TD $n^{\circ}3$: Sous-variétés de dimension 1

Exercice 1. Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}^n$ une fonction de classe C^k , $k \ge 1$.

- 1. Montrer que le graphe de f est une sous-variété de dimension de dimension 1 et de classe C^k et determiner son espace tangent en tout point.
- 2. En déduire que les parties suivantes de \mathbb{R}^2 sont des sous-variétés de dimension 1 et de classe C^{∞} qu'on tracera :

(a)
$$\mathcal{P} := \{(x,y) \mid x^2 - y = 0\}$$
 (b) $\mathcal{H} := \{(x,y) \mid xy = 1 \text{ et } y > 0\}$

- 3. Pour chacune des sous-variétés \mathcal{P} et \mathcal{H} déterminer son espace tangent en tout point.
- 4. En déduire des expressions des longueurs des portions de courbes $\mathcal{P} \cap \{(x,y) \mid x \in [-1,1]\}$ et $\mathcal{H} \cap \{(x,y) \mid x \in [-1,1]\}$.

Exercice 2. Soit p un entier naturel **impair** et soit q > p un autre entier naturel. Soit $\gamma : \mathbb{R} \to \mathbb{R}^2$ l'arc paramétré défini par $\gamma : t \mapsto (t^p, t^q)$. On note \mathscr{C} la courbe image de γ .

- 1. Rappeler l'allure de $\mathscr C$ en fonction de la parité de q.
- 2. Montrer que la fonction $x \mapsto x^p$ est un homéomorphisme de \mathbb{R} . On note $x \mapsto x^{\frac{1}{p}}$ son inverse.
- 3. Vérifier que $\mathscr C$ est le graphe de la fonction $x\mapsto x^{\frac{q}{p}}.$
- 4. Soit $\alpha > 1$. On considère les fonctions

$$f(x) = \begin{cases} e^{\alpha \ln x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ -e^{\alpha \ln(-x)} & \text{si } x < 0 \end{cases} \quad \text{et} \quad g(x) = \begin{cases} e^{\alpha \ln x} & \text{si } x > 0 \\ 0 & \text{si } x = 0 \\ e^{\alpha \ln(-x)} & \text{si } x < 0 \end{cases}$$

Montrer que f et g sont de classe C^1 .

- 5. En déduire que $\mathscr C$ est une sous-variété de classe C^1 .
- 6. Déterminer l'espace tangent de $\mathscr C$ en tout point et en déduire la longueur de la portion de courbe $\gamma([-1,1])$.

Exercice 3. Soit $f: \mathbb{R}^2 \to \mathbb{R}: (x,y) \mapsto x^2 - y^2$. On note $\mathcal{C}_a := f^{-1}(\{a\})$.

- 1. Dessiner C_a pour a variant dans \mathbb{R} .
- 2. Calculer la différentielle de f en un point (x, y). Quand $D_{(x,y)}f$ est-elle une fonction surjective? À quelles valeurs de a cela correspond-il?

On suppose maintenant $a \neq 0$.

- 3. Montrer que chacune des composantes connexes de C_a est une sous-variété de dimension 1 et de classe C^{∞} .
- 4. Montrer que l'espacer tangent à \mathscr{C}_a au point (x,y) est égal à $\operatorname{Ker} D_{(x,y)} f$.