηxxx(z − 1) = O(ε2),and we 
an integrate this equation in time using that ηxx = ηtt +O(ε):
uz + α

∫ t

t0

(u uxz)− α

∫ t

t0

(uzz

∫ z

0

ux)− βηxt − βηxt(z − 1) = C3(x, z) +O(ε2), (81)



28where C3 is a fun
tion of x, z but it does not depend on t. Sin
e the solution is lo
alizedfor any x, z, there exists a time t0 at whi
h uz = 0 = ηxt, we have
C3(x, z) = O(ε),in a �rst attempt to determine C3. But then the equation (81) implies uz = O(ε) andso the quadrati
 terms are all of se
ond order in (81) sin
e they 
ontain at least one uz.Hen
e

uz(x, z, t)− βηxt z = C4(x, z) +O(ε2).Again sin
e for all (x, z) there exists a time at whi
h u = 0 and η = 0, then C4(x, z) =

O(ε2) and this 
ompletes the proof of (80). We 
an then go further by integrating between
z′ and z:

u(x, z, t) = u(x, z′, t) + βηxt
z2 − z′2

2
+O(ε2),and then, integrating in z′ between z′ = 0 and z′ = 1, we 
an state (77). Setting z′ = 0we obtain (78) and setting z′ = 1 gets (79).So the system (75, 76) 
an be rewritten thanks to (77-79), the formula L−1

(
1√
p

)
= 1/

√
πt[7℄, and the fa
t that, as in the Euler 
ase ηxx = ηtt +O(ε):

ut + ηx + αuux − βηxxx
(z2 − 1)

2
= O(ε2), (82)

ηt + ux(x, z, t)−
β

2
ηxxt(z

2 − 1

3
) + α(uη)x −

ε√
πR

√
b
ux ∗

1√
t
+

+
2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2), (83)where all the �elds u are evaluated at (x, z, t) and the 
onvolution is in time. This is thesystem stated in Proposition 3 and the proof is 
omplete.4 Generalization and 
he
kingsIn a �rst subse
tion, we state the 2-D Boussinesq system and 
he
k we may derive the
lassi
al Boussinesq systems in the invis
id 
ase. Then, in Subse
tion 4.2 we derive rigor-ously the vis
ous KdV equation and dis
uss its 
ompatibility with the equation derivedby Kakutani and Matsuu
hi in [11℄, by Liu and Or�la in [19℄, and by Dutykh in [9℄.



294.1 The full 2-D Boussinesq systems familyOne may start from the 3-D Navier-Stokes equations and derive in a way very similar toabove a generalization of (82,83):




ut + ηx + αuux + αvuy − β(ηxxx + ηxyy)
(z2 − 1)

2 = O(ε2),

vt + ηy + αuvx + αvvy − β(ηyxx + ηyyy)
(z2 − 1)

2 = O(ε2),

ηt + ux + vy − β
2 (ηxxt + ηyyt)(z

2 − 1
3
)+

+α(uη)x + α(vη)y − ε√
πR

√
b
ηt ∗

(
1√
t

)
+

+ 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫ A(t)γ′′

γ′=0

e−γ′2
dγ′dγ′′ = O(ε2),

(84)
In 
ase of a Euler initial 
ondition, the last integral term vanishes. It is well-known thanksto [1℄ that there is a family of Boussinesq systems, indexed by three free parameters. Allthese systems are equivalent in the sense that up ot order 1, they 
an be derived one fromthe other by using their own O(ε0) part and by repla
ing partially ηt, ηx and ηy by ux, ut.We are going to prove the same for our system. Namely, the order 0 of (84) enables tointerpolate with aint, bint, cint:





ηx = aintηx − (1− aint)ut +O(ε),

ηy = bintηy − (1− bint)vt +O(ε),

ηt = cintηt − (1− cint)(ux + vy) +O(ε).These formulas are reported in the full 2D system (84), where we drop the 
onvolutionterm and the integral on the initial 
ondition:




ut + ηx + αuux + αvuy − aintβ∆ηx
(z2 − 1)

2 + (1− aint)β∆ut
(z2 − 1)

2 = O(ε2),

vt + ηy + αuvx + αvvy − bintβ∆ηy
(z2 − 1)

2 + (1− bint)β∆vt
(z2 − 1)

2 = O(ε2),

ηt + ux + vy − cint
β
2∆ηt(z

2 − 1
3
) + (1− cint)

β
2∆(ux + vy)(z

2 − 1
3
)+

+α(uη)x + α(vη)y = O(ε2),(85)where we denote ∆ the x, y lapla
ian.This is the general Boussinesq system as 
an be seen in [1℄ (p. 285 equation (1.6)). Indeedif we denote aBCS , bBCS, cBCS and dBCS the interpolation parameters of this arti
le, we
an identify the 1D version of our interpolated (85) with
aBCS = β

2
(1− cint)(z

2 − 1
3
) bBCS = β

2
cint(z

2 − 1
3
),

cBCS = −βaint
z2−1
2

dBCS = −β(1− aint)
z2−1
2

.The meaning of our height z is the same as the θ of [1℄ and the relation between
aBCS, bBCS , cBCS and dBCS (see (1.8) of this arti
le) is satis�ed.



304.2 About the KdV-like equationVarious authors have derived either a vis
ous Boussinesq system or a vis
ous KdV equa-tion.One may wonder what is the vis
ous KdV equation derived from our vis
ous Boussinesqsystem and 
ompare it with what may be found in the literature. First, we state andprove the following Proposition.Proposition 11. If the initial �ow is lo
alized, the KdV 
hange of variables applied tothe system (82, 83) leads to
2η̃τ + 3aη̃η̃ξ +

b

3
η̃ξξξ −

1√
πR

√
b

∫ τ/ε

ξ′=0

η̃ξ(ξ + ξ′, τ)√
ξ′

dξ′ = O(ε), (86)for not too small times τ , where we set α = aε, Re= Rε−5/2 and β = bε.In formula (86), sin
e it has been proved in [15℄ that KdV is a good approximation ofEuler for times up to 1/ε2, and that the velo
ity is lo
alized, we 
ould repla
e the integralterm by
− 1√

πR
√
b

∫ +∞

ξ′=0

η̃ξ(ξ + ξ′, τ)√
ξ′

dξ′.This is the term found in [11℄. Indeed, if we had not raised the question of the initial 
on-dition, we 
ould have used a Fourier transform as [11℄. Then, the remaining 
onvolutionterm would be a 
lear 
onvolution in ξ over all spa
e.Proof. We start from the most general form of (40) and use the KdV 
hange of variables
(ξ = x− t, τ = εt) ⇔ (x = ξ + τ/ε, t = τ/ε), (87)and 
hange of �elds

Φ(x, z, t) = Φ̃(x− t, z, εt) ⇒ Φt = −Φ̃ξ + εΦ̃τ (x− t, z, εt), (88)where the generi
 �eld Φ is tilded when it depends on the (ξ, τ) variables.There are only two di�
ult terms in the system (82, 83) (equivalent to (40)). The �rst isthe 
onvolution whi
h we denote T1:
T1(x, z, t) = − ε√

πR
√
b

∫ t

t′=0

ux(x, z, t− t′)√
t′

dt′

= − ε√
πR

√
b

∫ t

t′=0

ũξ(x− t+ t′, z, εt− εt′)√
t′

dt′,be
ause of (87). But then it su�
es to re
ognize the fun
tion of (x− t, εt) = (ξ, τ) in thelast equation to have the term after the KdV 
hange of variables:
T̃1(ξ, z, τ) = − ε√

πR
√
b

∫ τ/ε

t′=0

ũξ(ξ + t′, z, τ − εt′)√
t′

dt′,

= − ε√
πR

√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ +O(ε2).

(89)



31Sin
e the t′ variable is in pla
e of a ξ, we 
hanged the notation to ξ′. This term is oddbe
ause it has an integration variable (ξ′) that has a physi
al meaning and yet stems froma time (t′). We will dis
uss it below.The se
ond di�
ult term is the one that keeps the initial 
onditions.
T2(x, z, t) = + 2ε√

π

∫ +∞

γ′′=0

(
ub,0
x (x, γ′′)− uu,0

x (x, z = 0)
) ∫

√

R
√

b
4t

γ′′

γ′=0

e−γ′2
dγ′dγ′′

T̃2(ξ, z, τ) = + 2ε√
π

∫ +∞

γ′′=0

(
ub,0
x (ξ +

τ

ε
, γ′′)− uu,0

x (ξ +
τ

ε
, z = 0)

)∫
√

R
√

b ε
4τ

γ′′

γ′=0

e−γ′2
dγ′dγ′′.If the initial boundary layer is lo
alized (or even if it vanishes), for τ not too small,

ub,0
x (ξ + τ

ε
, γ′′) − uu,0

x (ξ + τ
ε
, z = 0) will be small and T̃2 will be negligible in 
omparisonwith ε and so 
an be dropped.We 
an then 
laim that the Boussinessq system after the KdV 
hange of variables and�elds is





−ũξ + εũτ + η̃ξ + αũũξ − βη̃ξξξ

(
z2 − 1

2

)
= O(ε2),

−η̃ξ + εη̃τ + ũξ +
β
2 η̃ξξξ

(
z2 − 1

3

)
+ α(ũη̃)ξ − ε√

πR
√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ = O(ε2).(90)We may noti
e that at the �rst order, and as in the derivation of the KdV equation,
ũξ = η̃ξ +O(ε) ⇒ ũ = η̃ +O(ε),thanks to a simple and 
lassi
al integration. But then the sum of the two equations of(90) gives:

εũτ + εη̃τ + αũũξ + α(ũη̃)ξ +
β
3 η̃ξξξ −

ε√
πR

√
b

∫ τ/ε

ξ′=0

ũξ(ξ + ξ′, z, τ)√
ξ′

dξ′ = O(ε2).Using now the fa
t that ũ = η̃+O(ε), dividing by ε, one states exa
tly the equation (86).The 
onvolution that used to be on time is now on ξ′ and the proof is 
omplete.What 
an be found in the literature ?As stated in the introdu
tion, various authors already derived either a vis
ous Boussinesqsystem or a vis
ous KdV equation. Yet, none of them have the very same equation as us.We must 
larify why there are su
h di�eren
es.The �rst arti
le is [23℄ whi
h proposed
−α3

∫ +∞

ξ′=−∞

ũξ(ξ
′, τ) sgn(ξ′ − ξ)√

| ξ′ − ξ |
dξ′.but Ott and Sudan made an error in their vis
ous KdV 
orre
ted by [11℄.Later, Kakutani and Matsuu
hi [11℄ derive rather rigorously the KdV equation fromNavier-Stokes and set the same regime as us. Yet, they do not raise the problem of



32the initial 
ondition. As a 
onsequen
e, they use a Fourier (in time) transform to solvethe heat-like equation. They may not have the same equation as us sin
e they model adi�erent reality. Yet, they have the same prin
ipal part of the evolution operator (half aderivative). They propose:
− 1

4
√
πR

∫ +∞

ξ′=−∞

η̃ξ(ξ
′, τ)(1− sgn(ξ − ξ′))√

| ξ − ξ′ |
dξ′.Liu and Or�la in [19℄ (and subsequent arti
les) derive a Boussinesq system for a regimedi�erent from ours (Re=Rε−7/2). They solve their heat equation with a sine-transformin the verti
al 
oordinate by quoting [21℄ where is assumed vanishing initial 
onditions.Given their regime, their Boussinesq system is right. But when they derive a KdV equation(see [19℄ p. 89), they do not make expli
it their 
hange of variables in the T1 term. Withthe 
hange of variable ξLO = x − t, τLO = (αLO/µLO)t, they exhibit (see their (3.19) or(3.21)):

− 1

2
√
π

∫ t

0

ηξLO√
t− T

dT,where there remains the former variable t inside the integral and in the bounds. Moreover,the dependen
e of ηξLO
on the variables (t, τLO, ... ?) is not written. This explains thatthey do not see that the time 
onvolution transforms into a spa
e one.Dutykh derives a Boussinesq system by a Leray-Helmholtz de
omposition from a Lin-earized Navier-Stokes [9℄. In order to derive the asso
iated KdV (see Se
. 3.2), he assumes

u = η + εP + βQ + ... and �nds P and Q. In this pro
ess, he uses only the assumptionthat waves go right (ηt + ηx = O(ε)). So he does not use the 
hange of time (τ = εt) andwrites a formula with uns
aled time t (his (14)):
−
√

ν

π

g

h

∫ t

0

ηx√
t− τ

dτ.5 Con
lusionIn this arti
le, we derive the vis
ous Boussinesq system for surfa
e waves from Navier-Stokes equations with non-vanishing initial 
onditions (see Proposition 3). One of ourby-produ
t is the bottom shear stress as a fun
tion of the velo
ity (
f. Proposition 8)and the de
ay rate for shallow water (see Proposition 1). We also state the system in 3-D
ase in (84), and derive the vis
ous KdV equation from our vis
ous Boussinesq system(
f. Proposition 11). The di�eren
es of our vis
ous KdV with other equations alreadyderived in the literature are highlighted and explained.A
knowledgementThe author wants to thank Professor Jean-Claude Saut for initiating and following thisresear
h.



33A Boundary and initial 
onditions in Lemma 5As is said in the proof of Lemma 5, we must 
he
k that u, given by the ne
essary equation(59), satis�es the initial 
ondition (64) and the remaining of the boundary 
onditions (65)2.Con
erning the initial 
ondition (64). We try to �nd the limit when t tends to 0+ and so
A = A(t) tends to +∞. Sin
e one assumes below γ > 0, the term −uu(x, 0, .) ∗L−1(e−σγ)tends to zero. Then, one 
an 
ome ba
k to the formula of f and make one 
hange ofvariables in every integral:
f(x, γ, t) =

A√
π

∫ +∞

−γ

f0(x,Γ
′ + γ)e−A2Γ′2

dΓ′ − A√
π

∫ +∞

γ

f0(x,Γ
′ − γ)e−A2Γ′2

dΓ′ +O(ε),up to an exponentially tending to zero fun
tion when t tends to 0. This 
an be rewritten
f(x, γ, t) = A√

π

∫ +∞

γ

(f0(x,Γ
′ + γ)− f0(x,Γ

′ − γ)) e−A2Γ′2
dΓ′

+ A√
π

∫ γ

−γ

f0(x,Γ
′ + γ)e−A2Γ′2

dΓ′ +O(ε)The �rst integral may be bounded by
2A√
π
sup
γ>0

| f0(x, γ) |
∫ +∞

γ

e−A2Γ′2
dΓ′

≤ 2
π sup

γ>0
| f0(x, γ) |

∫ +∞

Aγ

e−Γ′′2
dΓ′′,whi
h 
learly tends to zero when t tends to zero thanks to A(t).For the se
ond integral denoted I2, one may 
ompute a similar integral where the inte-gration variable of f0 is frozen:

I ′2 =
A√
π

∫ γ

−γ

f0(x, γ)e
−A2Γ′2

dΓ′

= f0(x, γ)
1√
π

∫ Aγ

−Aγ

e−Γ′′2
dΓ′′,whi
h 
learly tends to f0(x, γ) if γ > 0 when t → 0+. So one may make the di�eren
e ofthe se
ond integral with the previous integral (whi
h tends to f0(x, γ)) and �nd:

I2 − I ′2 =
A√
π

∫ γ

−γ

(f0(x,Γ
′ + γ)− f0(x, γ)) e

−A2Γ′2
dΓ′ + ot→0+(1).Here we must use the assumption of uniform 
ontinuity of the initial data:

∀ǫ > 0 ∃δ > 0 / | γ′ − γ |< δ ⇒| f0(x, γ′)− f0(x, γ) |< ǫ.Then, for any ǫ > 0, there exists a δ su
h that I2 − I ′2 
an be splitted into two parts andbounded by
2A√
π
sup
γ>0

| f0(x, γ) |
∫

|Γ′|>δ
⋂|Γ′|<γ

e−A2Γ′2
dΓ′ +

A√
π
ǫ

∫ δ

Γ′=−δ

e−A2Γ′2
dΓ′

≤ 2A√
π
sup
γ>0

| f0(x, γ) | 2γe−A2δ2 + ǫ.



34So we have proved that the f given by (67) or u given by (59 satis�es the initial 
ondition.Con
erning the boundary 
ondition (65)2). Now we look for the limit when γ tends to
+∞. The formula (67) 
an be written:

f̂(x, γ, p) = +
R
√
b

2σ

∫ +∞

γ

f0(x, γ
′)e−σγ′

dγ′e+σγ +
R
√
b

2σ

∫ γ

0

f0(x, γ
′)eσγ

′
dγ′e−σγ ,up to exponentially tending to zero fun
tions of γ. In this formula, the �rst integral isbounded by

R
√
b

2σ sup
γ′≥γ

| f0(x, γ′) |
∫ +∞

γ

e−σγ′
dγ′eσγ

≤ R
√
b

2σ2 sup
γ′≥γ

| f0(x, γ′) |,whi
h 
learly tends to zero when γ tends to +∞ be
ause f0(x, γ) tends to zero when γtends to +∞.For the se
ond integral, one needs to 
ut it at a value Γ given by the de�nition of f0 → 0when γ tends to +∞ (∀ǫ > 0 ∃Γ > 0 / | γ |> Γ ⇒| f0 |< ǫ). We 
an bound it with:
R
√
b

2σ

∫ Γ

0

| f0(x, γ′) | eσγ′
dγ′e−σγ +

R
√
b

2σ
ǫ

∫ γ

Γ

eσγ
′
dγ′e−σγ .Sin
e the �rst term tends to zero when γ tends to +∞ (Γ �xed) and the se
ond term isless than R

√
bǫ/(2σ2), the whole tends to zero with ǫ.So we 
ompleted the proof that (65)2 is satis�ed.Referen
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