Exercices: Équations différentielles 2

Exercice 1. Soit $f:]a, b[\times \mathbb{R}^n \to \mathbb{R}^n$ continue et bornée. Montrer que toute solution maximale de l'équation y' = f(t, y) est globale.

Exercice 2. Pour chacun des problèmes de Cauchy suivant, vérifier l'existence et l'unicité d'une solution et dire si cette solution est globale.

1.
$$\begin{cases} y' = \sin y \\ y(1) = 1 \end{cases}$$

$$2. \begin{cases} y' = y^4 \\ y(1) = 1. \end{cases}$$

Exercice 3. 1. La fonction $x \mapsto \sqrt{x}$ est-elle localement lipschitzienne?

2. Résoudre le problème de Cauchy $\begin{cases} y = \sqrt{y} \\ y(0) = 0. \end{cases}$

Exercice 4. Soit I un intervalle ouvert de \mathbb{R} et soit $f: I \times \mathbb{R}^n \to \mathbb{R}^n$ continue et localement lipschitzienne par rapport à la variable d'état telle qu'il existe $g, h: I \to \mathbb{R}^+$ telles que pour tout $(t, y) \in I \times \mathbb{R}^n$,

$$||f(t,y)|| \le g(t)||y|| + h(t).$$

Montrer que les solutions maximales de y' = f(t, y) sont globales.

Exercice 5. Soit I intervalle de \mathbb{R} et $g, h : I \to \mathbb{R}$ de classe C^1 telle que g ne s'annule pas. Soit $f : I \times I \to \mathbb{R}$: $(t, y) \mapsto g(y)h(t)$. Donner les solutions de l'équation différentielle y' = f(t, y).

Exercice 6. Résoudre l'équation différentielle $y't \ln t - y = 1$.

Exercice 7 (Équation de Bernoulli). Soit I intervalle de \mathbb{R} , $a, b : I \to \mathbb{R}$ deux fonctions continues et $m \ge 2$ un entier. On considère l'équation différentielle $y' + a(t)y = b(t)y^m$.

- 1. Soit $y_0 \neq 0$. Montrer qu'il existe une unique solution y telle que $y(0) = y_0$ et que cette solution n'est jamais nulle.
- 2. Montrer que la fonction $z=y^{1-m}$ est solution d'une équation linéaire du premier ordre que l'on déterminera.
- 3. En déduire y.

Exercice 8. Soit a, b deux réels strictement positifs. Soit $I \ni t \mapsto (x(t), y(t))$ la solution maximale du problème de Cauchy

$$\begin{cases} x' &= xy - 2x^2 \\ y' &= -xy - y^2 \\ (x(0), y(0)) &= (a, b) \end{cases}$$

- 1. Montrer que pour tout $t \in I$, x(t) > 0 et y(t) > 0.
- 2. Montrer que $[0, +\infty] \subset I$.

3. Montrer que $\lim_{t\to\infty}(x(t),y(t))=(0,0)$.

Exercice 9. Soit I intervalle ouvert non vide de \mathbb{R} et $f: I \times \mathbb{R} \to \mathbb{R}$ continue. Soit $\alpha, \beta: I \to \mathbb{R}$ de classe C^1 continue telles que pour tout $t \in I$,

$$\alpha'(t) < f(t, \alpha(t))$$
 et $f(t, \beta(t)) < \beta'(t)$.

Soit $(t_0, y_0) \in I \times \mathbb{R}$ et soit (J, y) une solution maximale du problème de Cauchy $\begin{cases} y' = f(t, y) \\ y(t_0) = y_0 \end{cases}$.

- 1. Supposons que $\alpha(t_0) \leq y_0$. Notons $A := \{t \in J \mid t \geq t_0 \text{ et } \alpha(t) > y(t)\}$ et $t_1 = \text{Inf } A$.
 - (a) Montrer que $y(t_1) = \alpha(t_1)$ puis que $\alpha'(t_1) \geq y'(t_1)$
 - (b) En déduire que A est vide.
- 2. Supposons que $y_0 \leq \beta(t_0)$. Montrer que pour tout $t \in J$, si $t \geq t_0$, alors $\beta(t) \geq y(t)$.
- 3. Supposons que f est localement lipschitzienne par rapport à la variable d'état et que les hypothèses des question 1. et 2. soient satisfaites. Montrer que $J \cap [t_0, +\infty] = I \cap [t_0, +\infty]$ (autrement dit, la solution est "globale" à droite)

Exercice 10. Soit O ouvert de \mathbb{R}^n et $f:O\to\mathbb{R}^n$ une fonction localement lipschitzienne. Soit (I,y) une solution maximale de l'équation autonome y'=f(y). Montrer que si l'image de y est compacte, y est périodique.

Exercice 11. Considérons le système

$$\begin{cases} x' = x + \alpha y \\ y' = x + 2y. \end{cases}$$

À quelles conditions sur α , le point (0,0) est-il attractif?