1.2 Régularisation

1.2.1 Convolution et approximations de l'unité

Théorème 1.2 -

Soit f et g dans $L^1(\mathbb{R}^d)$.

Pour presque tout x, la fonction $\mathbb{R}^d \to \mathbb{K} : t \mapsto f(t)g(x-t)$ est intégrable. On note alors

$$f * g(x) = \int_{\mathbb{R}^d} f(t)g(x-t)dt.$$

L'application f * g est intégrable et $||f * g||_1 \le ||f||_1 ||g||_1$.

Preuve. Posons $H:(x,t)\mapsto f(t)g(x-t)$. L'application H est mesurable ². Le théorème de Fubini-Tonelli et la formule du changement de variable permettent alors d'écrire

$$\int_{\mathbb{R}^d \times \mathbb{R}^d} |f(t)g(x-t)| dx dt = \int_{\mathbb{R}^d} |f(t)| \int_{\mathbb{R}^d} |g(x-t)| dx dt = \int_{\mathbb{R}^d} |f(t)| \int_{\mathbb{R}^d} |g(u)| du dt = ||f||_1 ||g||_1$$

et H est intégrable. Le théorème de Fubini permet alors de conclure.

L'inégalité de Hölder permet de montrer la proposition suivante.

Proposition 1.2.1 —

Soit $f \in L^1(\mathbb{R}^d)$ et $g \in L^{\infty}(\mathbb{R}^d)$. Alors pour tout x, f * g est bien définie.

On peut en fait montrer que f * g est de plus uniformément continue, ce sera fait en fin de partie dans le théorème 1.4.

La proposition suivante est une conséquence du théorème de Fubini.

Proposition 1.2.2 -

Soit f, q, h dans $L^1(\mathbb{R}^d)$.

1.
$$f * f = g * f$$

2.
$$f * (g * h) = (f * g) * h$$
.

Définition 1.3 -

Étant donné un corps \mathbb{K} , une \mathbb{K} -algèbre \mathcal{A} est un \mathbb{K} -espace vectoriel muni d'une application \mathbb{K} -bilinéaire $\star : \mathcal{A} \times \mathcal{A} \to \mathcal{A}$. On dit qu'elle est associative si l'application \star est associative et commutative si \star est commutative. On dit qu'elle est unitaire s'il existe $a_0 \in \mathcal{A}$ tel que pour tout $a \in \mathcal{A}$, $a \star a_0 = a_0 \star a = a$.

Remarque~1.2.1.~ Il existe des K-algèbres non associatives comme par exemple la R-algèbre des octonions.

Corollaire 1.2.1 -

 $(L^1(\mathbb{R}^d), +, *, \times)$ est une algèbre associative et commutative.

^{2.} C'est ici qu'il est utile de considérer des fonctions boréliennes : H est borélienne comme produit et composée de fonctions boréliennes. Si f et g ne sont pas boréliennes, il faut en toute rigueur en prendre des représentants boréliens pour justifier de la mesurabilité de H.

Remarque 1.2.2. Nous verrons plus tard que $L^1(\mathbb{R}^d)$ n'est pas unitaire.

Proposition 1.2.3 —

Soit f, g dans $L^1(\mathbb{R}^d)$. Alors supp $f * g \subset \overline{\text{supp } f + \text{supp } g}$

Preuve. Montrons $(\overline{\operatorname{supp}} f + \operatorname{supp} g)^c \subset (\operatorname{supp} f * g)^c$. Pour cela, appliquons le lemme ??. Soit $x_0 \notin \overline{\operatorname{supp}} f + \underline{\operatorname{supp}} g^c$. Soit r > 0 tel que $B(x_0, r) \subset \overline{\operatorname{supp}} f + \operatorname{supp} g^c = \emptyset$. Soit ϕ bornée à support dans $B(x_0, r)$.

$$\int_{B(x_0,r)} \phi(x)f * g(x)dx = \int_{B(x_0,r)} \phi(x) \left(\int_{\mathbb{R}^d} f(y)g(x-y)dy \right) dx$$

Or, d'après Fubini-Tonnelli et la formule du changement de variable

$$\begin{split} \int_{B(x_0,r)} |\phi(x)| \int_{\mathbb{R}^d} |f(y)g(x-y)| dy dx &= \int_{\mathbb{R}^d} |f(y)| \int_{B(x_0,r)} |\phi(x)| |g(x-y)| dx dy \\ &= \int_{\mathbb{R}^d} |f(y)| \int_{B(x_0-y,r)} |\phi(z+y)| |g(z)| dz dy \\ &= \int_{\text{supp } f} |f(y)| \int_{B(x_0-y,r) \cap \text{supp } g} |\phi(z+y)| |g(z)| dz dy \end{split}$$

Or pour tout $y \in \operatorname{supp} f$, $B(x_0 - y, r) \cap \operatorname{supp} g = \emptyset$, l'intégrale est donc nulle et l'arbitraire sur ϕ donne le résultat.

Remarque 1.2.3. En particulier, si f et g à support compact, f * g est à support compact.

Définition 1.4 -

Soit $A \subset \mathbb{R}$, $a \in \overline{A}$ et $(f_{\alpha})_{\alpha \in A}$ une famille de fonctions intégrables. On dit que $(f_{\alpha})_{\alpha \in A}$ est une approximation de l'unité en a si

- 1. $\lim_{\alpha \to a} \int_{\mathbb{R}^d} f_{\alpha} d\lambda = 1$
- 2. il existe m > 0 tel que pour tout $\alpha \in A$, $||f_{\alpha}||_{1} \leq m$
- 3. pour tout voisinage V de 0 dans \mathbb{R}^d , $\lim_{\alpha \to a} \int_{\mathbb{R}^d \setminus V} |f_{\alpha}| d\lambda = 0$.

Remarque 1.2.4. En pratique, on rencontrera principalement les cas suivants $A = \mathbb{N}$ et $a = +\infty$, A = [0, 1] et a = 0.

C'est le résultat suivant qui donne tout son sens à la terminologie.

Théorème 1.3

Soit $(f_{\alpha})_{\alpha \in A}$ une approximation de l'unité en $a \in \bar{A}$. Et soit $g : \mathbb{R}^d \to \mathbb{K}$ mesurable.

- 1. Si g est bornée et continue en x_0 , $f_{\alpha} * g(x_0) \to_{\alpha \to a} g(x_0)$
- 2. Si g est uniformément continue et bornée, $||f_{\alpha} * g g||_{\infty} \to_{\alpha \to a} 0$
- 3. Si $g \in L^1(\mathbb{R}^d)$, $||f_{\alpha} * g||_1 \to_{\alpha \to a} 0$

Preuve. Notons $I_{\alpha} = \int_{\mathbb{R}^d} f_{\alpha} d\lambda$. Par hypothèse, $\lim_{\alpha \to a} I_{\alpha} = 1$. Soit V un voisinage de 0 dans \mathbb{R}^d . La preuve de (a) est analogue à celle de (b). Prouvons cette dernière. Il suffit de montrer

que $\lim_{\alpha\to a} ||f_\alpha * g - I_\alpha g||_\infty = 0$. Soit $\varepsilon > 0$. Pour $x \in \mathbb{R}^d$

$$|f_{\alpha} * g(x) - I_{\alpha}g(x)| \leq \int_{\mathbb{R}^{d}} |f_{\alpha}(t)g(x-t) - g(x)|dt$$

$$\leq \int_{V} |f_{\alpha}(t)g(x-t) - g(x)|dt + 2||g||_{\infty} \int_{\mathbb{R}^{d}\setminus V} |f_{\alpha}(t)|dt.$$

Par uniforme continuité de g, on peut choisir V de sorte que pour tout $x \in \mathbb{R}^d$ et tout $t \in V$, $|g(x-t)-g(x)| \leq \varepsilon$. Alors

$$||f_{\alpha} * g - g||_{\infty} \le \varepsilon \int_{\mathbb{R}^d} |f_{\alpha}| d\lambda + 2||g||_{\infty} \int_{\mathbb{R}^d \setminus V} |f_{\alpha}(t)| dt$$

le second terme dans la somme tendant vers 0 quand $\alpha \to a$.

Prouvons (c). Comme précédemment, il suffit de montrer que $||f_{\alpha} * f - I_{\alpha} f||_1 \to 0$. Or d'après Fubini-Tonelli :

$$||f_{\alpha} * f - I_{\alpha}f||_{1} \leq \int_{\mathbb{R}^{d}} |f_{\alpha}(t)| \Big(\int_{\mathbb{R}^{d}} |g(x-t) - g(x)| dx \Big) dt$$

$$\leq \int_{\mathbb{R}^{d}} |f_{\alpha}(t)| \Big(\int_{\mathbb{R}^{d}} |\tau_{t}g(x) - g(x)| dx \Big) dt$$

$$\leq \int_{\mathbb{R}^{d}} |f_{\alpha}(t)| \mu_{f}(t) |dt = |f_{\alpha}| * \check{\mu}_{f}(0).$$

Or

$$|f_{\alpha}| * \check{\mu}_f(0) = ||f_{\alpha}||_1 \frac{|f_{\alpha}|}{||f_{\alpha}||} * \check{\mu}_f(0)$$

On laisse au lecteur le soin de vérifier que la famille $\left(\frac{|f_{\alpha}|}{||f_{\alpha}||_{1}}\right)_{\alpha}$ est une approximation de l'unité pour α assez proche de a. Alors par (b), $\lim_{\alpha \to a} \frac{|f_{\alpha}|}{||f_{\alpha}||} * \check{\mu}_{f}(0) = \check{\mu}_{f}(0) = 0$ ce qui permet de conclure car la famille $(||f_{\alpha}||_{1})_{\alpha}$ est bornée.

Proposition 1.2.4 ——

Soit $\varphi : \mathbb{R}^d \to \mathbb{R}^+ : x \mapsto e^{-\pi||x||^2}$. La famille $\varphi_\delta : x \mapsto \frac{1}{\delta^d} \varphi(\frac{x}{\delta})$ est une approximation de l'unité.

Preuve. Un calcul classique et à savoir faire permet de montrer que $\int_{\mathbb{R}^d} e^{-\pi||x||^2} dx = 1$. La formule du changement de variable donne que pour $\delta > 0$, $\int_{\mathbb{R}^d} \varphi_{\delta}(x) dx = \int_{\mathbb{R}^d} \varphi(x) dx$. Soit V voisinage de 0. La formule du changement de variable donne

$$\int_{\mathbb{R}^d \setminus V} \varphi_{\delta}(x) dx = \int_{\mathbb{R}^d \setminus \delta^{-1}V} |\varphi(x)| dx$$

Si on note $\psi_{\delta} = \mathbb{1}_{\delta^{-1}V}\varphi$, on obtient

$$\int_{\mathbb{R}^d \setminus \delta^{-1}V} |\varphi(x)| dx \le \int_{\mathbb{R}^d} |\varphi(x) - \psi_{\delta}(x)| dx$$

et cette dernière intégrale $\to 0$ quand $\delta \to 0$ par le théorème de convergence dominée.

Remarque 1.2.5. Plus généralement, une bonne recette pour construire une approximation de l'unité est de partir d'une fonction ϕ positive d'intégrale 1 et considérer la famille $\phi_{\delta}: x \mapsto \frac{1}{\delta^d} \phi(\frac{x}{\delta})$ quand $\delta \in]0,1].$