Le groupe symétrique $\mathfrak{S}(n)$.

Le groupe symétrique $\mathfrak{S}(n)$ est le groupe des bijections d'un ensemble à n éléments. On identifie un ensemble de cardinal n à $[\![1,n]\!]$. Les propriétés du groupe symétriques (générateurs, sous-groupes conjugués...) sont étroitement liées à son action naturelle sur $[\![1,n]\!]$.

1 Action par conjugaison sur lui-même

Exercice 1. Soit $\sigma \in \mathfrak{S}(n)$ un cycle de longueur k.

- 1. Montrer que pour toute permutation $\gamma \in \mathfrak{S}(n)$, $\gamma \circ \sigma \circ \gamma^{-1}$ est un cycle de longeur k.
- 2. Montrer que si σ' est un cycle de longueur k, il existe $\gamma \in \mathfrak{S}(n)$ tel que $\gamma \circ \sigma \circ \gamma' = \sigma'$.

On a ainsi montré le résultat suivant

Proposition 1.1. Le groupe $\mathfrak{S}(n)$ agit transitivement sur l'ensemble des k-cycles.

Exercice 2. On rappelle que $Z(\mathfrak{S}(n))$ est le centre du groue $\mathfrak{S}(n)$ c'est-à-dire l'ensemble des éléments $\sigma \in \mathfrak{S}(n)$ tels que pour tout $\gamma \in \mathfrak{S}(n)$, $\gamma = \sigma \circ \gamma \circ \gamma^{-1}$. Montrer que $Z(\mathfrak{S}(2)) = \mathfrak{S}(2)$ et que $\mathbb{Z}(\mathfrak{S}(n)) = \{\mathrm{Id}\}\$ si $n \geq 3$.

2 Support et orbites d'une permutation

Définition 2.1. Le support d'une permutation $\sigma \in \mathfrak{S}(n)$ est l'ensemble

Supp
$$(\sigma) := \{k \in [1, n] \mid \sigma(k) \neq k\}.$$

Propriétés 2.1. Soit $\sigma \in \mathfrak{S}(n)$. Alors

- 1. $\sigma(\operatorname{Supp}(\sigma)) = \operatorname{Supp}(\sigma)$
- 2. Supp (σ^{-1}) Supp (σ)
- 3. pour $k \in \mathbb{Z}$, Supp $\sigma^k \subset \text{Supp } \sigma$.

Exercice 3. Montrer que deux permutations de support disjoint commutent. La réciproque est-elle vraie?

Définition 2.2. Soit $\sigma \in \mathfrak{S}(n)$. On σ - appelle orbite de j l'orbite de k sous l'action naturelle de $\langle \sigma \rangle$ sur [1, n], c'est à dire l'ensemble $\{\sigma^k(j), | k \in \mathbb{Z}\}$.

Exercice 4. Soit $\sigma \in \mathfrak{S}(n)$ et $O \subset [1, n]$ une σ -orbite de cardinal $m \geq 2$. Montrer que pour tout $j \in O$,

$$O = \{ \sigma^k(j) \, | \, 0 \le k \le m - 1 \}.$$

Théorème 2.1. Une permutation $\sigma \in \mathfrak{S}(n)$ est un cycle si et seulement si elle n'a qu'une seule orbite non réduite à un point.

Exercice 5. Soit $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 2 & 3 & 4 & 1 & 6 & 5 & 8 & 9 & 10 & 11 & 7 \end{pmatrix}$

- 1. Décrire l'orbite et le stabilisateur de chaque entier $k \in [1, 11]$ pour l'action naturelle de $\langle \sigma \rangle$ sur cet ensemble.
- 2. En déduire une décomposition de σ en cycles à supports disjoints.

3 Générateurs de $\mathfrak{S}(n)$

Théorème 3.1. Toute permutation se décompose en produit de cycles disjoints et cette décomposition est unique à l'ordre près.

Exercice 6 (Preuve du théorème). On considère la partition en orbites $O_1 \sqcup \cdots \sqcup O_p$ de [1, n]. Soit $q \leq p$ tel que les orbites O_i pour $1 \leq i \leq q$ soient de cardinal > 1 et les orbites O_i pour i > q de cardinal 1.

1. Posons pour $1 \le i \le q$,

$$\gamma_i(j) = \begin{cases} \sigma(j) & \text{si } j \in O_i \\ j & \text{sinon} \end{cases}$$

Vérifier que γ_i est un cycle de support O_i .

- 2. Vérifier que $\sigma = \prod_{i=1}^q \gamma_i$.
- 3. Soit $\sigma = \prod_{j=1}^{q'} \gamma_i'$ une autre décomposition de σ en cycles disjoints. Montrer que q' = q et que pour tout $i \in [1, q]$, il existe un unique $j \in [1, q]$ tel que $\gamma_i' = \gamma_j$.

Théorème 3.2. Toute permutation $\sigma \in \mathfrak{S}(n)$ s'écrit comme un produit de transpositions.

Exercice 7. Prouver le théorème. On pourra commencer par montrer qu'un cycle de longueur k se décompose en un produit de k-1 transposition.

Exercice 8. Montrer que $\mathfrak{S}(n)$ est engendré par :

- 1. les transpositions (1, k), $2 \le k \le n$,
- 2. les transpositions (k, k+1), $1 \le k \le n-1$,
- 3. la transposition (1,2) et le cycle $(1,\ldots,n)$.

4 Signature

Définition 4.1. On appelle signature d'une permutation $\sigma \in \mathfrak{S}(n)$ le nombre noté $\varepsilon(\sigma) := (-1)^{n-\mu(\sigma)}$ où $\mu(\sigma)$ est le nombre de σ -orbites distinctes de σ

Remarque 4.1. La signature d'une permutation est un élément de $\{-1,1\}$.

Exercice 9. 1. Montrer que $\varepsilon(\mathrm{Id}) = 1$

- 2. Montrer que si τ est une transposition $\varepsilon(\tau) = -1$
- 3. Montrer que si σ est un cycle de longueur k, $\varepsilon(\sigma) = (-1)^{n-k}$.

Théorème 4.1. Si $\sigma \in \mathfrak{S}(n)$ est le produit de p transposition, alors $\varepsilon(\sigma) = (-1)^p$

Remarque 4.2. Il n'y a pas unicité d'une décomposition d'une permutation en transposition, ni même du nombre de permutations. Néanmoins, ce nombre a toujours la même parité.

Théorème 4.2. Les seuls morphismes de groupes de $(\mathfrak{S}(n), \circ)$ vers le groupe multiplicatif (\mathbb{R}^*, \times) sont la signature et le morphisme trivial.

Exercice 10 (Preuve du théorème 3.5). 1. Vérifier que la signature est un morphisme.

- 2. Soit $\varphi : \mathfrak{S}(n) \to \mathbb{R}^*$ un morphisme.
 - (a) Montrer que pour tout transposition $\tau, \varphi(\tau) \in \{-1, 1\}$
 - (b) Montrer que si τ_1, τ_2 sont deux transpositions $\varphi(\tau_1) = \varphi(\tau_2)$ (autrement dit φ est constant sur les transpositions).
 - (c) Conclure